

User Guide

Fiorano SOA Platform®
Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any
form without prior written permission is forbidden. The information contained herein has been obtained from
sources believed to be reliable. Fiorano disclaims all warranties as to the accuracy, completeness or
adequacy of such information. Fiorano shall have no liability for errors, omissions or inadequacies in the
information contained herein or for interpretations thereof. The opinions expressed herein are subject to
change without prior notice.

FIORANO END-USER LICENSE AGREEMENT

This Fiorano end-user license agreement (the “Agreement”) is a legal agreement between you (hereinafter “Customer”),
either an individual or a corporate entity, and Fiorano Software, Inc., having a place of business at 718 University Ave,
Suite 212 Los Gatos, CA 95032, USA, or its affiliated companies (hereinafter “Fiorano”) for certain software
developed and marketed by Fiorano as defined in greater detail below. By opening this package, installing, copying,
downloading, extracting and/or otherwise using the software, you are consenting to be bound by and are becoming
party to this agreement on the date of installation, copying, download or extraction of the software (the “Effective
Date”). If you do not agree with any of the terms of this Agreement, please stop installing and/or using the software and
promptly return the unused software to the place of purchase. By default, the Software is made available to Customers
in online, downloadable form. The terms of this Agreement shall apply to each Software license granted by Fiorano
under this Agreement.

1. Definitions.

"Affiliate" means, in relation to Fiorano, another person firm or company which directly or
indirectly controls, is controlled by or is under common control with Fiorano and the
expression 'control' shall mean the power to direct or cause the direction of the general
management and policies of the person firm or company in question.

“Commencement Date” means the date on which Fiorano delivers the Software to
Customer, or if no delivery is necessary, the Effective Date set forth in this Agreement or on
the relevant Order Form.

“Designated Center” means the computer hardware, operating system, customer-specific
application and Customer Geographic Location at which the Software is deployed as
designated on the corresponding Order Form.

“Designated Contact” shall mean the contact person or group designated by Customer and
agreed to by Fiorano who will coordinate all Support requests to Fiorano.

“Documentation” means the user guides and manuals for installation and use of the
Software. Documentation is provided in CD-ROM or bound form, whichever is generally
available.

“Error” shall mean a reproducible defect in the Supported Program or Documentation when
operated on a Supported Environment which causes the Supported Program not to operate
substantially in accordance with the Documentation.

“Excluded Components” shall mean such components as are listed in Exhibit B. Such
Excluded Components do not constitute Software under this Agreement and are third party
components supplied subject to the corresponding license agreements specified in Exhibit B.

“Excluded License” shall mean and include any license that requires any portion of any
materials or software supplied under such license to be disclosed or made available to any
party either in source code or object code form. In particular, all versions and derivatives of
the GNU GPL and LGPL shall be considered Excluded Licenses for the purposes of this
Agreement.

“Resolution” shall mean a modification or workaround to the Supported Program and/or
Documentation and/or other information provided by Fiorano to Customer intended to resolve
an Error.

 “Residuals” shall mean information in non-tangible form which may be retained by persons
who have had access to the Confidential Information, including ideas, concepts, know-how or
techniques contained therein.

“Order Form” means the document in hard copy form by which Customer orders Software
licenses and services, and which is agreed to in writing by the parties. The Order Form shall
reference the Effective Date and be governed by the terms of this Agreement. Customer
understands that any document in the nature of a purchase order originating from Customer
shall not constitute a contractual offer and that the terms thereof shall not govern any
contract to be entered into between Fiorano and Customer. The Order Form herein shall
constitute an offer to purchase made by the Customer under the terms of the said Order Form
and this Agreement.

 “Software” means each of the individual Products, as further outlined in Exhibit-A, in object
code form distributed by Fiorano for which Customer is granted a license pursuant to this
Agreement, and the media, Documentation and any Updates thereto.

“Support” shall mean ongoing support provided by Fiorano pursuant to the terms of this
Agreement and Fiorano’s current support policies. “Supported Program” or “Supported
Software” shall mean the then current version of the Software in use at the Designated
Center for which the Customer has paid the then-current support fee (“Support Fee”).

“Support Hours” shall mean 9 AM to 5 PM, Pacific Standard Time, Monday through Friday,
for Standard Support.

“Support Period” shall mean the period during which Customer is entitled to receive Support
on a particular Supported Program, which shall be a period of twelve (12) months beginning
from the Commencement Date, or if applicable, twelve (12) months from the expiration of the
preceding Support Period. Should Fiorano withdraw support pursuant to section 1 (q), the
Support Period shall be automatically reduced to the expiration date of the appropriate
Software.

“Supported Environment” shall mean any hardware and operating system platform which
Fiorano provides Support for use with the Supported Program.

“Update” means a subsequent release of the Software that Fiorano generally makes available
for Supported Software licensees at no additional license fee other than shipping and handling
charges. Update shall not include any release, option, feature or future product that Fiorano
licenses separately. Fiorano will provide Updates for the Supported Programs as and when
developed for general release in Fiorano’s sole discretion. Fiorano may withdraw support for
any particular version of the Software, including without limitation the most current Update
and any preceding release with a notice of three (3) months to Customer.

2. Software License.

(a) Rights Granted, subject to the receipt by Fiorano of appropriate license fees.

(i) The Software is Licensed to Customer for use under the terms of this Agreement and
NOT SOLD. Fiorano grants to Customer a limited, non-exclusive, world wide license to use the
Software as specified on an Order Form and subject to the licensing restrictions in Exhibit C
under this Agreement, as follows:

(1) to use the Software solely for Customer’s operations at the Designated Center
consistent with the use limitations specified or referenced in this Agreement, the
Documentation for such Software or any Order Form accepted by Fiorano pursuant to this
Agreement. Customer may not relicense, rent or lease the Software or use the Software for
third party training, commercial timesharing or service bureau use;

(2) to use the Documentation provided with the Software in support of Customer’s
authorized use of the Software;

(3) to make a single copy for back-up or archival purposes and/or temporarily transfer the
Software in the event of a computer malfunction. All titles, trademarks and copyright or other
restricted rights notices shall be reproduced in any such copies;

(4) to allow third parties to use the Software for Customer’s operations, so long as
Customer ensures that use of the Software is in accordance with the terms of this Agreement.

(ii) Customer shall not copy or use the Software (including the Documentation) except as
specified in this Agreement and applicable Order Form. Customer shall have no right to use
other third party software or Excluded Components that are included within the Software
except in connection and within the scope of Customer’s use of Fiorano’s Software product.

Customer agrees not to cause or permit the reverse engineering, disassembly, decompilation,
or any other attempt to derive source code from the Software, except to the extent expressly
provided for by applicable law.

Customer hereby warrants that it shall not, by any act or omission, cause or permit the
Products or any part thereof to become expressly or impliedly subject to any Excluded License.

(v) Fiorano and its Affiliates shall retain all title, copyright and other proprietary rights in
the Software. Customer does not acquire any rights, express or implied, in the Software, other
than those specified in this Agreement.

(vi) Customer agrees that it will not publish or cause or permit to be published any results
of benchmark tests run on the Software.

(vii) If the Software is licensed for a specific term, as noted on the Order Form, then the
license shall expire at the end of the term and the termination conditions in section 4(d) shall
automatically become applicable.

(b) Transfer. Customer may transfer a Software license within its organization upon
notice to Fiorano; transfers are subject to the terms and fees specified in Fiorano’s transfer
policy in effect at the time of the transfer. If the Software is licensed for a specific term, then
it may not be transferred by Customer.

(c) Verification. At Fiorano’s written request, Customer shall furnish Fiorano with a
signed certification verifying that the Software is being used pursuant to the provisions of this
Agreement and applicable /Order Form. Fiorano (or Fiorano’s designee) may audit Customer's
use of the Software. Any such audit shall be conducted during regular business hours at
Customer's facilities and shall not unreasonably interfere with Customer's business activities.
If an audit reveals that Customer has underpaid fees to Fiorano, Customer shall be invoiced
directly for such underpaid fees based on the Fiorano Price List in effect at the time the audit
is completed. If the underpaid fees are in excess of five percent (5%) of the aggregate license
fees paid to Fiorano pursuant to this Agreement, the Customer shall pay Fiorano’s reasonable
costs of conducting the audit. Audits shall be conducted no more than once annually.

(d) Customer Specific Objects.

(i) The parties agree and acknowledge, subject to Fiorano’s underlying proprietary rights,
that Customer may create certain software objects applicable to Customer’s internal business
(“Customer Specific Objects”). Any Customer Specific Object developed solely by Customer
shall be the property of Customer. To the extent that Customer desires to have Fiorano
incorporate such Customer Specific Objects into Fiorano’s Software (and Fiorano agrees, in its
sole discretion, to incorporate such Customer Specific Objects), Customer will promptly deliver
to Fiorano the source and object code versions (including documentation) of such Customer
Specific Objects, and any updates or modifications thereto, and hereby grants Fiorano a
perpetual, irrevocable, worldwide, fully-paid, royalty-free, exclusive, transferable license to
reproduce, modify, use, perform, display, distribute and sublicense, directly and indirectly,
through one or more tiers of sublicensees, such Customer Specific Objects.

(ii) Any objects, including without limitation Customer Specific Objects, developed solely
or jointly with Customer by Fiorano shall be the property of Fiorano.

(e) Additional Restrictions on Use of Source Code.

Customer acknowledges that the Software, its structure, organization and any human-
readable versions of a software program (“Source Code”) constitute valuable trade secrets
that belong to Fiorano and/or its suppliers Source Code Software, if and when supplied to
Customer shall constitute Software licensed under the terms of this Agreement and the Order
Form. Customer agrees not to translate the Software into another computer language, in
whole or in part.

(i) Customer agrees that it will not disclose all or any portion of the Software’s Source
Code to any third parties, with the exception of authorized employees (“Authorized
Employees”) and authorized contractors (“Authorized Contractors”) of Customer who (i)
require access thereto for a purpose authorized by this Agreement, and (ii) have signed an
employee or contractor agreement in which such employee or contractor agrees to protect
third party confidential information. Customer agrees that any breach by any Authorized
Employees or Authorized Contractors of their obligations under such confidentiality
agreements shall also constitute a breach by Customer hereunder.

(ii) Customer shall ensure that the same degree of care is used to prevent the unauthorized
use, dissemination, or publication of the Software’s Source Code as Customer uses to protect
its own confidential information of a like nature, but in no event shall the safeguards for
protecting such Source Code be less than a reasonably prudent business would exercise under
similar circumstances. Customer shall take prompt and appropriate action to prevent
unauthorized use or disclosure of such Source Code, including, without limitation, storing such
Source Code only on secure central processing units or networks and requiring passwords and
other reasonable physical controls on access to such Source Code.

(iii) Customer shall instruct Authorized Employees and Authorized Contractors not to copy
the Software’s Source Code on their own, and not to disclose such Source Code to anyone not
authorized to receive it.

(iv) Customer shall handle, use and store the Software’s Source Code solely at the
Customer Designated Center.

(f) Acceptance tested Software

Customer acknowledges that it has, prior to the date of this Agreement, carried out adequate
acceptance tests in respect of the Software. Customer's acceptance of delivery of the
Software under this Agreement shall be conclusive evidence that Customer has examined the
Software and found it to be complete, and in accordance with the Documentation, in good
order and condition and fit for the purpose for which it is required.

3. Technical Services.

(a) Maintenance and Support Services. Maintenance and Support services will be
provided under the terms of this Agreement and Fiorano’s support policies in effect on the
date Support is ordered by Customer. Support services shall be provided from Fiorano’s
principal place of business or at the Designated Center, as determined in Fiorano’s sole
discretion. If Fiorano sends personnel to the Designated Center to resolve any Error in the
Supported Program, Customer shall pay Fiorano’s reasonable travel, meals and lodging
expenses.

(b) Consulting and Training Services. Fiorano will, upon Customer’s request, provide
consulting and training services agreed to by the parties pursuant to the terms of a separate
written agreement.

(c) Incidental Expenses. For any on-site services requested by Customer, Customer
shall reimburse Fiorano for actual, reasonable travel and out-of-pocket expenses incurred
(separate from then current Support Fees).

(d) Reinstatement. Once Support has been terminated by Customer or Fiorano for a
particular Supported Program, it can be reinstated only by prior approval from Fiorano and
then only upon payment of the reinstatement fee applicable at the time of reinstatement.

(e) Supervision and Management. Customer is responsible for undertaking the proper
supervision, implementation and management of its use of the Supported Programs, including,
but not limited to: (i) assuring proper Supported Environment configuration, Supported
Programs installation and operating methods; and (ii) following industry standard procedures
for the security of data, accuracy of input and output, and back-up plans, including restart and
recovery in the event of hardware or software error or malfunction. Fiorano does not warrant
(i) the performance of, or combination of, Software with any third party software, (ii) any
implementation of the Software that does not follow Fiorano’s delivery methodology, or (iii)
any components not supplied by Fiorano.

(f) Training. Customer is responsible for proper training of all appropriate personnel in
the operation and use of the Supported Programs and associated equipment.

(g) Access to Personnel and Equipment. Customer shall provide Fiorano with access to
Customer’s personnel and its equipment during Support Hours. This access must include the
ability to dial-in from Fiorano facilities to the equipment on which the Supported Programs are
operating and to obtain the same access to the equipment as those of Customer’s employees
having the highest privilege or clearance level. Fiorano will inform Customer of the
specifications of the modem equipment and associated software needed, and Customer will be
responsible for the costs and use of said equipment.

(h) Support Term. Upon expiration of an existing Support Period for a particular
Supported Program, a new Support Period shall automatically begin for a consecutive twelve
(12) month term (“Renewal Period”) so long as (i) Customer pays the Support Fee within
thirty (30) days of invoice by Fiorano; and (ii) Fiorano is still offering Support on such
Supported Program.

(i) Annual Support Fees. Annual Support Fees shall be at the rates set forth in the
applicable Order Form.

4. Term and Termination.

(a) Term. This Agreement and each Software license granted under this Agreement shall
continue unless terminated under this Section 4 (“Term and Termination”).

(b) Termination by Customer. If the Software is licensed for a specific term as noted
on an Order Form, Customer may terminate any Software license at the end of the term;
however, any such termination shall not relieve Customer’s obligations specified in Section
4(d) (“Effect of Termination”).

(c) Termination by Fiorano. Fiorano may terminate this Agreement or any license
upon written notice if Customer breaches this Agreement and fails to correct the breach within
thirty (30) days of notice from Fiorano.

(d) Effect of Termination. Termination of this Agreement or any license shall not limit
Fiorano from pursuing other remedies available to it, including injunctive relief, nor shall such
termination relieve Customer’s obligation to pay all fees that have accrued or are otherwise
owed by Customer under any Order Form. Such rights and obligations of the parties’ which, by
their nature, are intended to survive the termination of this agreement shall survive such
termination. Without limitation to the foregoing, these shall include rights and liabilities arising
under Sections 2 (a)(iii), 2(a)(iv) (“Rights Granted”), 2(d) (“Customer Specific Objects”), 4
(“Term and Termination”), 5 (“Indemnity, Warranties, Remedies”), 6 (“Limitation of Liability”),
7 (“Payment Provisions”), 8 (“Confidentiality”) and 9 (“Miscellaneous”) Upon termination,
Customer shall cease using, and shall return or at Fiorano’s request destroy, all copies of the
Software and Documentation and upon Fiorano’s request certify the same to Fiorano in writing
within thirty (30) days of termination. In case of termination of this Agreement or any license
for any reason by either party, Fiorano shall have no obligation to refund any amounts paid to
Fiorano by Customer under this Agreement. Further, if Customer terminates the agreement
before the expiry of a term for a term-license, then Customer shall be obliged to pay the
entire license fee for the entire licensed term.

5. Indemnity, Warranties, Remedies.

(a) Infringement Indemnity. Fiorano agrees to indemnify Customer against a third
party claim that any Product infringes a U.S. copyright or patent and pay any damages finally
awarded, provided that: (i) Customer notifies Fiorano in writing within ten (10) days of the
claim; (ii) Fiorano has sole control of the defense and all related settlement negotiations; and
(iii) Customer provides Fiorano with the assistance, information and authority at no cost to
Fiorano, necessary to perform Fiorano’s obligations under this Section 5 (“Indemnities,
Warranties, Remedies”). Fiorano shall have no liability for any third party claims of
infringement based upon (i) use of a version of a Product other than the most current version
made available to the Customer, (ii) the use, operation or combination of any Product with
programs, data, equipment or documentation if such infringement would have been avoided
but for such use, operation or combination; or (iii) any third party software, except as the
same may be integrated, incorporated or bundled by Fiorano, or its third party licensors, in
the Product licensed to Customer hereunder.

If any Product is held or claimed to infringe, Fiorano shall have the option, at its expense, to
(i) modify the Product to be non-infringing or (ii) obtain for Customer a license to continue
using the Software. If it is not commercially reasonable to perform either of the above options,
then Fiorano may terminate the license for the infringing Product and refund the pro rated
amount of license fees paid for the applicable Product using a twelve (12) month straight-line
amortization schedule starting on the Commencement Date. This Section 5(a) (“Infringement
Indemnity”) states Fiorano’s entire liability and Customer’s sole and exclusive remedy for
infringement.

(B) WARRANTIES AND DISCLAIMERS.

(i) Software Warranty. Except FOR EXCLUDED COMPONENTS WHICH ARE PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND, For each Supported Software license which Customer
acquires hereunder, Fiorano warrants that for a period of thirty (30) days from the
Commencement Date the Software, as delivered by Fiorano to Customer, will substantially
perform the functions described in the associated Documentation in all material respects when
operated on a system which meets the requirements specified by Fiorano in the
Documentation. Provided that Customer gives Fiorano written notice of a breach of the
foregoing warranty during the warranty period, Fiorano shall, as Customer’s sole and exclusive
remedy and Fiorano’s sole liability, use its reasonable efforts, during the warranty period only,
to correct any reproducible Errors that cause the breach of the warranty in accordance with its
technical support policies. If Customer does not obtain a Supported Software license, the
Software is provided “AS IS.” any implied warranty or condition applicable to the software,
documentation or any part thereof by operation of any law or regulation shall operate only for
defects discovered during the above warranty period of thirty (30) days unless temporal
limitation on such warranty or condition is expressly prohibited by applicable law. Any
supplements or updates to the Software, including without limitation, bug fixes or error
corrections supplied after the expiration of the thirty-day Limited Warranty period SHALL NOT
be covered by any warranty or condition, express, implied or statutory.

(ii) Media Warranty. Fiorano warrants the tapes, diskettes or any other media on which
the Software is supplied to be free of defects in materials and workmanship under normal use
for thirty (30) days from the Commencement Date. Customer’s sole and exclusive remedy and
Fiorano’s sole liability for breach of the media warranty shall be for Fiorano to replace
defective media returned within thirty (30) days of the Commencement Date.

(iii) Services Warranty. Fiorano warrants any services provided hereunder shall be
performed in a professional and workmanlike manner in accordance with generally accepted
industry practices. This warranty shall be valid for a period of thirty (30) days from
performance. Fiorano’s sole and exclusive liability and Customer’s sole and exclusive remedy
pursuant to this warranty shall be use by Fiorano of reasonable efforts for re-performance of
any services not in compliance with this warranty which are brought to Fiorano’s attention by
written notice within fifteen (15) days after they are performed.

(IV) DISCLAIMER OF WARRANTIES. SUBJECT TO LIMITED WARRANTIES PROVIDED FOR HEREINABOVE,
AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE SOFTWARE,
DOCUMENTATION AND SERVICES (IF ANY) ARE PROVIDED AS IS AND WITH ALL FAULTS,
FIORANO HEREBY DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS, WHETHER
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A
PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY, OF ACCURACY OR
COMPLETENESS OF RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF
VIRUSES, AND OF LACK OF NEGLIGENCE, ALL WITH REGARD TO THE SOFTWARE, AND THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION,
SOFTWARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHERWISE ARISING
OUT OF THE USE OF THE SOFTWARE. ALSO, THERE IS NO WARRANTY OR CONDITION OF
TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-
INFRINGEMENT WITH REGARD TO THE SOFTWARE.

6. Limitation of liability. To the maximum extent permitted by applicable law, in no event shall fiorano be
liable for any special, incidental, punitive, indirect, or consequential damages whatsoever (including, but
not limited to, damages for loss of profits or confidential or other information, for business interruption,
for personal injury, for loss of privacy, for failure to meet any duty of good faith or of reasonable care, for
negligence, and for any other pecuniary or other loss whatsoever) arising out of or in any way related to
the use of or inability to use the software, the provision of or failure to provide support or other services,
information, software, and related content through the software, or otherwise under or in connection
with any provision of this eula, even in the event of the fault, tort (including negligence),
misrepresentation, strict liability, breach of contract or breach of warranty of fiorano, and even if fiorano
or any supplier has been advised of the possibility of such damages.

Notwithstanding any damages that may be incurred for any reason and under any circumstances
(including, without limitation, all damages and liabilities referenced herein and all direct or general
damages in law, contract or anything else), the entire liability of fiorano under any provision of this eula
and the exclusive remedy of the customer hereunder (except for any remedy of repair or replacement if
so elected by fiorano with respect to any breach of the limited warranty) shall be limited to the pro-rated
amount of fees paid by customer under this agreement for the product, using a twelve (12) month
straight-line amortization schedule starting on the Commencement Date. Further, if such damages result
from customer's use of the software or services, such liability shall be limited to the prorated amount of
fees paid for the relevant software or services giving rise to the liability till the date when such liability
arose, using a twelve (12) month straight-line amortization schedule starting on the Commencement
Date. Notwithstanding anything in this agreement, the foregoing limitations, exclusions and disclaimers
shall apply to the maximum extent permitted by applicable law, even if any remedy fails its essential
purpose.

The provisions of this Agreement allocate the risks between Fiorano and Customer. Fiorano’s
pricing reflects this allocation of risk and the limitation of liability specified herein.

7. Payment Provisions.

(a) Invoicing. All fees shall be due and payable thirty (30) days from receipt of an
invoice and shall be made without deductions based on any taxes or withholdings. Any
amounts not paid within thirty (30) days will be subject to an immediately due and payable
late payment fee equivalent to: the sum of $50.00 plus an interest equal to the lower of (a)
the maximum applicable legal interest rate, or (b) one percent (1%) per month.

(b) Payments. All payments made by Customer shall be in United States Dollars for
purchases made in all countries except the United Kingdom or the European Union, in which
case the payments shall be made in British Pounds Sterling or Euros respectively. Payments
shall be directed to:

Fiorano Software, Inc.

718 University Ave.

Suite 212, Los Gatos, CA 95032

Attn: Accounts Receivable.

If the product is purchased outside the United States, payments may have to be made to an
Affiliate as directed by Fiorano Software, Inc.

(c) Taxes. The fees listed in this Agreement or the applicable Order Form does not
include Taxes. In addition to any other payments due under this Agreement, Customer agrees
to pay, indemnify and hold Fiorano harmless from, any sales, use, excise, import or export,
value added or similar tax or duty, and any other tax not based on Fiorano’s net income,
including penalties and interest and all government permit fees, license fees, customs fees and
similar fees levied upon the delivery of the Software or other deliverables which Fiorano may
incur in respect of this Agreement, and any costs associated with the collection or withholding
of any of the foregoing items (the “Taxes”).

8. Confidentiality.

(a) Confidential Information. “Confidential Information” shall refer to and include, without
limitation, (i) the source and binary code of Products, and (ii) the business and technical
information of either party, including but not limited to any information relating to product
plans, designs, costs, product prices and names, finances, marketing plans, business
opportunities, personnel, research, development or know-how;

Exclusions of Confidential Information. Notwithstanding the foregoing, “Confidential
Information” shall not include: (i) Information that is not marked confidential or otherwise
expressly designated confidential prior to its disclosure, (ii) Information that is or becomes
generally known or available by publication, commercial use or otherwise through no fault of
the receiving party, (iii) Information that is known to the receiving party at the time of
disclosure without violation of any confidentiality restriction and without any restriction on the
receiving party’s further use or disclosure; (iv) Information that is independently developed by
the receiving party without use of the disclosing party’s confidential information, or (v) Any
Residuals arising out of this Agreement. Notwithstanding, any Residuals belonging to Source
Code shall belong exclusively to Fiorano and Customer shall not have any right whatsoever to
any Residuals relating to Source Code hereunder.

Use and Disclosure Restrictions. During the term of this Agreement, each party shall
refrain from using the other party’s Confidential Information except as specifically permitted
herein, and from disclosing such Confidential Information to any third party except to its
employees and consultants as is reasonably required in connection with the exercise of its
rights and obligations under this Agreement (and only subject to binding use and disclosure
restrictions at least as protective as those set forth herein executed in writing by such
employees).

Continuing Obligation. The confidentiality obligation described in this section shall survive
for three (3) years following any termination of this Agreement.Notwithstanding the foregoing,
Fiorano shall have the right to disclose Customer’s Confidential Information to the extent that
it is required to be disclosed pursuant to any statutory or regulatory provision or court order,
provided that Fiorano provides notice thereof to Customer, together with the statutory or
regulatory provision, or court order, on which such disclosure is based, as soon as practicable
prior to such disclosure so that Customer has the opportunity to obtain a protective order or
take other protective measures as it may deem necessary with respect to such information.

9. Miscellaneous.

(a) Export Administration. Customer agrees to comply fully with all applicable relevant
export laws and regulations including without limitation, those of the United States (“Export
Laws”) to assure that neither the Software nor any direct product thereof are (i) exported,
directly or indirectly, in violation of Export Laws; or (ii) are intended to be used for any
purposes prohibited by the Export Laws, including, without limitation, nuclear, chemical, or
biological weapons proliferation.

(b) U. S. Government Customers. The Software is “commercial items,” as that term is
defined at 48 C.F.R. 2.101 (OCT 1995), consisting of “commercial computer software” and
“commercial computer software documentation” as such terms are used in 48 C.F.R. 12.212
(SEPT 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4
(JUNE 1995), all U.S. Government Customers acquire the Software with only those rights set
forth herein.

(c) Notices. All notices under this Agreement shall be in writing and shall be deemed to
have been given when mailed by first class mail five (5) days after deposit in the mail. Notices
shall be sent to the addresses set forth at the beginning of this Agreement or such other
address as either party may specify in writing.

(d) Force Majeure. Neither party shall be liable hereunder by reason of any failure or
delay in the performance of its obligations hereunder (except for the payment of money) on
account of strikes, shortages, riots, insurrection, fires, flood, storm, explosions, acts of God,
war, governmental action, labor conditions, earthquakes, material shortages or any other
cause which is beyond the reasonable control of such party.

(e) Assignment. Neither this Agreement nor any rights or obligations of Customer
hereunder may be assigned by Customer in whole or in part without the prior written approval
of Fiorano. For the avoidance of doubt, any reorganization, change in ownership or a sale of all
or substantially all of Customer’s assets shall be deemed to trigger an assignment. Fiorano’s
rights and obligations, in whole or in part, under this Agreement may be assigned by Fiorano.

(f) Waiver. The failure of either party to require performance by the other party of any
provision hereof shall not affect the right to require such performance at any time thereafter;
nor shall the waiver by either party of a breach of any provision hereof be taken or held to be
a waiver of the provision itself.

(g) Severability. In the event that any provision of this Agreement shall be
unenforceable or invalid under any applicable law or court decision, such unenforceability or
invalidity shall not render this Agreement unenforceable or invalid as a whole and, in such
event, any such provision shall be changed and interpreted so as to best accomplish the
objectives of such unenforceable or intended provision within the limits of applicable law or
applicable court decisions.

(h) Injunctive Relief. Notwithstanding any other provisions of this Agreement, a breach
by Customer of the provisions of this Agreement regarding proprietary rights will cause
Fiorano irreparable damage for which recovery of money damages would be inadequate, and
that, in addition to any and all remedies available at law, Fiorano shall be entitled to seek
timely injunctive relief to protect Fiorano’s rights under this Agreement.

(i) Controlling Law and Jurisdiction. If this Software has been acquired in the United
States, this Agreement shall be governed in all respects by the laws of the United States of
America and the State of California as such laws are applied to agreements entered into and
to be performed entirely within California between California residents. All disputes arising
under this Agreement may be brought in Superior Court of the State of California in Santa
Clara County or the United States District Court for the Northern District of California as
permitted by law. If this Software has been acquired in any other jurisdiction, the laws of the
Republic of Singapore shall apply and any disputes arising hereunder shall be subject to the
jurisdiction of the courts of Singapore, Singapore. Customer hereby consents to personal
jurisdiction of the above courts. The parties agree that the United Nations Convention on
Contracts for the International Sale of Goods is specifically excluded from application to this
Agreement.

(j) No Agency. Nothing contained herein shall be construed as creating any agency,
partnership or other form of joint enterprise or liability between the parties.

(k) Headings. The section headings appearing in this Agreement are inserted only as a
matter of convenience and in no way define, limit, construe or describe the scope or extent of
such section or in any way affect such section.

(l) Counterparts. This Agreement may be executed simultaneously in two or more
counterparts, each of which will be considered an original, but all of which together will
constitute one and the same instrument.

(m) Disclaimer. The Software is not specifically developed or licensed for use in any
nuclear, aviation, mass transit or medical application or in any other inherently dangerous
applications. Customer agrees that Fiorano and its suppliers shall not be liable for any claims
or damages arising from Customer’s use of the Software for such applications. Customer
agrees to indemnify and hold Fiorano harmless from any claims for losses, costs, damages or
liability arising out of or in connection with the use of the Software in such applications.

(n) Customer Reference. Fiorano may refer to Customer as a customer in sales
presentations, marketing vehicles and activities. Such activities may include, but are not
limited to; a press release, a Customer user story completed by Fiorano upon implementation
of the Software, use by Fiorano of Customer’s name, logo and other marks, together with a
reasonable number of technical or executive level Customer reference calls for Fiorano.

(o) Entire Agreement. This Agreement, together with any exhibits, completely and
exclusively states the agreement of the parties. In the event of any conflict between the terms
of this Agreement and any exhibit hereto, the terms of this Agreement shall control. In the
event of any conflict between the terms of this Agreement and any purchase order or Order
Form, this Agreement will control, and any pre-printed terms on Customer’s purchase order or
equivalent document will be of no effect. This Agreement supersedes, and its terms govern, all
prior proposals, agreements or other communications between the parties, oral or written,
regarding the subject matter of this Agreement. This Agreement shall not be modified except
by a subsequently dated written amendment signed by the parties, and shall prevail over any
conflicting “pre-printed” terms on a Customer purchase order or other document purporting to
supplement the provisions hereof.

Exhibit A

Fiorano Product List

Each of the individual items below is a separate Fiorano product (the “Product”). The Products
in this list collectively constitute the Software. Fiorano reserves the right to modify this list at
any time in its sole discretion. In particular, Product versions might change from time to time
without notice.

Fiorano SOA Enterprise Server

Fiorano ESB Server

FioranoMQ Server Peer / FioranoMQ (standalone version)

Fiorano Peer Server

Fiorano SOA Tools

Fiorano Mapper Tool

Fiorano Database Business Component

Fiorano HTTP Business Component

Fiorano SMTP Business Component

Fiorano FTP Business Component

Fiorano File Business Component

Fiorano MOM Business Components (MQSeries, MSMQ, JMS)

NOTE: Other business components may be added to or removed from this list from time to
time at Fiorano’s sole discretion.

Exhibit B

EXCLUDED COMPONENTS

(a) Any third party or open source library included within the Software

Exhibit C

Licensing Restrictions. The Software licensed hereunder is subject to the following licensing
restrictions.

The parties understand that the modules of the Software are licensed as noted in this section.
The term “Target System” means any computer system containing one or more Processors
based upon any architecture, running any operating system, excluding computers running IBM
MV-S, OS/390 and related “mainframe” operating systems. The Term “Processor” means a
computation hardware unit such as a Microprocessor that serves as the main arithmetic and
logic unit of a computer. A Processor might consist of multiple “Cores”, in which case licenses
shall have to be purchased on a per-Core basis. A Target System may have one or more
Processors, each of which may have one or more Cores. In the sections below, Cores may
replace Processors as applicable.

If the Software is Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA server or
FioranoMQ Server (JMS), then the Software is licensed on a per Processor basis on a single
Target System, where the total number of Processors on the Target System may not exceed
the total number of Processors licensed, with the additional restriction that only a single
instance of the Fiorano ESB Enterprise Server may run on a single Target System and that a
separate license must be purchased for each instance of the Fiorano ESB Enterprise Server,
Fiorano ESB Peer Server or FioranoMQ Server (JMS) Server for each Processor;

If the Software is Fiorano SOA Tools or Fiorano Mapper Tool , or any Fiorano Test and/or
Development license, then the Software is licensed on a per-named-user basis, where the
total number of named users may not exceed the total number of named users licensed;

If the Software is a Fiorano Business Component of any kind (including but not limited to
Fiorano HTTP, File, SMTP, File, Database, and other Business Components, etc.), then the
Software is licensed on the basis of the number of CPUs of the Target System on which the
FioranoMQ Peer (to which the Business Component connects runs). A separate license needs
to be purchased for each CPU of each Target System of each FioranoMQ Peer instance to
which any Business Component connects.

Evaluations. Licenses used for evaluation cannot be used for any purposes other than an
evaluation of the product. Existing customers must purchase new licenses to use additional
copies of any Product and may not use evaluation keys in any form. All evaluation keys are
restricted to 45-days and extensions need to be applied for explicitly. Any misuse of
evaluation keys shall be subject to a charge of 125% (one hundred and twenty-five percent)
of the license fee plus 20% support.

Non-Production Environments. For all non-production environments referenced on the
Order Form (including all HA (high-availability), QA, Staging and Development environments),
the following is understood: each non-production environment is an exact replica of the
Production Environment from the standpoint of the number of copies of the Fiorano ESB
Enterprise Server, FioranoMQ Peer, Fiorano SOA server and/or FioranoMQ Server (JMS)
licensed. Each non-production environment is licensed on the exact same number and
configuration of CPUs and/or Cores as the corresponding Production Environment.

Run-Time Libraries. The Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA server
and FioranoMQ Server (JMS) products are “server” products, each of which has a runtime
library associated with it. The runtime library may be freely bundled with and/or used for
internal development purposes by all Users who have licensed at least one production copy of
the corresponding Server Software.

Copyright (c) 2008-2010, Fiorano Software Pte Ltd. and Affiliates

Contents

Contents 18

Chapter 1: Introduction 47

1.1 What is Fiorano SOA Platform 47
1.2 Why Fiorano SOA Platform 47
1.3 Introduction to Fiorano SOA Platform Environment 48

1.3.1 Fiorano Servers 48
1.3.2 Fiorano Tools 49
1.3.3 Composing an Event Process 49
1.3.4 Deploying Event Processes 54
1.3.5 Monitoring Event Processes 54
1.3.6 Extending the Component Palette 58
1.3.7 Scalability 59
1.3.8 High Availability 59
1.3.9 Security Framework 60

Chapter 2: The Fiorano Environment 61

2.1 Fiorano System Architecture 61
2.1.1 Fiorano ESB Server 62
2.1.2 Fiorano Peer Server 62

2.2 Installation 63
2.2.1 Different Topologies 63
2.2.2 ESB Server 65

2.2.2.1 System Requirements 65
2.2.2.2 Installation Steps 65

2.2.3 ESB Peers 65
2.2.3.1 System Requirements 65
2.2.3.2 Installation Steps 65

2.3 Fiorano ESB Server 67
2.3.1 ESB Server Functionality 68
2.3.2 Launching ESB Server 69

2.3.2.1 From Fiorano Studio 69
2.3.2.2 From Script Files 69

2.3.3 Shutting Down ESB Server 70
2.3.3.1 From Fiorano Studio 70
2.3.3.2 From Script Files 71

2.3.4 ESB Server Configuration 72
2.3.4.1 Server Ports Configuration 73

2.3.4.2 Memory Configurations 82
2.3.4.3 Java Configurations 82

2.3.5 Setting Up Users and Groups 82
2.3.5.1 Managing Users 83
2.3.5.2 Creating a New User Account 83
2.3.5.3 Configuration Steps 84
2.3.5.4 Managing Groups 86
2.3.5.5 Creating New Group 87
2.3.5.6 Adding a User to a Group 87
2.3.5.7 Deleting a User from a Group 88
2.3.5.8 Deleting a Group 89
2.3.5.9 Setting Access Controls 90
2.3.5.10 Assigning Rights 91
2.3.5.11 Removing Network Rights 93

2.3.6 Clearing ESB Server Database 93
2.4 Fiorano Peer Server 95

2.4.1 Peer Server Functionality 95
2.4.2 Launching the Peer Server 95

2.4.2.1 From Fiorano Studio 95
2.4.2.2 Using Script Files 95

2.4.3 Shutting Down the Peer Server 96
2.4.3.1 Using Fiorano Studio 96
2.4.3.2 Using Script Files 97

2.4.4 Peer Server Configuration 98
2.4.4.1 Server Ports Configuration 99
2.4.4.2 Memory Configurations 106
2.4.4.3 Java Configurations 106
2.4.4.4 Changing to different ESB Network 107

2.4.5 Adding New Peer Server 108
2.4.6 Clearing Peer Server Database 112

2.5 Fiorano Web Console 114
2.5.1 Login Page 114

2.5.1.1 Events 115
2.5.1.2 Applications 121
2.5.1.3 Server Status 124
2.5.1.4 Document Tracking 125
2.5.1.5 Web Services 128
2.5.1.6 Resource Search 130

2.5.2 Enabling Fiorano Web Console 131
2.6 Configuring Servers and Tools 132

2.6.1 Configuration File 132
2.6.2 Reference Matrix 132
2.6.3 Configuring the Jetty Server with SSL Support 134

2.6.3.1 SSL Configuration for Jetty 136
2.6.4 Using Basic Authentication with the Jetty Server 140

2.6.4.1 Configuring Jetty Server 140

2.6.4.2 Enabling Basic Authentication with bcwsgateway 141
2.6.4.3 Enabling Basic Authentication with WSStub 141
2.6.4.4 Testing Web Service from Dashboard 142
2.6.4.5 Testing Web Service from Web Service Consumer 143

2.6.5 Adding Additional Port for Peer to Peer Communication 144
2.6.6 Configuring Server Execution Timeout 150
2.6.7 SNMP Configuration 151

2.6.7.1 Fiorano SOA 9 Platform MIB 152
2.6.7.2 Fiorano SOA 9 Platform Agent 152
2.6.7.3 Getting the information 152
2.6.7.4 Trap Messages 154
2.6.7.5 Configuring the SNMP parameters for the Fiorano ESB Server 154

2.6.8 Setting the Offline Server Log Levels 157
2.6.9 Changing the Running Server Log Levels 158

2.7 Fiorano Enterprise Repository 162
2.7.1 Event Process Repository 162
2.7.2 Component Repository 163
2.7.3 Peer Repository 164
2.7.4 Security Store 164
2.7.5 Runtime Store 165
2.7.6 State Based Workflow Repository 166

2.7.6.1 Disabling SBW Tracking 166
2.7.7 Event Repository 167
2.7.8 Custom Event Listener 167
2.7.9 Alert Repository 167
2.7.10 Policy Repository 168
2.7.9 Changes in Repository Location 168

2.8 Events Tracking 169
2.8.1 Configuring Event Tracking 169

2.8.1.1 Disabling Event Tracking 170
2.8.2 Configuring Specific Database 171
2.8.3 Database Table Structure 172

2.9 Subscribe to Fiorano System Events 175
2.9.1 Event Topics 175
2.9.2 Event Types and Content 175
2.9.3 Sample Subscriber Application 176

2.10 Connecting to Server Using JConsole 177
2.10.1 How to connect to the FES/FPS using jconsole [running JDK5] SOA 9 177

2.11 Running Fiorano SOA Profiles as NT Services 179
2.11.1 Configuring Server JVM Settings for running as NT-Service 179
2.11.2 Configuring Email Alerts for Server JVM Restart/Sudden Exit/JVM Hung Events 179
2.11.3 How to install/uninstall a StandAlone (Non-High Availabilty)Profile as NT Service180
2.11.4 How to install/uninstall a Profile as NT Service with High Availability Profile(HA) 180
2.11.5 Viewing Server Logs 182
2.11.6 FAQs 182

Chapter 3: Component and Component Instances 185

3.1 Service Components Characteristics 185
3.1.1 Synchronous Components 185
3.1.2 Asynchronous Components 186
3.1.3 Design Choices 186

3.2 Service Component Characteristics, Configuration, and Deployment 187
3.2.1 Component Launch Semantics 187
3.2.2 Setting Component Launch Type in the Fiorano Studio 188
3.2.3 Launching Components Using the Fiorano Studio 188

3.2.3.1 Launching a Component in a Running Application 189
3.2.3.2 Stopping a Running Component Instance 189

3.3 Service Component Configuration 190
3.3.1 CPS for Component instance configuration 190

3.3.1.1 Launching the CPS 190
3.3.1.2 Customizable and Expert Properties 192
3.3.1.3 Online Help for components 192
3.3.1.4 Runtime Arguments 194

3.3.2 Component Dependencies and System Libraries 195
3.3.2.1 Viewing the Resources of a Component 196

3.3.3 Add New Library Dependencies 198
3.3.3.1 Adding New Resource/Dependency 198
3.3.3.2 Adding Service Dependencies 199
3.3.3.3 Adding Resources to Class Path 202

3.3.4 Creating New System Libraries 204
3.3.4.1 Adding a New System Library 205

3.3.5 Scheduling and Error Handling 208
3.3.5.1 Scheduler Configurations 208
3.3.5.2 Error Handling 209

3.3.6 Configuring Logging Parameters 213
3.4 Component Deployment 216

3.4.1 Adding Ports for the Component 220
3.4.2 Adding Log Modules for the Component 222
3.4.3 Adding Runtime Arguments for the Component 223
3.4.4 Adding New Parameters to the Component 225
3.4.5 Adding Node Name to a Component Instance 227
3.4.6 Manual Deployment 228

3.4.6.1 From Scriptgen Tool 229
3.4.6.2 From the configureBC and runBC utilities 232

3.4.7 External Deployment 236
3.4.7.1 Deploying a Synchronous Component in JBoss Application Server 236
3.4.7.2 Additional Features for Component Administration 239

3.4.8 InMemory Launch 242
3.5 Export and Import Service Components 244

3.5.1 Exporting a Component 244
3.5.2 Importing a Component 245

3.6 Component Creation 246
3.6.1 Template Engine 247

3.6.1.1 Component Creation from the Command Line 247
3.6.1.2 Creating a Setting 248
3.6.1.3 Variables 248
3.6.1.4 Modifying the Templates 250
3.6.1.5 Defining Components 251
3.6.1.6 Getting familiar with wizard and service configuration 251
3.6.1.7 Generating Code for the Defined Component 267
3.6.1.8 Building the Component 268
3.6.1.9 Deploying the Component 268

3.6.2 Component Creation in Fiorano Studio 269
3.6.3 Java Components 271

3.6.3.1 Defining Asynchronous Component 271
3.6.3.2 Creating a Synchronous Component 284

3.6.4 Non-Java components 300
3.6.4.1 Defining a C component 301
3.6.4.2 Creating a C++ component. 304

3.6.4.3 Creating a C# Component 306
3.6.4.3.1 Code Generation 307
3.6.4.3.2 Adding Business Logic 307
3.6.4.3.3 Deploying the component 309

3.7 Service Component Testing 310
3.7.1 Testing Synchronous Components 310

3.7.1.1 Testing in Configuration Property Sheet (CPS) 310
3.7.1.2 Testing using JUnit test cases 318

3.7.2 Testing Asynchronous Components 322
3.7.2.1 Configuring a JUnit test case 322
3.7.2.2 Executing a JUnit test case 325

3.8 Component Generation - SimpleJMS, MultiThreaded and POJO 327
3.8.1 EDBC Templates 327

3.8.1.1 Scripts 327
3.8.1.2 Simple JMS 327
3.8.1.3 Multi threaded 330
3.8.1.4 POJO 333

3.9 Eclipse IDE Support 336
3.9.1 Importing the Project into Eclipse 336
3.9.2 Defining Variables 340
3.9.3 Defining ANT_HOME 343
3.9.4 Defining JDK 346
3.9.5 Compiling Deploying and Registering the Component 347

3.10 Text Schema Editor 350
3.10.1 Text Format Layout Concepts 352
3.10.2 Launch Fiorano Text Schema Editor 352

3.10.2.1 Defining Text File Schemas 354
3.10.2.2 Using the Text Schema Editor 362

3.10.2.3 Warnings 367
3.10.2.4 Limitations 367

3.11 Public Key, Cryptography Keystore, And Truststore 368
3.11.1 Using Public Key Cryptography for Authentication 368
3.11.2 Keystore and Truststore 369

3.11.2.1 Generating a Client Keystore 371
3.11.2.2 Getting the Digital Certificate of Server 372
3.11.2.3 Creating the Client Truststore 374
3.11.2.4 Using the Keystore and Truststore in an SSL Application 375

3.12 Component Control Protocol (CCP) 381
3.12.1 Communication Channels 381
3.12.2 Events 381
3.12.3 Component Lifecycle and CCP 381
3.12.4 Sample component 382

Chapter 4: Pre-built Components 383

4.1 Bridges 385

4.1.1 EJBAdapter 385
4.1.1.1 Configuration and Testing 386

4.1.1.1.1 Managed Connection Factory Panel 386
4.1.1.2 Interaction Configurations Panel 389
4.1.1.3 Functional Demonstration 391
4.1.1.4 Input Message 391
4.1.1.5 Output Message 391

4.1.2 FTPGet 391
4.1.2.1 Managed Connection Factory Panel 392

4.1.2.1.1 Connection Properties tab 392
4.1.2.1.2 Advanced Settings tab 398
4.1.2.1.3 Testing the Connection 401

4.1.2.2 Interaction Configurations Panel 401
4.1.2.2.1 Source Setting 402
4.1.2.2.2 Monitor Settings 407
4.1.2.2.3 Target Settings 410
4.1.2.2.4 Miscellaneous Settings 411

4.1.2.3 Scheduler Configuration 412
4.1.2.4 Error Handling Panel 413

4.1.2.4.1 Request Processing Error pane 414
4.1.2.4.2 Connection Error pane 415
4.1.2.4.3 Invalid Request Error pane 417

4.1.2.5 Testing the Interaction Configurations 417
4.1.2.6 Input Schema 420
4.1.2.7 Output Schema 422

4.1.2.8 Functional Demonstration 422
4.1.2.8.1 Scenario 1 422
4.1.2.8.2 Scenario 2 423
4.1.2.8.3 Scenario 3 (Scenario 1 Using SFTP Protocol) 424

4.1.2.9 Configuring FTPGet Component 424
4.1.2.10 Use Case Scenario 425
4.1.2.11 Scheduling 425
4.1.2.12 Useful Tips 426

4.1.3 FTPPut 426
4.1.3.1 Managed Connection Factory Panel 427

4.1.3.1.1 Connection Properties 428
4.1.3.1.2 Advanced Settings tab 432
4.1.3.1.3 Testing the Connection 435

4.1.3.2 Interaction Configurations Panel 435
4.1.3.2.1 Source Settings 436
4.1.3.2.2 Monitor Settings 437
4.1.3.2.3 Target Settings 440
4.1.3.2.4 Miscellaneous Settings 441

4.1.3.3 Input and Output 442
4.1.3.4 Testing the Interaction Configurations 445
4.1.3.5 Functional Demonstration 446

4.1.3.5.1 Scenario 1 446
4.1.3.5.2 Scenario 2 447
4.1.3.5.3 Scenario 3 (Scenario 1 Using SFTP Protocol) 447

4.1.3.6 Configuring FTPPut Component 448
4.1.3.7 Use Case Scenario 449
4.1.3.8 Useful Tips 449

4.1.4 IWay 450
4.1.4.1 Configuration and Testing 450
4.1.4.2 Input Schema 451
4.1.4.3 Output Schema 451
4.1.4.4 Functional Demonstration 451
4.1.4.5 Use Case Scenario 451
4.1.4.6 Useful Tips 452

4.1.5 POP3 452
4.1.5.1 Managed Connection Factory 452

4.1.5.1.1 Attributes 452
4.1.5.2 Interaction Configuration 455

4.1.5.2.1 Attributes 455
4.1.5.3 Sample Input and Output 459

4.1.5.3.1 Input Schema 460
4.1.5.3.2 Output Schema 461

4.1.5.4 Functional Demonstration 463
4.1.5.4.1 Scenario 1 463
4.1.5.4.2 Scenario 2 464

4.1.5.5 Useful Tips 464

4.1.6 SAPR3 464
4.1.7 SMS Bridge 465

4.1.7.1 Configuration and Testing 465
4.1.7.2 Managed Connection Factory Configuration 465
4.1.7.3 Functional Demonstration 467

4.1.7.3.1 Scenario 1 467
4.1.7.4 Useful Tips 468

4.1.8 SMTP 468
4.1.8.1 Managed Connection Factory Panel 469

4.1.8.1.1 SMTP Server 469
4.1.8.1.2 Authentication Details 470
4.1.8.1.3 TimeOut Settings 470

4.1.8.2 Interaction Configurations Panel 471
4.1.8.2.1 Sender Information 471

4.1.8.3 Input 472
4.1.8.4 Output 474
4.1.8.5 Functional Demonstration 474

4.1.8.5.1 Scenario 1 474
4.1.8.6 Use Case Scenario 476
4.1.8.7 Useful Tips 476

4.1.9 SapR3Monitor 476
4.1.10 HL7Receiver 477

4.1.10.1 Configuration and Testing 477
4.1.10.2 Functional Demonstration 479

4.1.10.2.1 Scenario 1 479
4.1.10.2.2 Scenario 2 480

4.1.11 HL7Sender 481
4.1.11.1 Configuration and Testing 481
4.1.11.2 Functional Demonstration 483

4.1.11.2.1 Scenario 1 484
4.1.11.2.2 Scenario 2 485

4.2 Collaboration 485

4.2.1 Chat 485
4.2.2 C# Chat 485
4.2.3 VB Chat 486
4.2.4 VC Chat 486

4.3 DB 487

4.3.1 DB 487
4.3.1.1 Database Connection Configuration 489
4.3.1.2 Interaction Configurations 492

4.3.1.2.1 SQL Configuration 492

4.3.1.2.2 Stored Procedure Configuration 520
4.3.1.2.3 Monitor Table Configuration 523
4.3.1.2.4 SQL Statement Details Configuration 528
4.3.1.2.5 Editing Query Configuration 534
4.3.1.2.6 Removing Query Configuration 536
4.3.1.2.7 Testing Query Configuration 536

4.3.1.3 Child Queries 537
4.3.1.3.1 Nested Query 537
4.3.1.3.2 Post Processing Query 538
4.3.1.3.3 Failover Query 538
4.3.1.3.4 Child Query Configuration 538

4.3.1.4 Miscellaneous Configurations 541
4.3.1.4.1 Request Level Post Processing Query 541
4.3.1.4.2 Adapter Mode 542
4.3.1.4.3 Output Options 543
4.3.1.4.4 Post Processing Execution 544
4.3.1.4.5 Advanced Configuration 545

4.3.1.5 Input Schema 552
4.3.1.6 Output Schema 554
4.3.1.7 Functional Demonstration 554

4.3.1.7.1 Scenario 1 554
4.3.1.8 Use Case Scenario 556

4.3.1.8.1 Scenario 1 556
4.3.1.8.2 Scenario 2 556

4.3.1.9 Scheduling 557
4.3.1.10 Useful Tips 557

4.3.2 DBProc 558
4.3.2.1 Managed Connection Factory Panel 558

4.3.2.1.1 Connection Properties 559
4.3.2.1.2 Advanced Settings 561

4.3.2.2 Interaction Configurations Panel 562
4.3.2.2.1 Attributes 562

4.3.2.3 Input Schema 567
4.3.2.4 Output Schema 568
4.3.2.5 Functional Demonstration 569

4.3.2.5.1 Scenario 1 569
4.3.2.6 Useful Tips 569

4.3.3 DBQueryOnInput 570
4.3.3.1 Managed Connection Factory Panel 570

4.3.3.1.1 Connection Properties 571
4.3.3.1.2 Advanced Settings 573

4.3.3.2 Interaction Configurations Panel 574
4.3.3.2.1 Attributes 574

4.3.3.3 Input and output 577
4.3.3.3.1 Input 577
4.3.3.3.2 Output 578

4.3.3.4 Functional Demonstration 578
4.3.3.4.1 Scenario 1 578
4.3.3.4.2 Scenario 2 580

4.3.3.5 Useful Tips 581
4.3.4 DBQuery 581

4.3.4.1 Managed Connection Factory Panel 582
4.3.4.1.1 Connection Properties 582
4.3.4.1.2 Advanced Settings 585

4.3.4.2 Interaction Configurations Panel 586
4.3.4.2.1 Attributes 586

4.3.4.3 Input 607
4.3.4.3.1 SELECT 607
4.3.4.3.2 INSERT 608
4.3.4.3.3 UPDATE 608
4.3.4.3.4 DELETE 609

4.3.4.4 Output 610
4.3.4.5 Functional Demonstration 610

4.3.4.5.1 Scenario 1 610
4.3.4.6 Useful Tips 611

4.4 Error 612

4.4.1 Exception Listener 612
4.4.1.1 Configuration and Testing 613

4.4.1.1.1 Attributes 613
4.4.1.1.2 Connection to Enterprise Server 616

4.4.1.2 Functional Demonstration 617
4.4.1.2.1 Scenario 1 617
4.4.1.2.2 Scenario 2 617

4.4.1.3 Use Case Scenario 618
4.4.1.4 Useful Tips 619

4.5 File 619

4.5.1 File Reader 619
4.5.1.1 Interaction Configurations 620

4.5.1.1.1 Attributes 621
4.5.1.2 Input and Output 631

4.5.1.2.1 Input 631
4.5.1.2.2 Output 631

4.5.1.3 Testing the Interaction Configurations 631
4.5.1.4 Functional Demonstration 632

4.5.1.4.1 Scenario 1 632
4.5.1.5 Use Case Scenario 632
4.5.1.6 Useful Tips 633

4.5.2 File Writer 633
4.5.2.1 Interaction Configurations 634

4.5.2.1.1 Attributes 634
4.5.2.2 Sample Scenario 643
4.5.2.3 Input and Output 645

4.5.2.3.1 Input 645
4.5.2.3.2 Output 645

4.5.2.4 Testing the Interaction Configurations 646
4.5.2.5 Functional Demonstration 647

4.5.2.5.1 Scenario 1 647
4.5.2.6 Use Case Scenario 648

4.5.3 File Transmitter 649
4.5.3.1 Configuration and Testing 649
4.5.3.2 Functional Demonstration 652

4.5.3.2.1 Scenario 1 652
4.5.3.2.2 Scenario 2 653

4.5.3.3 Useful Tips 654
4.5.4 File Receiver 655

4.5.4.1 Configuration and Testing 655
4.5.4.2 Functional Demonstration 657

4.5.4.2.1 Scenario 1 657
4.5.4.3 Useful Tips 658

4.6 Flow 658

4.6.1 Aggregator 658
4.6.1.1 Configuration and Testing 659

4.6.1.1.1 Attributes 659
4.6.1.2 Functional Demonstration 668

4.6.1.2.1 Scenario 1 668
4.6.1.2.2 Scenario 2 669

4.6.1.3 Useful Tips 670
4.6.2 CBR 670

4.6.2.1 Configuration and Testing 671
4.6.2.1.1 Schema 671
4.6.2.1.2 Namespaces 672
4.6.2.1.3 Routing Rules 672
4.6.2.1.4 Processor 673

4.6.2.2 Functional Demonstration 675
4.6.2.2.1 Scenario 1 675

4.6.2.3 Use Case Scenario 676
4.6.2.4 Useful Tips 676

4.6.3 Distribution Service 677
4.6.3.1 Configuration and Testing 677
4.6.3.2 Functional Demonstration 678

4.6.3.2.1 Scenario 1 678

4.6.4 Join 679
4.6.4.1 Configuration and Testing 679

4.6.4.1.1 Mappings 680
4.6.4.1.2 Transformer factory class Name 681
4.6.4.1.3 Use context value from 681
4.6.4.1.4 Use properties and headers from 681
4.6.4.1.5 Prefer Properties and Headers from 681

4.6.4.2 Testing 681
4.6.4.3 Functional Demonstration 685

4.6.4.3.1 Scenario 1 685
4.6.4.4 Sample Input 685
4.6.4.5 Useful Tips 687

4.6.5 Sleep 687
4.6.5.1 Configuration 687
4.6.5.2 Functional Demonstration 688

4.6.5.2.1 Scenario 1 688
4.6.5.3 Useful Tips 688

4.6.6 Timer 689
4.6.6.1 Configuration and Testing 689

4.6.6.1.1 Scheduler Configuration 689
4.6.6.1.2 Message Format 690
4.6.6.1.3 Message Content 690

4.6.6.2 Output Schema 690
4.6.6.3 Functional Demonstration 691

4.6.6.3.1 Scenario 1 691
4.6.6.4 Useful Tips 692

4.6.7 WorkList 693
4.6.8 WorkList Manager 693
4.6.9 XMLSplitter 694

4.6.9.1 Configuration and Testing 694
4.6.9.1.1 Attributes 695

4.6.9.2 Sample Input and Output 698
4.6.9.3 Functional Demonstration 699

4.6.9.3.1 Scenario 1 699
4.6.9.3.2 Scenario 2 700

4.6.9.4 Use Case Scenario 701
4.6.9.5 Useful Tips 702

4.6.10 XMLVerification 702
4.6.10.1 Configuration and Testing 703

4.6.10.1.1 Attributes 703
4.6.10.2 Functional Demonstration 704

4.6.10.2.1 Scenario 1 704
4.6.10.3 Useful Tips 705

4.6.11 Cache 705
4.6.11.1 Configuration and Testing 706

4.6.11.1.1 Attributes 706

4.6.11.2 Input and Output 708
4.6.11.2.1 Input 708
4.6.11.2.2 Output 710

4.6.11.3 Functional Demonstration 710
4.6.11.3.1 Scenario 1 710
4.6.11.3.2 Add operation 710
4.6.11.3.2 Update operation 712
4.6.11.3.3 Lookup operation 713
4.6.11.3.4 Delete operation 714

4.6.11.4 Useful Tips 715

4.7 MOMs 716

4.7.1 JMSIn 4.0 716
4.7.1.1 Configuration and Testing 717
4.7.1.2 Functional Demonstration 722

4.7.1.2.1 Scenario 1 722
4.7.1.3 Useful Tips 722

4.7.2 JMSIn 5.0 723
4.7.2.1 Connection 723

4.7.2.1.1 Connection Configuration 723
4.7.2.1.2 Send Configuration 725
4.7.2.1.3 Producer Configuration 726
4.7.2.1.4 Message Definition 727
4.7.2.1.5 Additional Configuration 729

4.7.2.2 Functional Demonstration 729
4.7.2.2.1 Sample Input 730
4.7.2.2.2 Sample Output 730

4.7.2.3 Useful Tips 730
4.7.3 JMSOut 4.0 731

4.7.3.1 Configuration and Testing 732
4.7.3.1.1 Interaction Configurations 734

4.7.3.2 Functional Demonstration 737
4.7.3.2.1 Scenario 1 737

4.7.3.3 Useful Tips 738
4.7.4 JMSOut 5.0 738

4.7.4.1 Configuration 738
4.7.4.1.1 Connection Configuration 738
4.7.4.1.2 Receive Configuration 741
4.7.4.1.3 Message Definition Configuration 743
4.7.4.1.4 Additional Configuration 744

4.7.4.2 Functional Demonstration 745
4.7.4.2.1 Scenario 1 745

4.7.4.3 Useful Tips 745
4.7.5 JMSReplier 746

4.7.5.1 Configuration and Testing 747

4.7.5.2 Input Schema 748
4.7.5.3 Output Schema 749
4.7.5.4 Functional Demonstration 750

4.7.5.4.1 Scenario 1 750
4.7.5.5 Use Case Scenario 751
4.7.5.6 Useful Tips 751

4.7.6 JMSRequestor 4.0 752
4.7.6.1 Configuration and Testing 753
4.7.6.2 Functional Demonstration 757

4.7.6.2.1 Scenario 1 757
4.7.7 JMSRequestor 5.0 757

4.7.7.1 Configuration 757
4.7.7.1.1 Connection Configuration 757
4.7.7.1.2 Requestor Configuration 760
4.7.7.1.3 Request Configuration 761
4.7.7.1.4 Producer Configuration 761
4.7.7.1.5 Response Configuration 762
4.7.7.1.6 Error Destination Configuration 763
4.7.7.1.7 Consumer Configuration 763
4.7.7.1.8 Additional Configuration 768

4.7.7.2 Functional Demonstration 768
4.7.7.2.1 Scenario 1 768

4.7.7.3 Useful Tips 769
4.7.8 MQSeriesIn 770

4.7.8.1 Configuration and Testing 770
4.7.8.1.1 Creating queues on IBM WebSphere MQ using WebSphere MQ explorer 770

4.7.8.2 Managed Connection Factory 775
4.7.8.2.1 Attributes 775

4.7.8.3 Interaction Configuration 777
4.7.8.3.1 Attributes 778

4.7.8.4 Input and Output 788
4.7.8.4.1 Input 788
4.7.8.4.2 Output 793

4.7.8.5 Functional Demonstration 794
4.7.8.5.1 Scenario 1 794
4.7.8.5.2 Scenario 2 795
4.7.8.5.3 Scenario 3 797

4.7.8.6 Useful Tips 799
4.7.9 MQSeriesOut 799

4.7.9.1 Configuration and Testing 799
4.7.9.1.1 Creating Queues on IBM WebSphere MQ using WebSphere MQ Explorer 799

4.7.9.2 Managed Connection Factory 804
4.7.9.2.1 Attributes 805

4.7.9.3 Interaction Configuration 807
4.7.9.3.1 Attributes 807

4.7.9.4 Input and output 816

4.7.9.4.1 Input 816
4.7.9.4.2 Output 817

4.7.9.5 Functional Demonstration 822
4.7.9.5.1 Scenario 1 822
4.7.9.5.2 Scenario 2 823
4.7.9.5.3 Scenario 3 825
4.7.9.5.4 Scenario 4 826
4.7.9.5.5 Scenario 5 827
4.7.9.5.6 Scenario 6 829

4.7.9.6 Useful Tips 829
4.7.10 MSMQ Receiver 830

4.7.10.1 Configuration and Testing 830
4.7.10.2 Input and Output 832

4.7.10.2.1 Input Schema 832
4.7.10.2.1 Output Schema 832

4.7.10.3 Functional Demonstration 833
4.7.10.3.1 Scenario 1 833

4.7.10.4 Use case scenario 833
4.7.10.5 Useful Tips 834

4.7.11 MSMQ Sender 834
4.7.11.1 Configuration and Testing 834
4.7.11.2 Input and Output 836

4.7.11.2.1 Input Schema 836
4.7.11.2.2 Output Schema 836

4.7.11.3 Functional Demonstration 837
4.7.11.3.1 Scenario 1 837

4.7.11.4 Use case scenario 838
4.7.11.5 Useful Tips 838

4.7.12 TibcoRVIn 838
4.7.13 TibcoRVOut 839

4.8 Performance 840

4.8.1 Receiver 840
4.8.1.1 Configuration and Testing 840
4.8.1.2 Functional Demonstration 841

4.8.1.2.1 Scenario 1 841
4.8.1.3 Useful Tips 842

4.8.2 Sender 842
4.8.2.1 Configuration and Testing 842
4.8.2.2 Functional Demonstration 844

4.8.2.2.1 Scenario 1 844
4.8.2.3 Useful Tips 844

4.9 Samples 845

4.9.1 Binary File Reader 845
4.9.2 CRM 845
4.9.3 Composite BC 845
4.9.4 LDAP Lookup 845
4.9.5 LDAP Authenticator 846
4.9.6 Market Prices GUI 846
4.9.7 Prices 846

4.9.7.1 Configuration and Testing 846
4.9.7.2 Input and Output 847

4.9.7.2.1Input Schema 847
4.9.7.2.2 Output Schema 847

4.9.7.3 Use Case scenario 848
4.9.8 RFQ Manager 848
4.9.9 Trade Bus 848
4.9.10 ERP 849

4.10 Script 849

4.10.1 Bean Shell Script 849
4.10.1.1 Interaction Configuration 849
4.10.1.2 Sample Input and Output 850
4.10.1.3 Functional Demonstration 850

4.10.1.3.1 Scenario 1 850
4.10.1.3.2 Scenario 2 851

4.10.1.4 Useful Tips 851
4.10.2 Groovy Scrip 851

4.10.2.1 Configuration and Testing 852
4.10.2.1.1 Interaction Configuration 852
4.10.2.1.2 Sample Input and Output 852

4.10.2.2 Functional Demonstration 853
4.10.2.2.1 Scenario 1 853
4.10.2.2.2 Scenario 2 853

4.10.2.3 Useful Tips 854
4.10.3 Java Script 854

4.10.3.1 Configuration and Testing 854
4.10.3.1.1 Interaction Configuration 854
4.10.3.1.2 Sample Input and Output 855

4.10.3.2 Functional Demonstration 855
4.10.3.2.1 Scenario 1 855

4.10.3.3 Useful Tips 856
4.10.4 Perl Script 856

4.10.4.1 Configuration and Testing 857
4.10.4.1.1 Interaction Configuration 857
4.10.4.1.2 Sample Input and Output 857

4.10.4.2 Functional Demonstration 858
4.10.4.2.1 Scenario 1 858
4.10.4.2.2 Scenario 2 858

4.10.4.3 Useful Tips 859
4.10.5 Python Script 859

4.10.5.1 Configuration and Testing 859
4.10.5.1.1 Interaction Configuration 859
4.10.5.1.2 Sample Input and Output 860

4.10.5.2 Functional Demonstration 861
4.10.5.2.1 Scenario 1 861
4.10.5.2.2 Scenario 2 861

4.10.5.3 Useful Tips 862

4.11 Transformation 862

4.11.1 EDI 2 XML 862
4.11.1.1 Configuration and Testing 862
4.11.1.2 Functional Demonstration 863

4.11.1.2.1 Scenario 1 863
4.11.2 HL7 Reader 864

4.11.2.1 Configuration and Testing 864
4.11.2.1.1 Interaction Configuration: 864
4.11.2.1.2 Sample Input and Output 865

4.11.2.2 Functional Demonstration 866
4.11.2.2.1 Scenario 1 866

4.11.2.3 Useful Tips 867
4.11.3 HL7 Writer 867

4.11.3.1 Configuration and Testing 868
4.11.3.1.1 Interaction Configuration 868
4.11.3.1.2 Sample Input and Output 868

4.11.3.2 Functional Demonstration 869
4.11.3.2.1 Scenario 1 869

4.11.3.3 Useful Tips 869
4.11.4 Text 2 XML 870

4.11.4.1 Configuration and Testing 870
4.11.4.1.1 Managed Connection Factory 870
4.11.4.1.2 Interaction Configuration 871

4.11.4.2 Sample Input and Output 871
4.11.4.3 Functional Demonstration 873

4.11.4.3.1 Scenario 1 873
4.11.4.4 Use Case Scenario 874
4.11.4.5 Useful Tips 874

4.11.5 XML 2 EDI 874
4.11.5.1 Configuration and Testing 874
4.11.5.2 Functional Demonstration 876

4.11.5.2.1 Scenario 1 876

4.11.6 XML 2 PDF 877
4.11.6.1 Configuration and Testing 877

4.11.6.1.1 Interaction Configuration 877
4.11.6.1.2 Sample Input and Output 878

4.11.6.2 Functional Demonstration 879
4.11.6.2.1 Scenario 1 879

4.11.6.3 Useful Tips 880
4.11.7 XML 2 Text 881

4.11.7.1 Configuration and Testing 881
4.11.7.1.1 Managed Connection Factory 881
4.11.7.1.2 Interaction Configuration 882

4.11.7.2 Sample Input and Output 882
4.11.7.2.1 Sample Input 883
4.11.7.2.2 Sample Output 883

4.11.7.3 Functional Demonstration 884
4.11.7.3.1 Scenario 1 884

4.11.7.4 Useful Tips 884
4.11.8 XSLT 884

4.11.8.1 Interaction Configurations 884
4.11.8.1.1 Attributes 885

4.11.8.2 Functional Demonstration 897
4.11.8.2.1 Scenario 1 897

4.11.8.3 Use Case Scenario 898
4.11.8.4 Useful Tips 899

4.12 Util 899

4.12.1 Compression 899
4.12.2 Decompression 899
4.12.3 Decryption 899

4.12.3.1 Configuration and Testing 900
4.12.3.2 Input and Output 901

4.12.3.2.1 Input Schema 901
4.12.3.2.2 Output Schema 901

4.12.3.3 Functional Demonstration 901
4.12.3.3.1 Scenario 1 901

4.12.3.4 Use Case Scenario 902
4.12.3.5 Useful Tips 903

4.12.4 DiskUsageMonitorService 903
4.12.4.1 Configuration and Testing 903
4.12.4.2 Functional Demonstration 903

4.12.4.2.1 Scenario 1 903
4.12.4.3 Useful Tips 904

4.12.5 Display 904
4.12.5.1 Configuration and Testing 904
4.12.5.2 Functional Demonstration 905

4.12.5.2.1 Scenario 1 905
4.12.5.2.2 Scenario 2 905

4.12.5.3 Use Case Scenario 906
4.12.6 Encryption 907
4.12.7 Feeder 907

4.12.7.1 Configuration and Testing 907
4.12.7.2 Input and Output 908

4.12.7.2.1 Input Schema 908
4.12.7.2.2 Output Schema 908

4.12.7.3 Functional Demonstration 908
4.12.7.3.1 Scenario 1 908

4.12.7.4 Use Case Scenario 910
4.12.7.5 Useful Tips 910

4.12.8 PrintPDF 912
4.12.8.1 Configuration and Testing 912

4.12.8.1.1 Error Handling Configuration 912
4.12.8.1.2 Sample Input and Output 913

4.12.8.2 Recommendations 914
4.12.8.3 Limitations 914

4.13 Web 914

4.13.1 HTTPAdapter 914
4.13.1.1 Configuration and Testing 916

4.13.1.1.1 Managed Connection Factory 916
4.13.1.2 Interaction Configuration 918

4.13.1.2.1 Attributes 918
4.13.1.3 Input and Output 927

4.13.1.3.1 Input 927
4.13.1.3.2 Output 935

4.13.1.4 SSL Setup 937
4.13.1.5 Functional Demonstration 938

4.13.1.5.1 Scenario 1 938
4.13.1.6 Use Case Scenario 941
4.13.1.7 Useful Tips 941

4.13.2 HTTP Receive 941
4.13.2.1 Configuration and Testing 942

4.13.2.1.1 General Configuration 942
4.13.2.1.2 Multithread Configuration 952

4.13.2.2 Input and Output 953
4.13.2.2.1 Input 953
4.13.2.2.2 Output 955

4.13.2.3 Functional Demonstration 957
4.13.2.3.1 Scenario 1 957

4.13.2.3 Use Case Scenario 959
4.13.2.4 Useful Tips 959

4.13.3 HTTP Stub 959
4.13.3.1 Configuration and Testing 959

4.13.3.1.1 Deployment Configuration 960
4.13.3.1.2 FES Connection Configuration 961
4.13.3.1.3 Execution Configuration 961

4.13.3.2 Input and output 967
4.13.3.2.1 Input 967
4.13.3.2.2 Output 967

4.13.3.3 Functional Demonstration 969
4.13.3.3.1 Scenario 1 969
4.13.3.3.2 Scenario 2 970

4.13.3.4 Use Case Scenario 971
4.13.3.5 Useful Tips 971

4.13.4 SimpleHTTP 972
4.13.4.1 Configuration and Testing 972

4.13.4.1.1 Interaction Configurations 972
4.13.4.2 Functional Demonstration 975

4.13.4.2.1 Scenario 1 975
4.13.4.2.2 Scenario 2 976

4.13.4.3 Useful Tips 976

4.14 WebService 977
4.14.1 WSStub 977

4.14.1.1 Configuration 978
4.14.1.1.1 WS Definition 978
4.14.1.1.2 Basic 980
4.14.1.1.3 Advanced 983
4.14.1.1.4 WSDL 995
4.14.1.1.5 Common Panels 995
4.14.1.1.6 WS Standards 997
4.14.1.1.7 Transport Security 1004
4.14.1.1.8 Miscellaneous Configuration 1009
4.14.1.1.9 Port Generation 1010

4.14.1.2 Functional Demonstration 1011
4.14.1.3 Useful Tips 1012

4.14.2 Web Service Consumer (4.0) 1013
4.14.2.1 Configuration and Testing 1014
4.14.2.2 Input and Output 1022

4.14.2.2.1 Input Schema 1022
4.14.2.2.2 Output Schema 1024

4.14.2.3 Accessing Share Point Web Services 1024
4.14.2.4 Functional Demonstration 1027

4.14.2.4.1 Scenario 1 1027
4.14.2.4.2 Scenario 2 1027

4.14.2.5 Use Case Scenario 1029

4.14.2.6 Useful Tips 1029
4.14.3 Web Service Consumer (5.0) 1030

4.14.3.1 Configuration and Testing 1030
4.14.3.1.1 General 1030
4.14.3.1.2 Authentication Type 1033

4.14.3.2 Input and Output 1034
4.14.3.2.1 Input Schema 1034
4.14.3.2.2 Output Schema 1036

4.14.3.3 Functional Demonstration 1037
4.14.3.3.1 Scenario 1 1037
4.14.3.3.2 Scenario 2 1038

Chapter 5: Event Processes 1039

5.1 What are Event Processes? 1039
5.2 Creating Event Processes 1039

5.2.1 Creating a New Event Process 1040
5.3 Configure Event Processes 1042

5.3.1 Configuring Components through Custom Property Sheet 1042
5.3.2 Configuring Common Component Properties 1042
5.3.3 Adding Additional Jars/Libraries to Components 1043
5.3.4 Setting up Component Port Properties 1043
5.3.5 Defining Data Transformation 1044
5.3.6 Defining Exception Flows 1044

5.3.6.1 Using the Exception Listener Service Component: 1045
5.3.7 Using the Error Ports View 1046
5.3.8 Document Tracking 1046

5.3.8.1 Configuring Document Tracking 1047
5.3.8.2 Configuring Specific Database 1047
5.3.8.3 Database Table Structure 1048
5.3.8.4 Structure of IMAGE/BLOB field 1050

5.3.9 Message Selector on Route 1050
5.3.9.1 Defining Message Selector on Route 1051

5.3.10 Setting Alerts and Notification 1053
5.3.11 Configuring the Application Context 1055

5.4 Using External Event Processes 1060
5.4.1 Importing Remote Service Instance 1060
5.4.2 Using External Event Processes 1062

5.5 Debugging Event Processes 1063
5.5.1 Viewing Component Logs 1064
5.5.2 Setting Event Interceptors 1067

5.5.2.1 Setting an Event Interceptor on a Route 1067
5.5.2.2 Viewing Intercepted Messages 1068
5.5.2.3 Viewing Content of an Intercepted Message 1069
5.5.2.4 Viewing Component Launch and Kill Time 1070
5.5.2.5 Viewing Component Pending (Queued) Messages 1071

5.6 Modifying Event Processes 1072
5.6.1 Replacing a Component at Runtime 1072
5.6.2 Adding a New Component Instance at Runtime 1073

5.7 Monitoring Event Processes 1074
5.7.1 Tracking Events within Processes 1074
5.7.2 Defining a Workflow 1074

5.7.2.1 Starting a Workflow 1074
5.7.2.2 Viewing Tracked Documents of a Workflow 1075
5.7.2.3 Tracking Documents across Workflows 1075

5.7.3 Setting up Database to store Tracked Documents 1076
5.7.4 Re-Injecting Tracked Documents 1076

5.7.4.1 Re-Injection Document Structure 1076
5.7.4.2 Re-Injection of Tracked Documents 1077
5.7.4.3 Re-Injected Workflow 1079

5.8 Import and Export Event Processes 1079
5.8.1 Importing Event Processes 1080
5.8.2 Exporting an Event Process 1082
5.8.3 Exporting Multiple Applications 1083

5.9 Deploying Event Processes 1084
5.9.1 Connectivity and Resource Check 1085
5.9.2 Enabling/Disabling the Component Cache 1087

5.10 Launching Components and Event Processes from Studio 1089
5.10.1 Launching an Event Process 1090
5.10.2 Stopping an Event Process 1091
5.10.3 Synchronizing Event Processes 1091
5.10.4 Launching and Stopping Individual Components 1091

5.11 The Event Process Command Line Interface 1093
5.11.1 List of Ant Tasks provided by command Line Interface 1094
5.11.2 Launching an Event Process from Command Line 1095
5.11.3 Launching Components from Command Line 1096
5.11.4 Executing Components Manually 1097

5.12 Best Practices in Deployment 1100
5.12.1 Creating Port Bindings Between Components in Different Event Processes 1101

5.13 Testing Event Processes 1102
5.14 Sample Event Processes 1102

5.14.1 Bond Trading 1102
5.14.2 Database Replication 1104
5.14.3 EAI Demo 1105
5.14.4 Order Entry 1106
5.14.5 Portal Integration 1108
5.14.6 Purchasing System 1109
5.14.7 Retail Television 1113
5.14.8 Revenue Control Packet 1114
5.14.9 Simple Chat 1117
5.14.10 WorkList Sample 1118

Chapter 6: High Availability 1120

6.1 ESB Server High Availability 1120
6.2 Peer Server High Availability 1121
6.3 Fiorano Replicated High Availability Working 1122

6.3.1 HA Locking Mechanism 1122
6.3.2 Server States 1123
6.3.3 Configuring Fiorano SOA High Availability Servers 1125
6.3.4 Configuration Steps 1125

6.3.4.1 Setting up the LockFile 1125
6.3.4.2 Configuring the FES HA Profile 1128

6.3.5 Verifying HA Setup 1136
6.3.6 Shutting down the HA Server 1137
6.3.7 Troubleshooting Steps 1137

6.4 Fiorano High Availability Working In Shared Mode 1140
6.4.1 Shared HA Precondition 1140
6.4.2 Server States 1140
6.4.3 Configuring Fiorano SOA High Availability Servers 1141
6.4.4 Configuration Steps 1142

6.4.4.1 Setting up the Lock File 1142
6.4.4.2 Setting up the shared database 1143
6.4.4.3 Configuring the FES/FPS HA Profile 1148
6.4.4.4 Changing the location of log files 1149

6.4.5 Verifying HA Setup 1150
6.4.6 Shutting down the HA Server 1151
6.4.7 Troubleshooting Steps 1151

6.5 Limitations of Fiorano SOA High Availability 1152
6.6 Reference Matrix – HA Profile 1153
6.7 Determining Server State 1154

Chapter 7: Scalability, Load Balancing and Memory
Optimization 1155

7.1 Server-Level Load Balancing 1155
7.1.1 Scaling by adding more peers to the network 1155
7.1.2 Scaling by distributing load across multiple service instances 1156
7.1.3 An example of Load Balancing 1156

7.2 Thread Count of Components 1157
7.3 Scalability 1158

7.3.1 Transparent Resource Addition 1158
7.3.2 Dynamic Change Support 1158
7.3.3 Parallel Data Flow 1158

7.4 Memory Optimization 1159
7.4.1 JVM Parameters 1159
7.4.2 Separate Machines for Servers 1160

7.4.3 Distribute Components 1160
7.4.4 Inter-Connect Flows 1161
7.4.5 Size of Event Flows 1161
7.4.6 Size of Messages 1161
7.4.7 DB Adapter Tuning 1162

7.5 Component Memory Tuning 1162
7.5.1 Tuning Memory for Service Components 1162

7.5.1.1 Know about Heap sizes 1162
7.5.1.2 Default Heap size 1163
7.5.1.3 Setting Heap sizes 1164
7.5.1.4 Garbage Collection 1164
7.5.1.5 Monitoring Component JVM Statistics 1165
7.5.1.6 Tuning the memory settings 1166

7.5.2 Recommendations 1170
7.5.2.1 Component Overloading 1170

7.5.3 Components 1170
7.5.3.1 File Reader 1171
7.5.3.2 File Writer 1173
7.5.3.3 XSLT 1174
7.5.3.4 CBR 1175
7.5.3.5 Aggregator 1178
7.5.3.6 Distribution 1180

7.5.4 Walkthrough 1182
7.5.4.1Application 1182
7.5.4.2 Tuning Process 1183

7.6 Memory Management of Fiorano Peer Server 1185
7.6.1 Physical Machine Configuration 1186
7.6.2 Java Virtual Machine 1186
7.6.3 Machine Setup 1186
7.6.4 Processing Message Size 1186
7.6.5 Peer Server Load 1186
7.6.6 Recommendations 1187
7.6.7 Interpreting and Applying Recommendations 1189
7.6.8 Handling Memory Problems 1197
7.6.7 Java Heap Space 1197

7.6.7.1 Debugging 1197
7.6.8 Permgen Space 1197

7.6.8.1 Debugging 1198
7.6.9 Requested Array size exceeds VM Limit 1198
7.6.10 Swap Space 1198
7.6.11 Unable to Create New Native Thread 1198
7.6.12 Enabling GC logging 1199

7.7 In-Memory Execution and Load Balancing of Components Across Peer Servers 1199
7.7.1 Separate Process 1199
7.7.2 In-memory 1200

Chapter 8: Security 1201

8.1 Authentication 1201
8.2 Authorization 1202
8.3. Password Rules 1203

8.3.1 Password Strength 1203
8.3.2 Password Validation 1203
8.3.3 Custom Password Rule Implementation 1203

8.4 Deployment Manager 1206
8.5 Labels 1206
8.6 Rules 1206
8.7 Changing Security Database Implementation 1208

8.7.1 Security Related MBeans 1208
8.7.2 Modifying ACLManager Implementation 1209
8.7.3 Modifying Principal Manager Implementation 1210
8.7.4 Editing Destination Level Security Through ACL’s 1211
8.7.5 RDBMS Realm 1212

8.7.5.1 Setting up 1212
8.7.5.2 Additional Configuration 1213
8.7.5.3 Sample Configurations 1213
8.7.5.4 Verifying 1215

8.7.6 LDAP Security Realm 1215
8.7.6.1 Sample Configuration – Netscape Directory Server 1216
8.7.6.2 Sample Configuration – ApacheDS1.5.4 1217

8.7.7 XML Security Realm 1219
8.7.7.1 Configuring Principal Manager 1219
8.7.7.2 Configuring ACL Manager 1220
8.7.7.3 Sample xml files 1220
8.7.7.4 Group.xml 1220
8.7.7.5 acl.xml 1221

8.8 Event Process Security 1222
8.8.1 How ACLs Work 1222

8.8.1.1 Application Level Permission 1222
8.8.1.2 Global/System Level Permission(s) 1223

8.8.3 Default Allowed Set Of Users 1225
8.8.4 Changing Default Permissions 1226

8.8.4.1 Changing Global Permissions 1226
8.8.4.2 Changing Application Level Permissions 1228

8.8.5 Principal Store Synchronization 1229

Chapter 9: Fiorano Mapper 1232

9.1 Key Features of Fiorano Mapper 1232
9.2 Fiorano Mapper Environment 1232

9.2.1 Menu Bar 1234
9.2.1.1 File 1234

9.2.1.2 Edit 1234
9.2.1.3 Structure 1234
9.2.1.4 View 1234
9.2.1.5 AutoMap 1235
9.2.1.6 Tools 1235
9.2.1.7 Help 1235

9.2.2 Toolbar 1235
9.2.3 MapView 1237

9.2.3.1 Input Structure Panel 1238
9.2.3.2 Lines Panel 1238
9.2.3.3 Output Structure Panel 1239
9.2.3.4 Details Pane 1239

9.2.4 MetaData View 1242
9.2.4.1 Error Messages Panel 1242

9.3 Working with Input and Output Structures 1243
9.3.1 Loading the Input Structure 1243

9.3.1.1 Loading an Existing XML Input Structure 1243
9.3.1.2 Loading a New Input XML Structure 1246

9.3.2 Viewing Source of Input Structure 1247
9.3.3 Clearing the Input Structure 1247
9.3.4 Loading the Output Structure 1248

9.3.4.1 Loading an XML Output Structure 1249
9.3.4.2 Loading a CSV Output Structure 1250

9.3.5 Viewing the Output Structure Source 1253
9.3.6 Clearing the Output Structure 1253

9.4 Working with the Visual Expression Builder 1254
9.4.1 Function Palette 1254

9.4.1.1 Arithmetic Functions 1255
9.4.1.2 Math Functions 1257
9.4.1.3 String Functions 1260
9.4.1.4 Control Function 1262
9.4.1.5 Conversion Functions 1263
9.4.1.6 Advanced Functions 1265
9.4.1.7 Date-Time Functions 1267
9.4.1.8 SQL Functions 1274
9.4.1.9 NodeSet Functions 1278
9.4.1.10 Boolean functions 1282
9.4.1.11 Lookup functions 1293
9.4.1.12 JMS Message Functions 1295
9.4.1.13 User Defined functions 1296

9.4.2 Funclet Easel 1298
9.4.2.1 Source Node 1298
9.4.2.2 Destination Node 1298

9.5 Creating Mappings 1302
9.5.1 Understanding Types of Nodes 1302
9.5.2 Types of Mappings 1305

9.5.2.1 Name-to-Name Mapping 1305
9.5.2.2 For-Each Mapping 1306

9.5.3 Duplicating a For-Each Mapping 1307
9.5.4 Linking Nodes to Define Mappings 1309

9.5.4.1 Using the Automatic Mapping option to Define Mappings 1309
9.5.4.2 Using the Visual Expression Builder to Define Mappings 1310

9.5.5 Mapping XML Formats 1313
9.5.6 Mapping XML Formats to CSV Files 1313
9.5.7 Mapping XML Formats to RDBMS Queries 1313

9.5.7.1 Mapping XML Formats to RDBMS-Insert Queries 1313
9.5.7.2 Mapping XML Formats to RDBMS-Update Queries 1314
9.5.7.3 Mapping XML Formats to RDBMS-Delete Queries 1316

9.6 Adding User XSLT 1317
9.7 Testing the Transformation 1319
9.8 Managing Mappings 1322

9.8.1 Exporting Mappings to a File 1322
9.8.2 Importing Project from the File 1323
9.8.3 Validating All Mappings 1323
9.8.4 Displaying All Mappings 1323
9.8.5 Removing Mappings for a Node 1323
9.8.6 Copying functions in a Mapping 1324
9.8.7 Clearing All Mappings 1324
9.8.8 Clearing Data 1324
9.8.9 Modifying the RDBMS Output Structure Settings 1325
9.8.10 Configuring Mapper Settings 1325
9.8.11 Managing XSLT Properties 1326

9.9 Customizing the Mapper User Interface 1327
9.10 Fiorano Mapper –Custom Funclets 1329

9.10.1 Creating Custom Funclets 1329
9.10.1.1 Integrating JavaScript functions 1329
9.10.1.2 Integrating Java functions 1333

9.10.2 Editing Existing User Defined Funclets 1335
9.10.3 Updating UserDefined funclets 1336
9.10.4 Removing User Defined Funclets. 1336

9.10.4.1 Removing User defined funclets from Fiorano Mapper 1336
9.10.4.2 Deleting entire extension 1337

Chapter 10: Common Components Configurations 1339

10.1 Component Instance Properties 1339
10.1.1 Properties 1339
10.1.2 Deployment 1341
10.1.3 Execution 1343
10.1.4 Log Module Instances 1345
10.1.5 Runtime Arguments 1345

10.2 Port Properties 1346

10.2.1 Input Port Properties 1346
10.2.2 JMS Destination 1346
10.2.3 Messaging 1347

10.3 Output Port Properties 1349
10.3.1 JMS Destination 1350
10.3.2 Messaging 1350
10.3.3 Preventing message loss 1350
10.3.4 Components with implicitly defined JMS messaging properties 1351

10.4 Managed Connection Factory 1351
10.4.1 SSL Security 1354

10.5 Interaction Configurations 1356
10.5.1 Scheduler Configurations 1358
10.6 Transport Configurations 1359
10.7 Error Handling 1360

10.7.1 Connection Error 1361
10.7.2 JMS Error 1362
10.7.3 Response Generation Error 1363
10.7.4 Request Processing Error 1364
10.7.5 Invalid Request Error 1365
10.7.6 Retry Configuration 1366

10.8 Schema Editor 1367
10.9 Schema Repository 1372
10.10 XPath Editor 1374

Chapter 11: Backlog Monitoring 1378
11.1 Configuring Transports 1378

11.1.1 SMTP Transport 1378
11.1.2 JMS Transport 1379

11.2 Managing Alerts 1380
11.2.1 SMTP Alert 1380
11.2.2 Creating New SMTP Alerts 1381
11.2.3 JMS Alert 1383

11.2.3.1 Adding a New JMS alert 1385
11.2.3.2 Editing/Removing Alert 1385

11.3 Managing Backlog Policies 1386
11.3.1 Creating Policy 1387
11.3.2 Managing Policy Executions 1388

Chapter 12: Audit Management 1389

12.1 Audit Policies 1390
12.1.1 Enabling Audit Policies 1391
12.1.2 Disabling Audit Policies 1392
12.1.3 Audit Policy Store Synchronization 1392

12.2 Handling Peer Server Audit Events 1393
12.3 Audit Security Permissions 1393
12.4 Description of Audit Events 1394

12.4.1. Authentication Event 1394
12.4.2. Authorization Event 1394
12.4.3. Security Database Modification Event 1395
12.4.4. Event Process Repository Modification Event 1396
12.4.5. Service Repository Modification Event 1397
12.4.6. Event Process Life Cycle Event 1398
12.4.7. Component Life Cycle Event 1399
12.4.8. Principal Store Synchronization Event 1400

12.5 Audit Event Viewer 1401
12.5.1 Remembering Search Preferences 1403
12.5.2 Using Saved Search Preferences 1404

Chapter 13: SOA Best Practices 1405
13.1 Development Model 1405

13.1.1 Event Process Development 1405
13.1.2 Service Component Development 1406
13.1.3 Error Handling 1407
13.1.4 Explicit Transformations 1407
13.1.5 Version Control Integration 1408

13.2 Testing 1408
13.2.1 Component Level Testing 1408
13.2.2 Process Level Testing 1408

13.3 Deployment Model 1408
13.3.1 Server Deployment 1408
13.3.2 Event Process and Component Deployment 1409

13.4 Performance Tuning and Memory Optimization 1409
13.4.1 Servers 1409
13.4.2 Service Components 1410

13.5 Troubleshooting 1411

Index 1412

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 47

Chapter 1: Introduction

The Fiorano SOA® Platform User Guide has been developed for all users including advanced
users who are familiar to using API documentation and runtime libraries to create, customize,
test and deploy business components after testing their behavior. This guide is also designed
to assist Enterprise and Peer Server Administrators in managing the entire Fiorano Network
using Fiorano administration tools and configuration files. It also provides information for
Event Process Orchestration and transformation capabilities of the SOA platform. This guide
introduces the developer to a rich set of pre-built services bundled with Fiorano SOA Platform.
It focuses the usage of these services in real-life scenarios.

1.1 What is Fiorano SOA Platform

Fiorano SOA Platform is a service-virtualization middleware platform that allows
heterogeneous software services to be deployed across an enterprise service grid. Distributed
Services deployed across a grid of service containers can now be assembled into composite
applications to automate business processes. The suite includes a comprehensive set of tools
to visually design, configure, deploy, manage, and optimize these business processes.

The Service-Grid architecture of the Fiorano SOA Platform provides a common Service-
Oriented platform for Enterprise Application Integration (EAI), Business Process Management
(BPM), and Automation of Business to Business (B2B) integration. Together these serve in
connecting diverse software applications running within an organization and across partner
organizations.

1.2 Why Fiorano SOA Platform

The power of the Fiorano SOA Platform lies in its unique implementation approach (based on
distributed peer to peer architecture with centralized control) and the breadth of the out-of-
the-box components bundled with the Suite.

The classic deployment of a business process (as followed by most products today) has two
views: a high-level business-view in the form of an activity diagram and a low-level
implementation-view of the data flows between applications to implement the higher-level
business process. Fiorano replaces these two views with a single view, by taking the
implementation view to a higher level, closer to the business-flow. This single-view concept
has the critical advantage that changes to the high-level business process (made either by
business analysts using graphical tools or via automated scripts) are directly reflected in the
implementation, that is, changes do not require the system to be brought down and there is
no concept of having to recompile and redeploy a changed process.

Besides the ability to modify a live business process on-the-fly, other key benefits of the
Fiorano approach include

 Deployment of components over an enterprise service-grid. Fiorano supports a
distributed peer-to-peer infrastructure model that allows components within a
business process to exchange data directly, without going through a central server.
While data-flow between components is direct, control is centralized for ease of
administration, achieving an optimal balance in real-world implementations.

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 48

 Multi-Language Multi-Platform Architecture. Components can be developed in a
variety of programming languages, including Java, C, C++, and C# among others.
Since all Fiorano SOA Platform components (Fiorano Servers, tools) are developed in
the Java programming language, Fiorano servers/tools can run on various operating
systems that support Java, including HP-UX, Solaris, Windows, Linux, UNIX, and
various mainframe architectures.

 Single platform for both request/reply and event-driven (data-flow)
interactions. Fiorano uniquely combines request/reply and event-driven interactions
within a single platform, enabling fully general-purpose distributed business processes
to be deployed with minimal programming.

 In-built high-availability for processes and data. Fiorano supports out-of-the box
high-availability, with full redundancy being provided using either a pure software or a
mixed software/hardware approach for the most demanding enterprise applications

 Standards support, thin installs. Fiorano achieves it’s flexibility without any
proprietary APIs. Key standards support includes JMS, JCA, XSLT, and various web-
services standards. Installation of the Fiorano platform does not require any
application servers or databases, making the overall installation footprint the smallest
in the industry.

1.3 Introduction to Fiorano SOA Platform Environment

A business process that defines the flow of data between software applications is composed of
one or more event processes (also referred to as Composite Applications). Each event process
is composed with Services (also referred to as components), which execute conditions,
transformations, provide connectivity to software applications and so on. Components are
connected with directional lines, called routes that define the flow of data from one component
to another. The event process does not contain any code and is not compiled into any
executable .exe or a.out. Event processes are stored as simple XML files.

Fiorano SOA Platform includes bundled graphical tools to compose event processes, as
illustrated in screenshots through the rest of this and subsequent chapters.

The Fiorano Environment includes three key items: Servers, Tools, and Components, which
are described briefly below.

1.3.1 Fiorano Servers

Enterprise Server: The Fiorano Enterprise Server provides a repository of security meta-
data, processes, and components in Fiorano SOA. It also acts as the central server to deploy
components onto Peer Servers and fetch/display component status from peer servers. In
essence, this is the entry point for the tools to save applications, register components and
deploy/monitor event processes. Once the event process is launched the entire flow of
messages between the components is managed by the peer server(s) and the enterprise
server is used only for monitoring and managing these peers; as such, the role of the
enterprise server is that of a monitoring and repository server since it does not play a role in
the actual process flow.

Peer Server: This is the runtime server in Fiorano SOA Platform. It provides messaging and
deployment infrastructure for the event processes. The Peer Server’s messaging infrastructure
is built on world’s most scalable and robust messaging server, FioranoMQ.

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 49

1.3.2 Fiorano Tools

Fiorano Studio: This tool provides a graphical interface to compose, deploy and monitor
event processes. It connects to the Enterprise Server, gives you access to saved processes,
provides insight into running processes and allows processes to be modified dynamically if
needed. This tool includes the Fiorano Mapper tool that is used to define data
transformations in an event process.

Services and Security Manager: This tool allows administrator to add users/groups and
setup Access Control Lists in Fiorano SOA Platform. It also allows new components to be
registered into the Enterprise Server.

Event Manager: This tool provides visibility into the runtime information of executing event
processes on the peer servers. This information includes documents tracked in an event
process, process events (when/who started/stopped the event process), component status,
process logs and more.

Deployment Manager: This tool allows users to set deployment rules to govern the
deployment of components across development, QA, Staging, and Production environments at
the click of a button. For example, users can ensure that Components labeled “development”
are disallowed from deployment on a subset of Staging Servers; selected components can be
barred from executing on any selected set of peers, using version, label and application-name
based restrictions.

Network Administrator: This tool provides access to the status of the Fiorano SOA Platform
servers (that is, the Enterprise Server and the Peer Servers) running on the network. Apart
from the status info (i.e. “is the server running?”) it provides a lot of other information as well,
including log, server configuration, security events and more.

1.3.3 Composing an Event Process

An event process is composed of components and data routes. Fiorano SOA Platform includes
the following categories of components. Complete listing is available at
http://www.fiorano.com/devzone/dev_zone.php. Users can create custom component
categories and add custom components to such categories as required.

1. Bridges: This category contains components to send and receive files/data from FTP
servers, receive emails using POP3, send emails using SMTP. Other components in this
category are EJBAdapter, SAPR3 and SMSBridge.

2. DB: This category contains components to execute SQL operations (insert, update,
delete, stored procedure execution and monitoring database table) on a variety of
supported relational databases that includes Oracle, MS SQL, Sybase, etc.

3. File: This category contains FileReader and FileWriter components. FileReader can
monitor a selected directory for new files as well, apart from reading a specified file
path.

4. Flow: This category contains components to define conditions; content based routing,
aggregate data, and split XML documents etc.

5. MoMs: This category contains components to send and receive messages from MSMQ,
IBM MQSeries, TibcoRV, and JMS Servers.

6. Scripts: This category contains components to execute BeanShell, JavaScript, Perl,
Python, and Groovy scripts.

http://www.fiorano.com/devzone/dev_zone.php

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 50

7. Transformation: This category contains components to transform data from EDI,
CSV, HL7, and XML to XML format and vice versa. It also includes a component to
convert XML data into PDF documents.

8. Utils: This category contains components to compress and decompress data, encrypt
and decrypt data.

9. Web: This category contains the HTTPAdapter to send data and the HTTPReceive
adapter to receive data over the HTTP protocol.

10. WebService: This category contains a WebServiceConsumer to invoke WebServices
hosted across the intranet/internet over HTTP protocol.

Configuring components and component input and output data channels

Components receive messages from one or more input data channels and send responses to
one or more output data channels (also referred to as ports) or to the ON_EXCEPTION data
channel.

Figure 1.3.1: Service Component

After the component is dropped on to the application easel, it needs to be configured via its
configuration interface. Every component has a customized configuration dialog, apart from
the generic property window. For example, the DB component has a custom configuration
dialog to specify connection details and SQL queries to execute, together with error handling
details.

Settings in the custom configuration dialog may result in a modification of the metadata (that
is, the XSD) of the input and output data channels. The Input channel metadata/structure
enforces the data format in which the component expects the data. Output data channel
metadata/structure defines the format of the output data when the component completes its
execution.

For example, if the DB component is configured to execute the following query.

Figure 1.3.2: Configure Component Query

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 51

The component input metadata/structure would be

Figure 1.3.3: InPort Properties

The On_Exception channel contains a static metadata/structure with an error code, an error
description, a stack trace and the original message that resulted in the exception, as shown in
Figure 1.3.4.

Figure 1.3.4: On_Exception Properties

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 52

Automatic triggering (scheduling) vs. triggering through sending a document to the
data input channel.

Each component configuration window has a scheduling screen to schedule the automatic
component execution. For example, a DB component can be configured to execute the
configured SQL every 10 seconds/mins, and so on. Scheduling automatic execution of the
component requires the default values to be specified. In case of the DB component, you can
specify the default value for every ‘?’ in the SQL query. Similarly, the FTPPut, FTPGet, and the
File Adapter can be scheduled to automatically upload the files from a specified directory,
download files from a specified remote FTP server and read files from a specified directory
respectively.

In other cases, the component starts executing when it receives the messages from the input
data channel.

Connecting components with routes

Fiorano provides data routes to transfer data flowing from one component to another. This
data/message may contain one or more of XML, Binary, plain text or property data.

A data route is created from the output data channel of a component to an input data channel
of another component. A data route can be created between the output data channel and
input data channel of the same component. This feature can be used for retrying the message
in a flexible way.

If the metadata/structures of the route end-points do not match, the route becomes
fragmented indicating a mismatch of data formats. This error can be resolved by introducing
an XSLT component between the two components.

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 53

The Fiorano SOA Platform supports the W3C XSLT 1.0 language for defining the XML to XML
data transformations. Fiorano includes a graphical tool, the Fiorano Mapper to define these
transformations. You can easily drag and drop the elements from the source Schema tree to
the target Schema tree to define the mappings. The Fiorano Mapper includes comprehensive
support for String, Boolean, Arithmetic, Date/Time, and other funclets to define complex data
translations. Figure 1.3.5 illustrates a screenshot of the Fiorano Mapper.

Figure 1.3.5: The Fiorano Mapper Screen

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 54

1.3.4 Deploying Event Processes

When a process is deployed, each Component in the Process is moved (that is, dynamically
deployed at runtime) to the peer server on which it is to execute. Depending on the settings,
Components can run as independent processes connected to the Peer via a Socket, or within
the same process as the Peer itself (“in-memory” execution). The Peer Server creates the JMS
destinations for each of the input and output data channels for each component connected to
it. Executing components pick up messages from the input destination, process these
messages and send successful responses to the output destination(s) as required while failed
messages are sent to the On_Exception destination.

By default, each component processes one message at a time. The Components can be
configured using MultiThreading options (min_threads, max_threads, # of jobs) to process
multiple messages simultaneously.

1.3.5 Monitoring Event Processes

The Event Process repository is centrally stored in the Enterprise Server. The Enterprise
Server provides API access to the event processes, to save, view, export, launch, debug, and
stop and other actions as required. The Fiorano Studio provides an easy-to-use GUI to
manage event processes as illustrated in Figure 1.3.6.

Figure 1.3.6: Server Explorer Screen

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 55

The Fiorano Studio can connect to the Enterprise Server from anywhere on the network. In
addition to hosting the Studio, which allows users to create new event processes, the studio
can be used for the following tasks:

1. Import/Export one/more Event Processes

2. Launch/Stop one/more Event Processes

3. View the Event Process status

4. View process logs

Debugging an Event Process

An Event Process can be debugged to intercept/forward the messages transmitted over the
data route. The Debugger shows the complete data message intercepted on the route. A
message can also be modified or discarded while in the debugger, provided the user has
permission to perform these actions. Figure 1.3.7 and Figure 1.3.8 illustrates the message
interceptor/debugger.

Figure 1.3.7: Add a Breakpoint

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 56

Figure 1.3.8: Intercepted Messages

Tracking documents along the flow (Audit Trial)

An Event Process can contain data channels marked for document tracking, as illustrated in
Figure 1.3.9. All the messages that go through a marked data-channel are persisted in a
relational database. Additionally, a data channel can be marked end of tracking to denote
the end-of-processing steps for a message. The document tracking feature helps to determine
the number of documents that have successfully reached the tracking end-points successfully
as well as the number of documents that has failed to reach the end-point.

Figure 1.3.9: Tracking Document

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 57

Exception Handling

The Fiorano SOA Platform provides the most flexible/extensible exception handling at both
component and system levels. As explained in previous sections, if a component runs into any
error/exception while processing a document, the error details are published on the
ON_EXCEPTION data queue of the component. As a process composer, one can route that
data into a table in a database (using the DB component) and/or send out an email (using the
SMTP component). The user can also compose a complex flow starting from the error data
channel, as illustrated in Figure 1.3.10.

Figure 1.3.10: Exception Handling

In addition to the component-specific error handling, the Fiorano Enterprise Server can be
configured to send out an email for various system events like unavailability of the Peer
Server, stopped Component, security violation, Event Process termination, and so on.

Logging

The Fiorano SOA Platform provides flexible logging settings for an Event Process. Each
component can have different log settings. The log settings determine how much log data gets
stored on the disk, the number of lines per file, an option to include time-stamps, and so on.

Figure 1.3.11: Log Manager

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 58

Fiorano provides APIs to access the runtime process logs while the event process is running
with the above log settings. The Fiorano Studio tool provides a GUI to display the
process/component logs, as shown the Figure 1.3.12.

Figure 1.3.12: CRM Logs

Setting up Alerts and Notifications

The Fiorano SOA Platform provides support for setting up alerts and notifications on all
system/process/component runtime events. The default installation includes a Mail and SMS
notification handler to send out alerts. However, customers can customize the notification
mechanism, using a pluggable alert handler API.

It is also important to note that both the Enterprise Server and the Peer Servers fully support
management through open standards - JMX and SNMP. Tools like HP-OpenView, Ca-
UniCenter, Big Brother, Nagios, and so on. can connect to the servers to view the status and
modify system/process parameters.

1.3.6 Extending the Component Palette

The Fiorano SOA Platform suite ships with an SDK to develop components in multiple
languages including C, C++, C#, and Java, among others. One can develop a component in
any of these languages and make it available on the Studio palette with the help of easy–to-
use wizards and scripts.

Once a component is available on the Studio palette, it can be dragged and dropped onto the
easel to create an Event Process. A component on the palette can be instantiated in any
number of event processes. Some of the benefits of the Java SDK include:

1. An inbuilt JMX container

2. Support for JMS/Tibco RV transport

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 59

3. Threading/Session handling

Figure 1.3.13: Adding Components to Palette

1.3.7 Scalability

When a given Peer Server goes out on CPU and RAM capacity, it is easy to install a Peer
Server on a new machine and make it available on the Fiorano Network, allowing additional
event processes to be launched and managed. There is no limit on the number of Peer Servers
that can be added to the network. Linear scalability can be achieved by distributing the event
processes onto multiple Peer Servers running on the network.

For more information on how peers are added to a running network, see Chapter 7.

1.3.8 High Availability

The Fiorano SOA Platform achieves system high availability by providing backup/standby
instances for the Enterprise Server and the Peer Server.

The Enterprise Server that acts as the process/component repository provides high availability
by running a hot-standby Enterprise Server on a separate machine across the network. The
hot-standby server and the active server exchange heart-beat packets and the data through a
back-channel connection. If the active server goes down, the standby server becomes active
and provides high availability for the process/component repository.

Figure 1.3.14: HA on Enterprise Server

Fiorano SOA Platform User Guide

Chapter 1: Introduction Page 60

Similarly, a Peer Server provides high availability of data and service failover by running a
backup/hot-standby server on a separate machine. In the event the primary server machine
goes down, the hot-standby instance resumes operations immediately without any manual
intervention. The Peer Server HA-pair instances provide high availability of transactional data
together with component-level failover. High availability is discussed in detail in Chapter 6.

Figure 1.3.15: HA on Peer

1.3.9 Security Framework

The Fiorano SOA Platform security data (that is, both authentication and authorization data) is
centrally managed in the Enterprise Server. Access to both the component and process data is
authenticated/authorized when users connect to the Enterprise Server. The Fiorano Security
Manager tool is used to configure the users/groups and user/group permissions. Security is
discussed in more detail in Chapter 8.

Figure 1.3.16: The Fiorano Services and Security Manager Screen

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 61

Chapter 2: The Fiorano Environment

This chapter explains the high-level system architecture of the Fiorano Enterprise Services
Grid, which consists of Peer Service- Containers installed across the network together with the
centralized Management and Repository Server and management tools. The topics discussed
in this chapter include the ESB Server, ESB peers, the Web- Gateway that manages Web-
Services and Fiorano Orchestration and Management tools.

2.1 Fiorano System Architecture

The Fiorano SOA Platform includes:

1. Fiorano Peer Server Network

2. Fiorano ESB Server

3. Fiorano Service Components

4. Fiorano Tools Interface

Figure 2.1.1 illustrates how different entities of the platform interact with each other in
carrying out their respective functionalities.

Figure 2.1.1: The Fiorano System Architecture

 The Fiorano Peer Server Network is the Enterprise Class centrally managed Peer to
Peer messaging backbone.

 The Fiorano ESB Server is the Administration Gateway into the ESB Peer Server
network.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 62

 The Fiorano Service components are either the interfaces to units of the Enterprise IT
Infrastructure or implementations of commonly used integration elements (such as
transformations, content based routers, and so on). The Fiorano Service components
implemented in Java are either pure JMS or JCA components.

 The Fiorano Tools Interface is provided by Fiorano Studio which offers intuitive visual
interfaces to the capabilities of the ESB server for the end user.

2.1.1 Fiorano ESB Server

The Fiorano ESB Server is the central controller of the Fiorano network. This control server
acts as a monitoring agent for all other peers and ensures information coherence.

The various functions performed by the FES include:

1. Control of the launch and termination of Fiorano Components as part of an event
process on any Peer of a Fiorano network.

2. Keeps the updated status of all Peer Servers, Business Components and Event
Processes running on Peers across the network.

3. Launches a Business Component on a backup node, in case the primary FPS on which
the Business Component is running goes down.

2.1.2 Fiorano Peer Server

The Fiorano Peer is a container for launching business components at network end-points of a
Fiorano network and manages the life cycle of the components.

The following are key functionalities of the Fiorano Peer:

1. Transfers the data among various components in a Peer to Peer fashion over JMS
routes.

2. Routes Business component related controls and State information to the Enterprise
Server.

3. Provides store and forward capabilities to handle network failures to provide for
guaranteed delivery of messages (which flow across from one peer to another). A
Fiorano Peer server has inherent store and forward mechanism through which each
peer stores the messages corresponding to all the peer servers which are unavailable
at that moment while forwarding these to Peer Servers as and when any they come up
again. This allows the Event Processes to continue execution even in the event of
remote machine failure or network failure.

ESB Server to Peer Server communication

All data communication in the ESB network happens in direct Peer to Peer fashion between the
Peer Servers. Only control data flows between the Enterprise and the Peers. The types of
control events handed by the ESB server include service component state notifications, event
process state notifications, HA events, document tracking events and so on.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 63

ESB Component and Process Repository

ESB server manages the following repositories:

 The repository to maintain versions of registered and unregistered service components
along with dependent resources and binaries.

 The Meta data information of the event processes in XML format.

 The repository of Peers in the ESB network and their configuration

Communicating with ESB Server

The ESB server is the single point of management and administration for the ESB network.
The Fiorano Studio acts as the visual interface to the ESB server functionality for the End-
User.

2.2 Installation

The Fiorano SOA Platform is available in two editions:

Enterprise Edition: The Enterprise Edition includes the Fiorano Enterprise Server, Fiorano
Peer Server, Fiorano Adapters, and all the Fiorano tools.

Workstation Edition: The Workstation Edition includes the Fiorano Peer Server and all the
Fiorano tools. The Workstation Edition is not bundled with the Enterprise Server. This edition
requires an Enterprise edition to be installed on the Fiorano Network.

The Enterprise and Workstation Edition are available free for a 45-day evaluation period. The
evaluation versions contain all the features of the licensed versions. The use of this software is
defined in the Fiorano End-User License Agreement.

2.2.1 Different Topologies

The Fiorano peer to peer distributed model provides unmatched flexibility in deciding
installation topology. The users can decide on an installation topology based on various
parameters:

 Availability of hardware

 Hardware configuration – RAM (Random Access Memory) and, CPU processing

 Expected system performance

 Number of licenses available

The exact topology architecture for each solution varies and is determined based on specific
customer requirements.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 64

All Servers on Same the Machine

A Fiorano platform installation (Enterprise Edition) can be installed on a single machine. The
default Peer Server profile is configured to work with the Enterprise Server available on the
local machine. As such, no further configuration (other than JVM settings, like setting the heap
size) is needed to launch the three servers. The Fiorano Studio also comes pre-configured with
the local Machine Enterprise Server connectivity information.

A single machine installation is the simple and fast way to get acquainted with the software. If
the single machine has more than the recommended RAM and processing capabilities, then the
servers can be deployed on the same machine. However, if a large number of processes are
required to run and the available hardware configuration does not support the memory
requirements of the business process, then users have to consider distributed deployment of
servers.

Enterprise Server on a Machine and Peer Servers on Separate Machines

Another popular installation strategy is to have a dedicated machine for the central controller
– the Fiorano Enterprise Server. The Peers can be distributed across other machines. With this
approach you can distribute the load across multiple mid-range machines as compared to
using a single high-end machine.

For example, the Figure 2.2.1 illustrates an installation topology spread across 5 machines.

Figure 2.2.1: Installation Topology

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 65

2.2.2 ESB Server

The Enterprise Server is the centralized management and repository server which manages
the various components of the Fiorano Network.

2.2.2.1 System Requirements

The ESB Server is a 100% Java product and can be deployed on any platform with a JRE
version 1.5 or above. For optimum performance, a minimum of 1 GB RAM is recommended. A
complete Enterprise Edition installation requires 600 MB of disk space.

2.2.2.2 Installation Steps

The windows installer is wizard driven and on which the default installation directory can be
configured. The non-windows installer includes a wizard driven approach or a tar file that can
be easily unzipped into a directory and then untarred.

Solaris Platform Installation

 You need to use gtar in Solaris to untar

 GNU tar is bundled as: /usr/sfw/bin/gtar

Check the below link

http://forum.java.sun.com/thread.jspa?threadID=5106899&messageID=9363883

2.2.3 ESB Peers

The ESB Peer Server is a runtime container for service components. The Peers communicate
with each other directly in a Peer-to-Peer method without going through the Enterprise Server.

2.2.3.1 System Requirements

The Peer Server is a 100% Java product and can be deployed on any platform with a JRE
version 1.5 or above. For optimum performance a minimum of 1 GB RAM or above is
recommended.

These figures are guidelines, the actual RAM and the hard disk space required for deployment
depends on the number of Business Services running on a single node, complexity of the
Business Services deployed on a single node, CPU requirements by the Business Services,
anticipated data flow, expected performance from the system, and so on.

2.2.3.2 Installation Steps

The Windows installer is wizard driven and on which the default installation directory can be
configured. The non-windows installer includes a wizard driven approach or a tar file that can
be easily unzipped into a directory and then untarred.

http://forum.java.sun.com/thread.jspa?threadID=5106899&messageID=9363883

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 66

Solaris Platform Installation

 You need to use gtar in Solaris to untar

 GNU tar is bundled as: /usr/sfw/bin/gtar

You can check the below link

http://forum.java.sun.com/thread.jspa?threadID=5106899&messageID=9363883

In the wizard driven approach, you can configure the peer to register with a specific Enterprise
Server when using the Workstation edition of the installer as shown in the Figure 2.2.2:

Figure 2.2.2: Installation Wizard

http://forum.java.sun.com/thread.jspa?threadID=5106899&messageID=9363883

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 67

2.3 Fiorano ESB Server

The Fiorano ESB Server (FES) is a Centralized Management Server which manages the various
components of the Fiorano Network and acts as a Metadata Repository of Event Processes and
Fiorano Business components. In a Fiorano Network, the data flow takes place purely in a
Peer-to-Peer fashion (among the FPSs) without the intervention of FES. Thus the FES role
during an Event Process execution is restricted to passing control signals for starting,
stopping, and monitoring service components that comprise the event process, where as the
actual flow of data and events between services is managed by Peer Servers on which the
services execute.

The FES is the central controller of the Fiorano Network, acting as a monitoring agent for all
the other Peers while ensuring information coherence. The Management tools of the Fiorano
SOA Platform connects to the FES and request action for specific operations such as launching
an Event Process or retrieving information about services in the network. For this, the FES
sends out Control Events to the participating FPS in the network containing specific
instructions about the incoming request.

Figure 2.3.1: Fiorano Network

The FES is primarily a JMS server (FioranoMQ Messaging Server) wrapped with additional role
specific functionalities. The FES communicates with the FPS using the underlying JMS server
and expose well defined JMX and Java API to communicate with the tools.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 68

2.3.1 ESB Server Functionality

The role of a FES can be logically divided into the following activities:

Remote Deployment and Launching of Event Processes and components: The FES
provides the ability to deploy, launch, and stop Event Processes and components on any Peer
Server in the network.

Runtime Composition of Event Processes: The FES allows modifications to the Event
Processes running at the time without stopping the Event Process on any server. This helps to
update the running event processes in production without any downtime.

Configuration and Repository Management: In a distributed Service-Grid environment,
information and data is scattered across the network. Each component (which executes a part
of the event process or workflow) as well as the Peer Server hosting the component needs to
be configured. Hence, there is an important need for remote configuration management of the
overall system and this is managed via the FES.

The FES manages:

 The configurations of Fiorano ESB Peers.

 A repository to maintain versions of registered and unregistered Service Components
along with dependent resources and binaries.

 The meta-data information of the Event Processes in XML format.

Presence and Availability Management (PAM): The FES maintains the State information
of all the Peer Servers across the Fiorano Network. This State information is stored in a file-
based data storage.

Event Process State Persistence: The FES persist the State of Event Processes and restores
the State(s) upon restarting the server.

Event Tracking and Monitoring: The FES maintains the monitoring events, logs and State
information of Peer Servers, and Service-Components running across the Fiorano Network.
The FES makes this information available to other tools for business activity monitoring.

Runtime Debugging: The FES allows debugging of event processes at runtime and also
provides the ability to modify the intercepted data at runtime.

Security Controller: Security plays a critical role in a distributed system. There are two parts
to Security: one relating to network and protocol level security and other relating to user-level
security considerations.

 Protocol level security is the inherit feature of the Fiorano Servers (both FES and the
FPS) in that it can be configured to use a secure protocol for communication, including
support for HTTPS and SSL protocols.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 69

 User-level security is important to avoid problems such as a Peer injecting malicious
and corrupt data in to the system. A client when connecting to the Fiorano Network is
required to supply credentials which are then authenticated by the system. In a
Fiorano Network, the Enterprise Server through the underlying Realm service does the
authentication of users and maintains the security policies. This Realms service is
responsible for maintaining all user and group information and for authenticating any
incoming connection. The network administrator can choose between a collection of
Realm services, differing in storage and authentication mechanisms. This security
architecture allows the administrator to set up Access Control Lists (ACLs) for each
possible operation that could be carried out in the Fiorano Network and Control User
actions based on the permissions assigned to them. For example, ACLs for an Event
Process can specify which Users have the privilege to launch an event process on the
network. Similarly, ACLs for a Business components can specify locations where the
Business component can be run on the network. This allows the administrator to
control the privileges available to each Users.

Failover Management: The FES also manages the Fail-Over of the service components in
applications that are running. When the primary FPS on which a service component is running
goes down, the FES redeploys and launches that component instance on a configured backup
node.

High Availability: Fiorano ESB Servers can be configured to run in HA mode to maximize
system availability, thereby eliminate any single point of failure and avoiding data loss.

2.3.2 Launching ESB Server

The FES can be launched from the Windows Start menu or by directly executing a script file.

2.3.2.1 From Fiorano Studio

Click Start Programs Fiorano Fiorano SOA Platform Fiorano Servers Fiorano ESB Server

2.3.2.2 From Script Files

 To start the FES server with the default profile (which is profile1), run or double-click
the script server.bat/.sh –mode fes available under
<fiorano_installation_dir>\esb\server\bin folder.

 To start the FES server with a specific profile other than the default profile, run the
script server.bat/.sh available under <fiorano_installation_dir>\esb\server\bin folder
with the profile option as shown below:

server.bat/.sh –mode fes –profile <profilename>

Example: <profileName>=haprofile1/primary or <profileName>=haprofile1/secondary - This
is to start servers in HA mode.

Note: In UNIX systems, servers, by default, will start in the Background mode. Pass runtime
argument –nobackground to the server startup script to run the server in console mode. If
you do not want to run in the Background mode, then run
%FIORANO_HOME%/launcher/server.sh so that nobackground=“” is changed to
nobackground=“true”.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 70

To install FES as a Windows NT service

Run the command:

install-server.service.bat –mode fes -profile %PROFILE_NAME%

Note: NT services will have to be re-installed if you make changes to any configuration files.
This includes fiorano_vars as well as server.conf.

For more information on How to install/uninstall a Profile as NT Service, refer section How to
install/uninstall a Profile

To remove FES NT service

Run the command:

uninstall-server.service.bat –mode fes -profile %PROFILE_NAME%

To install/uninstall FES as a service on UNIX, refer to readmeWrapperService.txt present
under %INSTALL_DIR%/SOA/esb/server/bin/service directory.

2.3.3 Shutting Down ESB Server

The FES can be stopped from the Fiorano Studio or by directly executing a script file located
under %INSTALL_DIR%/SOA/esb/server/bin directory. Shutting down the Enterprise Server
automatically invokes a shutdown hook in the Enterprise Server’s JVM which cleans up any
resources and connections used by the server’s JVM.

2.3.3.1 From Fiorano Studio

The FES can be stopped from Fiorano Studio only after logging into FES through Fiorano
Studio. The Figure 2.3.2 illustrates the Shutdown menu item location:

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 71

Figure: 2.3.2: Shutting Down FES

2.3.3.2 From Script Files

The Enterprise Server can be shutdown using the shutdown-server script present in
<fiorano_installation_dir>/esb/server/bin folder.

Note the following:

• Shutdown scripts cannot be used to shutdown both primary and secondary servers
running in a shared HA mode simultaneously, and using the RMI connection.

• In case, HA profiles from previous versions are migrated to the current version of the
product, these profiles need to be re-configured to specify the BackupRMIServerPort
property in order to make use of this functionality.

This script can be used to:

• Shutdown a Standalone Enterprise Server.

• Shutdown both the Primary and the Secondary HA servers simultaneously.

The options that can be specified to the script are:

• -user: Name of user trying to shutdown Fiorano Server

• -passwd: Password of user trying to shutdown Fiorano Server

• -restart or –r: Restarts the Fiorano Server

• -ha: Used to shutdown both active and passive servers running in HA.

• -url: URL of active Fiorano Enterprise Server

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 72

• -mode: mode of the server, that is, fes or fps. Defaults to value fps.

• -? or –help: Prints help message

Examples:

For shutting down standalone Enterprise Server:

shutdown-server -url tsp_tcp://localhost:1947 -user admin -passwd passwd

For shutting down both active/passive enterprise servers in HA:

shutdown-server -url tsp_tcp://localhost:1947 -user admin -passwd passwd -ha

The above examples of shutting down the Enterprise Server(s) involve connecting to an Active
Enterprise Server, whose URL is specified using the -url parameter.

The following options can also be specified if a User wants to shutdown the Enterprise Server
using the RMI connection.

• -connectorType: Connection type to server.Pass "RMI" for shutting down servers
using RMI connection.

• -address: IP Address of server

• -rmiPort: rmi port of server

Note:

If the -ha option is given to shutdown both the servers of ha pair, the address and rmiPort
options need to be specified for either the primary or the secondary server. This can be used
when you are not sure which server of the HA pair is active.

Examples:

For shutting down the Standalone Server:

shutdown-server -connectorType RMI -user admin -passwd passwd -address localhost -

rmiPort 2047

For shutting down both active/passive servers in HA:

shutdown-server -connectorType RMI -user admin -passwd passwd -address localhost -

rmiPort 2047 -ha

2.3.4 ESB Server Configuration

FES can be configured either in online mode (that is, while the FES server is running) or offline
mode (when the FES server is not running) using Fiorano Studio.

 Offline mode configuration can be done using the Profile Manager, which can be
accessed from the Fiorano Studio. When a configuration is modified and saved,
changes persist and are reapplied when the server is restarted.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 73

 Online mode configuration can be performed using the JMX explorer, which can be
accessed from the Fiorano Studio. Changes made using JMX are applied on the current
running server and are persisted as well. However, some of the server configurations
(such as server ports, memory settings and others) are applied only after the restart
of the server.

Note: For more information on configuring Fiorano Servers, please see section 2.6 Configuring
Servers and Tools.

2.3.4.1 Server Ports Configuration

FES server communicates with Peer Servers and tools using different ports.

2.3.4.1.1 External Ports

Ports that are opened to facilitate the communication between FES and external tools are
known as external ports or external server ports. The FES checks these ports for any requests
from external tools.

Configuration Steps

Offline Mode

1. Open the FES server profile in Studio (Tools Configure Profile). The FES server profile
can be selected from the following location as shown in the Figure 2.3.3.

Figure 2.3.3: FES Profile Location

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 74

2. Select the FESTransportManager in the Server Explorer tab
FES Fiorano Esb FESTransportManager. In the Properties of
FESTransportManager panel displayed on the right-hand side, change the port
number in the ServerUrl property.

Figure 2.3.4: FES External Port

Note: FES clients (such as the Studio and other tools) should connect to this port after the
FES is started with this saved profile.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 75

3. Save the profile as shown in the Figure 2.3.5.

Figure 2.3.5: Saving Profile

Online Mode

1. Connect to the Enterprise Server’s JMX interface through the Fiorano Studio.

Figure 2.3.6: FES-JMX Server

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 76

2. Select JMX Connection Fiorano Esb Transport FESTransportManager. In
the Properties of config panel on the right-hand side, change the FES URL property
to reflect the new port.

Figure 2.3.7: JMX Explorer

3. The server needs to be restarted after the value is set. A message dialog box appears
with instructions for the properties that require the Server to be restarted.

Figure 2.3.8: Save Dialog Box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 77

4. Click the OK button to save the configurations. These configurations are reflected after
the server is restarted.

Figure 2.3.9: Save Configuration

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 78

2.3.4.1.2 Internal Ports

Ports that are opened to facilitate the communication between FES and FPS servers are known
as internal ports or internal server ports. The FES checks these ports for any requests from
external tools.

Configuration Steps

Offline Mode

1. Open the server profile in Studio (Tools Configure Profile) as explained in section
2.3.4.1.1 External Ports.

2. Select the ConnectionManager in FES Fiorano SocketAdapters port-
1 ConnetionManager. In the Properties of ConnectionManager panel on the right-
hand side, change the Port property.

Figure 2.3.10: FES Internal Port

Note: The Peer Servers should connect to this port after FES is started with this saved profile.

3. Save the profile as explained in section 2.3.4.1.1 External Ports.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 79

Online mode

1. Connect to the Enterprise Server’s JMX interface through Fiorano Studio as shown in
External Ports.

2. Select JMX Connection Fiorano socketAcceptors ConnectionManager
ConnectionManager. In the configuration properties panel on the right-hand side,
change the Port property to the new port.

Figure 2.3.11: JMX Explorer

3. The server needs to be restarted after the value is set. A message dialog box appears
with instructions for the properties that require the Server to be restarted, as
explained in section 2.3.4.1.1 External Ports.

4. Click the OK button to save the configurations. These configurations are reflected after
the server is restarted as explained in section 2.3.4.1.1 External Ports.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 80

2.3.4.1.3 RMI Ports

Ports that are opened to facilitate the communication between FES with JMX clients are known
as RMI Server Port.

Configuration Steps

The RMI ports can be configured in either offline or online mode.

Offline Mode

1. Open the server profile in Studio, navigate to Profile Management > Enterprise Server
and select FES.

2. Select the RMIBasedJMXConnector from FES Fiorano JMX -> Connector. In the
Properties of RMIBasedJMXConnector panel on the right-hand side, change the
RMIServerPort property as required.

The default RMI Ports for FES is 2047.

Defaults:

 FES HA Primary - 2047

 FES HA Secondary - 2048

Figure 2.3.12: FES RMI Port

3. Save the profile as explained in section 2.3.4.1.1 External Ports.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 81

Online Mode

1. Connect to the Enterprise Server’s JMX interface through Fiorano Studio as explained
in section 2.3.4.1.1 External Ports.

2. Select JMX Connection Fiorano jmx connector JMXConnector RMI
RMIBasedJMXConnector. In the Properties of Config panel on the
right- hand side, change the RMIServerPort properties as required.

Figure 2.3.13: JMX Explorer

3. The server needs to be restarted after the value is set. A message dialog box appears
with instructions for the properties that require that the Server be restarted as
explained in section 2.3.4.1.1 External Ports.

4. Click the OK button to save the configurations. These configurations are reflected after
the server is restarted as explained in section 2.3.4.1.1 External Ports.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 82

2.3.4.2 Memory Configurations

Better server performance is possible with proper configuration of JVM parameters,
particularly those related to memory usage. The allocation of memory for the JVM is specified
using -X options when starting the server.

JVM option Meaning Default ESB Settings

-Xmx Maximum heap size. 512MB

-Xms Initial heap size 256MB

-Xss Stack size for each thread. JVM default (120k)

Note: The stack size limits the number of threads that you can run in a given JVM. A large
stack size may result in memory running short as each thread is allocated more memory than
it needs.

Configuration Steps

1. Open the server.conf in %FIORANO_HOME%/esb/server/bin/ and change the values
for –Xms and –Xmx argument under <jvm.arg> tag. If no value for –Xss is specified,
default value will be used.

2. Save the file and restart the server.

2.3.4.3 Java Configurations

Enterprise server requires JRE version 1.5 or above for successful operation. The JAVA_HOME
setting can be configured for the Enterprise Server as follows:

On UNIX:

The Enterprise Server by default uses JAVA_HOME value set for the console. This can be
overridden by specifying JAVA_HOME value in %FIORANO_HOME%/fiorano_vars.sh file.

On Windows:

By default, JAVA_HOME is set to %FIORANO_HOME%/jre1.5.0_16 (shipped with the product)
in %FIORANO_HOME%/fiorano_vars.bat file. To make the server use a different
JAVA_HOME, modify the settings as required.

2.3.5 Setting Up Users and Groups

The Fiorano SOA Platform security policy enables you to administer and manage the Groups
and Users across the entire Fiorano Network. This section describes management of users and
groups by assigning appropriate rights to them on the Fiorano Network.

The Fiorano SOA Platform users and groups can operate from all available nodes in the Fiorano
Network. A User Group is identified by a unique name and contains a list of users who inherit
all rights assigned to that group. Every User is assigned a unique User Name, Password, and a
User Group Membership. Information pertaining to Users and User Groups is utilized during
authentication and determines the resources that a User or a User Group is allowed to access.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 83

2.3.5.1 Managing Users

Fiorano Studio can be used to manage all users in the Fiorano Network. The management
tasks that can be performed are:

 Creating User Accounts

 Deleting User Accounts

 Changing the Password of a User

To view the list of Users, log onto the Enterprise Server, click the Users node in the security
section. A list of Users is displayed as shown in the Figure 2.3.14.

Figure 2.3.14: Users in the Fiorano Network

Note: The present logged in users are shown in bold letters.

2.3.5.2 Creating a New User Account

You can create a new user account by logging onto the Enterprise Server with the
administrator’s privileges.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 84

2.3.5.3 Configuration Steps

1. Login to Enterprise Server through Fiorano Studio.

2. Select security node from the Enterprise Server tree.

3. Right-click on the User and click New User. A dialog box appears with the prompt to
enter the name of the User. Enter the new User Name and click the OK button.

Note: The Password created for the New User, by default, is the same as the User
Name assigned to the User.

Figure 2.3.15: New User creation dialog box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 85

4. To change the password, right-click on the user whose password is to be changed and
a dialog box appears with a prompt for the Current Password and the New Password.
Enter the new password and click the Yes button to complete the process.

Figure 2.3.16: Change User Password

5. To delete a User Account, right-click on the user to be deleted and select Delete
option. A dialog box appears prompting for confirmation. Click the Yes button to
complete the process.

Figure 2.3.17: Confirmation of Deletion of User Account.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 86

2.3.5.4 Managing Groups

The Fiorano SOA Platform by default creates a Group named as EVERYONE. All Users are
automatically included in this Group. When ‘Groups’ is selected from the security section, all
groups are displayed in the right-hand side panel, as shown in the Figure 2.3.18.

Figure 2.3.18: Groups in the Fiorano Network

The information pertaining to each group is organized under the following columns:

 Group Name: This column contains the names of the Groups

 Members: This column contains a list of Users who belong to that particular Group.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 87

2.3.5.5 Creating New Group

Any User with administrative privileges can create a New Group by logging onto the Enterprise
Server.

2.3.5.5.1 Configuration Steps

1. Choose the Enterprise Server under Explorer after logging onto Fiorano Studio.

2. Select the security node from the Enterprise Server tree.

3. Right-click on the Groups and select the Add Groups option. A dialog box appears
with a prompt to enter the Name of the Group. Enter the Group Name and click the
OK button.

Figure 2.3.19: Adding Group

2.3.5.6 Adding a User to a Group

You can add one or more users to a group as follows:

1. Select the Group to which the User is to be added.

2. Right-click on the group name and select its members.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 88

3. Select the User that is to be added to the Group from the pop-up window. Multiple
selections can be made by holding down the CTRL key.

4. Click the OK button.

Figure 2.3.20: User List

2.3.5.7 Deleting a User from a Group

You can delete one or more User from a Group by:

1. Select the Group from which the User is to be deleted.

2. Right-click on the Group Name and select its members.

3. Select the User from the popup window and click the Remove button to remove the
User from the Group.

4. Click the OK button to save the settings.

Figure 2.3.21: User List of a particular group

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 89

2.3.5.8 Deleting a Group

Any user with administrative privileges can delete a Group by logging onto the Enterprise
Server.

2.3.5.8.1 To Delete a Group

1. Choose Enterprise Server under Explorer after logging onto Fiorano Studio

2. Select the security node from the Enterprise Server tree.

3. Select the Group to be deleted from the Groups. Right-click on the Group and select
the Delete option from the pop-up menu.

Note: The deletion of ADMIN, ANONYMOUS, EVERYONE, ADMINISTRATORS, FPS, and
EVERYNODE is not allowed. If you try to delete these accounts, a warning is displayed.

Figure 2.3.22: Menu to delete a Group/s

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 90

2.3.5.9 Setting Access Controls

Users connecting to the Fiorano Network are required to furnish their credentials which are
then authenticated by the network. The authentication is performed by the Enterprise Server
via the underlying Realm Component. This Realm Component is responsible for maintaining all
User and User Group information as well as for authenticating any connection requests. The
network administrator can choose from a collection of Realm Components, differing in storage
and authentication mechanism.

This security architecture allows the administrator to set up ACLs for various resources. For
example, ACLs for an Event Process can specify Users who have the privilege to launch an
Event Process on the network. This allows the administrator to exercise control over the
privileges available to each Users.

The following permissions can be given to an User or a User Group:

1. Permission to create or delete a Principal (User and User Groups)

2. Permission to compose an Event Process

3. Permission to change properties of an Event Process

4. Permission to terminate an Event Process

5. Permission to view running and saved Event Processes

6. Permission to configure an FPS

7. Permission to create, update, and delete a Business Service

8. Permission to create an ACL

9. Permission to create, edit, and delete a Business Service ACL

10. Permission to launch an Event Process

All actions that check for one or more of the above-mentioned permissions generate a security
event. Permissions can be requested by any principal registered on the Fiorano Network. The
Fiorano Studio allows the administrator to set access rights for individual Users.

The security module in the Fiorano Network resides within the Enterprise Server. The security
architecture allows this module to be completely pluggable, which in turn allows the enterprise
administrator to choose a Realm Module from a list of modules provided by the Fiorano SOA
Platform.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 91

2.3.5.10 Assigning Rights

The FSSM (Fiorano Services and Security Manager) tool is used to assign rights to Users and
to User Groups. Rights may be understood as rules associated with the Fiorano Network that
are granted to Users and User Groups. They allow Users and User Groups to perform specific
tasks on the Fiorano Network. The Fiorano SOA Platform has a well-defined security policy to
protect the network against data loss or corruption due to malicious or accidental access. This
policy is implemented by assigning appropriate permissions to Users and User Groups thereby
preventing illegal access to the Fiorano Network.

When the Access Rights Assignment in the left-hand-side panel is selected, a list of all
available permissions is displayed in the right-hand side panel, as shown in the Figure 2.3.23.

Figure 2.3.23: Realms Description

The right panel displays the following Network Rights:

11. Permission to create or delete a principal: This permission allows a User or a User
Group to create, edit, and delete Users and User Groups. Users and/or User Groups
with this permission have the right to change passwords.

12. Permission to compose an Event Process: This permission allows a User and/or a
User Group to create new Event Processes using Fiorano Studio.

13. Permission to change properties of an Event Process: This permission allows a
User and/or a User Group to change the basic and advanced properties of the Event
Process from the Event Process property sheet in Fiorano Studio.

14. Permission to view running and saved Event Processes: This permission allows a
User and/or a User Group to run Event Processes in the Fiorano Event Manager.

15. Permission to terminate an Event Process: This permission allows a User and/or a
User Group to terminate Event Processes from the Fiorano Studio.

16. Permission to configure a FPS: This permission allows a User and/or a User Group
to create, edit, and delete a Fiorano Peer Server using the Fiorano Network
Administration tool.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 92

17. Permission to create, update, and delete a Business Service: This permission
allows a User and/or a User Group to create, update, and delete Business Services
using Fiorano Studio.

18. Permission to create an ACL: This permission allows a User and/or a User Group to
set access control on Fiorano Components.

19. Permission to create, edit and delete Business Service ACL: This permission
allows a User to set access control for Fiorano Components. With this permission, the
User can specify the nodes on which a Fiorano component can run.

20. Permission to launch an Event Process: This permission allows a User and/or a
User Group to launch Event Processes.

2.3.5.10.1 To Assign Rights

FSSM can be used to assign rights to both Users and User Groups. To assign rights to a User,
perform the following steps:

5. In the right-hand side of the panel, right-click on the field corresponding to the
PERMISSION TO KILL AN APPLICATION option.

6. Click the Properties option. The Access Control dialog box is displayed, as shown in
the Figure 2.3.24.

7. Click the Add button, select the User and click the OK button. The user is assigned the
permission to kill an Event Process.

Figure 2.3.24: Access Control Dialog Box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 93

2.3.5.11 Removing Network Rights

FSSM can be used to revoke permissions assigned to Users and User Groups. To do this, the
User or User Group to whom the permission has been assigned should be deleted, as follows:

21. In the right-hand side panel, right-click the field corresponding to the PERMISSION
TO CLEAR USER EVENTS option.

22. Click the Properties option. The Access Control dialog box is displayed.

23. Select the User and click the Remove button to delete the User from the list of Users
assigned the permission to clear User Events.

24. Click the OK button to register the deletion of the user from the list of users assigned
the permission to clear user events.

2.3.6 Clearing ESB Server Database

To clear the FES server database of the default profile (that is profile1), run or double-click the
script clearDBServer.bat/.sh –mode fes available under
<fiorano_installation_dir>\esb\server\bin directory.

To clear the FES server database of a profile other than the default profile, run the script
clearDBServer.bat/.sh available under <fiorano_installation_dir>\esb\server\bin folder with
the profile option as shown below:

clearDBServer.bat/.sh –mode fes –profile <profilename>

The following operations are available when this script is executed.

Select the datastore to clear:

1. File Based Datastore – Clears the local cache of the Enterprise Server including
stored logs.

2. Security Datastore - Clears the FES servers’ security information such as, that is,
the information related to Users, User Groups and ACLs.

3. Admin Datastore – Clears the admin objects, that is, JMS Connection factories,
queue and topic destinations, status of running Event Processes and component
instances..

4. Peer Repository – Clears all the fetched peer server profiles from Enterprise Server
runtimedata.

5. Events Database – Clears the Events Database using the configurations provided in
eventsdb.cfg file present under:
<fiorano_installation_dir>/esb/server/profiles/<profilename>/FES/conf directory.

6. SBW Database – Clears the SBW database using the configurations provided in the
sbwdb.cfg file present under:
<fiorano_installation_dir>/esb/server/profiles/<profilename>/FES/conf directory.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 94

Enterprise Server processes System events, SBW events and Backlog events and
takes appropriate actions. System events and SBW events are queued up to be
inserted into external database while Backlog events are queued up to be handled by
various alert handlers. Before this processing happens, events are temporarily stored
in persistent database that will be created in runtime data of Enterprise Server. After
an event has been processed, it gets deleted from the temporary store. If because of
some reason these events could not be processed, temporary datastore may grow to
occupy a large amount of disk-space. Option 7, 8, and 9 can be used to delete the
temporary persistent datastore of different kind of events.

7. Events Persistent Database – Clears the temporary persistent datastore of system
events.

8. SBW Persistent Database – Clears the temporary persistent datastore of SBW
events.

9. Backlog Persistent Database – Clears the temporary persistent datastore of
backlog events.

10. All – Clears all nine of the above.

This script can be executed in Quiet Mode as follows.

Example usage:

clearDBServer.bat -mode fes -profile profile1 -dbPath <DB Directory path> -q 1,2,4

• -mode - to clear fps or fes runtimedata

• -dbPath - runtime data directory for the profile

• -profile - profile name for which runtimedata is to be cleared

• -q - to run the script in quiet mode.

Note: Provide comma separated option values to this argument. Absence of any argument
will lead to the default to option, option 10, ‘ALL’.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 95

2.4 Fiorano Peer Server

The Fiorano Peer Server acts a container for launching Business components at the network
endpoints of a Fiorano network and manages the life cycle of its components.

2.4.1 Peer Server Functionality

The following list consists of the roles of the Fiorano Peer Server:

25. Acts as the runtime container for the components.

26. Routes the data between various components in a Peer to Peer fashion over JMS
routes.

27. Routes Business component related control and State information to the FES server.

28. Provides store and forward capabilities to handle network failures, thus providing
guaranteed delivery of messages (which flow across from one peer to another). A
Fiorano Peer server has inherent storage mechanisms and forwarding mechanisms
which enable each peer to stores messages corresponding to all the peer servers
which are unavailable at the moment and forward these to Peer Servers as and when
they comes up again. This allows the Event Processes to continue execution even in
the event of a remote machine failure or a network failure.

29. Generating System and User Events

30. Generating Logs

2.4.2 Launching the Peer Server

The FPS can be launched from the Windows Start menu or by directly executing a script file.
When the peer server is launched, the enterprise server must be running on the configured
machine for successful peer server startup. Please refer to section 2.4.4.4 Changing to
different ESB Network for instructions on how to configure the Enterprise Server URL for a
Peer Server. If the Enterprise Server is not reachable by the Peer Server or if it is not running,
the Peer Server keeps waiting until it can reach the Enterprise Server on a specific connection
URL. The Enterprise Server starts successfully when the Peer Server is able to establish a
connection with the Enterprise Server it will start-up successfully.

2.4.2.1 From Fiorano Studio

Click Start Programs Fiorano Fiorano SOA Platform Fiorano Servers Fiorano ESB Peer

2.4.2.2 Using Script Files

31. To start FPS server with the default profile (which is profile1), run the script
server.bat/.sh –mode fps available under <fiorano_installation_dir>\esb\server\bin
folder.

Note: The server by default starts in FPS mode if mode argument is not provided.

32. To start FPS server with a specific profile other than the default profile, run the script
server.bat/.sh available under <fiorano_installation_dir>\esb\server\bin folder with
the profile option as shown below:

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 96

a. server.bat/.sh –mode fps –profile <profilename>

Example: <profileName>=haprofile1/primary or <profileName>=haprofile1/secondary when
servers are to be started in HA mode.

Note: In UNIX systems, servers will by default start in background mode. Pass runtime
argument –nobackground to the server startup script to run the server in console mode. If
the servers are not to be run in background mode, modify the file
%FIORANO_HOME%/launcher/server.sh so that nobackground=“” is changed to
nobackground=”true”.

To install FPS as a Windows NT service, run the command

Note: NT services will have to be re-installed if changes are made to any configuration files.
This includes fiorano_vars as well as server.conf.

install-server.service.bat –mode fps -profile %PROFILE_NAME%

For more information on How to install/uninstall a Profile as NT Service, refer section How to
install/uninstall a Profile

To remove FPS as a Windows NT service, run the command

uninstall-server.service.bat –mode fps -profile %PROFILE_NAME%

To install/uninstall FPS as a service on UNIX, refer to readmeWrapperService.txt present
under %INSTALL_DIR%/SOA/esb/server/bin/service directory.

2.4.3 Shutting Down the Peer Server

The FPS can be stopped from the Fiorano Studio or by directly executing a script file. Shutting
down the Peer Server automatically invokes a shutdown hook in the peer server’s JVM which
cleans up any resources and connections used by the server’s JVM.

2.4.3.1 Using Fiorano Studio

FPS can be stopped only after logging into FPS from the Fiorano Studio. The Figure 2.4.1
shows the Shutdown menu item location:

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 97

Figure 2.4.1: Stopping FPS Server

2.4.3.2 Using Script Files

The Peer Server can be shutdown using the shutdown-server script present in
<fiorano_installation_dir>/esb/server/bin folder.

Note the following:

• Shutdown scripts cannot be used to shutdown both primary and secondary servers
running in shared HA mode simultaneously using a RMI connection.

• In HA profiles from previous versions are migrated to current version of the product,
these profiles need to be re-configured to specify BackupRMIServerPort properties to
make use of this functionality.

This script can be used to:

• Shut down a standalone peer server.

• Shut down both the primary and secondary HA servers simultaneously.

The options that can be specified to in the script are:

• -user: Name of User trying to shutdown Fiorano server

• -passwd: Password of User trying to shutdown Fiorano server

• -restart or –r: Restarts the Fiorano Server

• -ha: Used to shutdown both active and passive servers running in HA.

• -mode: mode of the server, that is, fes or fps. Defaults to value fps.

• -url: URL of the active Fiorano Enterprise Server to which this Peer Server has
connected

• -fpsname: Fiorano ESB Peer name

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 98

• -? or –help: Prints help message

Examples:

For shutting down a standalone Peer Server

• shutdown-server -url tsp_tcp://localhost:1947 -user admin -passwd passwd -fpsname
fps

For shutting down both active/passive Peer Servers in HA

• shutdown-server -url tsp_tcp://localhost:1947 -user admin -passwd passwd -fpsname
hafps -ha

The above examples of shutting down the Peer Server(s) involves connecting to an Active
Enterprise Server, whose url is specified by the -url parameter.

The following options can also be specified if a User wants to shutdown the Peer Server using
a RMI connection. This involves connecting directly to the Peer Server to initiate the shudown.

• -connectorType: Connection type to server. Pass RMI for shutting down servers
using RMI connection.

• -address: IP Address of server

• -rmiPort: RMI port of server

Note:

If the -ha option is given to shutdown both the servers of an ha pair, the address and
rmiPort options can be specified as either the Primary or the Secondary server. This can be
used when not certain of which server in the HA pair is the active one.

Examples:

For shutting down standalone server

• shutdown-server -connectorType RMI -user admin -passwd passwd -address localhost
-rmiPort 2067

For shutting down both active/passive servers in HA

• shutdown-server -connectorType RMI -user admin -passwd passwd -address localhost
-rmiPort 2077 -ha

2.4.4 Peer Server Configuration

FPS can be configured either in online mode (that is, while the FPS server is running) or offline
mode (when the FPS server is not running) using the Fiorano Studio.

Offline mode configuration can be done using the Profile Manager, which can be accessed from
the Fiorano Studio. When a configuration is modified and saved, changes persist and are
applied when the server is restarted.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 99

Online mode configuration can be performed using the JMX explorer, which can be accessed
from the Fiorano Studio. Changes made using JMX are applied onto the server currently
running and persist to be reapplied when restarting. However, some of the server
configurations (such as server ports, memory settings and others) are applied only after the
restart of the server.

Note: For more information on configuring Fiorano Servers, please see section 2.6 Configuring
Servers and Tools.

2.4.4.1 Server Ports Configuration

FPS server communicates with the Enterprise Server using the Server Port and with the JMX
interface through the RMI Port. The Configurations of these ports is described in more detail in
this section.

2.4.4.1.1 Server Ports

Ports opened to facilitate communication between FPS and Enterprise server are known as
Server Ports.

Configuration Steps

Offline Mode

 Open the FPS server profile in Studio (Tools Configure Profile). This FPS server
profile can be selected from the following location as shown in the Figure 2.4.2.

Figure 2.4.2: Profile Selection

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 100

 Select the ConnectionManager in FPS Fiorano SocketAdapters port-
1 ConnectionManager. In the Properties of the ConnectionManager panel
displayed on the right-hand side, change the Port property.

Figure 2.4.3: FPS Server Port

Note: The Peer Server connects to the Enterprise Server through this port after FPS is started
with this profile saved.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 101

 Save the profile as shown in the Figure 2.4.4.

Figure 2.4.4: Save Profile

Online Mode

1. Connect to the Fiorano Peer Server’s JMX interface through Fiorano Studio as shown in
Figure 2.4.5.

Figure 2.4.5: Login into Fiorano Peer Server’s JMX interface

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 102

2. Select JMX Connection Fiorano socketAcceptors ConnectionManager
ConnectionManager. In the configuration properties panel displayed on the right-
hand side, change the Port property to the new port.

Figure 2.4.6: JMX Explorer

3. The server needs to be restarted after the value is set. A message dialog box appears
with instructions for properties that require that the server be restarted, as shown in
Figure 2.4.7.

Figure 2.4.7: Message dialog box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 103

4. Click the OK button to save the configurations. These configurations are applied after
the server is restarted.

Figure 2.4.8: Save Configurations

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 104

2.4.4.1.2 RMI Ports

Ports that are opened to facilitate the communication between FPS with JMX clients are known
as RMI Server Ports.

Configuration Steps

RMI ports can be configured in either offline or online mode.

Offline Mode

1. Open the server profile in Studio (tools configure profile) as explained in section
Server Ports.

2. Select the RMIBasedJMXConnector from FPS Fiorano JMX -> Connector. In the
Properties of RMIBasedJMXConnector panel displayed on the right-hand side,
change the RMIServerPort property.

Figure 2.4.9: FPS RMI Port

3. Save the profile as explained in section 2.4.4.1.1 Server Ports.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 105

Online Mode

1. Connect to the Fiorano Peer Server’s JMX interface through Fiorano Studio as
explained in section 2.4.4.1.1 Server Ports.

2. Select JMX Connection Fiorano jmx connector JMXConnector RMI
RMIBasedJMXConnector. In the Properties of Config panel displayed on the right
hand side, change the RMIServerPort properties.

Figure 2.4.10: JMX Explorer

3. The server needs to be restarted after the value is set. A message dialog box appears
with instruction for properties that require a server restart as explained in section
2.4.4.1.1 Server Ports.

4. Click the OK button to save the configurations. These configurations are reflected after
the server is restarted as explained in section 2.4.4.1.1 Server Ports.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 106

2.4.4.2 Memory Configurations

Better server performance is possible with proper configuration of JVM parameters,
particularly those related to memory usage. The allocation of memory for the JVM is specified
using -X options when starting the server.

JVM option Meaning Default ESB Settings

-Xmx Maximum heap size 512MB

-Xms Initial heap size 256MB

-Xss Stack size for each thread JVM default (120k)

Note: The stack size limits the number of threads that can run on a given JVM; a large stack
size may result in memory running short as each thread is usually allocated more memory
than it needs.

2.4.4.2.1 Configuration Steps

1. Open the server.conf in %FIORANO_HOME%/esb/server/bin/ and change the values
for –Xms and –Xmx argument under <jvm.arg> tag. If no value for –Xss is specified,
the default value will be used.

Note: This parameter is used by both FES and FPS servers. If settings different from
the default settings are to be specified to the FPS, then the files server.conf and
server.sh/.bat need to be copied and renamed them, so that both files have the same
name (for example, serverFPS.conf and serverFPS.sh/.bat). Only then, different
memory setting in server.conf and serverFPS.conf files can be set. Save the file and
restart the server.

2.4.4.3 Java Configurations

Peer server requires JRE version 1.5 or above for successful operation. The JAVA_HOME
setting can be configured for the Enterprise Server as follows:

On UNIX:

The Peer Server by default uses JAVA_HOME value set for the console. This can be overridden
by specifying the JAVA_HOME value in %FIORANO_HOME%/fiorano_vars.sh file.

On Windows:

JAVA_HOME is by default set to %FIORANO_HOME%/jre1.5.0_16 (shipped with the product)
in %FIORANO_HOME%/fiorano_vars.bat file. To make the server use a different
JAVA_HOME, this setting needs to be modified.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 107

2.4.4.4 Changing to different ESB Network

This section provides information on configuring a Peer Server onto a different ESB Network.

Offline Mode

• Open the FPS server profile in Studio (Tools->Configure Profile). This FPS server
profile can be selected from the following location as explained in section 2.4.4.1.1
Server Ports.

• Configure the Enterprise Server properties from: Fiorano->Esb->Peer->Transport-
>EnterpriseBus->EnterpriseServer.

Figure 2.4.11: Configuration of Enterprise Server properties

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 108

The following table provides the details of the transport configuration attributes:

Attribute Name Description Default Value

ServerName Name of the Fiorano Enterprise
Server to connect to

FES

PrimaryURL Primary URL of the FES server http://<FES Primary
IP>:1847

BackupURLs Backup URLs separated by semi-
colons are used when FES at the
primary URL is not available.

http://<FES
Secondary IP>:1848

Username Username to be used to create a
connection with the FES

Anonymous

Password Password to be used while connecting
to the FES

Anonymous

ConnectionFactory TopicConnectionFactory to be used to
create the JMS Connection with the
Enterprise Server

primaryTCF

QueueConnectionFactory QueueConnectionFactory to be used
to create the JMS Connection with
the Enterprise Server

primaryQCF

ConnectionRetryCount Number of times the Peer should try
to connect to the FES if the
connection is not available

1 implies infinite
retries - -1

2.4.5 Adding New Peer Server

To add a new peer to the Fiorano Network, the following steps need to be followed.

1. Open the default FPS profile.

2. To connect to the Enterprise Server on the same machine, the profile name and the
port numbers of the JMS port, RMI port, and Jetty port should be changed from the
default profile port to the ports which are not used by any other servers or processes.

3. To change the profile name, change the Profile Name property as shown in the
Figure 2.4.12.

Note: The profile name is valid if all of its letters satisfy any or all of the following
criteria:

a) A letter

b) A currency symbol (such as '$')

c) A digit

d) A numeric letter (such as a Roman numeral character)

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 109

Figure 2.4.12: Profile Name property

4. To change the JMS port, refer to the Figure 2.4.13 and change the Port property in
Fiorano Socket Adapters port-1 ConnectionManager.

Figure 2.4.13: ConnectionManager

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 110

5. To Change the RMI port, refer to the image 2.4.14 and change the RMIServerPort
property in Fiorano jmx connector RMIBasedJMXConnector.

Figure 2.4.14: Changing RMI port

6. To change the Jetty port, refer the Figure 2.4.15 and change the PortNumber
property in Fiorano Esb Jetty Jetty.

Figure 2.4.15: Changing Jetty port

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 111

7. If the profile is to be connected to the Enterprise Server running on some other
machine, in addition to the above properties the Enterprise Server properties should
be changed in the profile, as shown in the Figure 2.4.16.

Figure 2.4.16: Enterprise server properties

8. After changing all the properties, save the profile with a new profile name. To save the
profile, right-click on the profile and select the Save As option from the pop-up menu.
The Save As dialog box appears with default save location as that of the profile which
is being saved. You can choose to change the profile location to any location inside the
profiles directory, that is, $FIORANO_HOME/esb/server/profiles. It is recommended
that the new profile location must end with a directory named FPS (to indicate that it
is a Peer Server profile). For example, a new profile can be saved as:
$FIORANO_HOME/esb/server/profiles/newProfile/FPS.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 112

Figure 2.4.17: Saving the profile

2.4.6 Clearing Peer Server Database

To clear the Peer Server database of the default profile (that is profile1), run the script
clearDBServer.bat/.sh –mode fps available under
<fiorano_installation_dir>\esb\server\bin folder.

Note: The script by default clears the database of the Peer Server if an argument mode is not
provided.

To clear the Peer Server database of a specific profile other than the default profile, run the
script clearDBServer.bat/.sh available under <fiorano_installation_dir>\esb\server\bin
folder with the profile option as shown below:

clearDBServer.bat/.sh –mode fps –profile <profilename>

The following operations are available when this script is executed.

Select the datastore to clear:

1. File Based Datastore – Clears the local cache of the Enterprise server including logs.

2. Security Datastore - Clears the server’s security information, that is, the information
related to Users, User Groups and ACLs.

3. Admin Datastore – Clears the admin objects, that is, the JMS connection factories
queues and topic destinations.

4. Cached Component Store - Clears all the cached components stored in the Peer
Server‘s runtime storage.

5. All – Clears all four of the above.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 113

This script can be executed in Quiet Mode as follows.

Example usage:

clearDBServer.bat -mode fes -profile profile1 -dbPath <DB Directory path> -q 1,2

• -mode - to clear fps or fes runtimedata

• -dbPath - runtime data directory for the profile

• -profile - profile name for which runtimedata is to be cleared

• -q - to run the script in quiet mode.

Note: Provide the comma separated option values to this argument. Absence of any argument
will to the default option, option 4, ‘ALL’.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 114

2.5 Fiorano Web Console

Fiorano Webcosnole provides a web based monitoring tool for the Fiorano ESB Network. It also
provides support for launching, stopping and restarting an application using a web interface.

2.5.1 Login Page

Fiorano ESB Webconsole can be accessed by starting the Fiorano Enterprise Server (FES)
and then opening http://localhost:1980/ESBDashboard on a web browser. Alternatively, the
user can access the Fiorano Web Container from the link present in the welcome page at
http://localhost:1980. The user can login onto the Fiorano ESB Webconsole by entering user
name and password configured for the FES. The default Username is admin and the
Password is passwd.

Figure 2.5.1: SOA Web Console Login Page

The Fiorano SOA Web Console has six different sections, grouped logically, based on data
presented:

• Events

• Applications

• Server Status

• Document Tracking

• Web Services

• Resource Search

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 115

2.5.1.1 Events

The Events section gives the details of the events generated by both the Fiorano Enterprise
Server (FES) and the Fiorano Peer Server (FPS). In addition, it also shows all the SBW
exceptions that occurred while running various event processes.

Figure 2.5.2: Events tab showing the latest events

The Event tab has three sections:

1. Latest

2. Archives

3. SMTP Alert Registration

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 116

Latest: This gives the list of the latest Events generated by FES and FPS. The visible Events
can be filtered using the Event Type and Event Category options. Refer to Figure 2.5.3

To open Filter Event, perform the following:

1. Click the Events tab form the Navigation Panel and choose Latest option. The list
of latest Events generated by FES and FPS appears.

2. Click the Filter Events button, as shown in Figure 2.5.3. The Set Event Filters dialog
appears box appears (refer Figure 2.5.4).

Figure 2.5.3: Filter Events button

3. Choose the Event Type and Event Category from the drop-down list and click the
Done button. The result appears on the screen.

Figure 2.5.4: Set Events Filters dialog box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 117

Archives: This section lets the User view Archived Events present in the database. The user
has the option to choose Event Type, Event category, date and time range to view the
corresponding Events.

To filter the events, perform the following:

1. Click the Events tab form the Navigation Panel and choose Archives option. The
list of Archives Events appears.

2. Click the Filter Events button, as shown in Figure 2.5.5. The Set Event Filters dialog
box appears (refer Figure 2.5.6).

Figure 2.5.5: Filter Events button

3. Choose Event Type and Event Category from the drop-down list and click the
Search button, as shown in Figure 2.5.6. The result appears on the screen.

Figure 2.5.6: Set Event Filters dialog box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 118

To Delete the Events, perform the following steps:

1. Click the Events tab form the Navigation Panel and choose the Archives option.
The list of archives events appears.

2. Select the relevant Event and click the Delete selected records button.

Figure 2.5.7: Delete selected records button

3. The Event Table Updated dialog box appears confirming the deletion, click the OK
button. Refer to Figure 2.5.8.

Figure 2.5.8: Event Table Updated dialog box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 119

SMTP Alert Registration: No mail server is provided by default. A User can configure the
mail server settings by going to the Server Settings button. This page also provides an
option to specify usernames and passwords in case the mail server requires authentication of
these in order to send e-mails.

To add an Alert Configuration, perform the following:

1. Click the Events tab form the Navigation Panel and choose SMTP Alert
Registration option.

2. Click the Add an Alert Configuration button. The Configure SMTP Alert dialog box
appears, as shown in Figure 2.5.8.

Figure 2.5.9: Add an Alert Configuration button

3. Choose the Event Type and Event Category from the drop-down list and enter the
email ID in Enter email address field and click the Add button, as shown in Figure
2.5.10.

Figure 2.5.10: Configure SMTP Alert dialog box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 120

4. Finally, click the Done button to apply the changes. The list of currently configured
email alerts appears, as shown in Figure 2.5.11.

Figure 2.5.11: Event e-mail registration option

To configure SMTP server settings, perform the following:

1. Click the Events tab form the Navigation Panel and choose the SMTP Alert
Registration option.

2. Click the Configure SMTP Server Settings button. The Configure SMTP Server
Settings dialog box appears, as shown in Figure 2.5.12.

3. Enter the details and click the Save Configurations button to save the configurations
and click the Done button after saving the configurations, as shown in Figure 2.5.12.

Figure 2.5.12: Configure SMTP Server Settings dialog box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 121

2.5.1.2 Applications

This section shows the details of the Event Processes running on the Fiorano Peer Server. The
top view shows the list of Event Processes saved in the Fiorano Server. It also shows the
details like running status, category and the Peer Servers used. By clicking on the link for each
event process, you get the details of the Service Instances running as part of it. This page also
provides capabilities to launch, stop, restart an Event Process or its components, View Output
and Error logs, and Export longs (These features are disabled if the Event Process is in debug
mode). The details for the services are displayed in the bottom view. This includes:

 Service Instance Name – Service components in the event process

 Service GUID – Service GUID of the component

 Version – Version of the component

 Status – Indicates whether the component is running or not

 Running on Peer – Name of the peer server on which the component is launched

 Launch Type – Indicates whether the component is launched as a separate process,
in-memory or manual.

Figure 2.5.13: Applications Tab showing the details of the applications

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 122

Monitor Performance:

The user can monitor the performance of services by enabling the monitor performance in
component CPS. Performance statistics are shown in two views:

 Data View

This view shows performance messages sent by the components in data form. User has
the choice to select the components for which monitoring data should be displayed. Also,
the time-interval for which monitoring data is displayed can be configured.

Figure 2.5.14: Data View tab

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 123

 Graph View

Here the performance of the component is shown in the form of a graph. Note that only
one component can be monitored at a single time in Graph View. Graphs can be monitored
for archived performance data or for the latest data. To show latest performance data,
select live graph option. The maximum number of points plotted on the graph can be
configured by specifying the desired value in the Max Points field. It is recommended
using Firefox 2.0 or Internet Explorer to see the Graph View.

Figure 2.5.15: Graph View

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 124

2.5.1.3 Server Status

Server Status tab shows the details of the available Fiorano Servers. The top view shows the
running status as well as the memory usage. Further details are available on clicking the
server links, which loads the bottom view with the following details:

 System Details – O/S and JVM statistics of the server

 Topics, Queues and Connections – List of JMS topics and queues present in the
server and the connections created by the server

 Out and Error logs – Displays the server logs

Figure 2.5.16: Server Status tab showing System details

Figure 2.5.17: Server Status tab showing topics created by FES

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 125

Figure 2.5.18: Server Status tab showing connections created on FES

2.5.1.4 Document Tracking

This section shows all the tracked documents in Fiorano Event Processes along with all details
of the tracked document.

Figure 2.5.19: Document tracking tab showing tracked documents

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 126

The details of each tracked documents can be seen by clicking the particular document. This
shows the document details such as the component processing it, time stamps, document IDs
and the originating port of the tracked document.

Figure 2.5.20: Details of the tracked document

The tracked document's properties can be seen by clicking on a particular Document ID. This
shows the tracked document message properties, details of attachments, application context,
message body and other general properties.

Figure 2.5.21: Tracked document

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 127

The Dashboard supports searching for tracked documents based on many criteria such as,
Application Name, Peer Server Name, Document Status that is, EXECUTED or EXECUTING,
Service Instance Name, and Port Name. In addition, the documents can be searched based on
their date they were generated.

Figure 2.5.22: Searching tracked documents

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 128

2.5.1.5 Web Services

The Web Services tab shows the details of the event processes deployed as Web Services. The
User can view the status of web service either online or offline and has the option of enabling
or disabling this option. The User can also test web services deployed from the dashboard.

Figure 2.5.23: Web Services – Event process

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 129

Figure 2.5.24: Web Services tab

The details shown for the Event Process deployed as web services are:

 Context Name - Name of the context for the web service deployed

 End Point URL - Effective End Point URL is
http://<peerserverip>:<httpport>/<rootContext>/ContextName

 Status - Shows whether the web service is online or offline

 Show WSDL - Gives the link to show WSDL

 Stub Name - Name of Stub for the deployed Event Process as web service

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 130

2.5.1.6 Resource Search

This section allows the User to search for different resources that have been configured to be
used by Fiorano Event Processes. The search for the resources can be performed based on
three types:

1. Application View

2. Component View

3. Resource View

Figure 2.5.25: Searching configured resources based on application view

Figure 2.5.26: Searching configured resources based on component view

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 131

Figure 2.5.27: Searching configured resources based on resource view

2.5.2 Enabling Fiorano Web Console

The Fiorano Web Console can be enabled in an Online and Offline mode.

To enable Fiorano Web Console in online mode (server running):

1. Login to Peer server via JMX(FPS-JMX)

2. Navigate to Fiorano>etc>Jetty Server>JettyServer>config and set property
EnableStart to yes.

3. Right-click on FPS-JMX and click Save Configurations option.

4. Shut down both Peer and Enterprise servers.

To enable Fiorano Web Console in offline mode (server not running):

1. Open profile in studio, browse to Fiorano>etc>Jetty Server>JettyServer>config and
set property EnableStart to yes.

2. Save profile.

After editing profile (online or offline)

1. Clear peer repository, (using clearDBServer.sh -mode fes –profile <fes_profile_Name>
and then choose option to clear "Peer Repository")

2. Restart the servers.

While starting peer server the port for WMT will be listed as the Dashboard Listening Port.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 132

2.6 Configuring Servers and Tools

This section explains the new scripts introduced in SOA 2007 to manage and configure Fiorano
Servers and Fiorano Tools.

2.6.1 Configuration File

Each script is associated with a specific configuration file (conf) ideally in the same location as
the script file, with the name as that of the script file followed with .conf as the extension. This
configuration file provides various configuration properties of server/tools as shown below:

Config Property/Block Usage

<java.classpath> Specify any additional jar files required to be in classpath in a separate
line at the end of this block.

<java.endorsed.dirs> Specify the jars to be considered other than the default jars in a
separate line at the end of this block.

<java.ext.dirs> Specify the external jar files to be loaded along with the default system
jars, in a separate line as the end of the block.

<java.library.path> Specify the folders containing dll/so files that are to be loaded, in
separate line at the end of the block.

<java.system.props> Specify any additional system properties, in separate a line at the end of
the block.

<jvm.args>

Specify any arguments to JVM like memory settings; debug info, in a
separate line at the end of the block.

Note following points about configuration file:

a) Comments can be written in conf file. A line starting with '#' is treated as comment.
For example, the above sample conf file has some comments highlighted in green
color

b) A .conf file can have empty lines. These empty lines are simply ignored by the
launcher.

c) Environment variables can be used in conf files. (Using environment variables makes
your conf file platform dependent)

d) Wildcards are not supported. That is, you should not write lib/*.jar

2.6.2 Reference Matrix

The following table summarize all the scripts that are changed in SOA 2007 for Windows:

Functionality
Old Script (Before SOA 2007
SP2)

Old Script (From SOA 2007 SP2
to SP4)

New Script (From SOA 2007
SP5 and further releases)

FES Server

Memory settings /fiorano_vars.bat /esb/fes/bin/fes.conf /esb/server/bin/server.conf

External jar files /esb/fes/bin/runContainer.bat /esb/fes/bin/fes.conf /esb/server/bin/server.conf

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 133

Startup /esb/fes/bin/runContainer.bat /esb/fes/bin/fes.bat /esb/server/bin/server.bat -mode fes

Shutdown /esb/fes/bin/shutdownFES.bat /esb/fes/bin/shutdown-fes.bat
/esb/server/bin/shutdown-server.bat -
mode fes

Clear Database /esb/fes/bin/clearDB.bat /esb/fes/bin/clearDB.bat
/esb/server/bin/clearDBServer.bat -
mode fes

Clear FPS repository /esb/fes/bin/clearPeerRepository.bat /esb/fps/bin/clearDB.bat
/esb/server/bin/clearDBServer.bat -
mode fps

FES Server as Windows Service

Install /WinService/bin/InstallFES-NT.bat /esb/fes/bin/service/install-fes.service.bat
/esb/server/bin/service/install-
server.service.bat -mode fes

Uninstall /WinService/bin/UnInstallFES-NT.bat /esb/fes/bin/service/uninstall-fes.service.bat
/esb/server/bin/service/uninstall-
server.service.bat -mode fes

Install a profile

Edit the following line in the file
/WinService/conf/fes.conf
wrapper.app.parameter.3=-fiorano.profile
FES

/esb/fes/bin/service/install-fes.service.bat –
profile <profile_name>

/esb/server/bin/service/install-
server.service.bat -mode fes –profile
<profile_name>

Uninstall a profile
/esb/fes/bin/service/uninstall-fes.service.bat
–profile <profile_name>

/esb/server/bin/service/uninstall-
server.service.bat -mode fes –profile
<profile_name>

Configuration Uses /esb/fes/bin/fes.conf Uses /esb/server/bin/server.conf

Default log location /WinService/logs
$user.dir/EnterpriseServers/$Profile/run/logs
directory.

$user.dir/EnterpriseServers/$Profile/FE
S/run/logs directory.

FPS Server

Memory settings /fiorano_vars.bat /esb/fps/bin/fps.conf /esb/server/bin/server.conf

External jar files /esb/fps/bin/runContainer.bat /esb/fps/bin/fps.conf /esb/server/bin/server.conf

Startup /esb/fps/bin/runContainer.bat /esb/fps/bin/fps.bat /esb/server/bin/server.bat -mode fps

Shutdown FPS using FES /esb/fps/bin/shutdownFPS.bat /esb/fes/bin/shutdown-fps.bat
/esb/server/bin/shutdown-server.bat -
mode fps

Shutdown FPS directly /esb/fps/bin/shutdown.bat /esb/fps/bin/shutdown-fps.bat /esb/server/bin/shutdown-fps.bat

Clear DB /esb/fps/bin/clearDB.bat /esb/fps/bin/clearDB.bat
/esb/server/bin/clearDBServer.bat -
mode fps

FPS Server as Windows Service

Install /WinService/bin/InstallFPS-NT.bat /esb/fps/bin/service/install-fps-service.bat
/esb/server/bin/service/install-
server.service.bat -mode fps

Uninstall /WinService/bin/UnInstallFPS-NT.bat /esb/fps/bin/service/uninstall-fps-service.bat
/esb/server/bin/service/uninstall-
server.service.bat -mode fps

Install a profile

Edit the following line in the file
/WinService/conf/fes.conf
wrapper.app.parameter.3=-fiorano.profile
FPS

/esb/fps/bin/service/install-fps-service.bat –
profile <profile_name>

/esb/server/bin/service/install-
server.service.bat -mode fps –profile
<profile_name>

Uninstall a profile
/esb/fps/bin/service/uninstall-fps-service.bat
–profile <profile_name>

/esb/server/bin/service/uninstall-
server.service.bat -mode fps –profile
<profile_name>

Configuration Uses /esb/fps/bin/fps.conf Uses /esb/server/bin/server.conf

Default log location /WinService/logs
In respective $Profiles_dir/$Profiles/service
directory.

$user.dir/EnterpriseServers/$Profile/FP
S/run/logs directory.

Tools

Fiorano Studio /Studio/bin/Studio.exe /Studio/bin/Studio.exe /Studio/bin/Studio.exe

Fiorano Deployment
Manager /esb/tools/dm/bin/runDM.bat /esb/tools/dm/bin/dm.bat /esb/tools/dm/bin/dm.bat

Fiorano Mapper /esb/tools/mapper/bin/runMapper.bat /esb/tools/mapper/bin/mapper.bat /esb/tools/mapper/bin/mapper.bat

FSSM /esb/tools/fssm/bin/runFSSM.bat /esb/tools/fssm/bin/fssm.bat /esb/tools/fssm/bin/fssm.bat

 Admin tool (NAT) /esb/tools/fnat/bin/runNAT.bat /esb/tools/fnat/bin/fnat.bat /esb/tools/fnat/bin/fnat.bat

License Manager
/framework/tools/LicenseManager/bin/runLM
.bat /framework/tools/LicenseManager/bin/lm.bat

/framework/tools/LicenseManager/bin/l
m.bat

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 134

The following table summarize all the scripts that are changed in SOA 2007 for UNIX:

2.6.3 Configuring the Jetty Server with SSL Support

SSL support for Jetty has been provided. The User can configure the SSL parameters for Jetty,
running with FES/FPS by editing the corresponding profiles.

Figure 2.6.3: Configuring Jetty for FPS

Functionality
Old Script (Before SOA 2007
SP2)

Old Script (From SOA 2007
SP2 to SP4)

New Script (From SOA 2007
SP5 and further releases)

FES Server
Memory settings /fiorano_vars.sh /esb/fes/bin/fes.conf /esb/server/bin/server.conf
External jar files /esb/fes/bin/runContainer.sh /esb/fes/bin/fes.conf /esb/server/bin/server.conf
Startup /esb/fes/bin/runContainer.sh /esb/fes/bin/fes.sh /esb/server/bin/server.sh -mode fes

Shutdown /esb/fes/bin/shutdownFES.sh /esb/fes/bin/shutdown-fes.sh
/esb/server/bin/shutdown-server.sh -mode
fes

Clear Database /esb/fes/bin/clearDB.sh /esb/fes/bin/clearDB.sh mode fes
Clear FPS
repository /esb/fes/bin/clearPeerRepository.sh /esb/fps/bin/clearDB.sh mode fps
FPS Server
Memory settings /fiorano_vars.sh /esb/fps/bin/fps.conf /esb/server/bin/server.conf
External jar files /esb/fps/bin/runContainer.sh /esb/fps/bin/fps.conf /esb/server/bin/server.conf
Startup /esb/fps/bin/runContainer.sh /esb/fps/bin/fps.sh /esb/server/bin/server.sh -mode fps
Shutdown FPS
using FES /esb/fps/bin/shutdownFPS.sh /esb/fes/bin/shutdown-fps.sh

/esb/server/bin/shutdown-server.sh -mode
fps

Shutdown FPS
directly /esb/fps/bin/shutdown.sh /esb/fps/bin/shutdown-fps.sh /esb/server/bin/shutdown-fps.sh
Clear DB /esb/fps/bin/clearDB.sh /esb/fps/bin/clearDB.sh /esb/server/bin/clearDBServer.sh -mode fps

Tools
Fiorano Studio /Studio/bin/Studio.sh /Studio/bin/Studio.sh /Studio/bin/Studio.sh
Fiorano
Deployment
Manager /esb/tools/dm/bin/runDM.sh /esb/tools/dm/bin/dm.sh /esb/tools/dm/bin/dm.sh
Fiorano Mapper /esb/tools/mapper/bin/runMapper.sh /esb/tools/mapper/bin/mapper.sh /esb/tools/mapper/bin/mapper.sh
FSSM /esb/tools/fssm/bin/runFSSM.sh /esb/tools/fssm/bin/fssm.sh /esb/tools/fssm/bin/fssm.sh
 Admin tool (NAT) /esb/tools/fnat/bin/runNAT.sh /esb/tools/fnat/bin/fnat.sh /esb/tools/fnat/bin/fnat.sh
License Manager /framework/tools/LicenseManager/bin/runLM.sh /framework/tools/LicenseManager/bin/lm.sh /framework/tools/LicenseManager/bin/lm.sh

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 135

Figure 2.6.4: Configuring Jetty for FES

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 136

2.6.3.1 SSL Configuration for Jetty

You can configure the SSL parameters for Jetty which is running with FES/FPS by editing the
corresponding profiles. Configuration of SSL support for WSStub and HttpStub are described in
the following section.

2.6.3.1.1 Configuring SSL parameters for Jetty

1. By default the SSL property for Jetty is disabled. To enable this property, open
FES/FPS profile in Studio esb-> Jetty, change EnableSSL to Yes.

2. Specify the values for KeyStoreLocation, KeyStorePassword, KeyPassword, TrustStore,
TrustStorePasswd and save the FES/FPS profile.

Figure 2.6.5: Values for FES/FPS profile

3. Start the servers. Jetty is started with the SSL enabled.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 137

2.6.3.1.2 Configuring SSL support for WSStub and HttpStub

To use WSStub/HttpStub with SSL Support, the Jetty Server running in FPS needs to be
started with SSL support. To check if Jetty is started with SSL support, check the URL
https://<IP Address>:<Port Number>/bcwsgateway. If the URL is working, this means the
Jetty with FPS is started with SSL Support.

SSL properties can be configured for WSStub and HttpStub through CPS.

Figure 2.6.6: Properties of SSL

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 138

Figure 2.6.7: SSL Security dialog box

After configuring the SSL parameters through CPS, launch the Event Process. If WSStub does
not start properly, check the SSL configuration with WSStub CPS.

2.6.3.1.3 Testing Web Service from Dashboard

Web service can be tested from dashboard by clicking the Test button and giving the input
parameters.

2.6.3.1.4 Testing Web Service from WebServiceConsumer

1. After Launching the WSStub, get the WSDL URL (right-click on stub view WSDL.)
Open the CPS of WSConsumer and provide the URL.

Figure 2.6.8: WebServiceConsumer1 - WSDL dialog box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 139

2. Configure WSConsumer for SSL through CPS.

Figure 2.6.9: Configure WSConsumer

3. Enable SSL and provide TrustStore location, TrustStorePassword, KeyStoreLocation
and KeyStorePassword.

Figure 2.6.10: Enabling SSL option

4. The Web Servie configured for SSL from WebServiceConsumer can now be invoked.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 140

2.6.4 Using Basic Authentication with the Jetty Server

2.6.4.1 Configuring Jetty Server

In FPS Jetty Server, basic Authentication needs to be enabled as the Stub component is
running in the FPS server.

1. Before starting the FPS server, start the Studio and open the FPS profile from profile
management.

2. Go to FPS->Fiorano->Esb-Jetty. In the properties of Jetty, set Basic Authentication to
yes and give the fully qualified path of the Realm.properties file.

Figure 2.6.11: Enabling Basic Authentication

3. Save the profile and Close.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 141

2.6.4.2 Enabling Basic Authentication with bcwsgateway

1. Open Web.xml in
%FIORANO_HOME%/esb/server/jetty/fps/webapps/bcwsgateway/WEB- INF

2. Uncomment the security-constraint and login-config tags. Save this and then close.

3. Start the Server and login onto the Studio. Configure WSStub.

2.6.4.3 Enabling Basic Authentication with WSStub

1. Enable Expert Properties in CPS of WSStub, set Enable Authentication to yes and
give one of the user name and password that are present in Realm.properties

Figure 2.6.12: Enabling Expert Properties

2. Launch the flow

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 142

2.6.4.4 Testing Web Service from Dashboard

1. Go to the Web Services tab in Dashboard. Click the Test link to display the Test dialog
box.

2. Enable Set Basic Authentication and enter Username and Password in the WSStub
configuration and click the Test button to perform the test.

Figure 2.6.13: Enabling Set Basic Authentication

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 143

2.6.4.5 Testing Web Service from Web Service Consumer

1. Configure the WSC 4.0. Set Http Basic Authentication to yes and enter the user
name and password in the WSStub. Specify the WSDL URL and click the Next button.

Figure 2.6.14: Enabling Http Basic Authentication

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 144

2. Click on the Call Properties, add the javax.xml.rpc.security.auth.username and
javax.xml.rpc.security.auth.password properties, and then enter the values. Finally
perform the test.

Figure 2.6.15: Add Properties dialog box

2.6.5 Adding Additional Port for Peer to Peer Communication

The Fiorano Peer Server accepts internal connections from other Peer Servers as well as from
Fiorano Adapters at a single port. The Fiorano Peer Server default ports for profile1 and
profile2 are 1867 and 1877 respectively.

An additional socket acceptor can be added for exclusive communication between Fiorano Peer
Servers using Fiorano Studio.

Note: This configuration is done in offline mode

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 145

1. Launch the Fiorano Studio. Open the Profile Manager and open the profile in which
the Socket Acceptor is to be added.

2. In the profile, select the domain to which the new Socket Acceptor is to be added. The
default Fiorano Peer Server profile has socket acceptors at the following node: in the
tree Fiorano -> socketAcceptors. Fiorano recommends adding a new sub-domain (for
instance, port-2) in this domain and also adding a new socket acceptor.

3. Right-click on the desired domain and select Add Components. The Add
Components to Profile dialog box appears. Navigate to Fiorano -> FioranoFw ->
Services and select the component Connection Manager1 from the new dialog box.

Figure 2.6.16: Adding Components

4. Click the OK button to add the selected instance(s) to the profile. The dependencies of
the newly added component(s) have to be resolved. All un-resolved dependencies are
marked with a red error icon.

Note: Besides the connection Manager instance, an instance of the SocketReadHandler gets
included into the profile.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 146

5. To resolve dependencies, open the DependsOn property of the newly added
Connection Manager and the associated SocketReadHandler. For each dependency
marked with a red icon signifying an error, select the desired instance from the drop-
down list shown in the properties field.

Figure 2.6.17: Adding Components

Note: Any existing instance for a dependency can be used to resolve it.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 147

6. Right-click on the profile root node and select Validate to ensure that all
dependencies have been resolved.

7. Navigate to the node Fiorano -> socketAcceptors -> port-2 -> ConnectionManager2.
In the properties window, change the default port number displayed to the desired
value and set the UseForPeerToPeerCommunication property to yes. Additionally,
set the properties Default and FMQServer properties to no.

Figure 2.6.18: Adding Components

8. Save the profile.

Note: If the protocol of the Connection Manager is set to SUN_SSL or HTTPS_SSL, an
additional FMQConfigLoader should be added to the profile. This can be done by performing
the following steps:

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 148

1. Navigate to the node Fiorano -> etc. Right-click on Fiorano node and select Add
Components. The Add Components to Profile dialog box appears.

2. Navigate to Fiorano -> Jms -> Services and select the FMQConfigLoader (1) from
the new dialog box and click OK.

Figure 2.6.19: Adding Components to profile dialog box

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 149

3. Select the newly created FMQConfigLoader node under Fiorano -> etc and change the
SSL Enabled property to yes in the properties pane.

Figure 2.6.20: Enabling SSL

4. Navigate to Fiorano -> Socket Acceptors -> port-2 -> Connection Manager2. Under
the Depends On node, select the dependency MQConfigLoader and select its
instance as the newly added FMQConfigLoader (that is, FMQConfigLoader2 in this
case).

5. Save the Profile.

Figure 2.6.21: Selection of Instance

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 150

2.6.6 Configuring Server Execution Timeout

When running Fiorano event processes with many components, some calls may get timed out.
This means that the communication between the Enterprise Server and Peer Server had taken
more time than the default time. The default value is 2 minutes.

The timeout value can be configured from FES profiles. Open the FES profile from Studio.
Navigate to FES->Fiorano->ESB->Server->FESServer.

Edit the ServerCallExecutionTimeout property. Specify the value in milliseconds. If the
property value is 0, the timeout is infinite.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 151

2.6.7 SNMP Configuration

The Fiorano network can be monitored through SNMP Managers. The Fiorano Enterprise
Server has an SNMP Agent that handles MIB requests and sends traps carrying status
information about all the Peer Servers, Event Processes, and Business Components running
within a Fiorano network.

The MIB file, fiorano_mib.txt, that an SNMP Manager needs for monitoring a Fiorano network
is available in $FIORANO_HOME\ esb\server\profiles\<profile_name>\FES\conf. This file
contains the Fiorano SOA Platform MIB tree required for monitoring Peer Servers, Event
Processes, and Business Components.

Figure 2.6.22: Fiorano SOA Platform MIB tree

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 152

2.6.7.1 Fiorano SOA 9 Platform MIB

As discussed in the previous section, MIB declares the information the agent can provide. The
Fiorano SOA Platform MIB gives an idea about the information that can be extracted from the
Fiorano SOA Platform Agent. The present implementation is SNMPv1 compliant. The Fiorano
SOA Platform MIB is the first sub-tree in the Fiorano sub-tree. The structure of the MIB is
shown in the Figure 2.6.22.

2.6.7.2 Fiorano SOA 9 Platform Agent

The Fiorano SOA Platform Agent is an implementation that provides the values for the objects
defined in the MIB above. It maintains its own database of values, which is updated when
Fiorano SOA Platform performs events like launch or the shutdown of a FPS occurs. The Agent
is programmed to respond to SNMP queries from the manager. Currently the data is in read-
only form for the manager and setting values by the SET operation is not permitted.
Additionally, the Agent can be configured to send trap messages to the manager on
occurrence of alerts and/or events.

2.6.7.3 Getting the information

In order to utilize the SNMP aware Fiorano SOA Platform system, all you need to do is
configure an SNMP manager (popular ones include HP OpenView and IBM Tivoli NetView) of
your choice by loading the Fiorano MIB into it. The manager can now be used to view the
data. The agent provides information via five tables-

1. The FPS table (OID = 1.3.6.1.4.1.7163.1.1.2)

This table provides the data about the Fiorano Peer Servers configured with the
Enterprise Server. It shows the following details:

a. fpsname: This is the unique name of the Fiorano ESB Peer as configured in the
Fiorano Network.

b. fpsStatus: This field shows the last event received for this peer server.

c. fpsEventTime: This represents the time at which the last event occurred.

2. The Applications table (OID = 1.3.6.1.4.1.7163.1.2.2)

This following show the data for the Event Processes that are currently or those that
were running on the network. It provides the following information:

a. appInstanceName: The name of the Event Process instance.

b. appStatus: The status of the Event Process is the last event that was received
with respect to the concerned Event Process.

c. appEventTime: The time at which the last event occurred.

3. The services table (OID = 1.3.6.1.4.1.7163.1.3.2)

This table gives the information regarding the Business Components that are/were
running on the Peer Servers that the managed Enterprise Server is connected to. The
fields available are the following:

a. serviceGUID: This is a unique string that identifies a Business Component
available on a Fiorano ESB Server.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 153

b. serviceInstanceName: Since many instances on the Business Component may
be running, a ComponentInstanceName is used to identify the particular
instance of the concerned Business Component.

c. c. serviceAppInstanceName: This identifies the name of the Event Process as a
part of which this particular Business Component is/was running

d. serviceStatus: The status of the Business Component that was last received by
the Enterprise Server.

e. serviceEventTime: The time at which the last event occurred.

4. The SBW events table (OID = 1.3.6.1.4.1.7163.1.4.2)

This table gives the information regarding ON_EXCEPTION events of SBW tracked
messages. The fields available are the following:

a. sbwEventCategory: The event category is a Warning as only ON_EXCEPTION
events are tracked.

b. sbwEventDesc: This gives the details of the particular port of service on which
the event is tracked as well as the Application Instance to which the service
belongs to.

c. sbwEventTime : The time at which the last event occurred

d. sbwEventErrorMessage: This gives details such as error code and error
message.

5. The Server Events(1.3.6.1.4.1.7163.1.5.2)

This table gives the information regarding the status of the gateway server that is
configured to run the Fiorano servers in HA mode. The event will be generated only
when the server is running in HAMode.

a. serverEventaddr: The gateway server machine address.

b. serverEventStatus: This gives the details whether gateway server is running or
not.

c. serverEventTime: Time at which the last event occurred

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 154

2.6.7.4 Trap Messages

Fiorano SOA Platform can be configured to send trap messages on occurrence of alerts and
events, if so desired. This information can be sent to a preconfigured manager address or
broadcast on the network for all managers listening, so as to enable them to pick up this
message. Trap messages can provide valuable and instant information about faults and
failures.

The following Fiorano SOA Platform specific trap types are presently configured on occurrence
of events.

Table 2-11 Fiorano SOA Platform -specific trap types

The above trap numbers can be configured as enterprise specific traps in the manager for
appropriate action to be taken as when they are raised.

2.6.7.5 Configuring the SNMP parameters for the Fiorano ESB Server

This section deals with enabling and customizing the Fiorano SOA Platform agent. This can be
done easily through the Profile Manager in Studio. Go to the profile intended to be changed-
>Fiorano->esb->Snmp

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 155

1. Enabling SNMP

This can be done by adding the line ENABLE_SNMP=yes. The default value is false.

2. Setting the SNMP community

This is done by setting the SNMP.COMMUNITY variable.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 156

For example, SNMP.COMMUNITY=tifosi. The default value is public.

3. SNMP Agent Port

The port the SNMP agent will listen on. The default SNMP port number is 1161

4. SNMP manager URL

This URL specifies hostname and event port to which the SNMP traps are sent. By
default all SNMP managers listen for traps on event port 162. The default URL is
http://localhost:162.

For instance, if you need to send traps to a machine named network_manager on
event port 162, you can set it as follows:

SNMP.MANAGER_ADDRESS=http://network_manager:162.

5. Enable sending traps on occurrence of alerts

This tells the FES to send an SNMP trap message to the configured manager in case of
alerts being raised. The default is disabled. To enable it, set the “SnmpSendAlertTrap”
value to yes

6. Enable sending traps on occurrence of events

This tells the FES to send an SNMP trap message to the configured manager whenever
an event is received. The default is disabled. To enable it, set the
“SnmpSendEventTrap” value to yes.

7. The system contact

This variable should be set to the name of the individual responsible for maintaining
the managed network. The default is support@fiorano.com. In order to set it, set the
SNMPSystenContact value

8. The system location

This is the physical location of the system. The default value is set to Unknown.

Example: SnmpSystemLocation: Fourth Floor, Room No. 123

9. Trap Level

This is used to set the Trap Levels for sending the traps to the SNMP Manager.

Quite : 0 (00000)
FioranoPeerServer : 1 (00001)
Gatewayserver : 2 (00010)
Application : 4 (00100)
Service : 8 (01000)
SBW : 16 (10000)

Set the trap level to 0 for No traps and to 31 for all types of traps to be sent to the
SNMP manager.

For any combination of these traps, a value which sets the bits at those positions has
to be provided.
Example: For receiving both Application and Service level traps, the trap level will be
12 (01100)

mailto:support@fiorano.com

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 157

2.6.8 Setting the Offline Server Log Levels

The path of the log files and the log levels of the server are set in the profile of the server.
These properties can be located in the File named Configs.xml located under the conf
directory of each profile, that is: $Fiorano_Home/esb/server/profiles/<profileName>/<Server
mode>/conf where server mode can be either FES or FPS.

Examples:

• $Fiorano_Home/esb/server/profiles/profile1/FES/conf/Configs.xml

• $Fiorano_Home/esb/server/profiles/haprofile1/primary/FES/conf/Configs.xml

• $Fiorano_Home/esb/server/profiles/profile2/FPS/conf/Configs.xml

The various log levels of the Server are:

• Fatal – 1

• Error – 2

• Warning -3

• Info -4

• Debug -5

• Trace -6

The following figure illustrates a section in Configs.xml containing the Logger node.

There are two Logger Nodes present in the configs.xml. Each Logger has two appenders –
one Out Appender and one Error Appender. These appenders are file based Appenders.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 158

The log level can be changed by changing the LogLevel attribute. The default log level of the
logger having the objectName - Fiorano.Esb is 4 and the default log level of the logger having
the objectName - Fiorano is 3. The default names of the log files to which appenders logs data
to are: esbout.log, esberr.log, mqout.log, and mqerr.log.

The default location of these files is $Fiorano_Home/runtimedata/<Soa
ServerType>/<profileName>/run/logs where the SOA Server Type can either be Enterprise
Servers or Peer Servers.

Note: If the Server is running in a shared HA profile, the logs directory gets created in the
path of the directory specified as the -dbPath parameter while running the script server
present in $Fiorano_home/esb/server/bin

Example:

Server.bat/sh –profile haprofile_shared/primary –dbPath /home/Fiorano/db

Here the logs directory gets created in the location /home/Fiorano/db

If the absolute path is not specified, the log files are created in the location /home/Fiorano/db.
Providing an absolute path to the FileName attribute such as /home/Fiorano/esbout.log,
results in log being created within the path specified.

The logger having the name Fiorano.Esb is used by the Fiorano SOA server and the logger
having the name ‘Fiorano’ is used by the embedded FioranoMQ present in a Fiorano SOA
server, that is, if you are running the Fiorano Enterprise Server all logs of the Enterprise
server are diverted to the files esbout.log and esberr.log and MQ related data is logged to
mqout.log and mqerr.log.

Note: Fiorano SOA server refers to the Fiorano Enterprise Server or the Fiorano Peer Server.

Note: These changes have to be made offline.

2.6.9 Changing the Running Server Log Levels

Changing the running server log levels can be done by logging into the server via JMX. Log
into JMX from Fiorano Studio and Navigate to JMX Connection -> Fiorano->Loggers->Logger.

The following figure illustrates the JMX Tree of the Fiorano Enterprise Server once a user has
logged into JMX.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 159

Expand the Logger node which shows multiple logger nodes.

The following figure illustrates the expanded view of the Loggers under the Logger Node
shown above.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 160

Select the Fiorano Logger, expand it and click on the config Node. Change the Logger log
level in the properties window.

The following figure illustrates the Fiorano Logger config node and its properties in the
Properties of config pane.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 161

This changes the log level for the Fiorano Logger. Perform the same steps for the Fiorano.Esb
Logger too.

Once this is done, right-click on the Server-JMX node and click on Save Configurations
option from the pop-up menu. This saves the changed configuration for the logger.

The following figure illustrates the Save Configurations option for FES-JMX.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 162

2.7 Fiorano Enterprise Repository

The Fiorano Enterprise Repository acts as an Enterprise-wide registry and repository for a
Fiorano SOA Deployment. The repository is maintained by default in a File based data store.
The FER (Fiorano Enterprise Repository) resides within the Fiorano Enterprise Server and
manages the following:

• Event Process

• Pre-built Components and user defined components.

• Peer Configurations

• Principals and Access Control Lists

• Runtime State

• State Based Workflow Documents

• Events

• Alerts

• Policies

2.7.1 Event Process Repository

The Event Process Repository manages all the pre-built Event Processes and composed Event
Processes. This is a layered repository over a System Store and User Store. The System Store
stores the default set of Event Processes which are shipped along with the product and the
User Store stores all the Event Processes which are subsequently composed by users. The
location of the System and User Event Process repository are:

• System Repository: %FIORANO_INSTALL_DIR%\esb\server\repository\applications

• User Repository: %FIORANO_HOME%\runtimedata\repository\applications

The system repository is read-only and the entire user defined Event Processes are stored in
the user repository. If you wish to move user-created Event Processes from one installation to
another compatible installation, the application folder can be copied from one location to
another. If format-compatibility does not exist between the versions, then the User has to
export all the User Defined Applications in order to import them into the new installation. The
Application Repository can be copied and backed up at anytime.

The Structure of the File Based Store for an Event Process is explained briefly below. An Event
Process is arranged into Files and Directories.

• EventProcess.xml – Main index file which stores the details of the components. This
file is linked to other files that contain configurations and schemas used for
communication as well as for the layout of the workflow diagram.

• Config – Stores all the component configurations used in the Event Process.

• Schemas – Contains the schemas referred by the components used to specify the
format of the expected input / output messages.

• Env – Deployment and environment properties.

An Event Process must be treated as a single unit/entity and has to be copied as such.
Copying partial data from folder will corrupt the Event Process data.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 163

2.7.2 Component Repository

Components or Services in Fiorano SOA are business functions, each with a set of
configurations, which execute a single unit of work. Components can be developed and
registered with the Fiorano Component Repository. A Registered component can be re-used
any number of times in an Orchestrated event process. Supports for versioning of components
are built into the repository.

The Component repository manages all pre-built components and the custom-created
components. This repository is a layered over the system repository and the user repository.
The System repository is a read-only repository that stores all the prebuilt components, while
the user repository stores all user-defined custom components. The locations of the two
repositories are:

• System Repository:
%FIORANO_INSTALL_DIR%\esb\server\repository\components

• User Repository: %FIORANO_HOME%\runtimedata\repository\components

A Component repository can be backed up at runtime and can be version controlled. This
repository can be retrieved and replaced at any time, but the changes will not be affected
until:

1. The application which uses any of the changed/replaced components is stopped.

2. The componentcache property found in the properties panel of the event process is
disabled and

3. A Connectivity and Resource Check (CRC) is done for the Event Process.

Each peer server has its own local cached copy of the component and the above steps are
necessary for the Peer Server to update the component from the Enterprise Repository.

Migrating the component repository between compatible Fiorano versions involves copying the
components directory to the corresponding location in the new installation. The System
repository should not be copied as it is read-only and there can be a newer version of prebuilt
components in the new installation. Please refer to the SOA installer Release Notes for the
component compatibility matrix between different versions. For migrating custom components
between non-compatible versions, each custom component has to be explicitly exported and
imported into the new installation.

The Component repository is organized in files and libraries. Every component is represented
by a directory with its GUID as the directory name and each directory has a sub-directory
within it which stores the version of the component. Every component has the libraries
required for that particular component, together with a Service Descriptor. A Service
Descriptor describes the structure of the component and its input ports and output ports.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 164

2.7.3 Peer Repository

The Fiorano Enterprise repository also manages the configurations of all Peer Servers on the
Fiorano network. Each Enterprise Server has its own Peer repository where it tracks the
configurations of all Peers connected to it. When a Peer Server connects with the Fiorano
Enterprise Server, the configurations are referred to in the Peer repository of the Enterprise
Server to which the Peer is connected and the Peer fetches the configuration from the
corresponding repository. If the Peer registers with the Enterprise server for the first time, the
Peer configuration is pushed into the Peer Repository of that particular Enterprise Server.

Peer HA Profiles have a special property which inhibits this behavior of fetching the
configuration from the Enterprise repository. Since two different HA Profiles connect with the
same name, the configurations cannot be fetched and loaded in this case. This special
property is internal to Fiorano and is not exposed to the user. When one of the default HA
Profiles is copied to create a new profile, this special property is carry forwarded. This property
cannot and should not be set in a standalone profile.

The Peer repository is a transient repository built dynamically as the peers get registered, and
hence any migration effort should not involve copying this repository. Additionally, this
repository should not be backed up and restored. It is recommended that whenever a Peer
profile is changed, the profile should be cleared form this repository for the change to take
effect otherwise the configuration present in the Peer repository gets pushed to the Peer
Server and the Peer Server loses the changes made to its local profile.

The peer repository can be located at:
%FIORANO_HOME%\runtimedata\repository\EnterpriseServers\{FES_profile_name}\FES\Peer
s\.

Each peer profile is a directory with the name of the Peer and with a set of definition and
configuration files inside its folder.

2.7.4 Security Store

The Fiorano Enterprise repository manages the Users, Groups and Access Control lists for each
principal. This is a File Based Store and the format is internal to Fiorano and it is not visible to
the end user. The Security Store can be found at:
%FIORANO_HOME%\runtimedata\EnterpriseServers\{FES_profile_name}\FES\run\SDB.
Fiorano has a centralized user and permissions group store, any changes to this user and
permission group store are propagated to all connected Peer Servers, whose local security
stores are then updated. This store contains information about the users, groups and the
access control list for each permission.

The security store can be backed up at runtime; however, restoring the store requires the
Enterprise to be stopped. The security store can be migrated between compatible versions of
Fiorano. For non-compatible versions of Fiorano; all of the users, groups and access control
lists need to be recreated.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 165

2.7.5 Runtime Store

The Fiorano Enterprise Server stores the current state of an Event Process and other Metadata
such as the system level destinations created within the admin runtime store. When an Event
Process is started, the state of the Event Process is stored in this admin store and is restored
whenever the Fiorano Enterprise Server is started. State of the Event Process can either be
RUNNING or NOT_RUNNING and this State needs to be persisted in order to restore the state
of Event Processes on Server restarts. When servers are restarted, the Enterprise Server
refers this repository and automatically starts those Event Processes that were running the
last time the servers were able to persist in the state of the Event Process. There is no
guarantee that the state will be the very same state as when the servers were brought down
or crashed since it may have persisted in the state in which it may have crashed. The Fiorano
Enterprise Server automatically caches the state of the Event Process when there is a change
to it.

The term state here refers to key information relating to the deployment of an Event Process
and not the actual runtime data flowing between components participating the Event Process.
The local naming and directory module binds the objects to a name in this runtime store. This
is a single file located at:

%FIORANO_HOME%\runtimedata\EnterpriseServers\{FES_profile_name}\FES\run\admin.dat

If the state of all Event Processes needs to be cleared, then the admin.dat can be deleted.
This is a transient data structure which should not be backed up and restored. This data is
stored in an internal format and is not visible to the end user.

If the Enterprise Server is running in High Availability mode, its state together with that of it’s
backup/secondary server, is maintained in:

%FIORANO_HOME%\runtimedata\ EnterpriseServers\{HA_PROFILE_NAME}\{PROFILE_TYPE}
\FES\run\haStatus.dat

This is a transient data structure used to maintain the current state of an HA server as well as
it’s previous state. The file format is internal and is not readable; as such, this data file should
not be backed up or migrated to a different installation. This data store is common to all
servers running in High Availability mode. All Peer Servers running in HA mode have a similar
data store with identical semantics.

The runtime data store that stores the pending messages and the destinations which are
responsible for the actual Peer-to-Peer message traffic between different components are
present in each Peer Server in the following location:

%FIORANO_HOME%\runtimedata\PeerServers\{PROFILE_NAME}\FPS\run

This transient message store can be backed up and migrated if there are no changes in the
Event Processes or the components. The pending messages will be processed the next time
the servers are up after migration.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 166

2.7.6 State Based Workflow Repository

The State Based Workflow (SWB) or Document tracking creates Document events that are
raised in the Peer Servers and forwarded to the Enterprise Server. The Enterprise Server is
responsible for storing the Documents for auditing and tracking purposes. For more details,
refer to section 5.3.8.1 Configuring Document Tracking.

SBW documents are pushed into a temporary persistent cache from the Peer Servers, from
where they are picked up by the Enterprise Server and inserted into the configured SBW
Database. By default, this database is configured as the internal H2 database and stores the
record in its proprietary format in the file system.

Persistent cache:

Persistent cache is a transient data store into which tracked documents are written
temporarily before they are moved to the configured external database for storage. This cache
can be found at:

%FIORANO_HOME%\runtimedata\EnterpriseServers\{FES_Profile_Name}\FES\run\db\Persist
antDB\PQ.Tifosi_Enterprise_Server_SBW_Events

This cache should not be cleared manually; the size of this cachecan build up when the
configured Document tracking store is not available. As such, the SBW configured database
cannot be down for an extended period of time. If it is down for an extended period of time,
the document tracking configurations have to be changed to point to a different external
database or else the cleardb script will be used to clear the persistent cache of the SBW
Documents. The Persistent cache is a transient data store and the data is stored in an internal
record format which is not visible to the end user and should not be migrated.

Document Tracking H2 Database
%FIORANO_HOME%\runtimedata\EnterpriseServers\{FES_Profile_Name}\FES\doctracking_db

This is the default SBW data store shipped with the Fiorano SOA Platform. The database is an
H2 data store, which should not typically be used in a production setting. In Production, an
external database should be configured to store and retrieve the tracked documents and
periodical cleaning of the tracked documents should be scheduled and executed with the help
of Fiorano scripts. The database can be archived for auditing purposes and can be backed up
regularly.

For more information on the structure of SBW database and for instructions on how to
configure a different external database to be used for SBW tracking, please refer to section
5.3.8 Document Tracking.

2.7.6.1 Disabling SBW Tracking

To disable SBW Tracking globally, perform the following steps:

1. Login to FES-JMX and locate Fiorano->Esb->Sbw->SBWManager->SBWManager-
>config.

2. Set the property named 'EnableDocTracking' to 'no'.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 167

2.7.7 Event Repository

The Fiorano SOA platform raises Events for all meaningful operations that occur in the system.
These System Events are collected on the Enterprise Server and the state of each artifact
(Event processes, components, server status etc) is determined by the sequence of such
events. All captured System Events are inserted into a configured database. If the component
is configured to raise the monitoring events on the various performance metrics, then these
events are also stored in the Event repository. The default database for the Event repository is
the H2 database shipped by default along with the Fiorano SOA Platform.

2.7.8 Custom Event Listener

Custom applications can be written to listen to the System Events and SBW Events. For more
information, see section 2.8 Event Tracking.

Refer to RTL Java documentation of com.fiorano.esb.fes.rtl.events.FioranoEventsManager for
more details on registering with the Enterprise Server for listening to System and User events.

2.7.9 Alert Repository

The Fiorano Enterprise Repository manages all Alert configurations. The Alert configurations
are looked up when a notification is being executed. This is a File Based Repository located at:

%FIORANO_HOME%\runtimedata\repository\Notifications

Each alert is represented by a single XML file listed in the above directory. The name of the file
is the unique identifier of the Alert. The structure of the document varies depending upon the
transport over which the notification is configured. Fiorano does not recommend changing
values directly in the XML or any interaction with the OS in a way that affects the file system.
In particular, an “Antivirus” or any other program that locks files or hinders the creation and
deletion of files should not be run over this repository (or any of the Fiorano repositories).

The Alert repository can be backed up and versioned in any source control and restored at
anytime during the Fiorano Server Execution. The Updated notification from the Repository will
be picked up automatically at the next execution of the notification. This repository can also be
migrated from one version to another through copying the file system provided the
repositories are claimed interoperable in the release notes of newer versions of Fiorano. Please
check the release notes for the interoperability matrix on this repository.

The Alerts are queued up as jobs which are then picked up by the Job Manager and executed
serially. There is no guarantee that the alert will be executed within a specific period of time.
If the notification job crashes in the middle of the execution the data will be lost and will not
be re-executed when the server starts up. However, the pending list of notifications will
continue to be executed.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 168

2.7.10 Policy Repository

Fiorano governance solutions use a Policy-Based approach. Policies can be created for a
condition and on achieving the condition a notification over a transport is executed. The
Fiorano Enterprise Server manages the policies in a default File-Based repository. This Policy
Repository is internally dependent on the Alert Repository for fetching the notification
information which it then executes.

%FIORANO_HOME%\runtimedata\repository\Policies

Backlog policies are one type of policy that register for a particular count of the pending
requests at an execution port of a service and execute notifications based on the count. The
backlog policies are stored in the following location:

%FIORANO_HOME%\runtimedata\repository\Policies\Backlog

For each type of policy, a directory is created inside the Policy repository. Each backlog policy
is stored in an XML file whose name matches the name of the policy ID. Each type of policy
has a specific XML structure that includes the condition details and the alert lists to be
executed when the condition is met.

The Policy repository can be backed up and versioned in any source control and can be
restored at any time when the Fiorano server is not running. The Updated policies from the
Repository will be picked up automatically from the web console upon a refresh. This
repository can also be migrated from one version to another through copying the file system
provided the policy structures are claimed interoperable in the release notes of the newer
version of Fiorano. Please check the release notes for the interoperability matrix on this
repository.

A Policy can be either in an ACTIVE or an INACTIVE state. The current state of the policy
persists along with the policy. Once a policy is applied, a restart of the servers automatically
re-applies the policy and the Peer Servers get notified about these policies. Backing up and
restoring the policy repository will also restore the state of the policy at the time it was backed
up.

2.7.9 Changes in Repository Location

A Layered repository approach is implemented after version SOA 2007 SP1. This has brought
the following changes in the location of the repository:

Data Location (Till SOA 2007
SP1)

Old Script (From SOA
2007 SP2 to SP4)

Old Script (From SOA
2007 SP5 and
further release)

ReadOnly
Repository

fiorano.home/esb/fes/repository fiorano.home/esb/fes/repository fiorano.home/esb/server/repos
itory

Run
Repository

NA user.dir/repository user.dir/repository

Default
Repository
(HA
Secondary)

fiorano.home/esb/fes/repository_b
ackup

fiorano.home/esb/fes/repository fiorano.home/esb/server/repos
itory

Runtime
Repository
(HA

NA user.dir/repository_backup user.dir/repository_backup

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 169

Secondary)
Peer
Repository

fiorano.home/esb/fes/repository/p
eers

user.dir/EnterpriseServers/<profil
ename>/peers

user.dir/EnterpriseServers/<pr
ofilename>/FES/peers

run
folder(FES)

fiorano.home/esb/fes/repository/ru
n

user.dir/EnterpriseServers/<profil
ename>/run

user.dir/EnterpriseServers/<pr
ofilename>/FES/run

run
folder(FPS)

fiorano.home/esb/fps/repository/ru
n

user.dir/PeerServers/<profilenam
e>/run

user.dir/PeerServers/<profilen
ame>/FPS/run

runtimeco
mponents.
dat (FES)

fiorano.home/esb/fes/<profilenam
e>/conf/runtimecomponents.dat

user.dir/EnterpriseServers/<profil
ename>/run/
runtimecomponents.dat

user.dir/EnterpriseServers/<pr
ofilename>/FES/run/
runtimecomponents.dat

runtimeco
mponents.
dat (FPS)

fiorano.home/esb/fps/<profilenam
e>/conf/runtimecomponents.dat

user.dir/PeerServers/<profilenam
e>/run/ runtimecomponents.dat

user.dir/EnterpriseServers/<pr
ofilename>/FPS/run/
runtimecomponents.dat

Events db fiorano.home/esb/fes/bin/derbyDB user.dir/EnterpriseServers/<profil
ename>/events_db

user.dir/EnterpriseServers/<pr
ofilename>/FES/events_db

Doctrackin
g (SBW)
db

fiorano.home/esb/fes/bin/derbyDB user.dir/EnterpriseServers/<profil
ename>/doctracking_db

user.dir/EnterpriseServers/<pr
ofilename>/FES/ doctracking
_db

Derby.log fiorano.home/esb/fes/bin/derbyDB user.dir/EnterpriseServers/<profil
ename>/run/logs/derby.log

user.dir/EnterpriseServers/<pr
ofilename>/FES//run/logs/derb
y.log

Container.l
og

Container.log user.dir/EnterpriseServers/<profil
ename>/run/logs/Container.log

user.dir/EnterpriseServers/<pr
ofilename>/FES//run/logs/Cont
ainer.log

2.8 Events Tracking

Fiorano SOA platform raises an event for any meaningful event that occurs in the system.
These System events are collected in the Enterprise Server and are processed and the state of
the artifacts (Event processes, components, server status, and so on) is determined by the
sequence of such Events. If the component is configured to raise the monitoring events on the
various performance metrics, then these events are also stored in the event repository. The
default database is configured as H2 and the database is File-Based.

2.8.1 Configuring Event Tracking

The Enterprise Server is by default configured to insert all System events into the default H2
Events database (A different events database can be configured for Event Tracking, see next
section). If at any point the user decides to switch off event tracking, they can do so by
opening the profile and navigating to Fiorano->Esb->Events->FESEventsManager (as shown in
figure 2.8.1) and changing the property named EnableSystemEventTracking to false. This
value can be changed at runtime by logging into FES-JMX.

Another property named ListenForUserEvents in the same property panel decides whether the
Enterprise Server listens to the monitoring events published by component instances. This
property is by default set to false. If monitoring is enabled for component instances (see
section 9.5 Creating Mappings), this property needs to be changed to true so that these user
events are recorded.

Note: This property cannot be changed at runtime. Changing this property via the FES-JMX
connection would require a server restart for the change to take effect. If this property is set
to true, the property EnableSystemEventTracking will decide whether these events will be
inserted into the Events database or not.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 170

Figure 2.8.1: Configuring Event Tracking

2.8.1.1 Disabling Event Tracking

To disable Event Tracking globally, perform the following steps:

1. Login to FES-JMX and locate

2. Fiorano->Esb->Events->EventsManager->FESEventsManager->config. Set the
property named 'EnableSystemEventTracking' to 'no'.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 171

2.8.2 Configuring Specific Database

The event tracking feature is configured as part of FES to track System and User events into
the H2 database running within the Enterprise Server. This can be changed by customizing the
eventsdb.cfg file present in:
FIORANO_INSTALL_DIR\esb\server\profiles\<profilename>\FES\conf. This file contains all the
DB specific configurations used for event tracking. Depending on the type of database used,
you might have to modify the <dbtype>_jdbc.cfg file, and this is set in the
JDBC_PROPERTIES property of eventsdb.cfg file. The file <dbtype>_jdbc.cfg contains more
database specific configurations. For example, an error code used by the database to indicate
whether or not a table is present in the database or not. Additionally, this file also contains
names of the data types that will be used by the database. These datatype names are
mentioned against unique numbers. These numbers are the constants that are used to identify
generic SQL types, called JDBC types (Please refer to javadoc for java.sql.Types).

The default configuration shipped with the installer uses the apache derby database.

Note:

1. After configuring a profile to use a database other than the default database, jdbc
driver for that database needs to be added under <java.classpath> tag in server
startup configuration file (either $FIORANO_HOME/esb/server/bin/server.conf or
$FIORANO_HOME/esb/fes/bin/fes.conf, whichever is applicable) prior to starting the
Enterprise Server.

2. You would have to use the same settings to connect to the DB when using a third-
party tool. All the database queries used for retrieving workflow related data is kept in
events.sql file.

3. When using MS SQL for events tracking, mssql_jdbc.cfg may need to be configured
according to the database driver being used. MSSql 2000 driver follows SQL 99
conventions which quote the SQLState string for table not found exception as 42S02.
On the other hand, MSSQL 2005 driver follows XOPEN SQLState conventions which
quote the same SQLState string as S0002. By default, all fes profiles are configured
according to the standards followed by the MSSql 2000 driver. If someone uses MSSql
2005 database, or uses the MSSql 2005 driver for MSSql 2000 (2005 driver is
backward compatible with 2000 driver and can be used), then the file has to be re-
configured accordingly.

Important: It is strongly recommended that the User employ a commercial grade DB in a
production system.

For File-Based databases like apache and HSQL, the default location is in the ESB_USER_DIR
(which is set in fiorano_vars script). The user has to give the complete path with these
variables resolved when using the JDBC URL in a third-party tool.

Example

The default H2 db JDBC URL is configured as
ESB_DEFAULT_DB_DIR/events_db;create=true which resolves to
ESB_USER_DIR/EnterpriseServers/<profilename>/FES/events_db and further into
something like C:\Program
Files\Fiorano\<FioranoSOAProductVersion>\runtimedata\EnterpriseServers\<profileName>\FE
S\events_db depending on the actual settings.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 172

2.8.3 Database Table Structure

The exact schema of the tables varies from database to database according to the
configurations provided in <dbtype>_jdbc.cfg file. An explanation of the tables and the
various fields is given below:

Table name: TPS_EVENTS & TES_EVENTS

Column Name Type Description

EVENT_ID INTEGER Auto Generated

EVENT_CATEGORY VARCHAR(255) Category of event i.e.
Information, Warning or Error

GENERATION_DATE TIMESTAMP Time at which the event was
generated

EVENT_SOURCE VARCHAR(255) Server name which generated the
event

EVENT_SCOPE VARCHAR(255) Scope of the event

EVENT_MODULE VARCHAR(255) Module to which the event
belongs

DESCRIPTION VARCHAR(255) Short description of the event

EVENT_STATUS VARCHAR(255) Event constant representing the
type of event

EXPIRY_TIME TIMESTAMP Event expiry time

Table name: SERVICE_EVENTS

Column Name Type Description

EVENT_ID INTEGER Auto Generated

EVENT_CATEGORY VARCHAR(255) Category of event i.e.
Information, Warning or Error

GENERATION_DATE TIMESTAMP Time at which the event was
generated

EVENT_SOURCE VARCHAR(255) Server name which generated the
event

EVENT_SCOPE VARCHAR(255) Scope of the event

EVENT_MODULE VARCHAR(255) Module to which the event
belongs

DESCRIPTION VARCHAR(255) Short description of the event

EVENT_STATUS VARCHAR(255) Event constant representing the
type of event

EXPIRY_TIME TIMESTAMP Event expiry time

SERVICE_GUID VARCHAR(255) The GUID of the service to which

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 173

the event belongs

SERVICE_VERSION VARCHAR(255) The service version to which the
event belongs

SERVICE_INST_NAME VARCHAR(255) Service Instance name

APP_GUID VARCHAR(255) Application Name

Table name: APPLICATION_EVENTS

Column Name Type Description

EVENT_ID INTEGER Auto Generated

EVENT_CATEGORY VARCHAR(255) Category of event i.e.
Information, Warning or Error

GENERATION_DATE TIMESTAMP Time at which the event was
generated

EVENT_SOURCE VARCHAR(255) Server name which generated the
event

EVENT_SCOPE VARCHAR(255) Scope of the event

EVENT_MODULE VARCHAR(255) Module to which the event
belongs

DESCRIPTION VARCHAR(255) Short description of the event

EVENT_STATUS VARCHAR(255) Event constant representing the
type of event

EXPIRY_TIME TIMESTAMP Event expiry time

APP_GUID VARCHAR(255) The Event Process GUID

APP_NAME VARCHAR(255) The Event Process Name

Table name: SECURITY_EVENTS

Column Name Type Description

EVENT_ID INTEGER Auto Generated

EVENT_CATEGORY VARCHAR(255) Category of Event, that is,
Information, Warning or Error

GENERATION_DATE TIMESTAMP Time at which the Event was
generated

EVENT_SOURCE VARCHAR(255) Server name which generated the
Event

EVENT_SCOPE VARCHAR(255) Scope of the Event

EVENT_MODULE VARCHAR(255) Module to which the Event
belongs

DESCRIPTION VARCHAR(255) Short description of the Event

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 174

EVENT_STATUS VARCHAR(255) Event constant representing the
type of event

EXPIRY_TIME TIMESTAMP Event expiry time

USER_NAME VARCHAR(255) Name of the user for which the
Event was generated

Table name: USER_EVENTS

Column Name Type Description

EVENT_ID INTEGER Auto Generated

EVENT_CATEGORY VARCHAR(255) Category of event, that is,
Information, Warning or Error

GENERATION_DATE TIMESTAMP Time at which the Event was
generated

EVENT_SOURCE VARCHAR(255) Server name which generated the
Event

EVENT_SCOPE VARCHAR(255) Scope of the Event

EVENT_MODULE VARCHAR(255) Module to which the Event
belongs

DESCRIPTION VARCHAR(255) Short description of the Event

EVENT_STATUS VARCHAR(255) Event constant representing the
type of Event

EXPIRY_TIME TIMESTAMP Event expiry time

SERVICE_GUID VARCHAR(255) The service instance GUID

TPS_NAME VARCHAR(255) The Peer Server name

TEXT_DATA VARCHAR(255) Event Text

BYTES_DATA IMAGE BLOB field representing user
event data

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 175

2.9 Subscribe to Fiorano System Events

Fiorano ESB Server hosts various JMS topics for the ESB Peer Servers to publish information
related to application, component and internal state changes. These events are used to keep
the ESB server and the Peer Server in sync with each other. All these events are referred to as
Control Messages in the Fiorano Network.

Custom monitoring applications can be written to subscribe to these Control Messages to
monitor the Fiorano Network, in addition to monitoring the Fiorano Network using the Web
Dashboard. This section gives insight of all the necessary details to build one such custom
monitoring application.

2.9.1 Event Topics

Following is the list of topics that are used to publish and to subscribe to various Fiorano
Events:

FES_SYSTEM_EVENT_TOPIC

This is the main topic for receiving most of the events as specified below:

1. FPS connect and re-connect Event

2. Application Kill Event (This event is raised when an application in killed in a Peer
Server)

3. Service Events (like launching and stopping a service)

FES_SBW_EVENTS_TOPIC

This topic receives all document tracking events from all the connected Peer Servers.

FES_USER_EVENTS_TOPIC

This topic receives all the user-generated events. For example, the Monitoring Events
published by the service components are received onto this topic (only if monitoring is enabled
for a Service Component).

2.9.2 Event Types and Content

Event data structures are defined in the package fiorano.tifosi.dmi.events which is
packaged in $FIORANO_HOME/esb/shared/lib/all/esb-shared.jar. The following is a
summary of the Event Data Structures and the Topics on which these Events are published.

Event Class
Name

Topic Name Description

SBWEvent FES_SBW_EVENTS_TOPIC

Fired when a message is sent from a
component for which document tracking
is enabled.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 176

Event Class
Name

Topic Name Description

ServiceEvent FES_SYSTEM_EVENT_TOPIC Fired when a service is launched or killed.
It represents Service Specific Events
occurring within the Fiorano Network.

ApplicationEve
nt

NA Fired when an application is launched,
killed, created, saved, or deleted. These
Events are fired within the Enterprise
Server and are therefore not published to
any topic.

TPSEvent FES_SYSTEM_EVENT_TOPIC Fired when the fps connects or
disconnects to the FES.

SPEvent NA Fired when the Enterprise Server is
launched or killed.

SecurityEvent NA Fired when a user takes an action that
requires a security check in the
Enterprise Server layer (e.g. Launching or
killing an Event Process or a Service
Instance).

UserEvent FES_USER_EVENTS_TOPIC Fired within the ESB network by business
components for whom monitoring
configuration has been enabled.

RouteEvent NA Fired when a debugger is set or removed
from a running application.

Note the following:

Only the events generated within the Peer Server are published to event topics. Events
generated within the Enterprise Server are not published on any topic.

A user can subscriber to the Enterprise Server events by registering an Event Listener with the
Enterprise Server using RTL APIs. By registering such a listener, user will automatically receive
events published to FES_SYSTEM_EVENT_TOPIC (and also FES_USER_EVENTS_TOPIC, if
listenToUserEvents property has been set to true in the Enterprise Server profile).

2.9.3 Sample Subscriber Application

Please refer to the samples named TopicEventSubscriber.java and
RTLEventSubscriber.java located under $FIORANO_HOME/esb/samples/EventSubscriber
which illustrates the use of APIs to subscribe to various events.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 177

2.10 Connecting to Server Using JConsole

To connect Fiorano server using JConsole, perform the following steps:

1. Open server.conf, fes.conf or fps.conf (whichever is applicable according to the
script being used to run the server) and add the JVM argument
"com.sun.management.jmxremote" under the java.system.props section.

2. Start the server, Start JConsole using JDK_HOME/bin/JConsole

3. To connect JConsole to server process, in the advanced tab, specify the url
service:jmx:rmi:///jndi/rmi://localhost:2047/fmq and username/password using
which a connection is desired, for example, admin/passwd.

2.10.1 How to connect to the FES/FPS using jconsole [running JDK5] SOA 9

To connect to the FES/FPS using jconsole [running JDK5] SOA 9, perform the following steps:

1. Add the following values under <java.system.props> in the file
$FIORANO_HOME/esb/server/bin/server.conf

com.sun.management.jmxremote

com.sun.management.jmxremote.port=<somePortNumber>

com.sun.management.jmxremote.authenticate=false

com.sun.management.jmxremote.ssl=false

2. start the server.

3. 3. Copy $FIORANO_HOME/framework/lib/fiorano-rmi-client.jar to
$Jdk_5_HOME/bin

4. Create a file called 'policy.pol' under $Jdk_5_home/bin & paste the following
content in it:

grant {

 permission java.security.AllPermission "", "";

 };

5. Go to $Jdk_5_HOME type the following command:

For Windows:

jconsole -J-Djava.security.policy=policy.pol -J-Djava.security.manager -J-
Djava.rmi.server.codebase=file:///fiorano-rmi-client.jar -J-
Djava.class.path=..\lib\tools.jar;..\lib\jconsole.jar;.\fiorano-rmi-client.jar

For Unix:

jconsole -J-Djava.security.policy=policy.pol -J-Djava.security.manager -J-
Djava.rmi.server.codebase=file:///fiorano-rmi-client.jar -J-
Djava.class.path=..\lib\tools.jar:..\lib\jconsole.jar:.\fiorano-rmi-client.jar

6. Once Jconsole starts, click on the advanced tab

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 178

Give the following values for the 'properties mentioned' in the above figure.

JMX URL

service:jmx:rmi://<IpAddressOfServer>/jndi/rmi://<IpAddressOfServer>:<rmiCo
nnectorPortOfServer>/fmq

Note: RmiConnector port is printed on server console.

UserName

Some valid user name, say 'admin'

Password

Some valid password for a valid user, say 'passwd' for admin user

7. Press Connect and you should be able to profile the server.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 179

2.11 Running Fiorano SOA Profiles as NT Services

The Fiorano SOA has a concept of profile based server, for example, profile1, profile2,
haprofile, and so on. All these profiles can be run either as a Fiorano Enterprise Server or a
Fiorano Peer Server by specifying their mode as 'fes' or 'fps' respectively.

These profiles can be run as NT services on Windows NT, Windows 2000 and Windows XP,
Windows Server 2003/2008 operating systems. Any profile present under
%FIORANO_HOME%/esb/server/profiles can be run as an NT service.

2.11.1 Configuring Server JVM Settings for running as NT-Service

The 'server.conf' file located under %FIORANO_HOME%/esb/server/bin contains various
settings related to the JVM like bootclasspath, classpath, server memory, system properties,
and so on. This file is used while creating configuration files required to run the server as a nt-
service.

The configuration files are generated under the following directories:

• For Enterprise Servers:
%FIORANO_HOME%/runtimedata/EnterpriseServers/%PROFILE_NAME%/service/

• For Peer Servers:
%FIORANO_HOME%/runtimedata/PeerServers/%PROFILE_NAME%/service/

Once the server is installed as a service, future changes to the file 'server.conf' will have no
effect on the server as the configuration files will not be regenerated. The server profile needs
to be uninstalled and then installed again for the changes to be effective. Make sure you have
made the entire server JVM settings before installing the profile as a service.

On how to change the memory settings for the server, refer to Question 1 in section 2.11.6
FAQs.

Important: Before installation of server profiles as services on Windows Server 2003/2008,
the following line needs to be added to file %FIORANO_HOME%/esb/server/bin/server.conf
'java.io.tmpdir=C:/Windows/temp' under the '<java.system.props>' tag.

2.11.2 Configuring Email Alerts for Server JVM Restart/Sudden Exit/JVM Hung
Events

The Wrapper binary which is used to run the server as a service can generate email alerts
when the server either restarts, exits unexpectedly or becomes hung.

Please refer to the file 'server.conf' located under '%FIORANO_HOME%/launcher' for the
configurations.

Once the server is installed as a service, future changes to the file 'server.conf' will have no
effect on the server. The server profile needs to be uninstalled and then installed again for the
changes to be effective. Make sure you have made all the settings before installing the profile
as a service.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 180

2.11.3 How to install/uninstall a StandAlone (Non-High Availabilty)Profile as NT
Service

To install a StandAlone (Non-High Availabilty)Profile as NT Service, perform the following
steps:

1. Open a command prompt. Go to %FIORANO_HOME%/esb/server/bin/service directory

2. To install FES profile as an NT service, run the command install-server.service.bat -
mode fes -profile %PROFILE_NAME%

Example: install-server.service.bat -mode fes -profile profile1

3. To install FPS profile as an NT service, run the command install-server.service.bat -
mode fps -profile %PROFILE_NAME%

Example: install-server.service.bat -mode fps -profile profile2

Note: If mode is not specified, it is taken as 'fps'.

4. After installation you should be able to see Fiorano ESB Server <%PROFILE_NAME%>
NT service or Fiorano Peer Server <%PROFILE_NAME%> NT service installed.

To uninstall a StandAlone (Non-High Availability) Profile as NT Service, perform the following
steps:

1. To remove FES NT service, run the command uninstall-server-service.bat -mode fes -
profile %PROFILE_NAME%

Example: uninstall-server.service.bat -mode fps -profile profile1

2. To remove FPS NT service, run the command uninstall-server-service.bat -mode fps -
profile %PROFILE_NAME%

Example: uninstall-server.service.bat -mode fps -profile profile2

Note: If mode is not specified, it is taken as 'fps'.

3. Un-Install should stop and remove the NT service for the given profile from the
services list.

2.11.4 How to install/uninstall a Profile as NT Service with High Availability
Profile(HA)

While running the servers in HA mode, the servers need to access network shares.

To access the network share, the server needs to configure with the user credentials of a User
Account of the system.

1. Specify the credentials in the file %FIORANO_HOME%/launcher/server.conf

Uncomment the following lines in the file and specify the user account name and
password.

#wrapper.ntservice.account=.\userName

#wrapper.ntservice.password=passwd

Use an account name in the form: {DomainName}\{UserName} i.e
wrapper.ntservice.account={DomainName}\{UserName}

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 181

If the account belongs to the built-in domain, then you may specify the name in the
form: .\{UserName}.

If no value is specified, the LocalSystem account is used. This account does not have
privileges to access network shares.

2. Grant 'Logon as Service' permission to the user account whose credentials have been
provided.

To set the "Logon as Service" right, goto the "Administrative Tools" folder in your
control panel. Open the "Local Security Policy" applet. Expand "Local Policy" and then
click on "User Rights Assignment". On the right side, you will find a "logon as service
policy". Right-click or double-click to access its properties dialog, and then add the
user that you wish to allow to run the service.

3. Open a command prompt. Go to %FIORANO_HOME%/esb/server/bin/service directory

4. To install FES/FPS(Replicated HA Profile) as an NT service, run the command install-
server.service.bat -mode <mode> -profile %PROFILE_NAME% where <mode> is
either 'fes' or 'fps'

Example: install-server.service.bat -mode fes -profile haprofile1/primary

Where, haprofile1/primary is the <PROFILE_NAME>

To install FES/FPS(Shared HA Profile) as an NT service, run the command

install-server.service.bat -mode <mode> -profile %PROFILE_NAME%

Example: install-server.service.bat -mode fes -profile haprofile_shared/primary -
dbPath \\192.168.1.213\db

where <mode> is either 'fes' or 'fps'& haprofile_shared/primary is the
<PROFILE_NAME%>

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 182

Important: -dbPath refers to the path of the network share hosting the shared database. In
the above example,\\192.168.1.213\db is the network share. UNC Path has been used.

Note: If mode is not specified, it is taken as 'fps'.

5. After installation you should be able to see "Fiorano ESB Server
<%PROFILE_NAME%>" NT service or Fiorano Peer Server <%PROFILE_NAME%> NT
service installed.

6. To remove FES/FPS NT service, run the command

uninstall-server-service.bat -mode <mode> -profile %PROFILE_NAME%

where <mode> is either 'fes' or 'fps'

Example: uninstall-server.service.bat -mode fes -profile haprofile1/primary

7. Uninstall should stop and remove the NT service for the given profile from the services
list.

2.11.5 Viewing Server Logs

Once started, console Logs for FES & FPS service can be viewed in the following log files:

%FIORANO_HOME%/runtimedata/EnterpriseServers/%PROFILE_NAME%/service/service.log.

%FIORANO_HOME%/runtimedata/PeerServers/%PROFILE_NAME%/service/service.log.

Other logs pertaining to the server can be found under:

• For Enterprise Server:
%FIORANO_HOME%/runtimedata/EnterpriseServers/%PROFILE_NAME%/FES/run/logs

• For Peer Server:
%FIORANO_HOME%/runtimedata/PeerServers/%PROFILE_NAME%/FPS/run/logs

 2.11.6 FAQs

Question 1: How to change Memory Settings (Xms & Xmx) of Server while running as a
service?

Answer: Uninstall the service (refer section How to install/uninstall a StandAlone (Non-High
Availabilty)Profile as NT Service and How to install/uninstall a Profile as NT Service with High
Availabilty Profile(HA))

Open 'server.conf' located under %FIORANO_INSTALLATION_HOME%/esb/server/bin and
change the Xms & Xmx values. (Refer section Configuring Server JVM Settings for Running as
NT-Service.)

Save the file and proceed to install the service again using the script.

Question 2: Certain Components like FTP-Put / FileReader / File Writer that are launched in-
Memory are not able to access network shares?

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 183

Answer: Since the components are launched in-memory they are part of the peer server. The
server needs to have user credentials of the System to access network shares when run as a
nt-service. Refer Section How to install/uninstall a Profile as NT Service with High Availabilty
Profile (HA) (Steps 1 and 2).

Note: You need to uninstall the service, make the required changes and then install the
server as a service.

Question 3: Feeder / Display Components (Components with Graphical User Interface) do not
show up on Windows server 2003, 2008 & Vista but they appear green from Fiorano Studio?

Answer: This is due to security restrictions put in place by the OS. The components will be
visible on Desktop 0, which is a background desktop that you have to switch to see the service
interface.

To see the components display, perform the following steps:

1. Start the service Interactive service detection. When we launch a flow containing
the components like feeder/display, a pop-up should appear.

2. Click on Show me the message.

This should take you to the Desktop 0 of system.

Fiorano SOA Platform User Guide

Chapter 2: The Fiorano Environment Page 184

3. To get back to the original desktop, click on the 'return now' option. you can move
back and forth the desktops using the interactive services desktop popup dialog.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 185

Chapter 3: Component and
Component Instances

This chapter discusses Service components - the building blocks of Fiorano composite
applications and Event Processes. A service component is an application that performs a
specific task (for example, sending e-mails or reading a file).

This section below discusses Service Component characteristics, together with the details of
configuring, deploying and managing service components in the Fiorano Environment.

3.1 Service Components Characteristics

Service Components may be synchronous or asynchronous. Service components are loosely
coupled to allow them to interact by exchanging messages in a flexible manner within a
Fiorano Event Process. Service components are the building blocks of Fiorano applications
(Event Processes). A service component is an application that performs a specific task (for
example, sending e-mails or reading a file). Service components are loosely coupled to allow
them to interact by exchanging messages in a flexible manner within a Fiorano Event Process.
Each Service Component has an interface that defines the acceptable formats of each input
and output. Most service components typically require runtime parameters and other variables
to be configured before they are run. Configurations allow customization of Service
Components for the specific business scenario/situation being solved by the Event Process.
Service components can be categorized as synchronous and asynchronous, based on the
manner in which a component is invoked for processing.

3.1.1 Synchronous Components

A synchronous component, as the name suggests, is invoked in request – reply format. Thus
the invoking client of this component waits for the component to process the request and send
back the response. Fiorano synchronous components implement the J2EE Connector
Architecture (JCA) interface, which mandates that each component has a single input and
single output. JCA is a standard API that is part of the J2EE platform that implements
synchronous “function calls” semantics.

The Fiorano platform includes a Business Component Development Kit (BCDK) for the
development of synchronous components. This framework abstracts the implementation
details of JCA.

All synchronous components can also be invoked asynchronously. This is achieved through the
usage of a JMSGateway component that provides a layer (wrapper) on top of the BCDK to
make the components event-driven, allowing them to be invoked using asynchronous JMS
semantics.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 186

3.1.2 Asynchronous Components

Asynchronous components or event-components are based on JMS semantics. Each
asynchronous component can have multiple inputs and outputs. Inputs of asynchronous
Fiorano components listen for events (JMS messages) via listeners on specific JMS
destinations.

Asynchronous components have the concept for ports which are abstracted form of JMS
destinations. A port can be a queue or a topic and components listen to input ports for JMS
messages and send JMS messages on to the output ports. An asynchronous component can
define how many input and output ports it needs. These can be added through static definition
or dynamically when a component is configured.

3.1.3 Design Choices

When developing a component in the Fiorano SOA Platform, a design decision of when to use
a synchronous component versus an asynchronous component requires a careful
understanding of the strengths of each of the types of components. The following details for
each of the component types are useful in making a decision:

Synchronous Components

2. Scheduling, error handling and connection pooling are abstracted

3. Can be deployed in external J2EE JCA containers

4. Cannot have multiple ports in output/input

5. Cannot handle server sockets

6. Cannot have runtime UI with manual intervention

7. Supports only Java programming language for component creation

Asynchronous Components

8. Allows multiple input and output ports

9. Supports multiple programming languages for component creation like Java, C, C++,
C# etc.

10. Handles server sockets

11. Allows components to have manual intervention

12. Does not have abstracted layers like synchronous components

Based on the business context, users can determine the type of component to use and/or
create.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 187

3.2 Service Component Characteristics, Configuration, and Deployment

As discussed above, a service component is typically configured for purposes of customization
on a per instance basis when used within a Fiorano application.

3.2.1 Component Launch Semantics

Fiorano components can be launched in three ways.

1. Separate Process: When using the components in a Fiorano Event Process, the
component instance can be configured to be launched as a separate process. This is the
default launch mode, and in this mode the Fiorano Peer Server launches the component as
a separate process; for components written in Java, a separate JVM is created for each
component instance. The Fiorano Peer Server controls the launch and stop of components
launched in separate processes.

2. In-Memory: Components written in the Java programming language can be launched in
the same process as the peer server. This is the in-memory launch mode, in which the
component is launched in a separate thread of the JVM of the Fiorano Peer Server. As in
the separate process launch mode, the Fiorano Peer Server controls the launch and stop of
components launched in-memory. Please refer to section 3.4.8 InMemory Launch for
further details on In Memory launch.

3. Manual: When an end-user wishes to control the launch and stop of the components in a
Fiorano application, specific components can be set to launch in manual mode. When a
component is set to launch in the manual mode, the Fiorano Peer Server does not try to
launch the component. The end-user can use the Fiorano scriptgen tool present in
<fiorano_install_dir>/esb/tools/scriptgen as illustrated in Figure 3.2.1 to generate a script
that launches the component. Alternatively, the end-user can use the Fiorano Enterprise
Server API to launch this component from another application. Please refer to section
3.4.6 Manual Deployment for further details on using scriptgen.

Figure 3.2.1: Directory structure showing scriptgen tool location for manual launch

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 188

3.2.2 Setting Component Launch Type in the Fiorano Studio

The launch mode for each component can be set using the Fiorano Studio which is part of the
Fiorano Studio Tool. On selecting a component, the launch mode in the menu can be changed
to one of the three modes mentioned and as illustrated in the Figure 3.2.2.

Figure 3.2.2: Changing launch mode of a component in Fiorano Studio

Every component expects a set of arguments at launch time. The runtime arguments are
typically part of the configuration property sheet that is associated with the component, which
is customized on a per-component-instance basis. Runtime arguments are processed at the
startup of the component.

3.2.3 Launching Components Using the Fiorano Studio

When using the Separate Process and the In-memory launch types, the launch and stop of the
components is controlled using the Fiorano Studio tool (present within the Fiorano Studio).
There are specific toolbar buttons available to launch and stop components as illustrated in the
Figure 3.2.3. The tool internally uses the Fiorano Enterprise Server API to launch and stop any
components.

Figure 3.2.3: Component Launch and Stop buttons in Fiorano Studio

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 189

You can also launch and/or kill a component in a running Fiorano application using menus.

3.2.3.1 Launching a Component in a Running Application

Right-click on the component and select Execution. Select Run from the menu list as
illustrated in Figure 3.2.4.

Figure 3.2.4: Launching a Component

3.2.3.2 Stopping a Running Component Instance

1. Right-click on the component and select Execution.

2. Select Stop from the menu list as illustrated in Figure 3.2.5.

Figure 3.2.5: Stopping a Component

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 190

3.3 Service Component Configuration

Most components have a set of configurable parameters which can be set to appropriate
values to customize instances of the component for a particular Fiorano application.
Configuration is captured within a configuration property sheet as described in the following
sections.

3.3.1 CPS for Component instance configuration

Most components have a GUI-based Configuration Property Sheet (CPS). This is usually a
dialog or wizard which has a list of configurable parameters for the component. These
customizable parameters have their own editors to facilitate the end user in adding
appropriate values.

3.3.1.1 Launching the CPS

1. Right-click on the component.

2. Select the Configure option from the menu list.

Figure 3.3.1: Launching the CPS

3. Alternatively, you can double-click on the component to open the CPS.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 191

The resources of the component are loaded to show the CPS and a dialog box illustrates the
progress of the process as shown in the Figure 3.3.2.

Figure 3.3.2: Fiorano Studio Dialog Loading the Resources

Figure 3.3.3 illustrates the loaded CPS of the SMTP component as an example.

Figure 3.3.3: A typical CPS (SMTP component)

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 192

3.3.1.2 Customizable and Expert Properties

A component’s customizable properties are typically different from that of other components.
Some properties are hidden by default and are shown only when the “Show Expert Properties”
icon is clicked as illustrated in the Figure 3.3.4. These are a set of advanced properties that
are specific to each particular component instance.

Figure 3.3.4: A yellow lightening symbol enables/disables the expert properties

3.3.1.3 Online Help for components

Every CPS has a help button (as shown in the Figure 3.3.5), which explains the properties
being captured in the CPS. Online help provides describes each property, together with the
kind of value(s) expected by the property.

Figure 3.3.5: Help button in CPS for context sensitive help

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 193

The description for the selected configurable property can be seen above the help button.
Figure 3.3.6 illustrates a typical help screen that shows when a help button is clicked.

Figure 3.3.6: Typical help screen on clicking the help button

When a CPS is closed by clicking the Finish button, the configuration is persisted as part of
the Fiorano application. This is later made available to the component at runtime via JNDI
lookup.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 194

3.3.1.4 Runtime Arguments

On selecting a component in the Fiorano Studio, the runtime arguments for the component are
displayed in the properties window (as shown in the Figure 3.3.7). These runtime arguments
can be accessed within the component at runtime through the parameters passed to the
component when launching it using a launcher. A standard runtime argument added for all
Java components is “JVM_PARAMS”. This captures the JVM parameters which the end user
might want to pass when the component is launched a separate process. Runtime arguments
for a component can be added using the Fiorano Studio.

If the component's launch mode is changed to InMemory, the JVM_PARAMS property will not
be displayed in properties view. To use the properties passed as JVM_PARAMS for an
InMemory launched component, these properties need to be added to peer server's
configuration file under <java.system.props> tag before starting the peer server. Peer server's
configuration file can be located as either $FIORANO_HOME/esb/server/bin/server.conf or
$FIORANO_HOME/esb/fps/bin/fps.conf depending on the script being used to run the peer
server.

Figure 3.3.7: Fiorano Studio showing runtime arguments in properties window

Note: Changing the Node Name at runtime for Worklist and Aggregator Components is not
supported. Unlike other components, Worklist and Aggregator components have state
information written to the local disk.Moving the Worklist (or Aggregator) from one peer server
to another one results in state data loss. In case of Worklist, not only the data loss, the
external application, that is, Worklist web application will not show work items saved in the
Worklist after the node change.

To achieve high availability for Stateful components, configure the back-end data store in
clustered/HA relational database, like Oracle, DB2, and so on. Or deploy the components on a
Peer Server that is running in Shared HA mode.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 195

3.3.2 Component Dependencies and System Libraries

Every component has a set of dependencies on various libraries. Libraries can be the JAR files,
DLLs, property files, configuration XML or any file which the component would require either at
configuration time or at runtime. Fiorano already provides some standard libraries (some of
them being 3rd party), which can be directly added to the list of dependencies for a
component. If there is a library which is needed only for a particular component, it can be
added exclusively for that component.

The Fiorano Studio is used to add dependencies to an existing component, as illustrated in
Figure 3.3.8 and explained in more detail later in this section. You can select the component
for which you need to add a dependency and select Edit (as shown in Figure 3.3.9 and
3.3.10). The dialog shows two sections

 The first section is where you add dependencies which are applicable only for this
component. A copy of the dependency library is kept with the component.

 The second section is where you add dependencies which are already registered with
Fiorano. These are called system libraries. In this case a copy of library is not added
the component. There is reference created in the component to locate where to find
the dependency library files.

Figure 3.3.8: Explorer view of Fiorano Studio showing the component repository

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 196

3.3.2.1 Viewing the Resources of a Component

1. Right-click on the component and choose Edit from the drop-down menu as shown in
Figure 3.3.9.

Figure 3.3.9: Using the Edit option to add resources using the Fiorano Studio

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 197

Figure 3.3.10 illustrates the resources of the SMTP component as an example.

Figure 3.3.10: List of dependencies for SMTP component

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 198

3.3.3 Add New Library Dependencies

New dependencies can be added using the Add Resources option. Figure 3.3.11 illustrates
how to add new dependency libraries which are applicable only to this component. Figure
3.3.12 and 3.3.13 illustrate how to add new system libraries, which are already registered
with the Fiorano Enterpriser Server as dependencies to this component.

3.3.3.1 Adding New Resource/Dependency

1. View the Resources of the Component as described in the section 3.3.2.1 Viewing the
Resources of a Component.

2. Right-click on the Resources tree menu on the left hand side as shown in Figure
3.3.11.

3. Choose the Add Resources option from the menu list. Using the file chooser, select
the files to add as resources.

Figure 3.3.11: Right-click on Resources to add new resources

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 199

3.3.3.2 Adding Service Dependencies

1. Right-click on the Service Dependencies tree menu on the left hand side (as shown in
Figure 3.3.12).

2. Select the option Add Service Reference from the menu. A Customize Service
Reference dialog box appears, as shown in Figure 3.3.13. Select one or more of the
system libraries in this dialog and click OK to apply changes.

Figure 3.3.12: Right-click on Service Dependencies to add new system library reference

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 200

Figure 3.3.13: UI to add system libraries as dependencies.

The following table lists the system libraries developed by the Fiorano for use within
component implementations. Not that this does not include any 3rd party libraries.

Service Dependency Jar File Name Description

CompositeComponentEngine cce.jar Implementation for the BPEL process.

CompositeComponent fbc-comp-
CompositeComponent.j
ar,fesb-comp-
CompositeComponent.j
ar

Component for execution of BPEL process.

BCCommon bcc.jar Common classes required by components.

BCEngine bce.jar TrGateway(Transport Gateway for BCs) and
BCDK(Abstract Implementation for all the BCs)

BCGateway fesb-comp-
bcgateway.jar

EDBC wrapper for BC components over JMSGateway

customEditors fbc-comp-
customEditors.jar

Editors to be used in CPS to capture properties like
SchemaEditor(XSD,DTD),ErrorPanels(ErrorConfiguratio
n),SSL Panels(SSLConfiguration) and so on.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 201

Service Dependency Jar File Name Description

jdbc fbc-comp-jdbc.jar Classes which handle Database specific jdbc operations

Framework Framework.jar LicenseManager,Swing,xml(dom,sax,saxon,xsd related)
classes

TifosiJavaRTL TifosiJavaRTL.jar Filechooser,wizard,xsdanddtd
parsersupport,tifosihelpbroker classes.

esbCustomEditors fesb-comp-
esbCustomEditors.jar

Editors (which are specific to Fiorano ESB) to be used
in CPS.

FioranoJavaRTL fmq-client.jar,fmq-
rtl.jar

JMS implementation classes of FioranoMQ.

dmlparser fbc-comp-dmlparser.jar Parser for DML(Data Manipulation Language:
insert,delete,update and select) statements.

FileMatcher fbc-comp-filematcher-
api.jar,fbc-comp-
filematcher-local.jar

Classes required for searching file/directory names
based on filename pattern.

Transformer fbc-comp-
Transformer.jar

Transformer engine classes for converting

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 202

3.3.3.3 Adding Resources to Class Path

This section demonstrates adding JDBC drivers to classpath of all adapters in DB component.
All the components under DB category share a common System Library which handles the
JDBC connection; hence JDBC drivers should be added as resources to System Library JDBC.

Any additional resources required by any component can be added in similar fashion after
identifying the correct component or system library.

1. Login to Enterprise Server and navigate to Enterprise Server Service Repository
Registered Services System Lib JDBC.

Figure 3.3.14: Right-click jdbc to customize service

2. Right-click jdbc and click on Edit button from the pop-up menu. The Customize Edit
Service jdbc:4.0 dialog box appears.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 203

3. In the Customize Edit Service jdbc:4.0 dialog box, navigate to Deployment ->
Resources, now right-click on Resources and click on Add Resources. The Add
Resources dialog box appears.

Figure 3.3.15: Customize Edit Service jdbc

4. In the Add Resources dialog box, browse to location containing jar files and select
required files, now click the Open button.

Figure 3.3.16: Add Resources

5. Now, close all the dialog boxes. The new resources are added to the class path.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 204

3.3.4 Creating New System Libraries

A new library can be added using the Fiorano Studio tool, using the Add Service option as
illustrated in Figure 3.3.17. Provide the details as mentioned in the wizard and click Finish to
create a new system library.

Figure 3.3.17: FSSM tool menu button showing the “Add Service” option in Explorer view

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 205

3.3.4.1 Adding a New System Library

1. Add a New Service as discussed in section 3.3.3.3 Adding Resources to Class Path.

2. Provide a name to the library in the Service GUID field of the Customize New
Service dialog, and select the Type as Library as shown Figure 3.3.18.

Figure 3.3.18: Creating a new system library

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 206

3. Right-click on Resources and select Add Resources from the menu list. Add library
files which comprise this system library as shown in Figure 3.3.19.

Figure 3.3.19: Menu option to add files as resources

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 207

4. After reviewing the details, click the OK button in the panel illustrated in Figure
3.3.20.

Figure 3.3.20:.Properties of the new library

The current service repository contains a category called System Lib which has all the system
libraries registered with the Fiorano Enterprise Server.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 208

3.3.5 Scheduling and Error Handling

This section describes the scheduler configuration and error handling panels visible in the
Configuration Property Sheet wizard of all Fiorano components as visible in the Studio tool.

3.3.5.1 Scheduler Configurations

This section describes steps that enable you to perform scheduler configurations for every
Fiorano component.

In the CPS wizard of all Fiorano components, the second last panel (in STUDIO) can be used
to configure a schedule and a desired input XML or text which can be configured to be sent
from a given Fiorano component at a particular time on a particular date. You can also
configure the polling interval of this component and the number of polls that need to done as
displayed in the Figure 3.3.21.

Figure 3.3.21: Scheduler configurations

The following steps enable you to schedule any given Fiorano component to be triggered at a
given time on a given date.

1. After you have configured the Connection Specification parameters or Managed
Connection Factory (MCF) parameters, and the Interaction Specification parameters,
the scheduling panel appears as displayed in Figure 3.3.2.1.

2. Click on the Enable Scheduling check box to enable this feature.

3. Specify the Polling start time with the date on which you intend this component to get
activated.

4. Specify the Interval between polls which may be specified as the number of milli
seconds, seconds, minutes, hours, or days before the next poll is performed.

5. Specify the Number of polls which may be infinite also.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 209

6. Specify the Input XML/Text which you intend this component to send in each poll. You
can Genrate a Sample input by clicking on the Generate Sample Input button or you
can supply an input manually. You can also validate this specified input before you
actually use the same in your event process by clicking on the Validate button.

7. Click on the Next button to configure the Error Handling feature for a given Fiorano
component.

3.3.5.2 Error Handling

This section describes steps that enable you to perform error handling for every Fiorano
component.

In the CPS wizard of all Fiorano components, the last panel (in STUDIO) can be used to
configure error handling as displayed in the Figure 3.3.22.

Figure 3.3.22: Error handling

The following steps enable you to configure any given Fiorano component to handle the
various types of errors as displayed in Figure 3.3.22.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 210

1. After you have configured the Connection Specification parameters or Managed
Connection Factory (MCF) parameters, and the Interaction Specification parameters,
the scheduling panel appears as displayed in Figure 3.3.21. The previous section
3.3.5.1 Scheduler Configurations describes steps to configure Scheduling for all
Fiorano components.

2. Select the Request Processing Error option to configure the action to be taken when
this type of an error is experienced by a given component. The following panel
appears.

Figure 3.3.23: Error handling - Request Processing Error

3. Click on the Re-execute Request checkbox if you intend the given component to
resend the poll request.

4. Click on the Throw fault on warnings checkbox if you intend the given component
to display any exception related to this type of an error when it is caught.

5. The Send to Error Port checkbox is checked by default so as enable transfer of all
errors to the error port of any given component.

6. Click on the Stop Service checkbox if you intend the given component to stop
functioning when such an error is caught.

7. The Advanced Settings panel is activated only when you check the Re-execute
Request checkbox. This panel can be used to specify the number retries and the time
interval (in milliseconds) that this component should wait before the next try is
executed. You can also check the Inf checkbox to set the time interval between tries
as infinite.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 211

8. Select the Connection Error option to configure the action to be taken when this type
of an error is experienced by a given component. The following panel appears.

Figure 3.3.24: Error handling - Connection Error

9. Click on the Try reconnection checkbox if you intend the given component to retry to
establish a connection using its Connection Specifications during runtime.

10. The Send to Error Port checkbox is checked by default so as enable transfer of all
errors to the error port of any given component.

11. Click on the Stop Service checkbox if you intend the given component to stop
functioning when such an error is caught.

12. The Advanced Settings panel is activated only when you check the Try reconnection
checkbox. This panel can be used to specify the number retries and the time interval
(in milliseconds) that this component should wait before the next try is executed. You
can also check the Inf checkbox to set the time interval between tries as infinite.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 212

13. Select the Invalid Request Error option to configure the action to be taken when this
type of an error is experienced by a given component. The following panel appears.

Figure 3.3.25: Error handling - Invalid Request Error

14. The Send to Error Port checkbox is checked by default so as enable transfer of all
errors to the error port of any given component.

15. The Donot stop service checkbox is checked by default so as to specify that the
component does not stop functioning when such an error is encountered.

16. Click on the Finish button to save your configurations for a given Fiorano component.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 213

3.3.6 Configuring Logging Parameters

For every service component, the log settings can be configured in the Properties window. For
a chosen service instance the log settings are available under the categories Log Manager
and Log Module Instances as shown in Figure 3.3.26.

Figure 3.3.26: Log Module Instances

For every log module, the log level can be configured from the drop down list as shown in
Figure 3.3.27. The different log levels at which the details can be logged are Severe,
Warning, Info, Config, Fine, Finer, Finest and All.

Figure 3.3.27: Log levels

Severe is the highest logging level and All the lowest. A log module accepts all messages that
are logged at the levels greater than or equal to the configured level. That is, if the configured
log level for a log module is Severe, only the messages at Severe level is logged. If the
specified level is Info, the messages at Info, Warning and Severe is logged. Specifying All
logs the messages at all levels.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 214

Note: Messages of all log modules logged at Severe/Warning level appear in Error Logs of
the component. Messages at the remaining levels appear in Out Logs.

Log handlers can be configured in Log Manager as shown in Figure 3.3.28.

Figure 3.3.28: Configuring Log Handler

File Handler: When the log handler is a File Handler, the logs is written to files.

Example: When an event process Logging is created as shown in Figure 3.3.26, a directory
LOGGING is created at <FIORANO_HOME>/runtimedata/PeerServers/<profile>/FPS/run/logs
which in turn contains a folder for every service instance. These folders contain the files for
out and error logs as shown in Figure 3.3.29.

Figure 3.3.29: Log files

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 215

Console Handler: When the log handler is a Console Handler, the messages is logged on
the console of the peer server on which the component is running. Figure 3.3.31 shows the
logs on the peer console when the event process Logging (shown in Figure 3.3.26) is
launched with the SMTP component configured with the log settings shown in Figure 3.3.30.

Figure 3.3.30: Log settings

Figure 3.3.31: Logs on the peer server console

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 216

Custom Handler

In Fiorano SOA, Service instances can be configured for custom handlers also. Custom Log
handler allows to redirect the log messages to user defined location like file, console, JMS
destination, and so on.

To add the handler for the service instances that should use the custom handler,

1. In the properties pane, select Log Manager Type as Custom Handler.

2. Specify the class for Log Manager Class Name property. This should be a fully
qualified class name.

3. Save the application.

Custom Handler implementation

The custom handler should be an instance of java.util.logging.Handler and should implement
the abstract methods:

• public void publish(LogRecord record)

• public void flush()

• public void close()

This class should be made available to the peer server on which the component runs by adding
appropriate classpath entry under <java.classpath> section of
%FIORANO_HOME%\esb\fps\bin\fps.conf.

3.4 Component Deployment

All service components need to be registered with the Fiorano Enterprise Server to be used in
a Fiorano application. The process of registration can be done using the Fiorano Studio too as
discussed below. The components created using the wizard (in the Fiorano Studio tool), can be
deployed through scripts available when the component is created. New component
deployment (and registration) is covered in the Component Creation section.

A component needs to be compiled before being registered with the Fiorano Enterprise Server.
For components written in the Java programming language, a JAR file needs to be created
from the class files. If the component is created in an alternate language like C, C++, C# etc,
an executable must be created instead.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 217

Use the Customize New Service UI to register a new component. This UI is same the UI
which starts when we create / register a new system library. Select the Java or Non-Java
option in the Type parameter for the appropriate component type. This is illustrated in Figure
3.4.1.

Figure 3.4.1: Customize New Service wizard for a service component

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 218

The deployment information for the new component is displayed, as illustrated in Figure 3.4.2.

Figure 3.4.2: Shows the deployment information

The UI has subsections Resources and Service Dependencies, which are discussed in the
section 3.3.3 Adding New Library Dependencies.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 219

Clicking on the Execution icon on the Left-hand-side pane in the Customize New Service
dialog displays (in the right hand pane) the list of execution parameters that can be set for a
component. This includes the Launch-mode types (In-memory, Manual, Auto), as well as the
name of the Executable in the Executable property. For components built in Java
programming language, the executable name is the fully qualified class name. For Non-Java
components, it is the name of the executable file.

Figure 3.4.3: Execution information for new component registration

Each Asynchronous Service Component (also referred to as an EDBC, for Event Driven
Business Component) can have a number of inputs and outputs as determined by the
developer of the component. Input and output ports can be added in the Customize New
Service dialog as applicable to the new component.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 220

3.4.1 Adding Ports for the Component
1. Right-click on the Execution->Ports->Input Ports option in the left tree menu, and

select the Add Ports option from the menu list as illustrated in Figure 3.4.4.

Figure 3.4.4: Adding ports

2. Specify the name of the port being added as shown in Figure 3.4.5.

Figure 3.4.5: UI to provide port name

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 221

3. This is shown in the Figure 3.4.6. Specify the port properties as required by selecting
the Port name in the UI.

Figure 3.4.6: Modify the port properties required

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 222

3.4.2 Adding Log Modules for the Component
4. Right-click on the Log Modules in the left tree menu and select the Add Log

Modules option from the menu list, as shown in Figure 3.4.7.

Figure 3.4.7: Menu to add log modules

5. Provide the appropriate log module name as used in the code as shown in Figure
3.4.8. The logger names provided here must be the same as the ones being used in
the code.

Figure 3.4.8: UI to provide log module name

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 223

3.4.3 Adding Runtime Arguments for the Component
1. Right-click on Runtime Arguments in the left tree menu and select Add Runtime

Arguments from the menu list as shown in Figure 3.4.9.

Figure 3.4.9: Menu to add new runtime arguments

2. Provide the name of the runtime argument in the Add Runtime Arguments text box.
This should be the same name that is expected in the code.

Figure 3.4.10: UI to provide the name of the argument

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 224

3. Modify the details of the runtime argument by selecting it in the left-tree menu of the
Customized New Service dialog as illustrated in Figure 3.4.11.

Figure 3.4.11: Modify details about of the argument added

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 225

3.4.4 Adding New Parameters to the Component
1. Right-click on Parameters in the left tree menu as shown in Figure 3.4.12 and select

Add Parameters from the menu list.

Figure 3.4.12: Menu to add additional parameters to execution

2. Provide the name of the parameter in the Add Parameters text box as shown in
Figure 3.4.13.

Figure 3.4.13: UI to provide the name of the parameter

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 226

3. Review the details and click the OK button to finish the UI for new component
registration.

Figure 3.4.14: Review changes below clicking “OK”

If the Register this service checkbox is checked (as shown in Figure 3.4.14), then the
component is registered with the Fiorano Enterprise Server and is immediately made available
in the service palette for use within a Fiorano application.

A component used in a Fiorano Event Process needs to connect to a (local or remote) Fiorano
Peer Server on launch. On most situations, the component is deployed onto a Fiorano Peer
Server so it can be launched locally. The “Check Resources and Connectivity” and
“Synchronize” functions in the Fiorano Studio automatically deploy components onto the
named Fiorano peer server assigned to the component instance in the Fiorano Event Process.
The Fiorano Peer Server on which a component needs to be launched is set using the “Nodes”
property in the Properties window in the Fiorano Studio as shown below.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 227

3.4.5 Adding Node Name to a Component Instance

1. Select the Component instance in the Fiorano Studio window and Click on the
button in the Nodes property of a component as shown in Figure 3.4.15.

Figure 3.4.15: Nodes property for a component

2. Click on the Add button in the dialog that opens as shown in Figure 3.4.16. This
displays a list of current peer servers available on the network; select the peer server
on which the component is to and click the OK button. OS specific icons assist the
user in identifying the Operating System on which the Fiorano Peer Server is running.

Figure 3.4.16: Fiorano Peer Server name on which the component will run

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 228

The Fiorano Studio menu includes the Check Resources and Connectivity and Synchronize
features (as shown in Figure 3.4.17) to dynamically deploy the resources and dependencies of
a component from the Fiorano Enterprise Server to the Fiorano Peer Server to launch and
execute a component locally on the peer.

Figure 3.4.17: Fiorano Studio menu items for dynamic deployment

3.4.6 Manual Deployment

There are various ways in which a component can be configured and launched. One of
supported methods is manual launch. A component’s launch mode can be set to Manual as
shown in Figure 3.2.2.

Manual launch is a mode in which the Fiorano peer server does not control the launch and stop
of components. Fiorano provides two mechanisms for manual launch.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 229

3.4.6.1 From Scriptgen Tool

Manual launch can be achieved via a launch script that can be generated via the Fiorano
Studio.

3.4.6.1.1 To generate a manual launch script from the Fiorano Studio

1. Right-click on the component and select Execution-> Save Launch Script from the
drop-down list as illustrated in Figure 3.4.18. These properties can be used to launch
the component using the scriptgen tool available in
<fiorano_install_dir>/esb/tools/scriptgen. Right-click to save the script.

Figure 3.4.18: Menu to save the manual launch script using Fiorano Studio

2. Be sure to change the launch mode of the selected component to Manual in the
Fiorano Studio as shown in Figure 3.2.2.

3. After saving the generated script, a dialog is shown with details on how to run the
manual script as illustrated in Figure 3.4.19. Click the OK button.

Figure 3.4.19: Dialog showing the steps to execute a component using scriptgen

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 230

4. Executing the scriptgen.bat file (on windows) or scriptgen.sh file (UNIX platforms) sets
the environment variables. Type the command ant and press enter to start the UI to
execute the launch script saved above. This opens up an UI as shown in Figure 3.4.20.

5. Select the properties file and click on the Load button to set the appropriate
properties. Click Ok to launch the component. Note that this Component-launch
should only be done after the Event Process (within which the component is an
instance) has been previously launched. Components that are marked “manual
launch” will not be launched when the application is launched, since they need to be
started manually, as described earlier.

Figure 3.4.20: Scriptgen UI to load the component properties for manual launch

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 231

The console shows the progress of the launch of the component and the log statement during
execution. Closing the console kills the component. A sample console with messages is shown
in Figure 3.4.21.

Figure 3.4.21: Console displaying the details of the launch of the component

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 232

3.4.6.2 From the configureBC and runBC utilities

Synchronous components (also refered to as Business Components) can be configured and
executed using the configureBC and runBC utilities:

3.4.6.2.1 To configure and run Business Components

1. Navigate to the <fiorano_install_dir>/bc/bin directory as illustrated in Figure
3.4.22.

Figure 3.4.22: Location of configureBC and runBC script files

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 233

2. Execute the BC.bat file (for windows) or BC.sh (for UNIX and related platforms) to
configure a component. The UI shown in Figure 3.4.23 is displayed. There is choice of
creating a new configuration or opening an existing configuration for modification by
changing the Choose parameter. Click the Next button.

Figure 3.4.23: UI to configure a new component or load an existing configuration

3. Choose the appropriate business component and select the folder and XML file name
to save the configuration. Click the Next button to display the Managed Connection
Factory settings as shown in Figure 3.4.24. The wizard steps of the selected business
component’s CPS are shown.

Figure 3.4.24: CPS of the component chosen are displayed

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 234

4. Move ahead in the wizard till you reach the Transport Configurations section which
allows the component to send and receive messages with any JMS compliant
messaging server or with the Tibco Rendezvous transport. Modify the Input Transport,
Output Transport, and Error Transport sections to choose appropriate destination
types and names. Also set appropriate configuration values to connect to these
servers. This is illustrated in the Figure 3.4.25.

Figure 3.4.25: Transport properties for the component configuration

5. On completing the wizard, the XML file with contain the entire configuration for the
Business Component. This configuration can now be used to run the specified
component. Use the runBC.bat script (for windows) or runBC.sh script (for UNIX
platforms) to execute the saved configuration, as illustrated in Figure 3.4.26.

Figure 3.4.26: Command to run the saved configuration

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 235

6. Send a message to the configure destination in Input Transport section and verify for
the response in the configured destination for Output Transport (if the request is valid)
or the error in the configured destination for Error Transport (if the request is invalid
or processing fails).

3.4.6.2.2 To modify a saved configuration XML file

1. Run the configureBC script as shown in Figure 3.4.27.

Figure 3.4.27: Command to modify an existing configuration

2. Alternatively, you can run the configureBC script file without the configuration XML
file input and provide it through the UI as illustrated in Figure 3.4.28. Use the Load
Existing Configuration option and choose the appropriate configuration file to
modify it.

Figure 3.4.28: UI to load an existing configuration for modification

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 236

3.4.7 External Deployment

Synchronous components are fully compliant to the JCA version 1.0. Thus, they can be
deployed in any J2EE JCA container which is compliant to JCA version 1.0. The following
section describes how to deploy a synchronous component in a JBoss Application Server’s JCA
container.

3.4.7.1 Deploying a Synchronous Component in JBoss Application Server

Create a Resource Archive (RAR) of an adapter

The RAR file can be created using rar ant task. A sample build file that creates a RAR of an
adapter is given below:

<project name="Rar" basedir="." default="createRar"

xmlns:fiorano="antlib:com.fiorano.ant">

 <property name="deploy.dir"

value="D:/fioranodev_installer"/>

 <property name="component.guid" value="IWay"/>

 <property name="component.version" value="4.0"/>

 <property name="destDir" value="."/>

 <property name="rarFile" value="${component.guid}.rar"/>

 <property name="component.deploy.dir"

value="${deploy.dir}/esb/server/repository/components"/>

 <property name="comp.deploy.dir"

value="${component.deploy.dir}/${component.guid}/${component.version}"/>

 <property name="thirdparty" value="${deploy.dir}/extlib"/>

<target name="createRar">

 <fiorano:rar destfile="${rarFile}"

destinationdir="${destDir}" componentdir="${comp.deploy.dir}"

 componentrepositorypath="${component.deploy.dir}"

extlibspath="${thirdparty} duplicate=”preserve"/>

</target>

<target name="cleanup">

 <delete file="${rarFile}"/>

</target>

</project>

Build file to create a RAR file of an adapter

The build file can be executed using command ant from the command prompt after making
necessary modifications (see below)

 deploy.dir – FIORANO_HOME

 component.guid – Name of the component (case sensitive)

 component.version – Version no of the component

 destDir – Directory where the rar file needs to be created

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 237

 rarFile – Name of the Rar file

Example: To set the destDir value to C:/Temp modify the build file as follows

Before modification

<property name="destDir" value="."/>

After modification

<property name="destDir" value="C:/Temp"/>

Executing the build file creates a RAR of the adapter at the location destDir with name
rarFile

Creating a –ds.xml for an adapter

A sample –ds.xml file generated for Iway adapter is given below. This is specific to JBoss
Application Server. For other J2EE Application Servers, the format may vary.

<?xml version="1.0" encoding="UTF-8"?>

<connection-factories>

 <no-tx-connection-factory>

<jndi-name>fesb/cf/iWay1</jndi-name>

<rar-name>fiorano-iWay.rar</rar-name>

<connection-definition>javax.resource.cci.ConnectionFactory</connection-definition>

<config-property name="ConfigurationXML" type="java.lang.String"><?xml

version="1.0" encoding="UTF-8"?>

<java version="1.5" class="java.beans.XMLDecoder">

 <object

class="com.fiorano.adapter.jca.iway.spi.outbound.IwayManagedConnectionFactory">

<void property="JNDIName">

 <string>iWay1</string>

</void>

<void property="RARName">

 <string>4.0</string>

</void>

<void property="state">

 <int>8</int>

</void>

 </object>

</java>

</config-property>

 </no-tx-connection-factory>

</connection-factories>

The above config-property ConfigurationXML is part of the configuration XML file which is
generated when configureBC utility is used. Please refer to section 3.4.6 Manual Deployment
for more information.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 238

Deploying Adapter in JBoss

 Make sure the name mentioned in –ds.xml in the <rar-name> is same as the name of
the RAR file generated. If they are not same, then do either of the following:

1. Change the name of name of RAR file to the name present in <rar-name> tag
–ds.xml (or equivalently)

2. Change the name in <rar-name> tag to the name of RAR file (or equivalently)

3. The name of RAR file in the build.xml shown above should be mentioned to the
name in <rar-name> tag.

In the above the IWay adapter’s –ds.xml contains <rar-name>fiorano-
iWay.rar</rar-name> so the name of RAR file for the adapter should be
fiorano-iWay.rar

 Copy the generated –ds.xml and RAR file to
<JBOSS_INSTALL_DIR>/server/default/deploy

 Create a directory extlib in <JBOSS_INSTALL_DIR>/server/default and copy all the
necessary common jars to <JBOSS_INSTALL_DIR>/server/default/extlib. The list of
jars to be copied is given below

1. %FIORANO_HOME%/esb/server/repository/components/CompositeComponent
Engine/4.0/cce.jar

2. %FIORANO_HOME%/esb/server/repository/components/Framework/4.0/Fram
ework.jar

3. %FIORANO_HOME%/extlib/dom/dom.jar

4. %FIORANO_HOME%/extlib/jlicense/jlicense.jar

5. %FIORANO_HOME%/extlib/wsdl4j/wsdl4j.jar

6. %FIORANO_HOME%/extlib/saxon/saxon8.jar

7. %FIORANO_HOME%/extlib/saxon/saxon8-dom.jar

8. %FIORANO_HOME%/extlib/saxon/saxon8-jdom.jar

9. %FIORANO_HOME%/extlib/saxon/saxon8-sql.jar

10. %FIORANO_HOME%/extlib/saxon/saxon8-xom.jar

11. %FIORANO_HOME%/extlib/saxon/saxon8-xpath.jar

12. %FIORANO_HOME%/Studio/platform5/core/openide.jar

 add<classpath codebase="extlib" archives="*"/> to
<JBOSS_INSTALL_DIR>/server/default/conf/jboss-service.xml

 add the following jars from <fiorano_install_dir>/extlib to
<JBOSS_INSTALL_DIR>/lib/endorsed

dom.jar, jaxp-api.jar, resolver.jar, sax2.jar, xalan.jar, xerces.jar, xml-apis.jar

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 239

3.4.7.2 Additional Features for Component Administration

The Fiorano Studio provides monitoring support for components that are launched in a Fiorano
application. The Fiorano Studio monitors the launch and kill of the component and allows the
user to view logs of the component and the messages that queue up at the input of the
component.

1. Component status. Refer to Figure 3.4.29 to 3.4.32 for all possible status values.

A component which has not been launched has its name shown in black color. Refer to
“chat2” text in Figure 3.4.29.

Figure 3.4.29: A component which is not launched

A component whose handle has been bound has its name shown in blue color. Refer to
chat2 text in Figure 3.4.30.

Figure 3.4.30: A component which is bound

A component which has been launched has its name shown in green color. Refer to chat2
text Figure 3.4.31.

Figure 3.4.31: A component which is launched

A component which has been stopped (or killed) has its name shown in red color. Refer to
chat2 text Figure 3.4.32.

Figure 3.4.32: A component which is stopped (or killed)

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 240

2. View logs. To view the Logs of a component using the Fiorano Studio

a. Right-click on the component and select View Logs from the menu list as
illustrated in Figure 3.4.33. You also use the same menu to clear and export logs as
well.

Figure 3.4.33: Menu showing the option to view component logs

b. A dialog box appears which displays the output and error logs for the component,
as shown in Figure 3.4.34. You can clear, export or refresh the logs. Also, using the
same window you can change the service instance to view logs of another component

Figure 3.4.34: UI showing logs of the component

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 241

3. View queued messages: To view the queued messages at the input or output port of a
component using Fiorano Studio:

a. Right-click input port and select Browse Messages from the menu list as shown
in Figure 3.4.35.

Figure 3.4.35: Menu to browse queued messages

b. A dialog box appears to show the queued messages as shown in Figure 3.4.36.
Click on the message to see its properties and the content.

Figure 3.4.36: UI showing the queued messages on a queue

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 242

c. When you choose the Subscribe/Receive messages option, the messages are
picked up from the queue/topic and are displayed as illustrated in Figure 3.4.37.
Choose the appropriate message to view details.

Figure 3.4.37: UI showing the queued messages on a topic

3.4.8 InMemory Launch

A component within an Event Process can be configured to be automatically launched within
the same JVM as the peer server to which it is connected. Such a launch is called an In-
Memory launch, since the component runs in the memory of the peer server JVM.

For each component launched in memory class loaders are created. The class loaders can be
created in two ways, they are:

Cached Class Loader:

For each service, a class loader is created if it is not already created. For example, if three
services a, b, and c with dependencies a->b->c.
When the component is launched in memory a different class loader is created for each service
with resources required for execution by the service. And these class loaders are cached for
other services using same libraries.

When calculating class loader of a service, it loads the resources of service as URL class path
and maintains a list of class loaders of dependent services as parent class loaders. To resolve
a particular class in classpath, the called class should be present in the URL classpath of class
loader of the caller service or it should be present in parent class loaders. As we are caching
the created class loaders, the memory occupied for multiple service instances can be reduced.

Problems in this approach

User has to set the dependencies of the services without any class path issues. If multiple
instance of same component is launched in memory, as class loaders are cached, each
instance use the same class loaders. Hence, any static variables in component are shared.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 243

UnCached Class Loader

Unlike Hierarchical Class Loading, this uncached class loader creates a single URL class loader
for the service including its dependencies. And these class loaders are not cached.

In this approach level of dependencies of the service does not matter and separate class
loader is created for each instance. This solves the two problems addressed in cached class
loader approach.

In this approach there would be an increase in memory usage of peer server as any class
loaders are not cached. User has given an option to choose between these two approaches at
peer server level.

1. Open Peer Server profile in Fiorano Studio.

2. Navigate to FPS->Fiorano->ESB->Peer->Launch->ClassLoaderManager.

Note: Cache class loaders property allows users to select option whether to cache the In
Memory service class loaders or use separate class loaders, if it is true class loaders are
cached, if false separate class loaders are used.

Figure 3.4.38: Properties of ClassLoaderManager

3. Save the profile and restart FPS.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 244

3.5 Export and Import Service Components

The Fiorano Studio tool provides facilities to export and import components.

3.5.1 Exporting a Component
1. Right-click the component to be exported in Service Repository->Registered

Services tree and choose Export from the drop-down list to export the component as
shown in Figure 3.5.1.

Figure 3.5.1: Menu to export the component from the Fiorano Studio

2. In the Customize Export SMTP: The 4.0 dialog box, provide the location where the file
needs to be saved as shown in Figure 3.5.2. Also select any system library
dependencies that you wish to export along with this component.

Figure 3.5.2: UI to save the exported component and its libraries.

3. Click OK to export the component as a zip file that is saved on the file system.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 245

3.5.2 Importing a Component

The Import operation is similar to the export operation discussed above. An Import is typically
performed by reading a .zip file containing an exported component, from the file system.

1. Right-click on Service Repository->Registered Services and choose Import
Service from the menu list as shown in Figure 3.5.3.

Figure 3.5.3: Menu to import a new component

2. Choose the Import Service from the menu list to import from the zip file. Click the
OK button to import. In the file-chooser dialog, browse the file system and/or type in
the path of the .zip file containing the component(s) to import.

3. Choose the .zip file containing the Component(s). The list of components in the .zip
file is displayed, as shown in Figure 3.5.4. Choose the components to import and click
OK.

Figure 3.5.4: List of components to import

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 246

4. The Properties for the imported component are displayed as illustrated in Figure 3.5.5.
Modify any details as necessary and click the OK button.

Figure 3.5.5: Properties of the imported component

Note: Exported components can be moved from one Fiorano Enterprise Server to another
provided both the Fiorano Enterprise Servers are of same version and build.

3.6 Component Creation

Apart from the exhaustive list of pre-built components, custom components can be written,
built, and deployed into Fiorano SOA Platform by developers. To aid developers in component
creation, the platform provides a template engine to generate the skeleton code for custom
components in Java, C, C++, C# (.Net). The following sections describe component creation in
different languages

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 247

3.6.1 Template Engine

The Template engine is located at %FIORANO_HOME%\esb\tools\templates (this is referred
as %TEMPLATE_ENGINE% going forward in this doc) directory in the installation. The
templates and scripts used for component creation are organized as shown in the Figure 3.6.1.

Figure 3.6.1: Structure of the Template engine

Component creation can be done in two ways:

• From the command line using scripts

• From the Fiorano Event Process Orchestration (Fiorano Studio)

3.6.1.1 Component Creation from the Command Line

The steps for component creation from command line are:

1. Create a new setting (optional)

2. Define new variables that can be used in templates (optional)

3. Modify the templates (optional)

4. Configure the service to be created.

5. Generate the code for the component.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 248

6. Build the component.

7. Deploy the component.

Each of these steps is explained in the following sections.

3.6.1.2 Creating a Setting

A Setting contains the defined variables that can be used in the templates of source files and
values that replace these variables during the source generation.

• Each folder in %TEMPLATE_ENGINE%/etc is a setting. The Fiorano setting can be seen
in Figure 3.2.1.

A setting typically consists of the following files:

templates.properties

This is a file containing the variables that can be used in the templates of source files.

copyright.txt

This is a text file containing the copyright notice that should be included in the generated
source files.

3.6.1.2.1 To create a new setting

• Create a directory in %TEMPLATE_ENGINE%\etc with the setting name required.

• Create the files templates.properties and copyright.txt.

• Define appropriate variables in templates.properties.

3.6.1.3 Variables

The template engine uses variables to substitute values during the code generation.

3.6.1.3.1 In-built variables

The following table illustrates in-built variables:

Variable Name Description

guid exact GUID of the service

serviceGUID GUID of service with first letter as lowercase

ServiceGUID GUID of service with first letter as uppercase

serviceguid GUID of service in lowercase

version version of the service

inputPorts java.util.ArrayList containing input port names

outputPorts java.util.ArrayList containing output port names

inMemoryLaunchable java.lang.Boolean specifying whether service can be launched in-memory

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 249

Variable Name Description

isSyncRequestType java.lang.Boolean specifying whether SyncRequestType is enabled or not
for input port

isBCConnEnabled java.lang.Boolean specifying whether connection semantics is enabled for a
JCA-complaint component

fioranoHome Fiorano SOA Platform installation directory

copyright copyright notice for source file (as javadoc comment) [content of
copyright.txt from setting directory]

date current date

rootDir root directory to resemble root package

BCRootDir root directory to resemble root package for JCA-complaint components

The values for the above variables either picked up from pre-defined locations or computed
based on other variables and hence the user does not have complete control of these
variables.

Note: These variables are available independent of the Setting being used

3.6.1.3.2 Variables Defined in the fiorano Setting

The following table explains the variables present in the fiorano Settings:

Variable Name Description

rootPackage Name of the root package in which sources are generated

JCARootPackage Root package for JCA-complaint Code generation

author Developer name that appears in the source file

dateFormat Date format used for date variable

3.6.1.3.3 Defining New Variables

New variables can be defined by adding an entry in the templates.properties file.

This is a java properties file containing:

• The variables defined that can be used in the templates of the source files (present in
%TEMPLATE_ENGINE%\<lang>\src).

• The values for the defined variables which is substituted during the source code
generation.

A typical file is shown in the Figure 3.6.2:

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 250

Figure 3.6.2: templates.properties file containing defined variables and their values

To create a new variable with name e-mail and value user@domain.com, edit the
templates.properties file as shown in the Figure 3.6.3.

Figure 3.6.3: Modified templates.properties file

For more Information regarding editing properties file, see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream)

3.6.1.4 Modifying the Templates

As shown in figure 3.6.1 source file templates for different languages are present at
%TEMPLATE_ENGINE%\<lang>\src . These can be edited to use the variables defined in the
previous section.

3.6.1.4.1 Using the Variables in Template

The variables defined can be referred in the template files by specifying as ${variable_name}.
Shown in image:

Figure 3.6.4: Source template file showing use of variables

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream)

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 251

3.6.1.5 Defining Components

To communicate the details of component to the servers we need to define the component in
such a way that servers understand the component. The language used for this purpose is
XML. A component is defined using a XML file called ServiceDesriptor.xml. The definition
includes properties of component such as, its name, operating system to which the component
is complaint to, channels through which the component interacts with other components
among other properties.

This section aims at understanding all such properties, defining them and see the affect such
properties have.

A wizard to aid users to define the component to be created is provided in the template
engine.

3.6.1.5.1 On Windows

• Browse to %TEMPLATE_ENGINE%

• Run templates-console.bat; a command prompt opens in directory pointed to
%TEMPLATE_ENGINE%.

• Run the command wizard.bat specifying the destination directory as follows:

Note: Run wizard.bat without any arguments to see the help.

3.6.1.5.2 On Linux

Browse to %TEMPLATE_ENGINE% in Linux console

Run the command wizard.sh specifying the destination directory as follows:

Usage: wizard.sh -dest <dir>

<dir> - The directory in which the component should be created.

Note:Run wizard.sh without any arguments to see the help.

3.6.1.6 Getting familiar with wizard and service configuration

In this section the different wizard steps of the configuration wizard are explained. Specific
details with respect to language is mentioned in respective sections

3.6.1.6.1 Business Component Header Panel

This panel allows you to specify the type of component to be created and identification details
of the component to be used in the tools. ServiceGUID uniquely identifies the Service.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 252

 The Category can be selected from a pre-existing list in the Category Selection Box;
alternatively, a new category can be added directly in the text box (comma separated) or by
clicking on the button at the right typing in the corresponding name.

Finally, enter the display name for the component; the Display Name is typically different from
the ServiceGUID and is the name displayed by the Fiorano Studio for this Component.

Figure 3.6.5: Business Component Header Panel

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 253

Figure 3.6.6: Specifying categories

The components that are registered, in the Enterprise server, are categorized under different
categories for easier maintenance. The components are shown as grouped under the category
they belong to in tools; Figure 3.6.8 illustrates image of organization of categories in Fiorano
Studio.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 254

Figure 3.6.7: ServiceDescriptor.xml containing properties specified in the Business Component
Header Panel

Figure 3.6.8: components categorized in Fiorano Studio

Note: Business Component Header panel is the only panel in which the details are mandatory.
User can choose to finish the service definition any time after all the required details are
specified in this panel.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 255

3.6.1.6.2 Resources and Dependencies Panel

Any component created in general requires resources –third party libraries, Fiorano libraries or
other files – required at the time of component configuration or execution.

Resources and dependencies both serve the same purpose; providing the component with
libraries or files required. However they differ in the way these file or libraries are treated by
Fiorano servers.

Resources can be any files which are used by the component. Typically resource files are of
types – dll, zip, jar, so, exe. However there is no strict restriction on this, a file of any type
can be added as a resource. The server makes a local copy of these files in the component’s
folder in the component repository (%FIORANO_HOME%\esb\fes\repository\components). So
a same file added as a resource to two different components is copied into respective folders
of both the components. Also when these components are launched in-memory of same peer
server, resources is loaded into the respective class loaders of the components.

On the other hand Dependencies are predefined. Every component or system library
registered can be added as a dependency. The dependencies are referenced from the existing
location and are not copied locally. Another advantage is that dependencies are loaded only
once when the components are launched in-memory of same peer server, there by reducing
the memory footprint.

More details on registering components and system libraries are available in section Service
Component Characteristics, Configuration and Deployment.

Figure 3.6.9: Resources & Dependencies panel

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 256

Resources

To Add: Click the Add button against Resources shown in Figure 3.6.9. Choose the required
resources from the file dialog which opens up

To Remove: Select the resource to remove. Click the Remove button against Resources
shown in Figure 3.6.9.

Dependencies

To Add: Click the Add button against Libraries shown in Figure 3.6.9. A window titled Select
Libraries for the Business Component opens listing all the components and system
libraries registered (shown in Figure 3.6.9). Select the required libraries and click the OK
button.

Applicable OS

Select the operating systems to which the component is compatible.

Figure 3.6.10: List of libraries

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 257

Figure 3.6.11: ServiceDescriptor.xml containing properties specified in the Resources and
Dependencies Panel

3.6.1.6.3 Business Component Description Panel

The author and the description of the component can be provided in this following panel.

Figure 3.6.12: Panel containing description of the component

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 258

Figure 3.6.13: ServiceDescriptor.xml containing properties specified in the Business Component
Description Panel

3.6.1.6.4 Event Ports Information Panel

Data transfer among components is done over JMS. So the components require data channels
to receive the request and send the results. These data channels are called ports. Ports are
JMS destinations; either topics or queues. A component can have any number of input ports
and output ports. The port details are configured in this panel (Figure 3.6.14).

Figure 3.6.14: Configuring the port details for the component

Port Properties

Property Description

Name Name of the port that appears in the Fiorano Studio

Description A statement typically indicating the purpose of this port

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 259

Property Description

Type Chose from Normal or Sync Request Reply

DTD/Schema If the component expects or sends out messages in XML format specify the
DTD/XSD the message should be compliant. It can be used as an assertion to
make sure that the component receives the message in the format it expects or
that it sends out the message in the format it is supposed. Fiorano Studio
checks for the format mismatches when the components are connected by a
route and intimates them

Imported
Schemas

When definition is a XSD, use this field to define the elements that are resolved
from a different schema. Multiple schemas can be provided here

Root Element The root element of the XML message

Note: if the fields DT/Schema, imported Schemas and Root Element should be used only the
message are of XML format.

Adding a Port

To add a port, click the Add button adjacent to Input Event Ports details or Output Event
Ports to add an input or an output port respectively. The port details appear as shown in
Figure 3.6.11.

Removing a Port

To remove a port, select the port to be removed and click the Remove button adjacent to
Input Event Ports details or Output Event Ports as appropriate.

Modifying details of Port

Select the port to be modified and click on Modify button adjacent to Input Event Ports
details or Output Event Ports as appropriate. This opens up a dialog where the details can
be modified.

Output port details can be modified similarly except that for output port ‘Normal’ and ‘Sync
Request Reply’ (in Figure 3.6.15) are not present.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 260

Figure 3.6.15: Modifying the event port properties

Figure 3.6.16: Selecting the root element

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 261

Figure 3.6.17: Adding and removing imported schemas

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 262

Figure 3.6.18: ServiceDescriptor.xml containing properties specified in the Event Port Properties
Panel

3.6.1.6.5 Execution Information Panel

This panel allows the user to specify the execution details of the component. A component
while executing, might require parameters to execute different request or details of handling
different request. There are two ways of passing this information to the component.

By configuring the details in the Configuration Property Sheet of the panel (discussed in
component configuration section)

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 263

By defining the command line arguments that can be passed to the component during the
launch of the component. These command line arguments are captured as runtime arguments
in this panel.

Figure 3.6.19: Configuring execution details of the component

Properties captured in Execution Information Panel

Property Description

Execution
Directory

Working directory of the component during the runtime

Is Licensed Specifies if the component is licensed. If this is checked and component’s
license is not present in the license file the component will not be launched

Is Configuration
Mandatory

Specifies whether the component requires to be configured before launching the
component. If checked the component will not launch unless the component is
configured using the configuration property sheet

Runtime
Arguments

These are the command line arguments that are passed to the argument. The
values for these can be provided in the properties window of the component in
the Fiorano Studio.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 264

Figure 3.6.20: ServiceDescriptor.xml containing properties specified in the Execution Information
Panel

3.6.1.6.6 Logging and Document Tracking Panel

Logging is a practice of writing out the messages indicating the state of component, actions
performed and any other related data. Logging is used for different purposes including

• Notifying users of important actions/changes or problems (exceptions/errors) that
occur at runtime

• Aiding developers in debugging the application

• Understanding the flow of data among different method calls

For each of the above purposes the data and the details that should be logged vary. Log levels
help in meeting the needs of different users.

This panel allows the users to define such logging and states for document tracking (Figure
3.6.21).

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 265

Figure 3.6.21: Configuring Logging and Document Tracking panel

Figure 3.6.22: ServiceDescriptor.xml containing properties specified in the Logging and Document
Tracking Panel

3.6.1.6.7 Advanced Configuration Panel

This panel has the following properties:

Property Description

Is auto launchable Yes – Component can be launched in ‘Separate Process’ mode

No – Component cannot launched in ‘Separate Process’ mode

Supports Error
Handling

Yes – Error port is shown when ‘Show Error Ports’ is selected

No – Error port is not shown even when ‘Show Error Ports’ is
selected

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 266

Property Description

Supports Failover to
another Peer Server

Yes – When the Peer Server on which component is running goes
down, the component keeps running on the next available Peer
Server.

No – When the Peer Server on which component is running goes
down, the component will not keep running on the next available
Peer Server.

Is manually
launchable

Yes – Component can be launched in ‘Manual’ mode

No – Component cannot launched in ‘Manual’ mode

Is inMemory
launchable

Yes – Component can be launched in ‘In Memory’ mode

No – Component cannot launched in ‘In Memory’ mode

InMemoryLaunch
Class

A class which implements fiorano.esb.util.InMemoryLaunchable
interface containing methods to launch and stop the component.
This class is used by Peer Server to launch and stop component
when the launch mode of the component is InMemory

Supports Component
Control Protocol

Yes – Component listens, understands and responds to control
events from Peer Server. Using this option allows components
launched as separate process to cleanup when stopping

No – Component does not handle control events from the Peer
Server. The Peer Server will not send any control event to
component. Component launched in separate process is issued a
destroy command to stop and the component process will be killed
instantly without any cleanup.

This property will not editable while editing the service from Studio.

For additional details on Component Control Protocol refer to section
3.12.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 267

Figure 3.6.23: Advanced Configuration Panel

After the wizard is closed, it creates the following structure in the directory specified against
the –dest option passed to the wizard.bat or wizard.sh.

Figure 3.6.25: Directory structure after defining component

In case of synchronous Java Component a file named bc.properties is also created.

3.6.1.7 Generating Code for the Defined Component

To generate the source code for the component defined, use the generate command.

3.6.1.7.1 On Windows

• Browse to %TEMPLATE_ENGINE%

• Run templates-console.bat; a command prompt opens in directory pointed to
%TEMPLATE_ENGINE%.

• Run the command generate.bat specifying the destination directory as follows:

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 268

Figure 3.6.26: Run templates-console.bat

Note: Run generate.bat with out any arguments to see the help

3.6.1.7.2 On Linux

Browse to %TEMPLATE_ENGINE% in Linux console

Run the command generate.sh specifying the destination directory as follows:

usage: run [-language <name>] [-setting <name>] -dest <directory>

 -dest <directory> target directory where source files are

 Generated (same directory given while launching wizard)

 -language <name>language (c, cpp, csharp, java, jca) in

 which source files are generated (default is java)

 -setting <name> name of setting directory in etc folder

Note: Run generate.sh with out any arguments to see the help

Executing the above command generates the sources under src directory specified in the
directory specified against –dest argument. It also creates necessary files to build and deploy
the components. build.properties, build.xml, common.xml are the common files that are
created irrespective of language.

3.6.1.8 Building the Component

To build the component created, execute command ant in the component directory. This
compiles the source files, builds the required archives and creates a file export.zip containing
all the files /details required for the components. export.zip can be imported using FSSM or
Studio, for details regarding importing of a business component see section 3.5 Export and
Import Components.

3.6.1.9 Deploying the Component

Deploying the component means registering the component on a Fiorano Enterprise Server.
Any component created before it can use in developing event process(s) has to be registered
with the Fiorano Enterprise Server.

To deploy the developed component execute command ant register from the command line
in the component directory.

The details of the enterprise server on which the component should deployed are specified in
build.properties file

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 269

Figure 3.6.27: build.properties containing details of enterprise server on which component has to be
deployed

Note: ant unregister command can be used to unrgister a custom component that is
already registered with the enterprise server.

ant reregister command can be used to redeploy a component that is already registered with
enterprise server in case any changes are made to the component.

3.6.2 Component Creation in Fiorano Studio

Fiorano provides a complete GUI based approach to define, build and deploy components from
Fiorano Studio, apart from the scripts based approach from command line mentioned in the
earlier section.

• The GUI for component creation can launched from Fiorano Studio Tools
Create Service Component action (shown in Figure 3.6.28).

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 270

Figure 3.6.28: Menu containing Create Service Component action

• Invoking this action (click on the menu item) brings up a dialog (Figure 3.6.29).
The dialog takes the destination folder in which the component has to be created.
Note that the folder name given should not be existent.

Figure 3.6.29: Input for destination folder in which the component has to be created.

• Provide a valid directory and click OK button.

• Define the component that is to be created comes up.

• Complete the component definition. On the completion of wizard, the Customize
dialog comes up as shown in Figure 3.6.30.

Figure 3.6.30: Component code generation, compilation and registration

Select the language, setting and post creation task (among the following tasks)

Post Creation Action Action taken

None Generate the source code and do nothing else

Build Generate the source and build the sources

Build and Deploy Generate the source, build the source and register with Fiorano
Enterprise Server

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 271

3.6.3 Java Components

Java components can be of two types as described in section 3.1 Service Components.
Characteristics:

• Asynchronous components (pure JMS)

• Synchronous components (JCA-Compliant)

3.6.3.1 Defining Asynchronous Component

To define an asynchronous components launch the component definition wizard as described
in section 3.6.1.5 Defining Components and follow the steps described in section 3.6.1.6
Getting familiar with wizard and service configuration.

Example: wizard.bat –dest C:\SampleComponents\EDBC\SampleEDBC

3.6.3.1.1 Generating Code for Asynchronous Component

To generate code for asynchronous component follow the steps in section 3.6.1.7 Generating
code for the defined component.

The generate command by default assumes that the code is generated for the asynchronous
component. To particularly specify that the code generated should be for asynchronous
component use –language option with value java

Example: generate.bat –dest C:\SampleComponents\EDBC\SampleEDBC –language java

The generated component code has the structure as shown in Figure 3.6.31

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 272

Figure 3.6.31: Structure of asynchronous component

Description/purpose for each of the files generated are also shown in Figure 3.6.31.

3.6.3.1.2 Adding business logic to asynchronous Component

By default the component functions are:

• Listens for the input message on the input port.

• Sends the output to JMSReplyTo if request reply is enabled on the input port which
receives this message and JMSReplyTo is specified.

• If request reply is not enabled or JMSReplyTo is not specified then it sends the same
message on all the output ports.

To add the business logic

First the control flow should be understood. The control flow works as follows

Component startup:

− Component’s ‘Executable’ class (present in ServiceDescriptor.xml) is invoked with
required arguments in case of ‘separate process’ launch. Or, startup (String [] args)
method of the component’s ‘InMemoryLaunchImpl’ class (present in
ServiceDescriptor.xml) passing the arguments.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 273

− Arguments are parsed. See figure 3.6.32.

Figure 3.6.32: SampleEDBC.java showing the control flow entry point and the args passed

• The configuration of the component is serialized and bound using JNDI during the
configuration time. This serialized configuration is looked up during the start up and
de-serialized to get the configuration object. See Figure 3.6.33.

Figure 3.6.33: SampleEDBC.java, JNDI lookup and deserialize the configuration

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 274

All the required JMS objects are created.

Component runtime:

• Once the component startup is complete, the component is ready to process the
messages.

• Each of the input ports of the component is associated with a MessageListener
(<Component_guid>MessageListner.java), which listens for the messages on the
respective input port.

• On receiving a message, onMessage (Message msg) of MessageListener is called.

• The message is processed and sent on the output port(s) or JMSReplyTo destination as
appropriate

Figure 3.6.34: RequestProcessor.java showing the business logic

Figure 3.6.35: SampleEDBCMessageListener.java containing logic to pass Object to request
processor

Component shutdown:

When the application / component is killed the component’s process is killed and the
component is forcibly killed. However, if the component is launched in memory the shutdown
(Object hint) is called. All the JMS objects, connections and so on are closed here.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 275

For the generated component all of the above work is done and only the business logic needs
to be added. Business logic includes creating any necessary objects or connections to external
systems required for processing the messages, processing messages and cleaning up the
objects, created at startup, during the shutdown. Business logic can be added in
processMessage(Message message) method of<component_guid> MessageListener .java as
shown in Figure 3.6.34.

3.6.3.1.3 Configuration Property Sheet of asynchronous component

The generated component by default has a Configuration Property Sheet (CPS), which can
used to configure the adapter to perform required business logic. See section 3.6.3.2.7 Adding
properties to Configuration Property Sheet to add additional properties on the CPS.

In addition to getters and setters and the jmx-operations described in the section 3.6.3.2.7
Adding properties to Configuration Property Sheet, asynchronous components configuration
class can have the following methods (jmx operations)

/**

* @return

 * @jmx.managed-operation description="tests the connection or business logic"

 */

public void test() throws FioranoException

Add the logic to test any connection related or business operation related logic here.

See WorkList component’s CPS

/**

 * @return help url

 * @jmx.managed-operation description="Help set URL"

 */

public URL fetchHelpSetURL()

URL to the helpset file to display help for the component in the CPS

/**

 * @exception FioranoException

 * @jmx.managed-operation description=" Validates Configuration Properties "

 */

public void validate() throws FioranoException

Add logic to validate the component’s configuration in this method. If the configuration is
invalid throw a FioranoException to disallow user to finish the CPS.

3.6.3.1.4 Frequently Asked Questions

Question: What are runtime arguments?

Answer: Runtime arguments are name value pairs which are passed to a component as
command line arguments during component launch.

Component’s configuration is usually and preferably a part of component Custom Property
Sheet (CPS). However, some configuration parameters may be passed as runtime arguments
to the component in following cases:

• Component requires very few configuration parameters (typically up to 3).

• Configuration contains properties which may be changed very frequently and opening
CPS every time should be avoided.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 276

Question: How to access runtime arguments?

Answer: Runtime arguments are just another way to provide component configuration.
Runtime arguments are accessible in ${ServiceGUID}.java as commandLineParams. To access
runtime arguments in other classes, typically in classes which process request, following
changes have to be done.

• ${ServiceGUID}PM.java contains configuration for the component and this object is
available with all the classes which process requests

• Create a getter and setter for an object of type CommandLineParameters in
${ServiceGUID}PM.java as shown in Figure 3.6.36.

Figure 3.6.36: ${ServiceGUID}PM.java with getter and setter for runtime arguments

1. Override method fetchConfiguration() in ${ServiceGUID}.java to set instance of
CommandLineParameters (commandLineParams) on instance of
${ServiceGUID}PM.java (configuration) as shown in Figure 3.6.37.

Figure 3.6.37: Setting runtime arguments onto configuration in ${ServiceGUID}.java

2. Where ever required, fetch value of runtime arguments’ from configuration object.
As shown in Figure 3.6.38. Individual parameter objects can be accessed using
getParameter(String key)

Figure 3.6.38: Accessing runtime argument in RequestProcessor.java

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 277

Question: How to send messages onto specific output port(s)?

Answer: EDBC framework has support for following methods on JMSHandler class:

Figure 3.6.39: APIs for sending messages in JMSHandler

Sending messages only onto specific output port(s) can be done in one of the following
methods:

Method 1: Determining output port while sending

Generated code uses sendMessage(Message outputMsg)API to send messages on all related
output ports. To send messages only to a specific port use sendMessage(Message outputMsg,
String outputPortName)as shown in Figure 3.6.40.

Figure 3.6.40: Sending message to required output port in ${ServiceGUID}MessageListener.java

Method 2: Creating association between input ports and output ports

This method can be used when there is a strict one-to-one binding input and output ports.

Example: Consider a case where a component has two input ports (IN_PORT_1 and
IN_PORT_2) and two output ports (OUT_PORT_1 and OUT_PORT_2) and all message received
on IN_PORT_1 should sent on OUT_PORT_1 and all messages received on IN_PORT_2 should
be sent on OUT_PORT_2.

Then the following can be done by passing a collection of only required OutputPortHandler
objects when creating InputPortHandler in JMSObjects as shown in Figure 3.6.41.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 278

Figure 3.6.41: Associating output ports with input ports in JMSObjects.java

Question: How to release resources in RequestProcessor class?

Answer: RequestProcessor is designed to handle requests and should usually contain only
logic for handling requests. Responsibility of passing required resources to RequestProcessor
lies usually with the class creating RequestProcessor object as shown in StoreNForward sample
provided in %FIORANO_HOME%\esb\samples\components\EDBC\StoreNForward.

Number of RequestProcessor objects in the component also largely depends on component
implementation. For the generated if resources are being initialized in RequestProcessor class,
then they can release by making following changes:

Add a method close() in RequestProcessor which does the required cleanup.

Figure 3.6.42: close method to release resources in RequestProcessor.java

Cache ${ServiceGUID}MessageListener class in JMSHandler.java and provide a close() method
which does necessary cleanup.

Figure 3.6.43: Caching ${ServiceGUID}MessageListener and releasing resources in JMSHandler.java

Add a close() method in InputPortHandler.java to do necessary cleanup and close all
JMSHandler objects

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 279

Figure 3.6.44: close() to close all JMSHandler objects in InputPortHandler.java

Override destroy() method in JMSObjects.java to close InputPortHandlers

Figure 3.6.45: closing InputPortHandler objects in JMSObjects.java

Question: How to use a custom CPS instead of default CPS after the component
creation?

Answer: By default, the component created from generated sources has a dynamically
created name-value pair CPS. Additional properties can be added to CPS as described in
section 3.6.3.2.7 Adding properties to Configuration Property Sheet (CPS).

However, if a manually written CPS class (an instance of TifosiCustomPropertySheet or
PropertyEditorSupport) from earlier SOA version is present then it can used instead of the
default dynamically created CPS as shown in Figure 3.6.46.

Edit etc\ServiceDescriptor.xml to use the complete class name for required CPS class

(Say, com.fiorano.edbc.sampleedbc.cps.PropertySheet) instead of default CPS class name
(com.fiorano.edbc.${serviceguid}.model.${ServiceGUID}PM) at
/service/execution/cps/launcher as shown in Figure 3.6.46:

Figure 3.6.46: ServiceDescriptor.xml showing the change in CPS class name

Edit common.xml file to provide new CPS class name in service-export ant task (present in the
target deploy) as shown in Figure 3.6.47.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 280

Figure 3.6.47: common.xml, service-export ant task showing change in CPS name

Question: How to use a custom service class?

Answer: Similar to CPS class above, if a pre-existing service class has to be used instead of
default generated service class ${ServiceGUID}.Note that the class should implement
InMemoryLaunchable interface.

Edit common.xml file to provide new service class name in service-export ant task (present in
the target deploy) as shown in Figure 3.6.48.

Figure 3.6.48: common.xml, service-export ant task showing change in service name

Note: defaultLogModule value should also be changed to reflect correct value(new service
class name being used)

Question: How to create a component handling asynchronous requests?

Answer: Default generated sources handle requests synchronously, i.e. for each input there is
atleast one corresponding output. However, asynchronous request handling can be achieved
by making following changes in the generated source code.

Modify the constructor of RequestProcessor to pass a handle to JMSHandler

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 281

Figure 3.6.49: Modifying RequestProcessor.java to pass handle for JMSHandler in constructor

Override sendResponse(Message message)and prepareResponse(Message requestMessage,
String response) in ${ServiceGUID}MessageListener with empty implementations.

Figure 3.6.50: Empty implementations in ${ServiceGUID}MessageListener.java

Pass reference of JMSHandler to RequestProcessor

Figure 3.6.51: Passing JMSHandler to RequestProcessor from ${ServiceGUID}MessageListener.java

Return null in process (String request) in RequestProcessor

Figure 3.6.52: Return null after processing request in RequestProcessor.java

When required condition is satisfied send the message from RequestProcessor process(String
request) to required output port using JMSHandler as described in FAQ 3 above.

Question: How to access a property set on the incoming JMS Message?

Answer: Generated code calls RequestProcessor process(String request) for processing
message. However, message properties from input message can be accessed in
RequestProcessor by changing generated code as follows:

Override handleMessage(Message requestMessage) in ${ServiceGUID}MessageListener to call
Message process(Message) API in RequestProcessor as shown in Figure 3.6.53.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 282

Figure 3.6.53: Overriding handleMessage in ${ServiceGUID}MessageListener.java

Override Message process (Message) method in RequestProcessor as shown in Figure 3.6.54.

Figure 3.6.54: Overriding API to handle Message in RequestProcessor.java

Note: StoreNForward sample provided in
%FIORANO_HOME%\esb\samples\components\EDBC\StoreNForward shows handling requests
asynchronously and using API which handle Message instead of String

Question: How is exception handling done?

Answer: Exception handling in generated code can be easily done by just setting predefined
error codes when exceptions are thrown. For each error code, a set actions can be taken (if
enabled). These actions can be configured in the CPS generated.

Following error codes are supported by EDBC framework:

• ServiceErrorID.INVALID_REQUEST_ERROR

• ServiceErrorID.REQUEST_EXECUTION_ERROR

• ServiceErrorID.TRANSPORT_ERROR

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 283

If an error happen when a request is being processed, throw a ServiceExecutionException with
appropriate error code (as shown in the Figure 3.6.55) and the framework handles it based on
the actions enabled in CPS.

Figure 3.6.55: Throwing a ServiceExecutionException with appropriate error code

Question: How can resources be initialized or cleaned up in service class?

Answer: Override createServiceObjects() and stop()in ${ServiceGUID}.java to handle
resource initialization and resource cleanup respectively

Figure 3.6.56: Handling resource initialization and cleanup in ${ServiceGUID}.java

Question: How can the configuration be made optional for service?

Answer: Configuration can be made optional for a service by making following changes:

Edit common.xml file and change value of cpsMandatory property to false in service-export ant
task (present in the target deploy) as shown in Figure 3.6.57.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 284

Figure 3.6.57: Modfiying common.xml to mark configuration as optional

• Override isConfigurationMandatory() in ${ServiceGUID} to return false

• Override createDefaultServiceConfiguration() in ${ServiceGUID} to return default
configuration

Figure 3.6.58: Overriding required methods to make configuration optional in ${ServiceGUID}.java

3.6.3.2 Creating a Synchronous Component

Fiorano provides a framework to develop synchronous components. The user creating a
synchronous component cannot and will not have to, make any coding effort to create or
handle JMS objects. Handling of JMS objects is taken care of in the framework provided.

• Synchronous components are JCA-Complaint (1.0 spec) and hence user needs to
implement a few interfaces on top of the framework if the synchronous component
has to be created from scratch. However, to make it easier the template engine
generates the implementation of JCA interfaces as well and all that the user would
be required to handle is the business logic, like in case of asynchronous
component.

3.6.3.2.1 Defining synchronous Component

To define a synchronous component launch the component definition wizard as described in
section 3.6.1.5 Defining Components.

Example: wizard.bat –dest C:\SampleComponents\BC\SampleBC

• Fiorano framework for synchronous components allows the only one input port and
one output port and it handles the launch / stop of the component automatically.
Hence, the synchronous component definition wizard contains only the first three
panels described in section 3.6.1.6 Getting familiar with wizard and service
configuration. Refer to Figure 3.6.59.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 285

In the Business Component Header panel select the component type as BC. On selecting
BC, a check box Enable Connection Semantics appears. This check box has to be selected if
the component makes a connection to external system. Enabling connection semantics also
allows the component to pool the connections and reuse them. Refer to Figure 3.6.59.

Figure 3.6.59: Business Component Header Panel for synchronous component

• Resources and Dependencies panel and Business Component Description
panel can be configured as described in section 3.6.1.6 Getting familiar with
wizard and service configuration.

3.6.3.2.2 Generating Code for synchronous Component

To generate code for synchronous component follow the steps as described in section 3.6.1.6
Getting familiar with wizard and service configuration specifying –language option with jca
value as shown below:

Example: generate.bat –dest C:\SampleComponents\EDBC\SampleEDBC –language jca

The generated component code has the structure as shown in Figure 3.6.60.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 286

Figure 3.6.60: Structure of synchronous component

3.6.3.2.3 Adding Business Logic to Synchronous Component

The business logic of synchronous component lies in the <component_guid>Interaction.java.
The methods and their purpose /description are given below:

• String execute (ESBInteractionSpec interactionSpec, String inputMessage)

This method contains the business logic of the component.

Parameters:

interactionSpec – the configuration object; holds all the details specified during the
configuration time of the component in the Configuration Property Sheet (CPS).

inputMessage – the inputMessage received on the component’s input port

Return value:

Returns the string which should be sent as output message on the output port of the
component.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 287

• ESBRecordDefinition getInputRecordDefinition(ESBInteractionSpec
interactionSpec)

This method sets the schema (XSD/DTD) of the expected input message on the input port of
the component

Parameters:

interactionSpec – the configuration object; holds all the details specified during the
configuration time of the component in the Configuration Property Sheet (CPS).

Return value:

Returns a ESBRecordDefinition object which contains the schema details like, the structure,
structure type (XSD/DTD), root element, targetnamespace if the structure is a XSD and the
imported XSDs if any in case the structure type is XSD.

• ESBRecordDefinition getOutputRecordDefinition(ESBInteractionSpec
interactionSpec)

This method sets the schema (XSD/DTD) of the expected output message on the output port
of the component

Parameters:

interactionSpec – the configuration object; holds all the details specified during the
configuration time of the component in the Configuration Property Sheet (CPS).

Return value:

Returns a ESBRecordDefinition object which contains the schema details like, the structure,
structure type (XSD/DTD), root element, targetnamespace if the structure is a XSD and the
imported XSDs if any in case the structure type is XSD.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 288

Figure 3.6.61: SampleBCInteraction.java showing the business logic

Adding properties on response message

To add properties on to the response (output message) for a request make the following
change in the <component_guid>Interaction.java

Add the following code in the <component_guid>Interaction class as shown in Figure 3.6.62.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 289

Figure 3.6.62: code snippet to be added in SampleBCInteraction.java to read/set properties on the
message

• Javadoc for API to add the properties on the ESBRecord is present at the following
location %FIORANO_HOME%/javadoc/BCDK/index.html

Returning multiple responses for a single request

To return multiple responses for a single request

• Create a class which implements EnumerationRecord and implement
hasMoreElements () and nextElement () method (shown in Figure 3.6.63)

hasMoreElements ()should return if more output messages exist

nextElement () should contain logic for processing/retrieving next output message

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 290

Figure 3.6.63: EnumerationRecord Implementation

• Add the code snippet shown (Figure 3.6.62) in Adding properties on response
message section make the following change in the
<component_guid>Interaction.java

• Add the following code in the <component_guid>Interaction class as shown in
Figure 3.6.64.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 291

Figure 3.6.64 Code to be added in SampleBCInteraction.java for supporting multiple responses

3.6.3.2.4 Handling Connection

<component_guid>EISConnection.java creates and holds (in m_physicalConnection object)
the component’s connection to EIS. Figure 3.6.65 shows the code snippet where the
connection creation has to be added. The user does not take to implement connection pooling.
The framework automatically allows pooling of connections.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 292

Figure 3.6.65: SampleBCEISConnection.java showing location for connection creation

3.6.3.2.5 Configuration Property Sheet of Synchronous Components

The generated component by default has a Configuration Property Sheet (CPS), which can
used to configure the adapter to perform required business logic. See section 3.6.3.2.7 Adding
properties to Configuration Property Sheet to add additional properties in Managed Connection
Factory and Interaction Configurations of the CPS.

A synchronous component’s CPS has the following wizard steps:

Managed Connection Factory

Connection related configuration is captured in this panel. This panel is shown only if the
component is defined to be connection based. To add properties in this panel add attributes in
<component_guid>ManagedConnectionFactory.java

See javadoc of AbstractESBManagedConnectionFactory (super class of
<component_guid>ManagedConnectionFactory.java) for all the methods and attributes that
are available. Javadoc is located at the following location
%FIORANO_HOME%/javadoc/BCDK/index.html

Interaction Configurations

Configuration details related to business logic are captured in this panel. To add properties in
this panel add attributes in <component_guid>InteractionSpec.java

See javadoc of ESBInteractionSpec or ConnectionLessInteractionSpec (super class of
<component_guid>InteractionSpec) for all the methods and attributes that are available.
Javadoc is located at the following location %FIORANO_HOME%/javadoc/BCDK/index.html

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 293

Scheduler Configurations

Configuration details related to scheduling the execution of business components – like start
time for scheduling, interval at which execution have to scheduled, number of times etc –are
captured in this panel.

Transport Configurations (shown only if scheduling is enabled in Scheduler Configurations)

This panel contains transport related configurations such as type of JMS session (transacted or
non-transacted), session count, acknowledge type for messages and so on.

Error Handling

Actions to be taken on event of errors during the component execution should be defined in
this panel.

Adding Validation to MCF and Interaction Configurations panels

To enable validation in the MCF panels and Interaction Configurations panels override public
void validate () throws ESBResourceValidationException method in
AbstractESBManagedConnectionFactory and ESBInteractionSpec respectively and implement
the validation.

Generating Sample Input

Fiorano synchronous component’s framework generates sample input, which can be used to
test the business logic in the Interaction Configurations panel of the CPS as explained in
section 3.7.1.1 Testing in Configuration Property Sheet (CPS), using the schema returned by
public ESBRecordDefinition getInputRecordDefinition (ESBInteractionSpec interactionSpec)
throws ResourceException method in the <component_guid>Interaction class. However, it
might be required to generate input using custom logic for the adapter, like in case of
Text2XML. To generate sample input using custom logic override and implement the following
method in <component_guid>InteractionSpec. public void
generateSampleInput(java.io.OutputStream outStream) throws ESBException

Showing proxy related configuration details in the MCF panel

Sometimes component might have to make connection through a proxy. In such cases to take
proxy related configuration details change the
<component_guid>ManagedConnectionFactory.java as shown in Figure 3.6.66 and Figure
3.6.67.

Figure 3.6.66: Generated SampleBCManagedConnectionFactory.java

Figure 3.6.67: Modified SampleBCManagedConnectionFactory.java to allow configuring proxy
details

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 294

3.6.3.2.6 Exception handling

The logic for handling exceptions (as configured in Error Handling panel of CPS) is in-built in
the synchronous component’s framework. However, the user needs to throw appropriate
exceptions with appropriate error codes for the framework to interpret exceptions correctly
and handle them as configured.

Exceptions

There are two exception classes defined in the framework of synchronous component.

• ESBResourceException

This exception class (subclass of javax.resource.ResourceException) should be used
when throwing exceptions from classes in cci package (files in
src\com\fiorano\adapter\jca\<component_guid>\cci folder) to classes in framework.
Example in execute method of <component_guid>Interaction.java throw
ESBResourceException with appropriate error codes.

• ESBResourceAdapterInternalException

This exception class (subclass of javax.resource.ResourceException) should be used
when throwing exceptions from classes in spi package (files in
src\com\fiorano\adapter\jca\<component_guid>\spi folder) to classes in framework.
Example in init method of <component_guid> EISConnection.java throw
ESBResourceException with appropriate error codes.

Error codes

• INVALID_REQUEST_ERROR

This is the error code to be used if the request (input message) is invalid (does not
confirm to schema or is unexpected). This is used in cci package in general.

• RESPONSE_GENERATION_ERROR

This is the error code to be used when an exception occurs while response (output
message) is being created. This is used in cci package in general.

• REQUEST_EXECUTION_ERROR

This is the error code to be used when an exception occurs while processing the
request and the request cannot be executed. Typically for used exception in business
logic. This is used in cci package in general.

• RESOURCE_CONNECTION_LOST_ERROR

This is the error code to be used when the connection to EIS is lost while processing
the request. This is used in both cci and spi packages in general.

• RESOURCE_CONNECT_ERROR

This is the error code to be used when the attempt to connect to EIS fails. This is used
in spi package in general.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 295

3.6.3.2.7 Adding properties to Configuration Property Sheet (CPS)

The logic for creating and displaying CPS is inbuilt in the Fiorano framework. User can specify
the properties that have to be displayed in the CPS (Figure 3.6.69) by specifying JMX
descriptors (Figure 3.6.70) in the java files containing the configuration details. Such java files
are java bean type classes which have getter and setter for all the fields and an empty
constructor.

To add a new property that should be shown in the CPS

1. Add a getter and setter defined for the property.

2. Add jmx.managed-attribute descriptors above the method.

3. Add other jmx descriptors describing how the property has to be rendered or
handled in the CPS.

Figure 3.6.68: CPS containing a property, My Property, required for component configuration

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 296

Figure 3.6.69: Java file showing the JMX descriptors for the property

All the JMX descriptors that can be added on the components getters are shown in the
following table.

JMX descriptor Description Default Example

propertyEditor JMX descriptor to specify the editor
class which should be launched
when … is clicked in the CPS. By
default basic editors are shown for
basic return type

example:

if the getter returns a File then a
file chooser is shown

 @ jmx.descriptor
name="propertyEditor" value="co
m.fiorano.adapter.jca.db.editors.S
QLConfigurationEditor"

expert JMX descriptorTo make a specific
Property Advanced so that its not
visible unless 'expert' view is
switched on in the BCDK

false @jmx.descriptor
name="expert" value="true"

displayName By default, in the GUI the display
name for a property is introspected
from the class.

in case you want to specify a more
meaningful display name to a
property, then that can be done
using the jmx.descriptor

 @jmx.descriptor
name="displayName" value="My
Display Name"

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 297

JMX descriptor Description Default Example

optional To notify the editor that this
property is optional. Optinal
property names are rendered in
new Color(0, 128, 0) in CPS.

false @jmx.descriptor name="optional"
value="true"

password To inform that this property is
password and render as "*****"

false @jmx.descriptor name="password"
value="true"

index Define the order in which
properties appear in Studio.

Index should be a valid value is
integer;

Indexes start from 0(zero)

If you don't specify this descriptor
index is assumed to be 0 (zero)

The order of attributes is
indeterminate, if they have same
index.

-- @jmx.descriptor name="index"
value="1"

legalValues If the property can take only a
value from a list of some
permissible values, then same
should be provided as a JMX
descriptor. The values must be
provided as comma separated list.

 @jmx.descriptor
name="legalValues"
value="Value1,Value2"

canEditAsText if this property is not specified
default value is false if legalValues
are present else true

if prop has legal values and
canEditAsText is true, then you will
see an editable combo box

false @jmx.descriptor
name="canEditAsText"
value="true"

refresh If it is set to true for an attribute
then all the attributes of the MBean
are refreshed when the value
changes

false @jmx.descriptor name="refresh"
value="true"

hidesProperties JMX descriptor to indicate that
change in the value of this attribute
hides some other properties.

This descriptor also requires
implementing method java.util.List
fetchHiddenProperties()

Example:

class SampleBCConnection{

 getProxyUsed (boolean use);

 getProxyUser (String user);

 getProxyPassword (String pwd);

}

To show properties ProxyUser and
ProxyPassword only when

 @jmx.descriptor
name="hidesProperties"
value="true"

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 298

JMX descriptor Description Default Example

ProxyUsed is true; change that
above code as follows:

 class SampleBCConnection{

 /**

*@jmx.managed-attribute

access="read-write"

description="Determines whether

proxy should be used to connect"

*@jmx.descriptor

name="displayName" value="Use

proxy?"

 * @jmx.descriptor

name="hidesProperties"

value="true"

 **/

 getProxyUsed(boolean use);

 getProxyUser(String user);

 getProxyPassword(String pwd);

 /**

 * @return

 * @jmx.managed-operation

descriptor="get Hidden

Properties"

 */

public java.util.List

fetchHiddenProperties()

{

return isProxyUsed() ?

Collections.EMPTY_LIST:

Arrays.asList(new String[] {

"ProxyUser", "ProxyPassword" });

 }

}

propertySets

and

propertySetIndex

These descriptors are used to
categorize or group properties
under different propertySets.
Figure 3-45 shows the use
propertySets and propertySetIndex
descriptors to define the
propertySets and group properties
under propertySets respectively.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 299

JMX descriptor Description Default Example

Figure 3.6.70: code snippet showing
the use of propertySets and
propertySetIndex

Figure 3.6.71: CPS containing
properties grouped under
propertySets
The order of attributes within

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 300

JMX descriptor Description Default Example

property set is still derived from
"index"

If "propertySets" is defined for
mbeans; all attributes with
"propertySetIndex" not set lies in
propertySet 0 (zero)

any property whose
propertySetIndex is out-of-range
lies in propertySet 0 (zero)

the overlapping of propertySets
among multiple mbeans is
undefined;

warningMessage A warning Dialog pops up whenever
the value of the property changes.
The Message to be shown in the
warning dialog should be set using
value

 @jmx.descriptor
name="warningMessage"
value="The Message comes here"

defaultValue The default value which should be
set for the property when “Reset” is
clicked (Comes up on the right click
on property, Figure 3.6.64)

 @jmx.descriptor
name="defaultValue" value="10"

minValue Minimum value acceptable for the
property

 @jmx.descriptor name="minValue"
value="0"

maxValue Maximum value acceptable for the
property

 @jmx.descriptor name="maxValue"
value="1000"

primitive Used for Boolean properties, By
Default a property specified
Boolean shows “yes”, “no”, “none”
in the combo box. If this property
is set to true, “none” will not be
shown

false @jmx.descriptor name="primitive"
value="true"

3.6.4 Non-Java components

Non-Java components can only be of the type Event Driven Business (EDBC) Components.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 301

3.6.4.1 Defining a C component

To define a asynchronous component using C language, launch the component definition
wizard as described in section 3.6.1.5 Defining Components. In the business Header panel,
Service Type has to be chosen as “Non-Java” and Component type must be chosen as C as
shown in figure 3.6.72.

Figure 3.6.72 Specifying Service Type and Component Type

In the resources and dependencies panel no resources or dependencies needs to be specified
for C/C++ components as they are built using static libraries and do not need any resources
or libraries at runtime as shown in figure 3.6.73.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 302

Figure 3.6.73 No resources or dependencies for C/C++ components

Follow the steps described in section 3.6.1.6 Getting familiar with wizard and service
configuration to complete other panels. The wizard can be launched by typing in the following
command from a terminal.

Example: wizard.bat –dest C:\SampleComponents\C_Sample\SampleC

3.6.4.1.1 Generation of code

To generate code for asynchronous component follow the steps in section 3.6.1.7 Generating
code for the Defined Component.

Use -language option when generating sources to specify the language used for generating
code for the component. A sample command is as shown below.

Example: generate.bat/sh –dest C:\SampleComponents\C\SampleC –language c

Figure 3.6.74 shows the structure of the code generated for an asynchronous component
defined in C.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 303

Figure 3.6.74: Structure of asynchronous component

3.6.4.1.2 Adding Business Logic

The purpose of the source files generated is explained below

The {ServiceGUID}.c contains the main() function which creates a connection with the peer
server by calling the method initializeConnection.

When a message is received on the input port of the component, the function onMessage is
called which in turn calls the function processMessage to process the message.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 304

Figure 3.6.75: onMessage and processMessage methods

The functionality of the business component can be defined in the processMessage method.

3.6.4.1.3 Deploying the Component

To deploy the created component, make sure the Enterprise server is running and VC_HOME is
set as environment variable or is defined in build.bat, such that %VC_HOME%/Bin points to
the location of compiler (cl.exe). In Linux environment, setting this variable is not necessary
since gcc will be used to compile the generated sources. The component can be deployed onto
the server by giving the command ant register from the location where the component
sources are generated. This will deploy the component on the enterprise server. Refer section
3.6.1.9 Deploying the Component for more information regarding the commands to
register/unregister a component from the server.

For further instructions to generate/build from studio refer section 3.6.2 Component Creation
in Fiorano Studio.

3.6.4.2 Creating a C++ component.

An asynchronous component using C++ language can be created similar to the steps
described in section 3.6.4.1 Defining a C component. All the steps remain the same apart from
setting the Component Type as CPP in Business Header Panel shown in figure 3.6.72. A
sample command to launch the wizard is shown in the figure below.

Example: wizard.bat –dest C:\SampleComponents\cpp\SampleCpp

3.6.4.2.1 Generation of code for C++ component

To generate code for asynchronous component follow the steps in section 3.6.1.7 Generating
code for the Defined Component.

Use -language option to specify the language used for generating code for the component.
Example: generate.bat/sh –dest C:\SampleComponents\cpp\SampleCpp –language cpp

Figure 3.6.76 shows the structure of the code generated for an asynchronous component
defined in C++.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 305

Figure 3.6.76: Structure of asynchronous component

3.6.4.2.2 Adding Business Logic

The purpose of the source files is explained below along with the control flow

The file {ServiceGUID}main.cpp contains the main function where all the required JMS objects
are created and the service is started.

The generated main method is shown below:

 try

 {

 int i = 0;

 char* commandLine = NULL;

 commandLine = (char*)malloc(sizeof(char)*1000);

 memset(commandLine,0,1000);

 for(i = 0; i < argc - 1; i++)

 {

 strcat(commandLine,args[i + 1]);

 strcat(commandLine," ");

 }

 Service *service= new Service(commandLine);

 service->initializeValues();

 service->createJMSObjects();

 //service->Run();

 getchar();

 }

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 306

When a message is received on the input port of the component, the function onMessage
defined in {SerivceGUID}.cpp will be called and the business logic of the component can be
defined in this method. (See Figure 3.6.75)

Figure 3.6.75: Default contents of the onMessage method of {ServiceGUID}.cpp.

3.6.4.2.3 Deploying the Component

To deploy the created component, make sure the Enterprise server is running and VC_HOME is
set as environment variable or is defined in build.bat, such that %VC_HOME%/Bin points to
the location of compiler (cl.exe). In Linux environment, setting this variable is not necessary
since g++ will be used to compile the generated sources. The component can be deployed
onto the server by giving the command ant register from the location where the component
sources are generated. This will deploy the component on the enterprise server. Refer section
3.6.1.9 Deploying the Component for more information regarding the commands to
register/unregister a component from the server.

For further instructions to generate/build from studio, refer section 3.6.2 Component Creation
in Fiorano Studio.

3.6.4.3 Creating a C# Component

Important: To create a CSharp EDBC component, ensure that .NET 2003 or above is installed
on the machine that hosts the peer server on which the component will finally be deployed.

An asynchronous component using C# language can be created similar to the steps described
in section 3.6.4.1 Defining a C Component. Component Type should be chosen as CSharp in
Business Header Panel shown in figure 3.6.72.

In the Resources and Dependencies panel, by default a resource fmq-csharp-native.dll is
added as shown in figure 3.6.76. Any additional dlls necessary for the component can be
added in this panel.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 307

Figure 3.6.76 Adding dlls to cSharp component.

Example: wizard.bat –dest C:\SampleComponents\CSharp\CSSample

3.6.4.3.1 Code Generation

To generate code for asynchronous component follow the steps in section 3.6.1.7 Generating
code for the Defined Component.

Use -language option to specify the language as csharp for generating code for the
component.

Example: generate.bat/sh –dest C:\SampleComponents\CSharp\CSSample –language csharp

3.6.4.3.2 Adding Business Logic

By default the components sends the messages received on its input port to the output port.
Custom component generation wizard creates a visual studio solution file (.sln) (see Figure
3.6.77) which can be opened using Microsoft Visual Studio 2003 or above.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 308

Figure 3.6.77: Structure of asynchronous component

The main method in {ServiceGUID}Main creates all the required JMS objects and starts the
component. The Message Listener ({ServiceGUID}MessageListener) contains the callback
method onMessage. For each message received on the input port of the component,
onMessage function is called and this calls processMessage function. The business logic can
be provided in the method processMessage.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 309

3.6.4.3.3 Deploying the component

To deploy the created component, make sure the Enterprise server is running and
DOT_NET_FRAMEWORK_HOME is set as environment variable or is defined in build.bat, such
that it points to the location of csc.exe.

Run build.bat, this will create executable (CSSample.exe in this case) in the “build” folder of
the custom component directory (C:\SampleComponents\CSharp\CSSample in our example).

Run deploy.bat. This opens up a new command window which connects to the Fiorano
Enterprise server and deploys the component.

Alternatively ant register can also be used to register the component. Refer section 3.6.1.9
Deploying the Component for more information regarding the commands to register/unregister
a component from the server.

For further instructions to generate/build from studio, refer section 3.6.2 Component Creation
in Fiorano Studio.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 310

3.7 Service Component Testing

This sections talks about how the functionality of the component can be tested. A very simple
way to test the component is to use it the way it is intended to be used! That is to create a
flow with the component and run the flow to check if desired results are obtained.
Unfortunately, at times the result may not be the desired one for no fault in the component
logic but for external reasons. So Fiorano provides a more isolated way to test the
synchronous components’ logic.

3.7.1 Testing Synchronous Components

Synchronous can be tested

• During the configuration time using the ‘test’ button in the CPS

• Using JUnit test cases

3.7.1.1 Testing in Configuration Property Sheet (CPS)

For all the synchronous components the Configuration Property Sheet (CPS) contains a ‘test’
button on the Managed Connection Factory (MCF) panel (in case of a connection based
component, Figure 3.7.2) and the interaction step panel (Figure 3.7.4).

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 311

3.7.1.1.1 Testing the Connection

To test the connection which the component makes with the underlying EIS, specify the
connection details in the Managed Connection Factory panel and click ‘test’.

Figure 3.7.1: Managed Connection Factory (MCF) panel showing the connection details and Test
button

A dialog pops up showing the result of the operation (connecting to EIS) performed. The result
can be one of the following

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 312

A text/XML result showing the connection details of the EIS to which the component
successfully connects to (Figure 3.7.2)

Figure 3.7.2: The result of test on MCF. The connection to the database is successfully established.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 313

A trace of error/exception occurred while the component is trying to connect to MCF (Figure
3.7.3)

Figure 3.7.3: Exception when the test in MCF panel fails

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 314

3.7.1.1.2 Testing the business logic

The second step in the Configuration Property Sheet, called Interaction Configurations step,
contains the details defining the business logic the component executes. The business logic of
the component can be tested from the test button in the interaction configurations panel.

Figure 3.7.4: Interaction Configurations panel showing the test button

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 315

The test dialog allows the user to invoke the component with sample input, which would be
pushed onto the input port of the component during runtime. The component processes the
input message and displays the output message, which comes out onto the output port of the
component during the runtime. Figure 3.115 explains the test dialog.

Figure 3.7.5: Test dialog to test the component’s business logic, showing the input message details

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 316

The Input Message tab allows the user to specify the input message and shows the details of
the input message. To view the input port schema click ‘Input XSD’ button. The dialog (Figures
3.7.6 to 3.7.8) that comes up shows the input port schema details.

Figure 3.7.6: Port schema (text view)

Figure 3.7.7: Port schema (tree view)

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 317

Figure 3.7.8: External XSDs for the port schema

To test the component, click execute in Figure 3.7.5. The output is shown in the output
message tab (Figure 3.7.9). To view the output port schema click Output XSD. A dialog
similar to the dialog of input port schema (Figures 3.7.6 to 3.7.8) comes up showing the
output port schema details. To validate the output message against the output port schema
click validate.

Figure 3.7.9: Result of the test operation

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 318

3.7.1.2 Testing using JUnit test cases

Fiorano provides a JUnit test framework to test the logic of the component created. A JUnit
test case can perform both the test operations (from Managed Connection Factory and
Interaction Configurations panels).

3.7.1.2.1 Configuring a JUnit test case

To write a JUnit test cases create the test hierarchy as shown in Figure 3.7.10.

Figure 3.7.10: Structure for JUnit test cases for the component

The test.properties file is a properties file that contains the list of paths to test cases, relative
to the tests directory. The entry in test.properties for structure showed in Figure 3.7.11 looks
as follows:

Figure 3.7.11: Entry in test.properties listing all the test cases

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 319

Each test should contain a file tc.properties that contains the configuration of the test case.
The configuration of a test case includes configuration of the component, input message text
that has to be passed to the component and expected output the component should return
among other properties. The list of properties that can be specified is shown in the following
table.

Property Description Default

bcConfig Configuration XML of the component saved
using configureBC.bat utility

bcConfig.xml

configuredUsingStudio Indicates whether the configuration is given
as mcf and jca files or as configuration xml

 true – configuration is specified as mcf
and jca files

 false – configuration is specified as a
configuration xml from configureBC.bat
utility

true

compareInteractionOut
put

Specifies whether output of the component
should be compared with jca.output or not

 true – compare

 false – do not compare

true

connectionLess Indication to test framework whether a test
for connection has to be performed or not.

 true – component is connection based
and connection test has to be
performed

 false – component does not create
connection or the test for connection
need not be performed

Note: if this is false then mcf.output property
should be specified

false

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 320

Property Description Default

inputContentType The type of input message text. Values from

 TEXT – plain text

 XML – XML message

 BYTES – Binary content

XML

inputPropsFile Location pointing to a file containing message
properties that should passed to the
component. Example: COMPLETED=true in
case of FileWriter

inputProps.properti
es

Jca jca file containing the interaction
configurations

bc.jca

jca.exception File containing the expected exception for a
negative test case

interactionExceptio
n.xml

jca.input File containing the input message content
that should be used to test the component

interactionInput.x
ml

jca.output File containing the expected output from the
component.

interactionOutput.
xml

Mcf mcf file containing the connection
configurations

bc.mcf

mcf.output File containing expected result of the
connection test

mcfOutput.xml

mcf.exception File containing the expected exception
message for a negative test case

mcfException.xml

negativeTest true – if the test case is configured for a
negative test (compares output with
jca.exception and mcf.exception

 false – if the test case is configured for
a positive test (compares output with
mcf.output and jca.output)

false

xmlDiffClass Custom comparison class for comparing
outputs of interaction.

Usage:

Implement a class extending
org.custommonkey.xmlunit.Diff with a
constructor to take two String arguments
actualOutput and expectedOutput.

Add it to the class path for tests by specifying
it in tests.lib path like structure which can be
over-ridden in components.

none

A typical tc.properties file is shown in Figure 3.7.12.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 321

Figure 3.7.12 Sample tc.properties

Note: For components and component configuration which might return multiple outputs for a
single input. The expected output files should be suffixed with the sequence number before
the extension.

Example: If the entry in the tc.properties file is output.xml then the actual expected outputs
should be specified in files output1.xml, output2.xml and output3.xml for configuration
returning 3 output messages

3.7.1.2.2 Executing a JUnit test case

To run / execute the JUnit test case, execute ant runtests from the component’s folder. A
folder named testLogs is automatically created in the component folder. Logs of the individual
test cases is present in tests folder which is under testLogs. The directory structure of testLogs
folder is shown in the Figure 3.7.13.

Figure 3.7.13: Directory structure of the testLogs containing the results of tests

Sometimes it is required to add classes specific to the component to classpath of the tests
execution, such classes can be added in the tests.lib path in the build.xml of the component as
shown in Figure 3.7.14.

To perform some tasks before the tests start add a target testspreprocess to the component’s
build.xml (shown in Figure 3.7.14)

Similarly to perform tasks after the tests end add a target runtests to the component’s
build.xml (shown in Figure 3.7.14)

Note: both testspreprocess and runtests target should depend on the respective targets in the
common.xml.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 322

A sample build file containing necessary entries to start the FMQ server before the test cases
begin and to shutdown the FMQ server after the test cases end is shown in Figure 3.7.14

Figure 3.7.14: sample build.xml containing necessary entries for tests.lib, testspreprocess and
runtests

3.7.2 Testing Asynchronous Components

Unlike synchronous components the asynchronous components cannot be tested during the
configuration time, unless the required functionality is specifically added. However, Fiorano
provides a testing framework for testing asynchronous components as well.

JUnit testing of asynchronous components is similar to JUnit testing of synchronous
component

3.7.2.1 Configuring a JUnit test case

To write a JUnit test cases create the test hierarchy as shown in Figure 3.7.15

Figure 3.7.15: Structure for JUnit test cases for the component

The test.properties file is a properties file that contains the list of paths to test cases, relative
to the tests directory. The entry in test.properties for structure shown in Figure 3.7.16 looks
as follows:

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 323

Figure 3.7.16: entry in test.properties listing all the test cases

Each test should contain following files

config.xml

This file contains the configuration of the component. The configuration can be obtained as
follows

• Create an event process

• Drag and drop the asynchronous component to be tested

• Configure the component

• Save the event process

Extract the configuration from application’s xml file and copy it in config.xml and save the
config.xml file

To extract the configuration from the application’s file

• Open the application’s xml file located at %FIORANO_HOME%\esb\fes\
repository\applications\<APPLICATION_NAME>

• In the xml file under the /Application/ServiceInstances node look for ServiceInstance
node of the required component

• Under the ServiceInstance node from ./RuntimeArguments/ UserDefinedPropertySheet
node copy CDATA section and save it into config.xml file

o command_line_arguments.txt

This file consists of all the command line arguments that have to be passed to the component
during the launch of the component. A typical command_line_arguments.txt is shown in
Figure 3.7.17.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 324

Figure 3.7.17: command_line_arguments.txt for the asynchronous component

tc.properties that contains the configuration of the test case. The configuration of a test case
includes input ports and output ports that have to be created and location of the files
containing input messages to be passed and output messages to be compared. The list of
properties that can be specified is shown in the following table.

Property Description

inputPortNames Comma separated values of the input port names the component
has for this configuration

outputPortNames Comma separated values of the output port names the component
has for this configuration

otherTopicNames Any other JMS destinations that have to be created for the
component’s execution

inputFiles A list of files in which each contains a single message to be sent on
the input port. Specify comma separated list of values to be sent on
to each of input port specified in the inputPortNames list
respectively.

Example

If component has to input ports and message in input1.txt is to be
sent on to the IN_PORT1 and message in input2.txt is to be sent on
to the IN_PORT2. Then entries should look like this.

inputPortNames=IN_PORT1, IN_PORT2

inputFiles=input1.txt,input2.txt

If multiple inputs have to be sent to the input port then specify

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 325

Property Description

colon separated list in each of the comma separated value.

Example:

In the example given above if messages from input11.txt and input
12.txt have to be sent on to IN_PORT1 and messages from
output21.txt, output22.txt and output23.txt have to be sent on to
IN_PORT2, then specify as follows

inputPortNames=IN_PORT1, IN_PORT2

inputFiles=input11.txt:input12.txt,input21.txt: input22.txt:
input23.txt

outputFiles A list of files which have to be populated with the output messages
when the test is executed. This should be a comma separated list
each mapping to a corresponding output port in outputPortsNames
list. These file can be empty or non-existent

expectedOutputFiles A list of files in which each contains an expected output message
that should be received on the output ports of the component. This
should be a comma separated list each mapping to a corresponding
output port in outputPortsNames list.

A typical tc.properties file is shown in Figure 3.7.18

Figure 3.7.18: Sample tc.properties

3.7.2.2 Executing a JUnit test case

To run / execute the JUnit test case, execute ant runtests from the component’s folder. A
folder named testLogs is automatically created in the component folder. The directory
structure of testLogs folder is shown in Figure 3.7.19.

Figure 3.7.19: Directory structure of the testLogs containing the results of tests

Sometimes it is required to add classes specific to the component to classpath of the tests
execution, such classes can be added in the tests.lib path in the build.xml of the component as
shown in Figure 3.7.20.

To perform some tasks before the tests start add a target testspreprocess to the component’s
build.xml (shown in Figure 3.7.20)

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 326

Similarly to perform tasks after the tests end add a target runtests to the component’s
build.xml (shown in Figure 3.7.20)

Note: both testspreprocess and runtests target should depend on the respective targets in the
common.xml.

A sample build file containing necessary entries to start the FMQ server before the test cases
begin and to shutdown the FMQ server after the test cases end is shown in Figure 3.7.20.

Figure 3.7.20: sample build.xml containing necessary entries for tests.lib, testspreprocess and
runtests

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 327

3.8 Component Generation - SimpleJMS, MultiThreaded and POJO

3.8.1 EDBC Templates

Fiorano SOA provides EDBC templates which aid in component development. Three types of
templates are supported for EDBC components.

• Simple JMS

• Multi Threaded

• POJO (Plain Old Java Object)

3.8.1.1 Scripts

Windows: %FIORANO_HOME%\esb\tools\templates\edbctemplates.bat

Linux: %FIORANO_HOME%/esb/tools/templates/edbctemplates.sh

3.8.1.2 Simple JMS

3.8.1.2.1 Generating template

• Execute %FIORANO_HOME%\esb\tools\templates\templates-console.bat [sh]

• From the command prompt launch the wizard using
%FIORANO_HOME%/esb/tools/templates/edbctemplates.bat [sh]

Syntax: edbctemplates.bat [sh] –dest <dir>

<dir> - target directory where component code is generated.

Example: edbctemplates.bat –dest C:\SampleComponents\EDBC\SimpleJMS

• Provide service details in “Service Information” panel and click “Next”.

Figure 3.8.1: Details of service

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 328

• In Runtime Arguments panel add required runtime arguments.

• In Template Information panel Select Simple JMS.

Figure 3.8.2: Adding runtime arguments

• Specify required number of input and output ports and click Finish.

Figure 3.8.3: Specifying template to use

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 329

3.8.1.2.2 Component development

Adding business logic

Business logic should be added in onMessage(Message msg) method of
${ServiceGUID}MessageListener (in the above example SimpleJMSMessageListener) class

Figure 3.8.4: ${ServiceGUID}MessageListener showing method where business logic should be
added

3.8.1.2.3 Accessing Runtime Arguments

Runtime arguments passed to the service can be accessed using
runtimeArguments.getParameter("<runtime argument>")

Figure 3.8.5: Accessing runtime arguments

3.8.1.2.4 Sending Messages on output port

Messages can be sent on required output port using producer.send((Destination)
outputDestinations.get("<output port name>"), <message>);

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 330

Figure 3.8.6: Sending message on output port “OUT_PORT_1”

3.8.1.3 Multi threaded

3.8.1.3.1 Generating template

• Execute %FIORANO_HOME%\esb\tools\templates\templates-console.bat [sh].

• From the command prompt launch the wizard using
%FIORANO_HOME%\esb\tools\templates\edbctemplates.bat [sh].

Syntax: edbctemplates.bat [sh] –dest <dir>

<dir> - target directory where component code is generated

Example: edbctemplates.bat –dest C:\SampleComponents\EDBC\MultiThreaded

• Provide service details in Service Information panel and click Next.

Figure 3.8.7: Details of service

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 331

• In Runtime Arguments panel, add required runtime arguments.

Figure 3.8.8: Adding runtime arguments

• In Template Information panel, select MultiThreaded.

• Specify required number of input and output ports and click Finish.

Figure 3.8.9: Specifying template to use

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 332

3.8.1.3.2 Component development

Adding business logic

Business logic should be added in execute() method of ${ServiceGUID}Job (in the above
example MultiThreadedJob) class

Figure 3.8.10: ${ServiceGUID}job showing method where business logic should be added

3.8.1.3.3 Accessing Runtime Arguments

Runtime arguments passed to the service can be accessed using
runtimeArguments.getParameter("<runtime argument>")

Figure 3.8.11:Accessing runtime arguments

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 333

3.8.1.3.4 Sending Messages on output port

Messages can be sent on required output port using sender.send((<message>,"<output port
name>");

Figure 3.8.12: Sending message on output port “OUT_PORT_1”

3.8.1.4 POJO

3.8.1.4.1 Generating template

1. Execute %FIORANO_HOME%\esb\tools\templates\templates-console.bat [sh].

2. From the command prompt launch the wizard using

FIORANO_HOME%\esb\tools\templates\edbctemplates.bat [sh]

Syntax: edbctemplates.bat [sh] –dest <dir>

<dir> - target directory where component code is generated

Example: edbctemplates.bat –dest C:\SampleComponents\EDBC\POJO

3. Provide service details in Service Information panel and click Next.

Figure 3.8.13: Details of service

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 334

4. In Runtime Arguments panel add required runtime arguments.

5. In Template Information panel, select POJO.

Figure 3.8.14: Adding runtime arguments

6. Select jar file containing the required POJO class.

7. Select the required method from list of methods shown.

Only methods with following signatures is shown:

public static void <method_name>(String)

public static void <method_name>(Message)

public static Message <method_name>(Message)

public static Message <method_name>(String)

public static String <method_name>(Message)

public static String <method_name>(String)

Figure 3.8.15: Specifying template to use and selecting required method

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 335

8. Component generated for a POJO will contain one input output pair for each method
selected. However, if the return type is void output port will not be generated for that
method.

9. When a message arrives on an input port associated method is invoked and response
is sent to respective output port if present.

3.8.1.4.2 Component development

Business logic is generated into component and can be used as it is.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 336

3.9 Eclipse IDE Support

Fiorano template engine also creates eclipse project which can be imported in eclipse IDE. The
component can be modified, compiled and deployed to Fiorano Enterprise Server from eclipse.
This section describes the process in detail.

3.9.1 Importing the Project into Eclipse

To import a project into eclipse:

1. Click Import… menu action from File menu as shown in the Figure 3.9.1

Figure 3.9.1: File menu showing import action

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 337

2. A wizard which guides through steps for importing a project is shown. Choose import
source as Existing Projects into Workspace and click the Next button. See Figure
3.9.2.

Figure 3.9.2: Selecting import source

3. Select Select root directory and provide the component’s directory shown in Figure
3.9.3.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 338

4. Click Finish.

Figure 3.9.3: Specifying root directory

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 339

The project’s directory structure is shown in Navigator pane and Problems pane shows
errors and warnings present in the project (Figure 3.9.4)

Figure 3.9.4: loaded project structure in Navigator window and warnings/errors in Problems
window

5. Project import is completed. Sources can be modified as desired to include business
logic.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 340

3.9.2 Defining Variables

FIORANO_HOME classpath variable should be added to project’s classpath. Steps to add any
classpath variable are given below

1. Right-click on the project root (SampleBC)

2. Click on Properties menu item in the popup menu (shown in Figure 3.9.5)

Figure 3.9.5: Opening properties of the project

3. The properties window for the project comes up

4. Select Java Build Path in the tree on the left side.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 341

5. Switch to Libraries tab on the right side, see Figure 3.9.6.

Figure 3.9.6: Properties window of project. Location to add variables shown

6. Click the Add Variable … button

7. A dialog containing defined variables which can be added to build path is shown. Click
on the Configure Variables… button. To add new variables or edit the existing
variables, see Figure 3.9.7.

Figure 3.9.7: Dialog showing defined variables

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 342

8. A dialog with a list of variables is shown. To add new variables click on the New
button, see Figure 3.9.8.

Figure 3.9.8: Add new variables or edit defined variables

9. Specify the variable name (FIORANO_HOME) and path (point to %FIORANO_HOME%)
in the dialog that comes up. See Figure 3.9.9.

Figure 3.9.9: define the variable

10. Close all the windows. Make sure the new variable is selected when closing the
window.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 343

3.9.3 Defining ANT_HOME

To build and deploy the component the ANT_HOME should point to ant shipped in the installer.
This can be done as follows

1. Click Preferences… on the Window menu as shown in Figure 3.9.10.

Figure 3.9.10: Opening preferences

2. Select Runtime node under Ant in the tree on left side.

3. Select Classpath tab on the right side as shown in Figure 3.9.11.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 344

4. Click on the Ant Home button. This opens a window where the directory or file can be
chose.

Figure 3.9.11: Configuring ant home in preferences

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 345

5. Select %FIORANO_HOME%\antscripts as shown in Figure 3.9.12

Figure 3.9.12: Selecting ant home

6. Close all the windows.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 346

3.9.4 Defining JDK

To be able to compile the sources, JDK should be used and NOT JRE. To make the installed
JRE entry point to JDK do the following

1. Set the installed JRE which is used to JDK.

2. To set installed JRE click Preferences from Window menu as shown in Figure 3.9.10.

3. In the preferences window, select Installed JREs under Java node as shown in Figure
3.9.13.

4. Click the Add button to add a new entry point which points to JDK or click the Edit
button to modify the existing to point to JDK.

Figure 3.9.13: Adding JDK

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 347

3.9.5 Compiling Deploying and Registering the Component

To compile, deploy and register the component follow the below steps.

1. In the Navigator pane right-click on the build.xml file

2. From the popup menu select Run As External Tools as shown in Figure 3.9.14.

Figure 3.9.14: running ant using external tool

3. An External Tools window appears. Select the component’s build file under Ant
Build node in the tree shown in left pane.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 348

4. Select JRE tab and choose the JDK as shown in Figure 3.9.15.

Figure 3.9.15: using JDK

5. Select Targets tab to select the target from the ant file which has to be executed. See
figure 3.9.16

6. Select appropriate target from among the targets listed.

a. deploy – compile and copy the jars to installer

b. register – deploy and register the component with FES

c. reregister – deploy and register the component with FES overriding existing
component

d. unregister – unregister the component from FES. It will no longer be available for
use in flows

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 349

e. cleanup – removes all the class files, so that during the next build all the classes
is compiled again

Figure 3.9.16: ant targets which can be executed are shown

Result of the task is shown in the console of eclipse as shown in Figure 3.9.17.

Figure 3.9.17: Result of Ant Task

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 350

3.10 Text Schema Editor

This chapter describes the Fiorano Text Schema Editor tool which is used to design XML
schemas as .tfl Text Format Layout files. These TFL files are used by the XML2Text and
Text2XML prebuilt components to fascilitate data conversion of non-XML data from and to its
corresponding XML format respectively.

In case you require your composite component flow to read or write data from your data
repository which exists as text or flat-files, you can use the FileReader component to read this
flat-file and transform flat-file data into its corresponding XML using the Text2XML component.
The opposite can be done using a combination of the XML2Text component and the FileWriter
component. But before you can transform data from flat-file format into its corresponding XML
or vice versa, you require defining a File Schema which can aid the transformation. This File
Schema may be understood as the format meta-data that is required in both the above
mentioned instances.

The Text Schema Editor (TSE) is a tool which assists you to visually define the format and
hierarchy of the non-XML data graphically. The format structure created by this editor is called
the File schema in which the structure of the non-XML data is defined in terms of records and
fields. This format is stored using XML grammar in tfl (Text Format Layout) files.

Note: The Schema defines the rules used to convert non-XML text to XML text and vice versa.

Once this schema format is defined, it can be used by

• Text2XML transforms flat-file data to its corresponding XML

• XML2Text transforms XML data into its corresponding flat-file format

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 351

The following diagram shows how the FileReader component uses the transformation
components to read XML and non-XML data.

Figure 3.10.1: Using FileReader and Transformation components

The non-XML data mentioned above can be delimited, positional or both. TSE also provides the
test functionality in which the user can verify and test the schema formats created. In the test
functionality, the user can generate sample data and can also transform sample non-XML data
to XML and vice versa.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 352

3.10.1 Text Format Layout Concepts

A tfl (text format layout) document is a specialized XML grammar which is used to describe
the structure of non-XML structured (delimited, positional) data. In the tfl document, the
structure of the data is defined as a hierarchical tree of records and fields in a given order.

Figure 3.10.2: Structure of a tfl document

The schema of the structured data is added as a child node to this Root Node. This node is
called the Schema Node.

When you create a new schema in Fiorano Schema Editor, the Root Node and the Schema
Node are created automatically.

Schema Node: In the schema structure, each opened schema file is shown as Schema Node
and is the child of the Root Node. The Schema Node corresponds to the Root tag of the output
XML which is generated from the structured non-XML text or input XML which is to be
converted to the structured non-XML text. Schema Node can also be renamed. The properties
of the Schema Node represent the default properties which can be used during data
transformation. In a Schema Node, you can add multiple record nodes which represent the
structure of input/output data. Adding fields to the Schema Node is not allowed.

Record: Record represents a collection of information. It can contain a set of fields and/or
other records.

Field: Field represents items of information that are simple in nature, such as strings and
numbers.

3.10.2 Launch Fiorano Text Schema Editor

The FileReader and FileWriter components facilitate reading and writing of both XML and non-
XML files. So as to enable your component flow to utilize the accessed data, you may need to
use Text2XML or XML2Text components to transform flat-file data into XML data and XML data
into flat-file data respectively.

These transformation components require a tfl file which is a schema of the data that is to be
accessed. To create this schema you may need to use the Text Schema Editor.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 353

The following steps may be used to create a new schema:

1. Launch Fiorano Studio from the Start menu, click Start > Programs > Fiorano >
Fiorano SOA Platform > Fiorano Tools > Fiorano Studio.

2. From the toolbar, click on File > New File. The Choose File Type dialog box appears:

Figure 3.10.3: Creating a New File: Text Schema Editor

3. Click on TFL in the Categories easel.

4. Click on the type of schema you intend to use in the File Types easel.

5. Click on Next. The Name and Location dialog box is displayed:

Figure 3.10.4: Creating a New File: Text Schema Editor - New CSV File

6. The File Name field may be populated with the name you intend to use for the schema
file (tfl).

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 354

7. The path where you intend to store this file should be supplied in the Folder field.

8. Click Finish to save you configuration settings and create a new tfl schema file.

This .tfl file can be invoked by the transformation components to transform non-XML data into
its corresponding XML and vice versa.

3.10.2.1 Defining Text File Schemas

This tool is shipped with five samples that represent various schema types. These are broadly
classified under two categories, namely Delimited File Schema samples and Positional File
Schema samples. The prebuilt schema samples are given below:

• Delimited File Schema samples

o CSV File Schema

o Nested CSV File Schema

• Positional in Delimited File Schema

o Positional File Schema samples

o Positional File Schema

o Nested Positional File Schema

As mentioned earlier, the schema of a file is represented by a tree structure. The tree format
is shown in the Figure 3.10.5.

Figure 3.10.5: Schematic representation of a file schema

3.10.2.1.1 Schema Node Properties

The Schema Nodes of all the file schemas represent the same set of properties. These
properties act as global properties of the file schema which are available to all the descendent
records and fields.

Note: If you change the Name value on the Properties panel, the name of the Root Node in
the specification tree automatically changes to match it and vice versa. The name of the node
should be a valid XML name.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 355

The following table lists all properties associated with the Schema Node:

Property Value

Comment
Start
Identifier

An identifier which indicates the start of a comment in the source file.

Comment
End
Identifier

An identifier which indicates the end of a comment in the source file. The
data between the ‘Comment Start’ and ‘Comment End’ identifier is ignored.

Note: Comment Start and Comment End Identifiers must not be identical.

Name This is the name of the Root Node.

Description This is the description of the specification.

Delimiter
Value

Type or sel ect a val ue f or the deli mi ter. To speci fy a del imiter val ue, you must fi rst set the Deli mi ter Type to Custom Deli mi ter. The deli mi ter can be mul ti -character.

Escape
Character

Specif i es the defaul t val ue of the escape character for thi s Schema Instance. Type or sel ect a character val ue f or the escape character. To speci f y an escape character val ue, you must fi rst set the Escape Type to Character.

Delimiter
Type

Select one of the following options to choose a delimiter for the records/fields
directly below the current record.

• Default Field Delimiter Indicates that the delimiter is the value of
the Default Field Delimiter property, which is defined for the schema
instance.

• Custom Delimiter Allows the user to designate a field delimiter value
for the record. If you select Custom Delimiter, you must specify a
delimiter value.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 356

Property Value

Escape
Character
Type

You can choose the escape character type from the following values:

Defaul t Escape Character - Indicates that the escape character i s the value of the Default Escape Character property w hi ch i s def i ned f or the schema i nstance.

Character - Allows the user to designate an escape character value. If you
select Character, you must also specify an escape value.

An escape character is useful if you have a character in your field data that is
also used as the delimiter character in the field’s parent record.

For example, if your field data is the following and you have chosen a comma
as the delimiter value of the record that contains the field, TSE interprets the
comma after "Fiorano" to be a delimiter, even if you intend for it to be part
of the field data:

Fiorano,Software,USA

Solution for this is to place an escape character directly preceding the
delimiter character that you want to include in the field data. For example, if
your escape character is specified as a backslash, you can place a backslash
directly preceding a delimiter character, as in the following example:

Fiorano\,Software,USA

TSE interprets the comma after the backslash as field data rather than a
delimiter character.

Escape
Character

This is the escape character which is to be used as the field delimiter.

Delimiter
Value

Type or sel ect a val ue f or the deli mi ter. To speci fy a del imiter val ue, you must fi rst set the Deli mi ter Type to Custom Deli mi ter. The deli mi ter can be mul ti -character.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 357

Property Value

Escape
Character
Type

You can choose the escape character type from the following values:

Defaul t Escape CharacterIndi cates that the escape character is the val ue of the Defaul t Escape Character property w hich i s defi ned f or the schema i nstance.

CharacterAllows the user to designate an escape character value. If you
select Character, you must also specify an escape value.

An escape character is useful if you have a character in your field data that is
also used as the delimiter character in the field’s parent record.

For example, if your field data is the following and you have chosen a comma
as the delimiter value of the record that contains the field, TSE interprets the
comma after "Fiorano" to be a delimiter, even if you intend for it to be part
of the field data:

Fiorano,Software,USA

Solution for this is to place an escape character directly preceding the
delimiter character that you want to include in the field data. For example, if
your escape character is specified as a backslash, you can place a backslash
directly preceding a delimiter character, as in the following example:

Fiorano\,Software,USA

TSE interprets the comma after the backslash as field data rather than a
delimiter character.

Del i mi ter Type This is the field delimiter of this file schema. The delimiter can be multiple
characters.

3.10.2.1.2 Record Node Properties

Every file schema is a unique entity, with a unique set of records and fields. You can create a
new schema by modifying an existing schema. To modify an existing schema, you need to add
and/or remove records. After adding records, you must specify the properties associated with
it. If you remove a record, its properties are also removed, along with all child records and
fields. In addition to adding and removing records, you can also rename them. You can edit
the name of an existing record and its properties by selecting the record and editing it. The
tool is also designed to handle duplicate records. If you paste a record into a schema, which
already has a record by a similar name, the new record is added and a number is appended to
the end of the name of the record you are pasting. For example, when you paste a record
named Department to a schema, which already has a record by that name, the new record is
added to the schema with the name Department_1.

Following are some basic rules pertaining to records.

• Every new record, which you create, is inserted as a descendant of the record that you
selected.

• The name of a record or field needs to be unique. The tool will display an exception if
you specify a name that has already been assigned to an existing record or field.

• When you delete a record, all child records and fields are also deleted.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 358

The following table lists all the properties associated with the record node:

Property Value

XML Type The target XML type f or the f iel d. D epending on thi s val ue, the tag i n the resultant XML i s generated. Its val ue can either be El ement (default), Attri bute or None. If ‘ None’ i s selected, then the fi el d i s NO T mapped to the resul tant XML.

Minimum
Occurrences

The minimum number of occurrences specified for a particular record.
If the record does not occurs the specified number of times, then an
exception is thrown.

Maximum
Occurrences

The maximum number of occurrences allowed for a specified record.
After these many occurrences, the parser will not attempt to match the
record and an exception is thrown.

Parsing Type Specifies whether the data input is to be considered as Positional or
Delimited.

Record
Identifier Type

Type of the Identifier to be used for identifying a record.

You can choose the Record Identifier from the following values:

• Field Value Choose this option if you want to identify the record
based on the value of some child field. In this case you need to
select the field value in the Record Identifier Value property.

• Child Count The record is identified based on the number of
child counts. While parsing, if the child count in the record data
does not match the number of children defined in the file
schema, then parsing error is thrown.

• None Record data is parsed against the record definition
irrespective of the fact that the data satisfies the complete
record definition or not.

Name The name of the field. The name of the node should be a valid XML
name. You cannot provide an existing field the same name as an
existing record. Sibling fields cannot have the same name.

Description The description of the field.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 359

Property Value

Escape
Character Type

You can choose the escape character type from the following values:

Defaul t Escape Character - Indicates that the escape character i s the value of the Default Escape Character property w hi ch i s def i ned f or the schema i nstance.

Character - Allows the user to designate an escape character value. If
you select Character, you must also specify an escape value.

An escape character is useful if you have a character in your field data
that is also used as the delimiter character in the field’s parent record.

For example, if your field data is the following and you have chosen a
comma as the delimiter value of the record that contains the field, TSE
interprets the comma after "Fiorano" to be a delimiter, even if you
intend for it to be part of the field data:

Fiorano,Software,USA

Solution for this is to place an escape character directly preceding the
delimiter character that you want to include in the field data. For
example, if your escape character is specified as a backslash, you can
place a backslash directly preceding a delimiter character, as in the
following example:

Fiorano\,Software,USA

TSE interprets the comma after the backslash as field data rather than
a delimiter character.

Delimiter Value Type or sel ect a val ue f or the deli mi ter. To speci fy a del imiter val ue, you must fi rst set the Deli mi ter Type to Custom Deli mi ter. The deli mi ter can be mul ti -character.

Del i mi ter Type This is the field delimiter of this file schema. The delimiter can be
multiple characters.

Escape
Character

This is the escape character which is to be used as the field delimiter.

3.10.2.1.3 Field Node Properties

Depending on the type of file schema you are defining, you might need to add and/or remove
fields. After adding fields to any schema, you must specify their properties. If you remove a
field, its properties are also removed. You can’t add records or fields under a field.

When you add a field, you can immediately rename the field. You can edit the name of an
existing field and its properties by selecting the field and editing it.

1. If you click Add > Field from the pop up menu that appears after right clicking the
mouse, the new field is inserted as a descendant of the record that you selected.

2. You cannot give an existing field the same name as an existing record.

3. You cannot provide a new field instance the same name as an existing sibling field or
record.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 360

4. Sibling fields cannot have the same name.

When a field is selected, the ‘General’ and ‘Parsing’ sets are enabled for a field. These
properties define the format and structure of the field.

Any changes to the visible properties in the table are set for the currently selected node of the
schema tree, which can be a record or field or the root node.

The following parameters are associated with the field node:

Property Value

XML Type The type f or the record. Thi s val ue can either be El ement (default) or None. If None is sel ected, then the record i s NO T mapped to the resul tant XML.

Data Type Represents the data type f or the fi el d data. Thi s property can be set i f you w ant to vali date the f iel d data agai nst the supported data types. D ata types supported by it i ncl ude Stri ng (defaul t), Integer, Numeri c, D ate, Byte, D ata Format. This can be def i ned i f the data type f or the f i el d i s ei ther Numeri c or D ate. For Numeric data type, data f ormat can be def i ned based on the syntax rul es of java.text.D eci mal Format. For D ate data type, data f ormat can be def i ned based on the syntax rul es of java.text.Si mpl eD ateFormat.

Minimum Length The minimum number of characters that the field can contain.

Maximum Length The maximum number of characters that the field can contain.

Default value The default value for a field. The field is matched only if it's value is the
same as the default value. Can be used to set Headers and Column Names.

Map If Null Whether or not the field should be defined in the output XML if the value for
the field in the source file is null/blank.

• This property is redundant if the XML Type for the field is set to
None in the General properties set.

• If the value for the field in the source data is null/blank but Default
Value is defined for the field, then the default value is set in the
output XML.

• This property field displays only if the structure of the parent record is
delimited.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 361

Property Value

Wrap Character

Character used to enclose field data. This property is useful if you have a
character in your field data that is also used as the delimiter value for the
field's parent node.

For example, if your field data is the following and you have chosen a
comma as the delimiter value of the node that contains the field, TSE Parser
interprets the comma after "Fiorano" to be a delimiter, even if you intend to
include it as a part of the field data:

Fiorano,Software,USA

A solution for this is to define a value for the wrap character property and
then enclose the field data in the wrap character. For example, you can set
the wrap character property to double quotation marks for the first field and
then type your field data, as in the following example:

Fiorano, Software, USA

The comma between the double quotation marks is interpreted by TSE
Parser to be field data rather than a delimiter value.

• This property field displays only if the structure of the parent record is
delimited.

• If you have a field that uses a wrap character, there cannot be any
data between the wrap character and any delimiter leading or
following a wrap character.

• If your field data includes characters that are also used as the wrap
character, you must enclose those characters in another set of wrap
characters.

Padding character This functionality is for the File Writer. If a certain field is smaller than the
required size (either minimum length for delimited records or field length for
positional records) then the FileWriter will pad the field with the padding
character. Fields are always padded to the right of the field.

Valid Characters The val ue f or thi s property represents the set of vali d characters f or the fi el d val ue. If thi s val ue i s set and the fi el d data contains any character w hich doesnot bel ong to thi s li st, then parsi ng error i s throw n.

Invalid Characters The val ue f or thi s property represents the set of i nval i d characters f or the f iel d val ue. If this val ue is set and the fi el d data contai ns any character w hi ch bel ongs to thi s li st, then parsi ng error i s thrown.

Trim Spaces Whether to trim the spaces from the source field data before setting in the
output XML. You can opt for trimming the spaces from the following
positions:

• Both (Leading and Trailing)

• Leading Trailing

• None

Name The name of the record. The name of the node should be a valid XML name.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 362

Property Value

Description The description of the record.

3.10.2.2 Using the Text Schema Editor

The Text Schema Editor is an easy to use tool for defining various schemas. Typically, you can
use this tool to create, import and test a schema. In addition, you can modify an existing
schema by moving, copying and pasting elements in the schema file. The tasks that you can
perform are:

(iii) Create and save a file schema

(iv) Open and modify an existing schema

(v) Test a schema

3.10.2.2.1 Creating a desired File Schema

The following steps may be used to create a File Schema that you intend to use.

1. From the main toolbar, click on File > New File. The following pop-up is displayed:

Figure 3.10.6: Creating a File Schema: New File

2. Click on TSE in the Categories easel.

3. Click on the type of schema you intend to use in the File Types easel. The templates of
the following types of File Schemas are available:

• Delimited File Schemas

• CSV File Schema

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 363

1. Nested CSV File Schema

2. Positional in Delimited File Schema

• Positional File Schemas

1. Positional File Schema

2. Nested Positional File Schema

The desired Text Schema can be specified on the New File pop-up before you click
Next.

4. Click on Next. The Name and Location dialog box appears:

Figure 3.10.7: Creating a New File Schema: Text Schema Editor - New CSV File

5. The File Name field may be populated with the name you intend to use for the scema
file (tfl).

6. The path where you intend to store this file should be supplied in the Folder field.

7. Click Finish to save you configuration settings and create a new tfl schema file. This
.tfl file can be invoked by the transformation components to transform non-XML data
into its corressponding XML and vice versa.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 364

8. Enter the relevant details of the schema in the appropriate fields and click the Finish
button. The schema file is saved in the specified location with an extension .tfl and the
corressponding XML is visible in the Source easel when the source button is enabled as
shown in the following snapshot:

Figure 3.10.8: A newly created TFL File displayed in the Display easel

9. Finally, you can test this recently created schema by clicking the Test button as
shown in the following snapshot:

Figure 3.10.9: Testing a Schema

10. Click on the Generate Sample button to generate a sample script.

11. The up arrow key can be used to test XMl to Text format transformation while the
down arrow key may be used to test Text to XML transformation.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 365

3.10.2.2.2 Modify an Existing Schema

An existing schema can be modified by adding, deleting or moving records and fields. In
addition, when working with multiple files, you can copy an entire record from one file to
another.

Adding Records and Fields

Consider a scenario where you need to add a new record named Invoice_No to a schema file
named Invoice.tfl.

1. To open the file, click File > Open File. The Open dialog box is displayed as shown in
the Figure 3.10.10.

Figure 3.10.10: Open dialog box

2. Using the Look in drop down list, navigate to the folder that contains the file.

3. Type the name of the .tfl file in the File name field and click the Open button. The
schema is displayed.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 366

4. To add a record, right-click the record node and select the Add > Records option
from the shortcut menu as shown in the Figure 3.10.11.

Figure 3.10.11: Add a New Record shortcut menu

5. The Input dialog box is displayed as shown in the Figure 3.10.12 after you click the
Fields option in the earlier step.

Figure 3.10.12: Input dialog box

6. Type a desired name in the Add field and click the OK button. A new record is added
to your existing record.Simlarly a field may be added to an exisiting record. You can
move a record or field up or down hierarchially in the structure easel by using the
Move Up and Move Down options in the right click menu on the Structure Easel.

Deleting Records and Fields

If you intend to delete a record or a field from your existing File Schema, you may do so by
using the following steps:

1. Open the tfl file of the existing File Schema.

2. In the Structure easel, right-click on the record or field you intend to delete.

3. From the right-click menu choose the Delete option.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 367

3.10.2.3 Warnings

A warning, which is normally associated with positional records, is the Out of Sequence Error.
This occurs if the start position of a field is not equal to the end position of the previous field +
1. This is only a warning and parsing on such a record can be carried out successfully.

3.10.2.4 Limitations

As of now the tool is logically stand-alone and so you have to create a file schema, save it and
then import it in any of the components. The following are some limitations of TSE.

1. All escape characters can be used to escape only the delimiter of the layout/record
that they belong to. For example, if the record delimiter for the whole file is "\r\n"
(CR-LF) and the corresponding escape character is "\", while the field delimiter for a
record in the file is "," and the corresponding escape character is ":", then, in order to
escape "\r\n", only "\" can be used.

2. In order to escape reserved characters other than the delimiters, the wrap character
functionality has to be used. (A field has to be enclosed within wrap characters).

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 368

3.11 Public Key, Cryptography Keystore, And Truststore

This section describes the concepts as they are implemented in Fiorano SOA Platform.

3.11.1 Using Public Key Cryptography for Authentication

Authentication is the process of verifying the identity of an entity to ensure that one entity
verifies the identity of another entity. In the following example, user A and user B uses public
key cryptography to verify user B's identity. The following notation indicates that an item has
been encrypted or decrypted using key cryptography.

{something}key

where something is a description of the item that has been encrypted or decrypted, and key is
the key that is used to encrypt or decrypt that item.

In the following example, user A wants to authenticate user B. User B has a pair of keys, one
public and one private. User B discloses the public key to user A. User A generates a random
message and sends it to User B as follows:

A->B random_message

User B uses the private key to encrypt the random message and returns the encrypted version
to user A:

B->A {random_message}User_B's_private_key

User A receives this message and decrypts it by using the public key that B previously
published. User A compares the decrypted message with the message that user A originally
sent to user B; if the messages match, user A knows that the later message came from user
B, because an imposter presumably would not know user B's private key and so would not be
able to properly encrypt the random message to send to user A.

Web server certificates are used to authenticate the identity of a web server to the clients
accessing that web server. When a client wants to send confidential information to a web
server, the client accesses the server’s digital certificate. The certificate, which contains the
web server’s public key is used by the client to authenticate the identity of the web server and
encrypt the information sent to the server using the Secure Socket Layer (SSL) technology.
Since the web server is the only entity with access to its public key, only the server can
decrypt the information. This is how the information remains secure during transit across the
Internet.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 369

3.11.2 Keystore and Truststore

Secure Sockets Layer (SSL) is a protocol designed to enable secure communications on an
insecure network such as the Internet. SSL provides encryption and integrity of
communications along with strong authentication using digital certificates. SSL allows a secure
connection between a client and a web server.

SSL uses public and private keys to encrypt and decrypt information.

Public key encryption is a technique that uses a pair of asymmetric keys for encryption and
decryption. Each pair of keys consists of a public key and a private key. The public key is
made public when it is distributed widely. The private key is never distributed; it is always
kept secret.

Data that is encrypted with the public key can only be decrypted with the private key.
Conversely, data that is encrypted with the private key can be decrypted only with the public
key. This asymmetry is the property that makes public key cryptography so useful.

As diagramatically illustrated below, the public key is shared between the client and the
server. The private key is however kept private by the client as well as the server.

Figure 3.11.13: Public key shared between the client and the server

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 370

Figure 3.11.14: How Public and Private keys are used

As illustrated in the diagram above, the exchange of message between the client and the
server is ensured in the following way.

• The client has a keystore where it stores its public key/private key pair. Likewise the
server also has its keystore containing its public key/private key pair.

• The client publishes its public key. The server stores the public key of the client in its
trust store.

• Likewise the server publishes its public key. The client stores it in its trust store.
Truststore is a file where digital certificates of trusted sites are stored and retrieved for
authentication during an SSL connection.

When the client wants to send confidential information to the web server, the client accesses
the server’s digital certificate. The certificate, which contains the web server’s public key is
used by the client to authenticate the identity of the web server and encrypt the information
sent to the server using the Secure Socket Layer (SSL) technology. Since the web server is
the only entity with access to its public key, only the server can decrypt the information. This
is how the information remains secure during transit across the Internet.

The steps to be followed in using SSL over the internet are as follows:

• Generating a client keystore

• Getting the Digital Certificate of Server

• Creating the Client Truststore

• Using the Keystore and Truststore in an SSL Application

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 371

3.11.2.1 Generating a Client Keystore

A keystore is a file that holds the public and private key pairs and certificates for SSL
specifications. The Keystore is a database of public and private keys. Java keytool is used to
generate the public/private key pairs. Java keytool utility is present at %JAVA_HOME%/bin.

To generate a keystore, open the command prompt and type in the following command line
and press the Enter key:

<Your directory>%JAVA_HOME%\bin\keytool -genkey -alias [alias name] -keystore
[keystoreName] -keyalg [algorithm] -validity [days in integer] -storepass [store password] -
keypass [key password]

Here is a brief description of the options used in the keytool command:

Parameters Description

-genkey Requests keytool to generate a key pair

-alias Identifies the new key pair within the keystore

-storetype Declares the type of the keystore. JKS is the default type

-keyalg Declares the algorithm to be used; we're using the RSA public key
algorithm, which is the default

-storepass Specifies the password for the entire keystore

-keypass Specifies the password for the new key pair

-Validity It is the validity of the key pair in days

-keystore File that holds the public and private key pairs

For example, you want to generate the keystore in the directory d:\WorkStudio\keystore, and
then the command would look something like:

D:\WorkStudio\keystore>%JAVA_HOME%\bin\keytool -genkey -alias client1 -keystore
client1.keystore -keyalg RSA -validity 365 -storepass cl1storepass -keypass cl1keypass

Press the Enter key. The result of the command is as shown in the Figure 3.11.15.

Figure 3.11.15: Running the keytool command

Note: You will have to type in the answers to the questions that appear as shown above.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 372

The keystore file is generated in the specified directory. The next step is to create a truststore
and add the server certificate in it.

3.11.2.2 Getting the Digital Certificate of Server

Digital certificate contains the public key and are stored in a Truststore. The Truststore is a file
where certificates of trusted sites can be retreived for authentication during an SSL
connection.

To generate a truststore, you will have to first export and save the public key of the server
you are going to access using SSL. To do this, perform the following steps:

1. Type in the address of the secure website on the address bar of your internet browser.
As an example, you may type in https://adwords.google.com. The following dialog is
displayed.

Figure 3.11.16: Security Alert dialog

2. Click the View Certificate button. The Certificate dialog is displayed.

Figure 3.11.17: Certificate dialog

3. Click the Details tab and highlight the public key as shown in the Figure 3.11.18.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 373

Figure 3.11.18: Public Key

4. Next, click the Copy to File button and save the certificate file in the directory where
the keystore has been generated as illustrated in the Figure 3.11.19.

Figure 3.11.19: Certificate Export wizard

Note: The process of copying and saving the digital certificate may differ from
browser to browser. The concept is however the same. In the guide we have
illustrated the process on Microsoft’s Internet Explorer.

5. Once you have saved the digital certificate, you are now ready to create the
truststore.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 374

3.11.2.3 Creating the Client Truststore

Perform the following procedure to create a trust store:

1. Open the command prompt and type in the following command and press Enter:

Your directory>%JAVA_HOME%\bin\keytool -import -alias [alias name] -file [file
name.cer] -keystore [truststorename.keystore] -storepass [storepassname]

If you want to generate the truststore in the directory D:\WorkStudio\keystore, then
the command would look something like:

D:\WorkStudio\keystore>%JAVA_HOME%\bin\keytool -import -alias mailserver -file
googlesrv.cer -keystore truststore.keystore -storepass trustpass

2. Next press the Enter key. The result of the command is as shown in the Figure
3.11.20.

Figure 3.11.20: Command Prompt

Once the keystore and the truststore have been created, you are now ready to use them
in the configuration of SSL in the webcomponents.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 375

3.11.2.4 Using the Keystore and Truststore in an SSL Application

Now we will use the HTTPAdapter to access a secure HTTP connection. We use the keystore
and the trustore that we created in the previous sections of this chapter.

The section demostrates how HTTPAdapters component can be configured for HTTP Get
operation to access a secured HTTP connection:

• Start the Studio. Next, drag and drop the HTTPAdapters component from the Service
Pallete as shown in Figure 3.11.21.

Figure 3.11.21: Service Palette

• Next, double-click on the HTTPAdaptes component. The HTTPAdapters custom properties
wizard is displayed.

• Enter the value for the host field, for example, https:// adwords.google.com. Enter
the port number. Https hosts by default use a port number of 443. If the host uses a
different port number then it has to be provided.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 376

• Provide SSL Security configurations in the CPS. By default the property SSL
Security is not visible. Click on the ‘expert properties’ icon to make the property visible.

Figure 3.11.22: HTTPGet Custom Properties

• Open SSL Security by clicking on the ellipsis and select the Enable SSL check-
box. The SSL related fields gets enabled as shown in the Figure 3.11.23. Provide the
details for the following fields.

Figure 3.11.23: SSL Security parameters

o Truststore Location - Location and filename of the truststore file. For
providing the Truststore, select the truststore.keystore file in
\workstudio\keystore that we created in the previous section.

o Truststore Password - Password of the specified truststore. Specify
trustpass as the truststore password.

o Keystore Location - Location and filename of the keystore. Select the
client1.keystore file in \workstudio\keystore directory.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 377

o Keystore password - Password for the keystore. Specify cl1storepass as the
store password.

o Keystore Client Key - Password for the client key. Specify cl1keypass as the
Keystore Client key.

Note: The values we are providing for keystore and truststore are the values created in
the previous sections. These are not the default values.

• Accept the default values for the fields whose values are already provided.

• Next, activate the HTTPRequestProperty parameters panel in the Configuration
Property Sheet. The HTTPRequestProperty parameters panel is as shown in the Figure
3.11.24.

Figure 3.11.24: HTTPGet Custom Properties

• Enter a / (slash) for the URI field.

• Finish the configuration by navigating through the remaining panels and accepting
the default values for each panel.

• Connect a feeder and display component with the HTTPAdapters component using
routes as shown in the Figure 3.11.25.

Figure 3.11.25: P2P Connection

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 378

• Next, double-click the feeder component to display its Configuration Property
Sheet (CPS). The CPS is displayed. Now, click the Fetch from Connected Service icon.
The Output DTD/XSD is displayed as shown in the Figure 3.11.26.

Figure 3.11.26: Feeder Custom Properties

• Click the Next button to navigate to the Options panel. Click the Generate Sam-
ple XML button. The Generate Sample XML dialog is displayed as shown in the Figure
3.11.27.

Figure 3.11.27: Generating Sample XML

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 379

• Accept the default values and click the OK button. From the sample XML that is
generated, delete all the XML tags and leave only the <HTTPRequest> opening and closing
tags as shown in the Figure 3.11.28.

Figure 3.11.27: Feeder Custom Properties

• Click the Finish button to finish the configuration of the feeder.

• Next, do the Component Resource Check and run the event process. Wait until
the components turn green in the Event Process easel. When the event process suc-
cessfully runs, the feeder window is displayed as shown in the Figure 3.11.29.

Figure 3.11.29: Feeder Business Service

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 380

• Click the Send button to send the HTTP request from the feeder to the HTTPAdapters
component. The result of the request is displayed in the display business component as
shown in the Figure 3.11.30.

Figure 3.11.30: Display component displaying Result of HTTPAdapters Request

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 381

3.12 Component Control Protocol (CCP)

The Component Control Protocol is a protocol designed for exchange of control and state
information over bidirectional channel between Peer Server and components which run on the
Peer Server.

3.12.1 Communication Channels

Communication between the Peer Server and components happen over two JMS topics:

• CCP_COMPONENT_TO_PEER_TRANSPORT – Topic on which components send
data, status and acknowledgement events to the Peer Server

• CCP_PEER_TO_COMPONENT_TRANSPORT – Topic on which the Peer Server sends
control commands and data requests to components.

Message selector which is a function of the GUID of application to which component belongs
and the instance name of component is used to identify requests sent to and from components
on the control topics.

3.12.2 Events

Javadocs for different types of events that are exchanged between component and the Peer
Server can be found at %FIORANO_HOME%/javadoc/esb/ccp.

As of this release, only INITIATE_SHUTDOWN Command event and Status events are
supported.

3.12.3 Component Lifecycle and CCP

A component’s life cycle typically consists of following stages:

• Component startup – This stage starts as soon as the component process is
created and lasts until component is ready to process requests. The component
looks up all required configurations and initializes all required objects

• Transport startup – This stage is a part of component startup where all necessary
transport objects like JMS connection, sessions, consumers, producers, message
listeners and other related objects are created

• Component runtime – This stage starts as soon as all necessary initialization is
done and component can accept requests and lasts until a shutdown is initiated.

• Transport shutdown – This stage is a part of component shutdown. After this stage
all processing is stopped and only cleanup of any other objects remain.

• Component shutdown – This stage starts with a shutdown request and lasts until
the component terminates. The component cleans up all objects created in an
orderly fashion during this stage.

Fiorano SOA Platform User Guide

Chapter 3: Component and Component Instances Page 382

Without CCP, when a component is launched in separate process it has no way to control the
how its state is reflected as it cannot provide feedback to the PeerServer on its state. This
causes following problems:

A component is considered to be started as soon as a JMS connection used for transport is
created and its state is reflected as such in tools.

When a component is stopped there is no way to communicate to component to initiate an
orderly cleanup and shutdown. The component process is forcefully destroyed instead.

CCP transfers the control over component states to the component. The Peer Server only
sends necessary commands to the component and waits for component to provide feedback
on its state.

For startup, the Peer Server wait for COMPONENT_STARTED status event to indicate that
component is started instead of relying on JMS connection creation.

For shutdown, a component which has CCP feature enabled would initiate orderly shutdown of
the component as soon as a INITIATE_SHUTDOWN command is received from the Peer Server
and terminates itself once the cleanup is done. A component can send intermediate status
events to indicate the progress of shutdown process which are logged by the server. Peer
Server waits for component process to terminate for a configured interval of time. If the
component process is not terminated within the configured time, the Peer Server will forcefully
terminate the component process. This can be configured in FES profile against
ComponentStopWaitTime property on ApplicationController node at path FES Fiorano Esb

 Application Controller ApplicationController

Figure 3.12.1: ComponentStopWaitTime property in FES profile

3.12.4 Sample component

A sample component which implements CCP can be found at
%FIORANO_HOME%/esb/tools/templates/samples/CCPComponent.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 383

Chapter 4: Pre-built Components

This chapter lists all the component categories and the pre-built components that are available
in the Fiorano SOA Platform. This section also describes how to develop components in various
languages which can be deployed into.

Fiorano SOA Platform provides with a wide range of pre-built components, each performing a
simple business task. These components are the building blocks for designing various
automated business processes each meeting a definite business need. The components are
loosely coupled to each other and interact through asynchronous invocations using messages
over JMS.

List of Pre-built components

The pre-built components which are available in Fiorano SOA Platform as listed below:

Category Components

Bridges EJBAdapter, FTPGet, FTPPut, IWay, POP3, SAPR3, SMSBridge, SMTP,
SapR3Monitor

Collaboration chat, csChat, vbChat, vcChat

DB DB, DBProc, DBQuery, DBQueryOnInput

Error ExceptionListener

File FileReader, FileWriter

Flow Aggregator, CBR, Cache, DistributionService, Join, Sleep, Timer, WorkList,
WorkListManager, XMLSplitter, XMLVerification

MOMs JMSIn, JMSOut, JMSReplier, JMsRequestor, MQSeriesIn, MQSeriesOut,
MSMQReceiver, MSMQSender, TibcoRVIn, TibcoRVOut

Performance Receiver, Sender

Samples BinaryFileReader, CRM, CompositeBC, LDAPLookup, LDAPAuthenticator,
MarketPricesGui, Prices, RfqManager, TradeBus, erp

Script BeanShell, GroovyScript, JavaScript, PerlScript, Python

Transformation EDI2XML, HL7Reader, HL7Writer, Text2XML, XML2EDI, XML2PDF, XML2Text,
Xslt

Util Compression, Decompression, Decryption, DiskUsageMonitorService,
Display, Encryption, Feeder

Web HTTP, HttpReceive, HttpStub, SimpleHTTP

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 384

WebService Stub, WebServiceConsumer

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 385

4.1 Bridges
Bridges category consists of components like EJBAdapter, FTPGet, FTPPut, IWay, POP3,
SAPR3, SMSBridge, SMTP, SapR3Monitor, HL7Sender, and HL7Receiver. The following section
describes each component.

4.1.1 EJBAdapter

The EJB component can be used to access an Enterprise Java Bean hosted in any application
server, like Weblogic, for the development and deployment of transactional, distributed object
applications-based, server-side software components. The adapter uses EJB 1.1 semantics for
accessing the EJB.

Points to note

1. The EJB client jar needs to be added as a resource to this adapter. Please refer to the
application server (on which the EJB is deployed) documentation on how this can be
done.

2. The Initial Context Factory class, specific to the application server being connected to,
should also be added as a resource to this adapter. For example, weblogic.jar should
be added as a resource if the EJB is deployed in Weblogic application server.

3. Only stateless session beans and entity beans are supported. Using this adapter with
stateful session beans may not produce the desired results.

4. In case of JBOSS application server, log4j-1.2.9.jar present in
'$FIORANO_HOME$/extlib/log4j/' has to be updated with the jar from JBOSS
installation directory.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 386

4.1.1.1 Configuration and Testing

4.1.1.1.1 Managed Connection Factory Panel

Figure 1: Managed Connection Factory Panel

Attributes

Use Connection Details From Input: Parameters to create the connection can be specified
in the input message when this property is set to true. If this property is selected and the
connection parameters are not given in the input request, then the values given in this panel
for those parameters will be used.

Application Server: The Application Server on which the Enterprise Java Bean is deployed
should be specified here.

Figure 2: Choose an Application Server

Initial Context JNDI: Properties like InitialContextFactory, Provider URL etc. used to create
Initial Context should be specified here by clicking on the elipsis and adding entries in the
table as shown in figure 3.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 387

For example, to connect to JBOSS server, the following properties should be added:

• java.naming.factory.initial – org.jnp.interfaces.NamingContextfactory

• java.naming.provider.url - <IP on which the server is running>:<Port number on
which the server is running>

In addition to these, the user may provide other properties depending on the Application
Server the component should connect to.

Figure 3: Initial Context JNDI

Note: Default InitialContextJNDI values vary depending on the Application Server selected.

• EJB Home: Fully qualified name of the class which implements the EJBHome
interface.

• EJB JNDI Name: JNDI name with which the EJB is bound to the Application Server.

• EJB Create / Finder: After providing EJB Home and EJB JNDI Name properties, click
on the ellipsis to select a method from the list of Create / Finder methods.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 388

Figure 4: Select Create/Finder method

If the selected Create/Finder method has any parameters, double-click on the selected node to
provide those parameters to the method.

Note: Only primitive types can be passed to the Create/Finder methods. Complex date types
are not supported.

Figure 5: Pass parameters to the Create/Finder method

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 389

4.1.1.2 Interaction Configurations Panel

Figure 6: Interaction Configuration Panel

Attributes

Is Application Server Available: Specifies whether Application Server is available.

• yes: If a connection can be established with the Application Server at the time of CPS
configuration. Remote Methods option is visible in this case.

• no: If a connection cannot be established with Application Server at the time of CPS
configuration. Remote Methods option is not visible in this case. In this case, the
details of the Remote Method to be executed should be provide manually, and so
options Method Name, Number of Parameters, Parameter types, Return Type are
visible.

Figure 7: Interaction Configuration when Application Server is not available

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 390

Remote Methods: Click on the ellipsis to select the Remote method to be executed from the
list of methods.

Figure 8: Select Remote Method

• Method Name: The name of the Remote Method of the EJB that is to be executed.

• Number of Parameters: The number of parameters that are to passed to the remote
method.

• Parameter Types: Comma separated, fully qualified class names of the parameters
that are to be passed to the remote method.

• Return Type: Fully qualified class name of the return type of the remote method.

Note: In case there are primitive types in Parameter Types and/or Return Type,
corresponding wrapper classes should be used.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 391

4.1.1.3 Functional Demonstration

Configure the EJBAdapter as described in Configuration and Testing section and use feeder
and display component to send sample input and check the response respectively.

Figure 9: Demonstrating with sample input and output

4.1.1.4 Input Message

<ns1:hello.Request xmlns:ns1="http://www.fiorano.com/fesb/activity/EJBAdapter1/In"/>

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

4.1.1.5 Output Message

<?xml version="1.0" encoding="UTF-8"?>

<hello.Response xmlns="http://www.fiorano.com/fesb/activity/EJBAdapter1/Out">

 <returnVal xmlns="">Hello World!</returnVal>

</hello.Response>

4.1.2 FTPGet

The FTP Get component is used for downloading files from the FTP Server. It can be used for
downloading a single file or all files in a directory to a desired location.

Using the FTP Get component, a file can be downloaded by any of the following methods:

5. By monitoring a remote directory for any modifications such as file addition or
updation and download of the corresponding file to the desired location.

6. By downloading the file specified in the input message to the desired location.

http://www.fiorano.com/fesb/activity/EJBAdapter1/In
http://www.fiorano.com/fesb/activity/EJBAdapter1/Out

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 392

The FTP Get component uses the FTP protocol for file transmission. The component ensures
uninterrupted download by attempting to reconnect to the remote server in case the
connection to the server is lost.

4.1.2.1 Managed Connection Factory Panel

The connection properties can be configured using the properties of Managed Connection
Factory panel as shown in Figure 4.1.

Figure 4.1: Managed Connection Factory panel

4.1.2.1.1 Connection Properties tab

Use Connection Details From Input

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 393

Parameters to create the connection can be specified in the input message when this
property is set to true. If this property is selected the validation errors in the managed
connection factory panel of the CPS are treated as warnings. So user can bypass this
step without giving valid configuration and complete the configuration of the
component. If valid properties are not provided even in the input message exception
will be thrown at runtime

Protocol

Select the Protocol either FTP or SFTP

• FTP: Select this option if you want the protocol to use as File Transfer Protocol.

• SFTP: Select this option if you want the protocol to use as Secured File Transfer
Protocol. If we select this protocol, then we need to provide Client
Authentication Type. If we select Client Authentication Type as Password,
then client's user name and password are sufficient to login successfully. These
details can be set by using the properties Login and Password. If we select
Client Authentication Type as Public Key or Both we need to provide the
details of Private Key File, Key File Type and Key File Password. For detail
explanation of SFTP setting, please refer Scenario 3 under section Functional
Demonstrations.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 394

Client Authentication Type

This Property determines the authentication type for the client validation in case of
SFTP Protocol. We can select one of the following validations

• Password: If this is selected client's username and password are used for client's
authentication.

• Public Key: If this is selected client's Private Key and the Key File Password
are used for client's authentication. (Key file password is different from client
password)

• Both: This will authenticate using a private/public key-pair, followed by password
authentication. If the authentication fails while using client's private key then it will
try to authenticate using password authentication.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 395

Remote Host

The host name/IP address of the machine where the FTP server is running.

Port

The port number on which the FTP server is running.

Login

User name of the FTP user.

Password

Password of the FTP user. This field will be disabled if user selects Protocol as SFTP
and Client Authentication Type as Public Key.

Private Key file

The private key file path in the local machine used for client authentication in case of
protocol SFTP. The path should include the file name also. The key file should be
present on the machine where the peer server (on which peer the component is
running) is running. This property is visible when the Protocol is selected as SFTP and
“Client Authentication Type” as “Public Key” or “Both”.

Key Type

Determines the private key type either 'DSA' or 'RSA'. This property is visible when the
Protocol is selected as SFTP and “Client Authentication Type” as “Public Key” or “Both”.

Key file password

The private key file's password in case of protocol SFTP and Client Authentication Type
as Public Key or Both.

Note: Key File Password is different from client's password. The properties "Client
Authentication Type", "Private Key File", "Key Type" and "Key File Password" are hidden in
case of protocol FTP.

Connection Pool Params

Here the user can specify the details for maintaining the pool of connections in the
component. When we click the eclipse (..) button, Connection Pool Params dialog box
appear as shown in the figure below.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 396

• Enable Connection Pool: If this property was enabled, the connections created
are cached in to a pool and used whenever required and available. If disable a new
connection will be created for each request. By enabling this we can reduce the
time for creating a new connection for every input request. If we disable this a
new connection will be created for every request and it will be closed after
completion of that request.

• Max Pool Size: The maximum number of connections that can be allocated for
the pool.

• Blocking Timeout (in ms): The time after which the call to fetch a connection
from the pool will timeout if there is no unused connection available.

• Idle Timeout (in ms): The time after which the idle connections are returned
back to the pool

Proxy Settings

FTP adapters supports HTTP and SOSCKS proxies. HTTP is the default option. Here,
the user can configure the proxy server settings.

• Use Proxy Server: If enabled Component will use proxy server settings.

• Proxy Address: The IP address or the host name of the machine where the proxy
server is running. .

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 397

• Port Number: Port number on which the proxy server is running.

• Username: The user name by which the user can login into the proxy server.

• Password: Password of the user name by which the user can login into the proxy
server.

• SOCKS Proxy: Enable this property if the specified proxy server was a socks
proxy server.

SSL Security

This property is visible only if we select protocol as FTP.

• Enable SSL: By checking this we can enable ssl settings and we can access FTPS
(FTP Over SSL) server.

• Trust store location: Determines Location of the trust store

• Trust store Password: Determines Trust store password

• Key store location: Determines Key Store location

• Key store Password: Determines Key Store password

• Key store Type: Determines Key store type

• Trust store Type: Determines Trust store type

• Trust Manager Factory Type: Determines Trust Manager Factory type

• Key Manager Factory Type: Determines Key Manager Factory type.

• Security Provide Class: Determines Security provider class.

• Security Protocol: Determines Security protocol

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 398

• Key Store Client Key: Determines Key Store Client Key

4.1.2.1.2 Advanced Settings tab

Timeout (in ms)

The TCP timeout in milliseconds for the sockets. Any operation which takes longer than
the timeout value is killed with a java.io.InterruptedException.

Current directory

When a user logs in to the FTP server, then the directory to which it is changed to.
All relative paths in the server that are computed by the FTPGet component are
relative to this directory.

Example: The user's home directory is /home/user and current directory is set to
/home/user/Fiorano then when the user logs into the FTP server, the directory will be
changed to /home/user/Fiorano.

If the properties Working directory, Error directory and Processed directory of the
Interaction Configurations panel are left to the default values inQueue, errorQueue
and processedQueue respectively as shown in Figure 4.10, these directories are
created under the directory specified by this property.

Connect mode

We can select the type of FTP connection – Active or Passive. This property will be
ignored if we select protocol as SFTP.

• Active: In Active mode the FTP client specifies the data port that the FTP server is
going to connect on and waits for the FTP server to connect. The IP address and
port numbers are sent to the FTP server by the FTP client using the PORT
command.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 399

• Passive: In passive mode the FTP server specifies the data port that the FTP
client will connect on and waits for the FTP client to connect. The FTP client will
ask the FTP server for the server's IP address and port number by issuing the
PASV command to the FTP server. This will usually solve the problem of firewalls
filtering the incoming data connection.

Transfer type

Specifies the connection type

• Ascii: When we select Ascii mode the transferred data is considered to contain
only ASCII formatted text. If we select Ascii transfer mode then the component is
responsible for translating the format of the received text to one that is compatible
with the operating system of fps(The fps on which the FTPGet component is
running). Text files and files containing HTML, CSS mark-up are suitable for Ascii
mode transfer.

• Binary: When we select Binary mode of transfer the component transmits raw
bytes of the file being transferred. All audio, video and image files are suitable for
Binary mode transfer.

Resume Transfer

Resumes ftp transfer from the point where download had stopped in case transfer is
broken. Resume of the broken transfer depends on the FTP server. If the FTP server
does not support this then the FTP adapter will start from the beginning otherwise it
will start from where it was stopped.

Note: Broken transfers will be resumed only when the Transfer type is Binary.

Extensions of the files to be filtered

When files of specific extension should not be downloaded from the server, the file
extension has to be specified here. This property accepts comma separated list of file
extensions. Example: *.zip, *.exe, *.dat.

Example: If this property is set to .exe and the user specifies to get the file named
"installer.exe" in the request, then the component ignores that request.

Debug responses

When FTP responses are needed, enabling this property logs all the FTP responses to
the Output Log of the component. Figure 4.2 illustrates a sample snapshot of the
debug responses when some download happens.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 400

Figure 4.2: FTP responses in FTPGet’s output log

SITE command parameters

Site commands are sets of extended commands that can be issued by an ftp client,
and they are not defined in RFC. However, they are supported by various ftp servers,
and different servers usually have different supported site commands. SITE command
is used by the server to provide services specific to the system. All the server
administrative tasks can be performed by the SITE command.

This property accepts a semicolon separated list of SITE command parameters that
have to be executed immediately after login. These parameters are server dependent.

Example: For OS/400 platform, the server specific format of lists or names can be
changed to UNIX type formats by specifying the value LISTFMT 1; NAMEFMT 1 for
this property.

Use specified format for parsing Directory Listing?

This property is used to parse the directory listing of the ftp server. For example in
case of Unix the directory is listed as follows

drwxrwxr-x 3 user group 4096 2008-10-23 14:13 fiorano
drwxr-xr-x 14 user group 4096 2008-12-18 14:41 Fiorano

But on Windows the directory is listed in different format. This listing is the output
from the ftp server after executing “dir” command.

• No: When this property is disabled, the parsing format will be chosen depending
on the Operating System on which the FTP server is running.

• Yes: Enable this property if a specific parsing format is to be used for parsing the
Directory listing returned by the FTP server.

Example: If a FTP server is running on IIS on a Windows machine and its directory
listing style is set to UNIX, enable this property and set 'Parsing format for Directory
Listing' to UNIX for this property.

Parsing format for Directory Listing

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 401

This property is used to determine the format to use for parsing directory listing in the
ftp server. The formats supported by the component are Windows and UNIX.

• Unix: Select to use Unix format to parse the directory listing

• Windows: Select to use Windows format to parse the directory listing

4.1.2.1.3 Testing the Connection

Server connection can be tested from within the CPS by clicking on the Test button in the
Managed Connection Factory panel.

Figure 4.3: Result of successful connection creation

4.1.2.2 Interaction Configurations Panel

Interaction settings can be configured in the Interaction Configurations panel shown in Figure
4.4.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 402

Figure 4.4: Interaction Configurations panel

4.1.2.2.1 Source Setting

Response type

When the response type is File, the file to which the downloaded content is to be
written should be specified in the input request to the adapter. The figure below
illustrates the input and output schema structures when the response type is a File.
Table 1 and Table 2 provide the descriptions for the schema elements of the input and
output schema structures respectively.

Note: Input port appears only when Monitoring is disabled (Set the value of Monitor
property to No).

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 403

Figure 4.5: Interaction Configurations with response type – File

Figure 4.6: Input schema structure for the response type – File

Schema Element Description

LocalDirectory The directory on the local file system where
the file needs to written

LocalFileName The name of the file to which the downloaded
content is to be written

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 404

Schema Element Description

LocalPath Path of the local file to which the
downloaded content is to be written.

Note: When LocalPath is specified,
LocalDirectory and LocalFileName need not
be specified.

RemoteFile File on the FTP server which is to be
downloaded.

TransferType Type of data transfer (ASCII or Binary)

Table 1: Input schema element descriptions for - File response type

Figure 8: Output schema structure for the response type – File

Schema Element Description

LocalPath Path of the local file to which the downloaded
content is written

RemoteFile File on the FTP server which has been
downloaded

TransferType TransferType mentioned in the input

BytesTransferred The number of bytes transferred

TotalBytes The total number of bytes transferred

ReplyCode The reply code sent by the FTP server

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 405

ReplyText The reply text sent by the FTP server

Table 2: Output schema element descriptions for - File response type

When the response type is chosen as Data, the Target settings in the Interaction
Configurations panel change as shown in Figure 9. Now, only one property Send XML output?
appears in the Target Settings. When Send XML output? is enabled, the component sends out
an XML message which comprises the downloaded data and download status details. When
disabled, the component sends out just the downloaded content.

Notes:

• Input port appears only when Monitoring is disabled (Value of the property Monitor
Directory set to No).

• Output port do not have any schema defined on it when the Send XML output? is disabled.

Figure 4.8: Interaction Configurations with response type - Data

Figure 4.9 and Figure 4.10 show the input and output schema structures respectively when
the response type is Data. Please refer Table 1 for the description of input schema elements
and Table 2 for the description of output schema elements except Data. When the response
type is Data, this element holds all the downloaded content.

Figure 4.9nput schema structure for the response type - Data

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 406

Figure 4.10: Output schema structure for the response type - Data

Send Transfer Progress Notification

If selected Yes, then one more options appears as Monitor Progress interval as shown
in the figure below. When large files are being downloaded from the FTP server, the
progress of the transfer can be obtained by specifying yes to this property.

If this property is selected as Yes then the FTPGet adapter will send the notifications
of the downloaded process at regular time intervals and this time interval can be
specified by the property Monitor Progress interval (in ms). The example output of
this notification is shown below. Now, observe the BytesTransferred and TotalBytes
fields in the output xml.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 407

Validate Input

If this property is set to true, FTPGet adapter will validate the input request with the
input port xsd.

Monitor Progress interval (in ms)

The time interval (in milliseconds) between any two progress notifications. This is
enabled when the property Send Transfer Progress Notification is set to true.

Cleanup resources (excluding connection) after each document

This closes all the resources except to connection used by the FTPGet adapter after
every request. If the less processing time is more important the less memory usage,
then it is recommended to set this property to No and vice versa.

Delete file after transfer

Specifies if the remote file is to be deleted after it is completely downloaded.

Target Namespace

Target Namespace for the FTP request and response XML messages.

4.1.2.2.2 Monitor Settings

• Monitor: This property can be used to make the FTPGet adapter poll a directory on the
server for files matching a particular pattern and download all such files from the
server. Enabling this property makes the FTPGet adapter poll the Source directory
using the polling configuration specified in Scheduler Configurations panel. The user
has to make sure that the Source directory exists on server.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 408

Note: The properties Source directory, File name patterns, Move to working directory,
Working directory, Processed directory, Error directory, and Time-based file filtering
type are visible only Monitoring is enabled, that is, the property Monitor set to yes.
Shown in Figure 4.10 is a sample screen shot with monitoring enabled and the
monitoring settings configured. FTPGet takes care of the creation of Working directory,
Processed directory and Error directory on the server if the directories do not exist.
Working, Processed and Error directories get created under the Current directory
specified in Managed Connection Factory panel. If user doesn't prefer moves and the
creation of these extra directories then user can set the “No” to the property “Move to
working directory”.

Monitoring is done by monitoring the source directory in regular scheduling
interval. The scheduler configurations can be defined by the user in Scheduler
Configurations Panel and this is the only case that FTPGet component uses
scheduler configurations.

Figure 4.12: Sample monitoring configuration

• Source directory: The directory on the FTP server containing the files to be
downloaded. FTPGet polls this directory using the polling settings configured in
SchedulerConfigurations panel.

• File name patterns: The type of files in the Source directory which are to be picked up
and downloaded. This property accepts multiple file name patterns separated by pipes.
Example: *.txt|*.xml|*.exe

• Move to working directory: Enabling this property moves a file to Working directory
when the file download starts, to Processed directory when the file download is
successful, to Error directory when the file download has failed.

Note: When the user does not possess the move permissions, this property should be
set to No.

• Working directory: This directory holds the files for which the file transfer is in
progress.

• Processed directory: This directory holds the files for which the download has been
successful.

• Error directory: This directory holds the files for which the download has failed.

• Time-based file filtering type: This property provides the capability of monitoring only
specific files depending on their modification times. This property provides 4 options
(as shown in Figure 4.12) based on which the files to be monitored could be filtered.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 409

Figure 4.12: Time-based file filtering types

The behavior is as follows:

− NONE: No filtering is applied on the files. Every file present in the Source directory
is monitored.

− TIME: Files whose last modification time is greater than the last polling time is
monitored. This ensures that only the files modified/added after the last polling
cycle are monitored.

o Base Time: Base time in dd:MM:yyyy hh:mm format after which the
changed files are to be downloaded

o Remote host time offset: If the FTP server and the component are not
in the same time zone, the difference in the time zone of FTP Server time
zone from the component's time zone should be specified in (+/-) hh:mm
format.

− HIGHEST_MODIFICATION_TIME: Files whose last modification time is greater
than the highest last modification time found in the last polling cycle is monitored.
This ensures that only files which are newer than the newer file already polled are
selected.

− MINIMUM_AGE: Files whose last modification time is less than the current polling
time minus the age is monitored. This ensures that the file modification time is at
least Minimum Age earlier than the current time.

o Minimum age: The minimum age of the files which are to be monitored.

Note: This property is visible only when the property Time-based file
filtering type is set to MINIMUM_AGE.

o Remote host time offset: If the FTP server and the component are not
in the same time zone, the difference in the time zone of FTP Server time
zone from the component's time zone should be specified in (+/-)hh:mm
format.

Note: This property is visible only when Time-based file filtering type is
set to TIME/HIGHEST_MODIFICATION_TIME/MINIMUM_AGE.

Example: Let us say if the source directory contains 4 files named a.txt,
b.txt, c.txt and d.txt. The polling interval is 3 min and the first poll is going
to start at 11:00:00 (This polling settings can be configure in Scheduler

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 410

Configuration Panel, please refer the section “Scheduler Configuration
Panel” for more details)

At first poll all files will be monitored irrespective of the value of the
property “Time-based file filtering type”.

If the files have last modification time like this:

• a.txt 11:00:16

• b.txt 11:00:30

• c.txt 11:02:10

• d.txt 11:02:50

If the property Time-based file filtering type is set to TIME, then all
the files will be monitored in the next poll (which is going to poll at
11:03:00), since all files are modified after the last poll.

If the property Time-based file filtering type is set to
HIGHEST_MODIFICATION_TIME, then also all files will be monitored in
the next poll (which is going to poll at 11:03:00), since all files are having
the last modification time greater than the highest last modification time
found on last poll (Component will keep the track of highest last
modification time found in the poll).

If the property “Time-based file filtering type” is set to
MINIMUM_AGE and Minimum age is set to 5 min, then no files will be
monitored in the next poll (which is going to poll at 11:03:00). Files a.txt
and b.txt will be monitored in the polling which will be going to poll at
11:06:00, and the files c.txt and d.txt will be monitored in the polling
which will be going to poll at 11:09:00, since the files monitored in the
particular polling have been modified at least 5 min ago from the polling
time.

4.1.2.2.3 Target Settings

• Send XML output? : This property appears only when the response type is Data. When
disabled, the component sends out only the downloaded content on the output port.
When enabled, an XML message containing the downloaded content and download
status details is sent out.

Example: Refer Figure 4.13 and Figure 4.14 which show the sample input and output
when this property is enabled. Refer Figure 4.15 and Figure 4.16 which show the
sample input and output when this property is disabled.

• Parent Directory on the local system: Path of the parent directory relative to which a
relative path of Target directory would be computed.

• Target directory: Directory on the local system to which the file(s) is/are to be
downloaded. Note that this property allows relative paths which would be computed
relative to the directory specified for Parent Directory on the local system.

• Use Temporary target Directory: If this property is set to true, then the FTPGet
adapter will use a temporary target directory for intermediate processing. If you do
not prefer to create extra directories in ftp server, you can set this property to No.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 411

• Temporary target directory: This property is visible only when the property Use
temporary target Directory is set to Yes. Directory on the local machine which the
FTPGet component uses for intermediate processing during file downloads.

Note: This directory should not be same as Target directory.

• Action if same file exists: Action that must be taken if the target directory already has
a file with name same as the file that is being downloaded. The behavior will be
dependant on the selection as shown below.

Figure 4.12: Append settings

− OVERWRITE: The file being downloaded overwrites the one in the target
directory.

− RENAME: The name of the file that is being downloaded is changed based on the
properties given below.

o Append date-time format postfix: When existing files in the Target
directory are not to be overwritten, FTPGet provides the flexibility of
downloading the content into a new file whose name is in the format
<NameOfExistingFile_CurrentDateTime>. The format in which the date and
time is to be appended should be specified as a value for this property.

Example: If the date-time format is specified as MMddyyyyHHmmssss for the
file Sample.txt, the target file created would be
Sample_0305200811300013.txt.

Note: This property is visible only when Overwrite target file is set to No as
shown in Figure 4.12.

o Append counter: Enabling this property appends a counter along with the
Date and Time to target file name, when the target file is not to be
overwritten.

Example: A sample file name can be Sample_0305200811300013_0.txt.

− APPEND: The file being downloaded gets appended to the one in the target
directory.

4.1.2.2.4 Miscellaneous Settings

Auto create temporary directories: The temporary directories created for processing of the
component are created based on this property. If this is not set then the temporary directories
must be created explicitly.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 412

4.1.2.3 Scheduler Configuration

The details in this panel will be ignored if the FTPGet component is not configured for
Monitoring. (Setting property Monitor to No in Interaction Configuration panel).

Enable Scheduling

You cannot edit this property in FTPGet component. This property will be enabled only
if we enable Monitoring (by setting yes to Monitoring property in Interaction
Configuration panel). In all other cases this property will be disabled. If the FTPGet
adapter is configured in scheduler mode, the component will poll the source directory
in regular time intervals. The number of times and polling interval can be configured in
this panel itself. If FTPGet component is configured in scheduling mode (that is,
FTPGet component is configure to monitor a particular directory), then the input port
of the component will disappear.

Intervals between polls

Time interval between the polls

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 413

Number of polls

The number of times that the input request will be sent to the input port of the FTPGet
adapter

Start time

The polling start time. If the start time is specified and is below the component start
time, the first schedule will happen at the next schedule time. For example, start time
is 08:00:00, poll interval is 30 minutes, and component starts at 8:10:00, in this case
the first schedule will happen at 08:30:00.

Start date

The polling start date. If the start time is specified and is below the component start
time then it will be ignored.

Use specified Input

By enabling this property, you can specify the inputs which will be sent to the input
port of the FTPGet adapter.

Validate

Validates the specified input with the input port xsd

Generate sample Input

Generates the sample input

4.1.2.4 Error Handling Panel

This panel has three Primary parameters:

1. Request Processing Error

2. Connection Error

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 414

3. Invalid Request Error

4.1.2.4.1 Request Processing Error pane

Remedial Actions tab

Re-execute Request

By enabling this property, the FTGet adapter will re-execute the input request if the
processing fails due to other than connection lost and improper input. For example, if
the specified file to be downloaded in the input request is not present in FTP Server.
The number of times the re-execution occurs and the time between two successive
tries can be specified in the Advanced Setting tab of this panel.

Throw fault on warnings

By enabling this property, the FTGet adapter will throw the errors as warnings (these
are shown in error logs of the component), if the processing of input request fails due
to other than connection lost and improper input. For example, if the specified file to
be downloaded in the input request is not present in FTP Server.

Send To Error Port

By enabling this property, the FTGet adapter will send the exceptions to the error port
if the processing of input request fails due to other than connection lost and improper
input. For example, if the specified file to be downloaded in the input request is not
present in FTP Server.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 415

Stop Service

By enabling this property, the FTGet adapter stops if the processing of input request
fails due to other than connection lost and improper input. For example, if the
specified file to be downloaded in the input request is not present in FTP Server.

Advanced Settings tab

The properties in this tab will be visible only if the property “Re-execute request” is checked

Time between retries (ms)

The time interval between two successive retries

Number of retries

The number of times that the component retries to process the input request. We can
specify infinite times by enabling the Infinite checkbox under this property.

Retries before sending error

After the specified number of retries FTPGet component will send exception to the
error port.

4.1.2.4.2 Connection Error pane

Remedial Actions tab

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 416

Discard Connection

By enabling this property, if the processing of input request fails due to connection
error then FTPGet component will discard that connection object. The component will
try with another connection object from the connection pool, if there are no
connections in the connection pool then the component will creates a new connection,
and this connection is used to process the input request.

Note: If the Try reconnection property is not set then this property will be ignored.

Try reconnection

By enabling this property, if the processing of input request fails due to connection
error then FTPGet component tries to reconnect the FTP server. The number of times it
should try and the time interval between two successive retries can be configured in
Advanced Setting Panel of this panel.

Send To Error Port

By enabling this property, if the processing of input request fails due to connection
error then FTPGet component stops.

Stop Service

If the processing of input request fails due to connection error then FTPGet component
will stop.

Advanced Settings tab

The properties under this tab will be visible only when we select Try reconnection property in
Remedial Actions tab.

Time between retries (ms)

The time interval between two successive retries

Number of retries

The number of times that the component will retries for a successful connection. We
can specify infinite times by enabling the Infinite checkbox under this property.

Retries before sending error

After the specified number of retries FTPGet component will send exception to the
error port.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 417

4.1.2.4.3 Invalid Request Error pane

Remedial Actions tab

Send To Error Port

By checking this property, when an invalid input is given to the FTPGet adapter then
the error or exception will be sent to the Error Port. For example, if we give an invalid
xml or simple text message then the error will be sent to the error port of the
component.

Donot stop service

By checking this property, when an invalid input is given to the FTPGet adapter then
the component stops. For example, if we give an invalid xml or simple text message
then the FTPGet component stops.

After configuring all the parameters, click the Finish button.

4.1.2.5 Testing the Interaction Configurations

The interaction configurations can be tested by clicking the Test button in the panel.

Example 1: Sample input and output when the Response type is set to Data and Send XML
Output? is enabled.

Figure 4.13: Sample input sent from CPS

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 418

Figure 4.14: Sample output

Example 2: Sample input and output when the Response type is set to Data and Send XML
Output is disabled.

Figure 4.15: Sample input sent from CPS

Figure 4.16: Sample output

The FTP server can be configured in the connection properties panel of CPS.

Figure 4.17: Sample FTP server configuration

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 419

Server connection can be tested from within the CPS by clicking on Test in the connection
properties panel.

Figure 4.18: Sample connection test result indicating success

Sender information can be configured in the Interaction Properties panel.

Figure 4.19: Sample Get information configuration

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 420

The configuration can be tested by getting a test file when you click on the Test option in the
Interaction Properties panel.

Figure 4.20: Sample input

Figure 4.21: Sample response

4.1.2.6 Input Schema

Schema Element Description

<LocalDirectory> The directory on the local file system where the file needs to written

<LocalFileName> The name with which the file needs to be written

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 421

Schema Element Description

<LocalDirectory> The directory on the local file system where the file needs to written

<LocalFileName> The name with which the file needs to be written

<LocalPath> The local path of the file

<RemoteFile> The name of the remote file (including path)

<TransferType> Type of data transfer (Ascii or Binary)

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

Figure 4.22: Input schema with ConnectionFactorySettings

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 422

4.1.2.7 Output Schema

Schema Element Description

<LocalPath> The path including file name where the file has been downloaded

<RemoteFile> The name of the remote file including path

<TransferType> Type of data transfer (Ascii or Binary)

<BytesTransferred> The number of bytes transferred

<TotalBytes> The total number of bytes transferred

<ReplyCode> The reply code sent by the FTP server

<ReplyText> The reply text sent by the FTP server

4.1.2.8 Functional Demonstration

4.1.2.8.1 Scenario 1

Receive files from a remote directory on the FTP server and save it in local directory.

Configure the FTP Get as described in Configuration and Testing section and use feeder and
display component to send sample input and check the response respectively. In the
interaction configuration choose the option File.

Figure 4.22: Configuration the FTP Get

Sample Input

Figure 4.23: Demonstrating Scenario 1 with sample input

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 423

Sample Output

Figure 4.24: Demonstrating Scenario 1 with sample output

4.1.2.8.2 Scenario 2

Receive files from a remote directory on the FTP Server and send it out as data in the output
message.

Configure the FTP Get as described in Configuration and Testing section and use feeder and
display component to send sample input and check the response respectively. In the
interaction configuration choose the option Data

Sample Input

Figure 4.25: Demonstrating scenario 2 with sample input

Sample Output

Figure 4.26: Demonstrating scenario 2 with sample output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 424

4.1.2.8.3 Scenario 3 (Scenario 1 Using SFTP Protocol)

The following steps give a brief description about server settings and SFTP protocol. Here, we
provide steps to test FTPGet adapter using vsftpd server which is installed in Linux.

Steps to produce:

1. Install vsftpd server by executing the following command on command prompt:

yum install vsftpd

2. Generate keys pairs (both RSA and DSA) and store in ~/.ssh/ directory. For key
generation we can use the following commands:

ssh-keygen -t rsa (for RSA type key generation)

ssh-keygen -t dsa (for DSA type key generation)

Note: While executing the above commands, file name and password for the file has to be
provided. If the file name provided is id_rsa, then two files will be generated named
id_rsa.pub and id_rsa which are public key and private key respectively.

3. Next, install the public keys in server. Private key has to be with the client which is used
to login. The server will authenticate the private key using its public key. This type of
client-authentication is called Public Key Authentication. The installation of the public
key in the server can be done by the executing following command

ssh-copy-id -i ~/.ssh/id_rsa.pub root@localhost

~/.ssh/id_rsa.pub is rsa public key file path and root@localhost is the server (here we
are using the same machine).

4. Now, change the following in sshd_config file (this file can be located in etc/ssh/ folder).
Set RSAAuthentication or DSAAuthentication to yes based on the key file type used.

5. Add the following line IdentityFile ~/.ssh/id_rsa in the ssh_config file which was located
in /etc/ssh. (if already Identity File is set to some other file, then it has to be modified)

6. Now, restart the servers using the following commands.

/etc/rc.d/init.d/sshd restart
/etc/rc.d/init.d/vsftpd restart

Now the server is ready to accept SFTP protocol to login.

4.1.2.9 Configuring FTPGet Component

The configuration of the connection properties of FTPGet component for SFTP protocol is
shown in the figure below, and the remaining procedures are same as explained in Scenario 1.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 425

4.1.2.10 Use Case Scenario

In the retail television example media production requests are received on a FTP server and
are downloaded using the FTP Get component.

Figure 4.27: Demonstrating scenario

The event process demonstrating this scenario is bundled with the installer. The bundled
process shows it as a File Reader component instead of a FTP Get component.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.1.2.11 Scheduling

In the FTPGet component, scheduling cannot be directly enabled from the scheduling panel. To
enable scheduling, in the interaction configuration panel, set the property Monitor Directory to
'yes' under the Monitoring Settings option as shown in figure 26. This asks for other details
which need to be provided in the configuration to do monitoring. Once this is enabled, the
scheduling panel details can be modified as required.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 426

Figure 28: Monitoring Settings

4.1.2.12 Useful Tips
• In case local file name is not specified in the input message, then the local file name is

extracted from the remote file name. The directory shall be the one specified in the
CPS for Target Directory property.

• The remote file path is relative to the ftp server.

• The component runs on the peer server and therefore the file paths and directories
mentioned in the CPS should be valid on the machine where the peer server is runs. If
the component fails over to another peer, ensure that the machine on which the
secondary peer server is runs does have the same path available.

• If error with error code 550 occurs during request execution, the component logs the
message as resource warning but not as error. To get these messages as errors, the
property "Throw fault on warnings" must be selected for request processing error in
error configuration panel.

4.1.3 FTPPut

The FTP Put component is used for uploading files to the FTP Server. It can be used for
uploading one or more files in a directory.

Using the FTP Put component, you can upload the files in any one of the following methods:

• By monitoring file(s) in a local directory for any additions or modifications and
uploading the corresponding files to the desired location on the remote host.

• By uploading file(s) specified in the input message.

• By the data contained in the input message.

The FTP Put component uses the FTP protocol for file transmission. The component ensures
uninterrupted upload of file by attempting to reconnect to the remote server in case the
connection to the server is lost.

Points to note

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 427

• It is not mandatory to provide the remote file name. If the remote file name is not
provided or it is null, then the remote file name is extracted from the Local File Path.
Providing local file path is mandatory.

• The remote file path is relative to the ftp server.

• The component runs on the peer server and therefore the file paths and directories
mentioned in the CPS should be valid on the machine where the peer server is
running. If the component fails over to another peer, ensure that the machine on
which the secondary peer server is running does have the same path available.

4.1.3.1 Managed Connection Factory Panel

The connection properties can be configured using the properties of Managed Connection
Factory panel as shown in Figure 1.

Figure 1: Managed Connection Factory panel

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 428

4.1.3.1.1 Connection Properties

Use Connection Details From Input

Parameters to create the connection can be specified in the input message when this property
is set to true. If this property is selected the validation errors in the managed connection
factory panel of the CPS are treated as warnings. So user can bypass this step without giving
valid configuration and complete the configuration of the component. If valid properties are
not provided even in the input message exception will be thrown at runtime.

Protocol

• FTP - File Transfer Protocol is used for transferring files to FTP server.

• SFTP - Secure File Transfer Protocol is used for file transfers. If selected, then the
property Client Authentication Type is enabled. If Client Authentication Type is set to
Password, then client's user name and password are sufficient to login successfully. These
details can be set by using the properties Login and Password. If Client Authentication
Type is set as Public Key or Both, then the details of Private Key File, Key File Type and
Key File Password has to be provided. For detail explanation of SFTP setting, please refer
Scenario 3 under section Functional Demonstrations.

Figure 2: SFTP enabled

Client Authentication Type

This property determines the authentication type for the client validation in case of SFTP
Protocol.

Figure 3: Client Authentication Type - SFTP

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 429

• Password: If selected, client's username and password are used for client's
authentication.

• Public Key: If selected, client's Private Key and the Key File Password are used for
client's authentication. (Key file password is different from client password)

• Both: This option authenticates using a private/public key-pair, followed by password
authentication. If the authentication fails while using client's private key, then it will try to
authenticate using password authentication.

Remote Host

The host name/IP address of the machine where the FTP server is running.

Port

The port number on which the FTP server is running.

Login

User name of the FTP user.

Password

Password of the FTP user. This field will be disabled if user selects Protocol as SFTP and Client
Authentication Type as Public Key.

Private Key file

The private key file path in the local machine used for client authentication in case of protocol
SFTP. The path should include the file name also. The key file should be present on the
machine where the peer server (on which peer the component is running) is running. This
property is visible when the Protocol is selected as SFTP and Client Authentication Type as
Public Key or Both.

Key Type

Determines the private key type either 'DSA' or 'RSA'. This property is visible when the
Protocol is selected as SFTP and Client Authentication Type as Public Key or Both.

Key file password

The private key file's password when the property protocol is set to SFTP and the property
Client Authentication Type is set to Public Key or Both.

Note: Key File password is different from client's password.

Connection Pool Params

Here the user can specify the details for maintaining the pool of connections in the component.
On clicking the eclipsis (..) button, Connection Pool Params dialog box appear as shown in the
Figure 4.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 430

Figure 4: Connection Pool Params

• Enable Connection Pool: If enabled, the connections created are cached in to a pool and
used whenever required and available. This can reduce the time for creating a new
connection for every input request. If disabled, a new connection is created for each
request and it will be closed after completion of that request.

• Max Pool Size: The maximum number of connections that can be allocated for the pool.

• Blocking Timeout (in ms): The time after which the call to fetch a connection from the
pool will timeout if there is no unused connection available.

• Idle Timeout (in ms): The time after which the idle connections are returned back to the
pool

Proxy Settings

FTP adapters support HTTP and SOCKS proxies. HTTP is the default option. Here, the user can
configure the proxy server settings.

Figure 5: Proxy Settings

• Use Proxy Server: If enabled, component will use proxy server settings.

• Proxy Address: The IP address or the host name of the machine where the proxy server
is running.

• Port Number: Port number on which the proxy server is running.

• Username: The user name by which the user can login into the proxy server.

• Password: Password of the user name by which the user can login into the proxy server.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 431

• SOCKS Proxy: Enable this property if the specified proxy server is a SOCKS proxy server.

SSL Security

This property is visible only if the property Protocol is set to FTP.

Figure 6: SSL Settings

• Enable SSL: Enable SSL settings to access FTPS (FTP Over SSL) server.

• Trust store location: Determines Location of the trust store

• Trust store Password: Determines Trust store password

• Key store location: Determines Key Store location

• Key store Password: Determines Key Store password

• Key store Type: Determines Key store type

• Trust store Type: Determines Trust store type

• Trust Manager Factory Type: Determines Trust Manager Factory type

• Key Manager Factory Type: Determines Key Manager Factory type.

• Security Provide Class: Determines Security provider class.

• Security Protocol: Determines Security protocol

• Key Store Client Key: Determines Key Store Client Key

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 432

4.1.3.1.2 Advanced Settings tab

Figure 7: Advanced Settings

Timeout (in ms)

The TCP timeout in milliseconds for the sockets. Any operation which takes longer than the
timeout value is killed with a java.io.InterruptedException.

Current directory

The directory on FTP server to which the user's current working directory will be changed after
the login to FTP. The behavior is similar to executing the command cd <directory_name>
after logging in, where <directory_name> is the value provided for this property.
All relative paths in the server that are computed by the FTPPut component are relative to this
directory.

Example: If the default working directory for the user is /home/user and current directory is
set to /home/user/Fiorano, then the working for the user will be changed to
/home/user/Fiorano after the user logs into the FTP server.

If the value of property Use Temporary target directory is set to yes and the value for
property Temporary target directory is set to temp, then a directory temp will be created
under the directory specified by this property.

Connect mode

Determines the type of FTP connection – Active or Passive. This property is ignored if
Protocol is set as SFTP.

Figure 8: Connect Mode

• Active: In Active mode the FTP client specifies the data port that the FTP server is going
to connect on and waits for the FTP server to connect. The IP address and port numbers
are sent to the FTP server by the FTP client using the PORT command.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 433

• Passive: In passive mode the FTP server specifies the data port on which the FTP client
connects and waits for the FTP client to connect. The FTP client will ask the FTP server for
the server's IP address and port number by issuing the PASV command to the FTP server.
This will usually solve the problem of firewalls filtering the incoming data connection.

Transfer type

Specifies the data transfer type

Figure 9: Transfer Type

• Ascii: The transferred data is considered to contain only ASCII formatted text. The
component is responsible for translating the format of the received text to one that is
compatible with the operating system of fps (The fps on which the FTPGet component is
running). Text files and files containing HTML, CSS mark-up are suitable for Ascii mode
transfer.

• Binary: The component transmits raw bytes of the file being transferred. All audio, video
and image files are suitable for Binary mode transfer.

Resume Transfer

Resumes FTP transfer from the point where download has stopped if the transfer is broken.
Resume of the broken transfer depends on the FTP server. If the FTP server does not support
this then the FTP adapter will start from the beginning otherwise it will start from where it was
stopped.

Note: The process of transfer is resume from the broken point only when the Transfer type
is Binary.

Extensions of the files to be filtered

If files with specific extensions have to be restricted for download from the server, the file
extension has to be specified here. This property accepts comma separated list of file
extensions. Example: *.zip, *.exe, *.dat.

Example: If this property is set to .exe and the user specifies to put the file named
"installer.exe" in the request, then the component ignores that request.

Debug responses

When FTP responses are needed, enabling this property logs all the FTP responses to the
Output Log of the component. Figure 10 illustrates a sample snapshot of the debug responses
when some download happens.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 434

Figure 10: FTP responses in FTPPut’s output log

SITE command parameters

Site commands are sets of extended commands that can be issued by a FTP client, and they
are not defined in RFC. However, they are supported by different FTP servers, and different
servers usually have different supported site commands. SITE command is used by the server
to provide services specific to the system. All the server administrative tasks can be performed
by the SITE command.

This property accepts a semicolon separated list of SITE command parameters that have to be
executed immediately after login. These parameters are server dependent.

Example: For OS/400 platform, the server specific format of lists or names can be changed to
Unix type formats by specifying the value LISTFMT 1; NAMEFMT 1 for this property.

Use specified format for parsing Directory Listing?

This property is used to parse the directory listing of the FTP Server. For example, in case of
Unix, the directory is listed as follows:

drwxrwxr-x 3 user group 4096 2008-10-23 14:13 fiorano
drwxr-xr-x 14 user group 4096 2008-12-18 14:41 Fiorano

But on Windows, the directory is listed in different format. This listing is the output from the
FTP server after executing the dir command.

• No: When this property is disabled, the parsing format will be chosen depending on the
operating system on which the FTP Server is running.

• Yes: Enable this property if a specific parsing format is to be used for parsing the
Directory listing returned by the FTP Server.

Example: If a FTP Server is running on IIS on a Windows machine and its directory listing
style is set to Unix, enable this property and set 'Parsing format for Directory Listing' to
Unix for this property.

Parsing format for Directory Listing

This property is used to determine the format to use for parsing directory listing in the FTP
Server. The formats supported by the component are Windows and Unix.

Figure 11: Parsing format for Directory Listing

• Unix: Select to use Unix format to parse the directory listing

• Windows: Select to use Windows format to parse the directory listing

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 435

4.1.3.1.3 Testing the Connection

Server connection can be tested from within the CPS by clicking on the Test button in the
Managed Connection Factory panel.

Figure 12: Result of successful connection creation

After selecting the appropriate parameters, click the Next button. The Interaction
Configurations panel appears as shown in the Figure 12.

4.1.3.2 Interaction Configurations Panel

Figure 13: Interaction Configurations

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 436

4.1.3.2.1 Source Settings

Request type

Specifies the type of user input to the adapter. This property provides two options:

• File

• Data

When the request type is File, the path of the local file which is to be transferred is specified
in the input.

Note: Input port appears only when Monitoring is disabled (Value of the property Monitor set
to No).

Refer to section Input and Output for details about the effects of these configurations on
input and output structures.

Send Transfer Progress Notification

When large files are being uploaded to the FTP server, the progress of the transfer can be
obtained by specifying yes to this property. If this property is selected as Yes then the FTP
adapter will send the notifications of the uploaded process at regular time intervals and this
time interval can be specified by the property Monitor Progress interval (in ms). The
example output of this notification is shown below. Now, observe the BytesTransferred and
TotalBytes fields in the output XML.

Figure 14: Sample output when 'Send Transfer Progress Notification' is set.

Validate Input

If this property is set to true, FTPGet adapter will validate the input request with the input port
xsd.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 437

Monitor Progress interval (in ms)

The time interval (in milliseconds) between any two progress notifications. This is visible when
the property Send Transfer Progress Notification is set to true.

Cleanup resources (excluding connection) after each document

This closes all the resources except to connection used by the FTPPut adapter after every
request. If the less processing time is more important than the less memory usage, then it is
recommended to set this property to No and vice versa.

Delete file after transfer

Specifies if the remote file is to be deleted after it is completely uploaded.

Target Namespace

Target Namespace for the FTP request and response XML messages.

4.1.3.2.2 Monitor Settings

Monitor

This property can be used to make the FTPPut adapter poll a directory on the peer server’s
system(on which the component is launched) for files matching a particular pattern and
upload all such files to the server. Enabling this property makes the FTPPut adapter poll the
Source directory using the polling configuration specified in Scheduler Configurations panel.
The user has to make sure that the Source directory exists.

Note: Properties Source directory, File name patterns, Move to working directory, Working
directory, Processed directory, Error directory and Time-based file filtering type are visible
only when Monitoring is enabled, that is, the property Monitor is set to yes. Shown in Figure
15 is a sample screen shot with monitoring enabled and the monitoring settings configured.
FTPut takes care of the creation of Working directory, Processed directory and Error directory
on the system where peer server is running (the peer on which the component is launched), if
the directories do not exist Working, Processed and Error directories get created under the
Current directory specified in Managed Connection Factory panel. If user does not prefer
moves and the creation of these extra directories, then user can set the value for property
Move to working directory to NO

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 438

Monitoring is done by monitoring the source directory in regular scheduling interval. The
scheduler configurations can be defined by the user in Scheduler Configurations Panel and this
is the only case that FTPPut component uses scheduler configurations.

Figure 15: Sample monitoring configuration

Source directory

The directory which contains the files to be uploaded. FTPPut component polls this directory
using the polling settings configured in Scheduler Configurations panel.

File name patterns

The type of files in the Source directory which are to be picked up and downloaded. This
property accepts multiple file name patterns separated by pipes. Example: *.txt|*.xml|*.exe

Move to working directory

When this property is set to yes, the file that has to be uploaded to FTP server will be moved
from the directory specified by property Source directory to the directory specified by the
property Working directory before the upload begins. The file is read from the working
directory and uploaded to the FTP server.

• If the upload is successful the file is moved from working directory to the directory
specified by property Processed directory.

• If the upload is not successful the file is moved from working directory to the directory
specified by property Error directory.

• When this property is set to no, the file is read directly from the directory specified by
property Source directory.

Note: When the user has read-only permission to the file system, this property should be set
to no.

Working directory

This directory holds the files for which the file transfer is in progress.

Processed directory

This directory holds the files for which the upload has been successful.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 439

Error directory

This directory holds the files for which the upload has failed.

Time-based file filtering type

This property provides the capability of monitoring only specific files depending on their
modification times. This property provides 4 options (as shown in Figure 16) based on which
the files to be monitored could be filtered.

Figure 16: Time-based file filtering types

The behavior is as follows:

• NONE: No filtering is applied on the files. Every file present in the Source directory is
monitored.

• TIME: Files whose last modification time is greater than the last polling time is monitored.
This ensures that only the files modified/added after the last polling cycle are monitored.

Figure 17: Time-based file filtering type - TIME

o Base Time: Base time in dd:MM:yyyy hh:mm format after which the changed files
are to be uploaded

o Remote host time offset: If the FTP server and the component are not in the same
time zone, the difference in the time zone of FTP Server time zone from the
component's time zone should be specified in (+/-) hh:mm format.

• HIGHEST_MODIFICATION_TIME: Files whose last modification time is greater than the
highest last modification time found in the last polling cycle is monitored. This ensures
that only files which are newer than the newer file already polled are selected.

• MINIMUM_AGE: Files whose last modification time is less than the current polling time
minus the age is monitored. This ensures that the file modification time is at least
Minimum Age earlier than the current time.

Figure 18: Time-based file filtering type – MINIMUM AGE

o Minimum age: The minimum age of the files which are to be monitored.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 440

Note: This property is visible only when the property Time-based file filtering type is
set to MINIMUM_AGE.

o Remote host time offset: If the FTP server and the component are not in the same
time zone, the difference in the time zone of FTP Server time zone from the
component's time zone should be specified in (+/-)hh:mm format.

Note: This property is visible only when Time-based file filtering type is set to
TIME/HIGHEST_MODIFICATION_TIME/MINIMUM_AGE.

Example: If the source directory contains 4 files named a.txt, b.txt, c.txt and d.txt. The
polling interval is 3 min and the first poll is going to start at 11:00:00 (This polling settings
can be configure in Scheduler Configuration Panel, please refer the section Scheduler
Configuration Panel for more details)

At first poll all files will be monitored irrespective of the value of the property “Time-based
file filtering type”.

• If the files have last modification time like:

o a.txt 11:00:16

o b.txt 11:00:30

o c.txt 11:02:10

o d.txt 11:02:50

• If the property “Time-based file filtering type” is set to TIME, then all the files will
be monitored in the next poll (which is going to poll at 11:03:00), since all files are
modified after the last poll.

• If the property “Time-based file filtering type” is set to
HIGHEST_MODIFICATION_TIME, then also all files will be monitored in the next poll
(which is going to poll at 11:03:00), since all files are having the last modification time
greater than the highest last modification time found on last poll (Component will keep
the track of highest last modification time found in the poll).

• If the property “Time-based file filtering type” is set to MINIMUM_AGE and
Minimum age is set to 5 min, then no files will be monitored in the next poll (which is
going to poll at 11:03:00). Files a.txt and b.txt will be monitored in the polling which
will be going to poll at 11:06:00, and the files c.txt and d.txt will be monitored in the
polling which will be going to poll at 11:09:00, since the files monitored in the
particular polling have been modified at least 5 min ago from the polling time.

4.1.3.2.3 Target Settings

• Target directory: Directory on the FTP server to which the file(s) is/are to be transferred.
Note that this property allows relative paths which would be computed relative to the
directory specified for Parent Directory on the local system.

• Use Temporary target Directory: If this property is set to true, then the FTPPut adapter
will use a temporary target directory for intermediate processing. If you do not prefer to
create an extra directory in the FTP server, you can set this property to No.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 441

• Temporary target directory: This property is visible only when the property Use
temporary target Directory is set to Yes. Directory on the ftp server which the FTPPut
component uses for intermediate processing during file downloads.

Note: This directory should not be same as Target directory.

Action if same file exists

Action that must be taken if the target directory already has a file with name same as the file
that is to be uploaded. The behavior will be dependent on the selection as shown below:

Figure 19: Action if same file exists

• OVERWRITE: The file to be uploaded overwrites the one in the target directory.

• RENAME: The name of the file that is being uploaded is changed based on the properties
given below:

Figure 20: Appender counter

• Append date-time format postfix: When existing files in the Target directory are not to
be overwritten, FTPPut provides the flexibility of uploading the content into a new file
whose name is in the format <NameOfExistingFile_CurrentDateTime>. The format in
which the date and time is to be appended should be specified as a value for this property.

Example: If the date-time format is specified as MMddyyyyHHmmssss for the file
Sample.txt, the target file created would be Sample_0305200811300013.txt.

• Append counter: Enabling this property appends a counter along with the Date and Time
to target file name, when the target file is not to be overwritten.

Example: A sample file name could be Sample_0305200811300013_0.txt.

• APPEND: The file being uploaded gets appended to the one in the target directory.

Note: The same behavior is reflected in the processed directory when Move to working
directory is set to Yes.

4.1.3.2.4 Miscellaneous Settings

Auto create temporary directories

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 442

The temporary directories created for processing of the component are created based on this
property. If this is not set then the temporary directories must be created explicitly.

Note: When the user does not have listing permissions on the server, it is recommended that
this property is not set and to create directories manually.

4.1.3.3 Input and Output

The input and output structures depend the configuration of property Request type.

When Request type is set to File, input and output structures are defined as shown in Figure
21 and Figure 22 respectively.

Figure 21: Input schema structure for the request type - File

Table 1: Input schema element descriptions for - File request type

Schema Element Description

LocalPath Path of the local file which is to be uploaded

RemoteFile File on the FTP server to which the data is to be written

Append Whether to append data if the file already exists

TransferType Type of data transfer (ASCII or Binary)

Figure 22: Output schema structure for the request type - File

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 443

Table 2: Output schema element descriptions for - File request type

Schema Element Description

LocalPath Path of the local file which was transferred to the FTP server

RemoteFile File on the FTP server to which the data has been written

Append Append value mentioned in the input

TransferType TransferType mentioned in the input

BytesTransferred The number of bytes transferred.

TotalBytes The total number of bytes transferred

ReplyCode The reply code sent by the FTP server

ReplyText The reply text sent by the FTP server

When the type of input is Data, data to be transferred is provided under the Data element in
the input message and the data will be written to a file with the name specified under the
element RemoteFile.

If text data has to be transferred, then the text content should provided under the Data
element in the input message and the attribute dataType should be set to Text.

If binary data has to be transferred, then the base64 encoded string created from binary data
should be provided under the Data element in the input message and the attribute dataType
should be set to Text.

Figure 23 and 24 show the input and output schema structures respectively, when the request
type is Data. The only difference in these schema structures against the ones for File request
type is the replacement of the schema element LocalPath with Data. Please refer Table 1 and
2 for the remaining schema elements.

Note: Input port appears only when Monitoring is disabled (Value of the property Monitor set
to No).

Figure 23: Input schema structure for the request type - Data

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 444

Figure 24: Output schema structure for the request type – Data

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

Figure 25: Input schema with ConnectionFactorySettings

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 445

4.1.3.4 Testing the Interaction Configurations

The configuration can be tested by sending a test file when you click on the Test option in the
interaction properties panel.

Figure 26: Sample input sent from CPS

The FTP server can be configured in the connection properties panel of CPS.

Figure 27: Sample output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 446

4.1.3.5 Functional Demonstration

4.1.3.5.1 Scenario 1

Send files from a local directory to the FTP server’s remote directory.

Configure the FTP Put as described in Configuration and Testing section and use feeder and
display components to send sample input and check the response respectively. In the
interaction configuration choose the option File for property Request type.

Figure 28: Event Process demonstrating Scenario 1

Sample Input

Figure 29: Input sample when Request type is File.

Sample Output

Figure 30: Output message received for input shown in Figure 28.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 447

4.1.3.5.2 Scenario 2

Send data to the FTP Server and save it as a file in the remote directory

Configure the FTP Put as described in Configuration and Testing section and use feeder and
display component to send sample input and check the response respectively. In the
interaction configuration choose the option Data for the property Request type.

Sample Input

Figure 31: Input sample when Request type is Data

Sample Output

Figure 32: Output message received for input shown in Figure 30.

4.1.3.5.3 Scenario 3 (Scenario 1 Using SFTP Protocol)

The following steps give a brief description about server settings and SFTP protocol. Here, we
provide steps to test FTPPut adapter using vsftpd server which is installed in Linux.

Steps to produce:

Install vsftpd server by executing the following command on command prompt:

yum install vsftpd

Generate keys pairs (both RSA and DSA) and store in ~/.ssh/ directory. For key generation we
can use the following commands:

ssh-keygen -t rsa (for RSA type key generation)

ssh-keygen -t dsa (for DSA type key generation)

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 448

Note: While executing the above commands, file name and password for the file has to be
provided. If the file name provided is id_rsa, then two files will be generated named id_rsa.pub
and id_rsa which are public key and private key respectively.

Next, install the public keys in server. Private key has to be with the client which is used to
login. The server will authenticate the private key using its public key. This type of client-
authentication is called Public Key Authentication. The installation of the public key in the
server can be done by the executing following command

ssh-copy-id -i ~/.ssh/id_rsa.pub root@localhost

~/.ssh/id_rsa.pub is rsa public key file path and root@localhost is the server (here we are
using the same machine).

Now, change the following in sshd_config file (this file can be located in etc/ssh/ folder). Set
RSAAuthentication or DSAAuthentication to yes based on the key file type used.

Add the following line IdentityFile ~/.ssh/id_rsa in the ssh_config file which was located in
/etc/ssh. (if already Identity File is set to some other file, then it has to be modified)

Now, restart the servers using the following commands.

/etc/rc.d/init.d/sshd restart
/etc/rc.d/init.d/vsftpd restart

Now the server is ready to accept SFTP protocol to login.

4.1.3.6 Configuring FTPPut Component

The configuration of the connection properties of FTPPut component for SFTP protocol is shown
in the Figure 32, and the remaining procedures are same as explained in Scenario 1.

Figure 33: Protocol type selection

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 449

4.1.3.7 Use Case Scenario

In the revenue control packet example error messages are sent to a FTP server and are stored
there for tracking using the FTP Put component.

Figure 34: Demonstration scenario

The event process demonstrating this scenario is bundled with the installer. The bundled
process shows it as a File Writer component instead of a FTP Put component.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.1.3.8 Useful Tips
• Some FTP Servers have an idle timeout limit for the client connections configured at server

side. When a client connection is idle beyond this time limit, server closes the connection.
So a new connection has to be made, if a request is made after being idle for time greater
than this idle timeout. This means, if the server has a idle timeout value set to 120s and
the component does not receive a message at any point of time for more than 120s, the
connection would be closed.

There are multiple solutions to this problem -

 If the component has to wait for more than 120 seconds before a new message is
delivered to the component, then disabling connection pool is a better option.

 If the component has to wait for more than 120 seconds in very few cases before
a new message is delivered to the component, then enabling reconnection is a
better option.

Increase the timeout at server side to a higher value, if possible.

• If error with error code 550 occurs during request execution, the component logs the
message as resource warning but not as error. To get these messages as errors, the
property "Throw fault on warnings" must be selected for request processing error in error
configuration panel

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 450

4.1.4 IWay

The iWay component may be used to utilize the adapter library of the iWay Adaptive
Framework for service oriented architecture (SOA).

You need to deploy a web application (iWayHelper.ear) on the application server on which the
iWay JCA resource adapter to be used has been deployed.

The iWay component of Fiorano requests the above mentioned web application at design time
to retrieve iWay configuration parameters such as available adapter names, target names,
input/output schema of the available targets.

Note: iWay adapter requests are executed through the deployed iWayHelper in the application
server.

4.1.4.1 Configuration and Testing

The connection parameters can be configured in the connection properties panel of CPS.

Figure 4.54: Sample IWay connection configuration

Server connection can be tested from within the CPS by clicking on test in the connection
properties panel.

Figure 4.55: Sample connection test result indicating success

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 451

IWay adapter related configuration can be captured in the interaction configuration panel

Figure 4.56: IWay adapter related configuration

4.1.4.2 Input Schema

There is no input schema for this adapter.

4.1.4.3 Output Schema

There is no output schema for this adapter.

4.1.4.4 Functional Demonstration

This requires a licensed IWay adapter.

4.1.4.5 Use Case Scenario

In the purchasing system example the record purchase details are sent to an external
inventory management system server for processing using an IWay adapter.

Figure 4.57: Purchasing system example

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 452

The event process demonstrating this scenario is bundled with the installer. The bundled
process shows it as a HTTP component instead of a IWay component.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.1.4.6 Useful Tips

• IWay adapter requests are executed through the deployed IWayHelper in the
application server.

4.1.5 POP3

POP3 component is used to connect to an mail server and retrieve emails using POP3 or IMAP
protocol. It uses the JavaMail API.

The component supports two functions:

• Retrieve emails from the mail server.

• Fetch the email count on the mail server.

4.1.5.1 Managed Connection Factory

The following properties can be configured in the Managed Connection Properties panel of CPS.

Figure 1: Managed Connection Panel of POP3

4.1.5.1.1 Attributes

Use Connection Details From Input

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 453

Parameters to create the connection can be specified in the input message when this property
is set to true. If this property is selected the validation errors in the managed connection
factory panel of the CPS are treated as warnings. So user can bypass this step without giving
valid configuration and complete the configuration of the component. If valid properties are
not provided even in the input message exception will be thrown at runtime.

Is POP3?

Specifies the protocol used to retrieve emails.

• Yes – POP3 protocol is used to retrieve emails. The property Folder to pick mails is
not visible if this value is selected.

• No – IMAP protocol is used to retrieve emails. The property Folder to pick mails is
visible if this value is selected.

MailserverURL

Specifies URL at which the mail server is hosted.

MailServer Port

Specifies port number on which the mail server accepts POP3 or IMAP connections.

UserID

User ID or Login name used to connect to the mail server. The user must have an email
account with the server specified by the property MailserverURL.

Password

Password for the user specified by the property UserID.

Folder to pick mails

Specifies folder name from which emails are retrieved. This option is displayed only when the
property Is POP3? is set to no.

Connection Timeout in ms

The duration in milliseconds for which the component waits to connect to the mail server
(Socket connection timeout value in milliseconds). If the component fails to create a
connection in the specified interval, then the retry behavior will depend on the configuration of
Error Configuration Panel.

Timeout in ms

Socket I/O timeout value in milliseconds. If any operation requires more than the specified
time then the operation will fail.

Additional Properties

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 454

Additional properties which can be used for creating connection can be specified here. For
instance, to enable debug in Javamail set property 'mail.debug' to 'true'.

For example, to retrieve mails from gmail, we need to set the "MailserverURL" and "MailServer
Port" properties to "pop.gmail.com" and "995" respectively. Apart from this we need to
provide the following additional properties

mail.pop3.starttls.enable=true

mail.pop3.auth=true

mail.pop3.socketFactory.class=javax.net.ssl.SSLSocketFactory

mail.pop3.socketFactory.fallback=false

mail.pop3.socketFactory.port=995

Note:

• For the properties, which are supported by POP3 protocol please refer to
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-
summary.html.

• For the properties, which are supported by POP3 protocol please refer to
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-
summary.html

Server connection can be tested from within the CPS by clicking the Test button in the
Connection Properties panel.

http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 455

4.1.5.2 Interaction Configuration

POP3 supports various options to retrieve mails from the server. The way the component
interacts with the server can be configured in the Interaction Configurations panel.

Figure 2: Interaction Configuration panel

4.1.5.2.1 Attributes

Operation Name

The operation that should be done after connecting to the server is specified here.

• recvMail - retrieves and displays all the content in the email. If this operation is
selected, the following properties are visible – Write attachments to file?,
Enforce Text?, Enforce html?, Max message size, Max output size, Leave
messages on server?, Send empty message when no other mails are
present, Send XML output?

• mailCount - retrieves the total number of mails in the account specified. If this
operation is selected, the following properties are not visible – Write
attachments to file?, Enforce Text?, Enforce html?, Max message size, Max
output size, Leave messages on server?, Send empty message when no
other mails are present, Send XML output?

Write attachments to file?

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 456

Specifies whether the attachments in the mail are to be written to a file.

• yes – Attachments in retrieved email are written to files in the folder configured
for property Attachments folder. Property Attachments folder is visible when this
option is selected. savedToFile attribute of Attachment element in the output
message is set to yes and the file name is added as content for Attachment
element.

• no – Each attachment in retrieved email is converted to a base64 encoded string
and added as content for Attachment element in output XML. Property
Attachments folder is not visible when this option is selected. savedToFile
attribute of Attachment element in the output message is set to no.

Attachments folder

Specifies the path of the folder where attachments are saved. This property is visible only
when the property Write attachments to file? is set to yes. The folder should exist in the
machine on which the component is running.

• If the attachment in the mail was loaded from a file, then the same file name is used
to save attachment to the attachments folder.

• If the attachment in the mail was not loaded from a file and the attachment contains a
description, then the description text is used a file name to save attachment to the
attachments folder.

• If both the conditions are not met or the attachments folder is not present in the
system or if there is any file system dependent error while saving , the attachment is
not saved and resource warning is raised. For more information on resource warning,
please refer to section Error Handling.

• If the folder already contains a file with same name that is written by this component
using the same connection that processed the current request then the file name is
appended with time-stamp, else the file is over written.

Note: The folder path provided is not validated in the CPS.

Enforce Text?

This option is used when the property Send XML output? is set to yes and the email does
not contain any text content. When this option is set to yes, html content in the email is
converted to simple text. This property is visible only if property Send XML output? is set to
yes.

Example: Each
 element is replaced with a new line character.

Enforce html?

This option is used when the property Send XML output? is set to yes and the email does
not contain any html content. When this option is set to yes, text content in the email is
converted to HTML. This property is visible only if property Send XML output? is set to yes.

Example: If the mail does not contain html content and the property Enforce html? Is set to
no then the output message XML does not contains element HtmlBody as shown in Figure 3.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 457

Figure 3: Output message of retrieval of a mail which has no html body when
Enforce Html? is set to no

When Enforce html? Is set to yes, then the existing text body will be converted to html and it
will be included in output XML as HtmlBody. The behavior is depicted in Figure 4. New line
characters (/n or ) in text content are converted to break line symbols (
) in html
content.

Figure 4: Output message of retrieval of a mail which has no html body when
Enforce Html? is set to yes

Max message size

Specifies the maximum size limit on an email that is sent in the output. E-mails whose size is
larger than the value specified for this property is not sent.

Max output size

Specifies the maximum limit on the combined size of emails that are included in the output
message. Since more than one email can be retrieved in a message, this option allows control
on the total size of all mails that may be returned in a single response.

Note: If the property Single Batch Mode set to No and Batch Count set to 1, then the
properties Max Message size and Max output size will behave similarly.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 458

Example: If mail server contains 10 mails each of size 10Kb and the property Max output size
set to 30kb then, if the component receives a request to retrieve all the 10 mails then the
component sends four messages to the output port.

• First message --- contains first, second and third mails

• Second message --- contains fourth, fifth and sixth mails

• Third message --- contains seventh, eighth and ninth mails

• Fourth message --- contains tenth mail

Leave Messages on Server

Specifies if the emails retrieved by this component are removed from the mail server or not.

yes – The emails retrieved are not deleted from the mail server and can be seen and fetched
using other email clients.

no – The emails retrieved are deleted from the mail server as soon as the email is retrieved
by the component.

Warning:

• If connection pooling is not enabled and this property is set to yes, then emails are
repeatedly retrieved with each request as the mails are not deleted from the mail
server.

• If connection pooling is enabled and the component is running in multi-threaded
mode, then each thread will retrieve all the mails.

• If connection pooling is enabled and a connection error happens, then all the mails are
retrieved again when a new connection is made.

Send Empty message when no mails are present

If this property is set to yes, then an empty message is sent out for each request when there
are no mails on the mail server, else no message is sent out.

Send XML output?

Species the format the output message of the component.

yes – email(s) are formatted as XML text containing To, CC, From, Subject, TextBody,
HtmlBody, Headers and Attachments elements with values from the email. When this
property is selected, property Send as HTML, if content has HTML is not visible and
properties Enforce text?, Enforce html?, Batch Count and Single Batch Mode are visible.

no – text content or HTML content is extracted and sent as output message. In case of multi-
part message, only the one of the parts is sent as output. When this value is selected,
properties Enforce text?, Enforce html?, Batch Count and Single Batch Mode are not
visible and property Send as HTML, if content has HTML is visible. Value for property
Batch Count is set to 1 and value for property Single Batch Mode is set to no.

Send as HTML, If Content has HTML

Specifies whether HTML content or plain text content is sent in the output.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 459

• yes – If HTML content is present in email, then HTML content is sent in the output.
If HTML content is not present but plain text content is present, then plain text
content is sent in the output.

• no – If plain text content is present in email, then plain text content is sent in the
output. If plain text content is not present but HTML content is present, then HTML
content is sent in the output.

If set to yes, then the html content will be preferred to be sent in output, if exists. If set to no
then text/plain content will be preferred to be sent in output, if exists. This property is visible
only if Send XML output? Is set to no.

Single Batch Mode

This option is used to specify whether the component should send each mail in a separate
message or in a single XML message.

• When this option is set to yes, all emails retrieved are combined into a single XML
message and sent to the output.

• When this is set to no and value for property Batch size is set to 1, each mail is sent
as a separate message.

• When this is set to no and value for property Batch Size is set to n – where n is any
positive number, n mails are combined into a single XML and sent as a separate
message.

• This property is only visible when property Send XML output? is set to yes. When
property Send XML output? is set to no value for this property is set to no.

Batch Count

This option specifies the number of messages to be combined into a single message. This
property is used only if value for property Single Batch Mode is set to no. This property is
only visible when property Send XML output? is set to yes. When property Send XML
output? is set to no value for this property is set to 1.

4.1.5.3 Sample Input and Output

For recvMail operation, the input message contains a MessageCount attribute which takes an
integer value.

• If the message count provided in sample input is less than or equal -1, then it fetches all
of the mails from the server.

• If the Message Count provided is greater than -1, then the minimum of the Message Count
provided and then actual number of messages present in the mail box is computed and
fetches that number of mails.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 460

Figure 5: Sample Input

Figure 6: Sample Output

4.1.5.3.1 Input Schema

No input and Output schema are generated for the Mail Count operation. For Receive Mail
operation, the input schema contains the following elements.

Schema Element Description

<MessageCount> Number of messages to be fetched. If the Message Count provided
in sample input is less than -1, then it searches in the mailbox for
total number of messages and fetches all of them. If the Message
Count provided is greater than -1, then the minimum of the Message
Count provided and then actual number of messages present in the
mail box is computed and fetches those numbers of mails.

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure, for Receive
Mail operation. For the Mail Count operation, input schema is generated containing the
element ConnectionFactorySettings. Properties that are used to create the connection are
present under this element.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 461

Figure 7: Input schema with ConnectionFactorySettings

4.1.5.3.2 Output Schema

For Receive Mail operation, the output schema looks like:

Schema Element Description

<Emails> Emails retrieved from mail box

 <Email> Email

 <To> Email address of the recipient(s)

 <From> Email address of the sender

 <CC> Email address of recipient(s) to be copied in the mail

 <Subject>

Subject of the mail

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 462

Schema Element Description

 <Body> Body of the mail

 <Text Body>

Text Body

 <HTML Body>

HTML body

 <Attachments
>

 Attachment
Name

 savedToFile

Attachments

Attachment name in the email

Boolean to specify whether attachment is saved.

 <Headers>

 Header Name

 Value

Headers in Email

Header name

 Header value

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 463

4.1.5.4 Functional Demonstration

4.1.5.4.1 Scenario 1

This scenario demonstrates the retrieving of e-mails with attachments.

Configure POP3 as described in section 2 for Receive Mail and select the attachment folder in
the Interaction Configuration panel to save the attachments, if any. Use Feeder and Display
components to send sample input and check the response respectively.

Note: Receive Mail operation receives each mail as a separate message in this case.

Figure 8: Demonstrating scenario 1 with sample input and output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 464

4.1.5.4.2 Scenario 2

This scenario demonstrates the retrieval of Mail count.

Configure POP3 as described in section 2 for Mail Count operation and use Feeder and Display
components to send sample input and check the response respectively.

Figure 9: Demonstrating scenario 2 with sample input and sample output

4.1.5.5 Useful Tips
 The component runs on the Peer Server and therefore the file paths and directories

mentioned in the CPS should be valid on the machine where the Peer Server is
running. If the component fails over to another peer, ensure that the machine on
which the secondary Peer Server is running does have the same path available.

 If emails contain large attachments, set property Write attachments to file? to yes.
The files can be later read using File Reader component, if required.

 If emails have to be available for other clients set property Leave messages on
Server? to yes.

 If property Leave messages on Server? is set to yes, connection pooling should be
disabled.

4.1.6 SAPR3

The SAPR3 connects and executes the various services deployed on the SAP system. This
bridge receives a request XML and executes SAP BAPIs and RFCs. Every component instance
can be customized to access any BAPI using the BAPI browser which allows you to choose any
BAPI (pre-built and custom-built) by browsing the business objects in the SAP repository.

Points to note

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 465

 The following third-party files need to be downloaded this component can be used on
windows. The files can be downloaded from the SAP Service Marketplace. The
following URL may be used to navigate to the third-party website from where these
files can be downloaded: http://service.sap.com/. After downloading the files, you
need to add them as resources to the SAPR3 component.

o sapjco.jar

o librfc32.dll

o sapjcorfc.dll

4.1.7 SMS Bridge

Description

The SMS component enables you to send short messages or SMS using a configured SMS
Server. This component is extremely useful in sending SMS to notify specified recipient mobile
phone users to initiate corrective action in the event of an error or any other configured event.

Points to note

 To use the component, an account with http://www.simplewire.com/ is required.

 If you are a beta-tester with http://www.simplewire.com/ then you should use the
server name as wmp.

4.1.7.1 Configuration and Testing

To test this adapter you need an account with http://www.simplewire.com which gives you the
PIN number, Subscriber ID, Password and Callback number to send messages.

4.1.7.2 Managed Connection Factory Configuration

In the Managed Connection Properties panel of CPS, the following attributes can be
configured.

Figure: Managed Connection Factory

http://service.sap.com/
http://www.simplewire.com/
http://www.simplewire.com/
http://www.simplewire.com/

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 466

Use Connection Details From Input: Parameters to create the connection can be specified
in the input message when this property is set to true. If this property is selected the
validation errors in the managed connection factory panel of the CPS are treated as warnings.
So user can bypass this step without giving valid configuration and complete the configuration
of the component. If valid properties are not provided even in the input message exception
will be thrown at runtime.

Carrier Id/ Service ID: This is an Optional Property used to set the message carrier ID of
the recipient’s wireless device. The message carrier ID is the ID number that Simple wire
uses to identify carriers.

Server Name: Sets the name of the server for use in the connection. The server name works
in conjunction with the server domain to produce the URL to which the current message gets
posted. This value is preset and should not need to be changed, unless you are a Beta-Tester
default (wmp).

Connection Pool Params: Parameters which are used in connection pooling of the EIS
Connection.

Note: You can use the default values of these parameters if you use a Simple Wire Login.

Server connection can be tested from within the CPS by clicking on test button in the
connection properties panel.

Interaction Configuration

Pager Identification/Mobile No (PIN): This is the intended recipient of the message.

From Field: Name of the Sender of the Message.

Callback Number: message callback is the number that gets dialed when a recipient presses
‘talk’ on their device after viewing a message.

Subscriber ID: The subscriber ID is an ID number provided to paid subscribers that gives
access to all of Simple wire’s resources. The appropriate password must also be set.

Subscriber Password: Sets the password that goes along with the subscriber ID. Each paid
subscriber is given a unique ID. Each subscriber ID has an associated password.

Sample Input and Output

The configuration can be tested by clicking the Test button in the interaction Configuration
panel.

Figure 4.66: Sample Input Message

Figure 4.67: Response Generated

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 467

Input Schema

When the property Use Connection details from input is chosen, the following input schema
with the element ConnectionFactorySettings, is generated. Properties that are used to create
the connection are present under this element.

Figure: Input schema with ConnectionFactorySettings

4.1.7.3 Functional Demonstration

4.1.7.3.1 Scenario 1

This scenario demonstrates the usage of SMSBridge component to send short messages.

Configure SMSBridge as described in Configuration and Testing section and use feeder and
display components to send sample input and check the response respectively.

For the sake of convenience the configuration used in this scenario is presented here.

Figure 4.68: Configuration Used

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 468

Figure 4.69: Scenario demonstration with sample input, output and the received in
Inbox

4.1.7.4 Useful Tips
 To use the component, an account with http://www.simplewire.com/ is required.

 If you are a beta-tester with http://www.simplewire.com/ then you should use the
server name as wmp.

4.1.8 SMTP

SMTP Bridge component allows you to connect to a remote e-mail server and send e-mails.
SMTP is capable of handling:

• Simple text e-mails

• HTML e-mails

• E-mails with attachments

SMTP Bridge uses SMTP protocol for transmission of e-mails. It uses the SMTP implementation
from the JavaMail API.

Note: When sending attachments with the mail, if readFromFile attribute is set to yes, then
the content of the tag is treated as the filename and if it is set to no, then content of the tag is
treated as the content of the attachment with a dummy filename.

http://www.simplewire.com/
http://www.simplewire.com/

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 469

4.1.8.1 Managed Connection Factory Panel

Figure 1: Managed Connection Factory

4.1.8.1.1 SMTP Server

Use Connection Details From Input

Parameters to create the connection can be specified in the input message when this property
is set to true. If this property is selected the validation errors in the managed connection
factory panel of the CPS are treated as warnings. So user can bypass this step without giving
valid configuration and complete the configuration of the component. If valid properties are
not provided even in the input message exception will be thrown at runtime.

MailServer IP/Name

The IP address or name of the SMTP mail server.

MailServer Port

The port on which the SMTP server is running on the host specified by the property
MailServer IP/Name.

Use DefaultSession

The component uses a session (javax.mail.Session) to represent a mail session. A session
collects together properties and defaults used by the mail APIs.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 470

1. If this option is set to Yes, the default session object (javax.mail.Session) is used to
connect to the mail server. If a default is not setup, a new Session object is created and
installed as default.

2. If this option is set to No, then the default session object is not used and a new session
object is created for every connection attempt.

Additional Properties

Additional properties which can be used for creating connection can be specified here. For
instance, to enable debug in Javamail set property 'mail.debug' to 'true'.

For example, to connect to gmail, we need to set the "MailServer IP/Name" and "MailServer
Port" properties to "smtp.gmail.com" and "465" respectively. Apart from this we need to
provide the following additional properties

mail.smtp.starttls.enable=true
mail.smtp.socketFactory.port=465
mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
mail.smtp.socketFactory.fallback=false

Note: For the properties, which are supported by SMTP protocol please refer to
http://java.sun.com/products/javamail/javadocs/com/sun/mail/smtp/package-summary.html

4.1.8.1.2 Authentication Details

• Authentication required

Specifies whether the connection has to be authenticated by the SMTP Server. The
properties Login Name and Password for authentication are relevant only if
authentication is required.

• Login Name

The Login Name with which the connection to SMTP Server is made. An user with
login name specified must be valid with respect to the server whose URL is
specified by property MailServer IP/Name.

• Password for authentication

Password for the user as specified by the property Login Name.

4.1.8.1.3 TimeOut Settings

• Connection Timeout for mail server

Socket connection timeout value in milliseconds. This is the time duration (in
milliseconds) for which the component waits while trying to establish connection
with the server. If the component fails to get a valid connection in the specified
connection timeout interval, then the retry behavior depends on the configuration
specified in Error Configuration Panel. Default value -1 indicates infinite
timeout.

• Timeout for sending MIME message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 471

Socket I/O timeout value in milliseconds while sending MIME message. If
sending a MIME message requires more time, the current connection will be lost.
For example, if attaching a file takes more than the specified timeout period then
connection will be timed out by the component. Default value -1 indicates infinite
timeout.

4.1.8.2 Interaction Configurations Panel

Figure 2: Interaction Configurations

4.1.8.2.1 Sender Information

Display Name of the Sender

Name of the Sender to be displayed in the mail that is sent using the component.

Note: If the input message has <From> element, its value overrides the display name
specified by this property.

Email ID of the Sender

The sender's e-mail ID. This ID must be valid with respect to the server details provided in the
Managed Connection Factory Panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 472

Note: If the input message has <From> element, its value overrides the e-mail ID specified
by this property.

4.1.8.3 Input

SMTP component takes the input in XML format as shown in Figure 7.

Figure 3: Input in XML format

To: E-mail ID of the primary recipient(s). For multiple recipients, the e-mail IDs should be
separated by comma.

From: E-mail ID of the sender. The E-mail ID provided here will override the value provided
for property Email ID of the Sender in the CPS. This element is optional.

CC: E-mail ID of the CC (carbon copy) recipient(s) to be copied in the e-mail. For multiple
recipients, the e-mail IDs should be separated by comma. This element is optional.

BCC: E-mail ID of the BCC (blind carbon copy) recipient(s) to be copied in the mail. For
multiple recipients, the e-mail IDs should be separated by comma. This element is optional.

ReplyTo: ReplyTo header field. Comma separated e-mail IDs can be used here.

The ReplyTo field is used by some e-mail programs when the Reply address is different than
the From address.

While replying to an e-mail using Reply function, if ReplyTo header was set on the message,
then the e-mail client shows the Reply-To field instead of the From field in the To address.
This element is optional.

Subject: Subject of the e-mail. This element is optional.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 473

Headers: The headers provided (name value pairs) are added as Headers in the message.
This element is optional.

Note: This cannot be used to replace the default e-mail headers.

Attachments: This option is used to send attachments in the e-mail. This element is optional.

The attachment name is the value of the name attribute in the Attachment element.

Note:

• If the value of readFromFile attribute is set to No, then a new attachment file is
created with the data provided against this tag as the file contents, and added as an
attachment to the email.

Example: <Attachment name="attachment" readFromFile="no"
base64Encoded="no">attachment content</Attachment>

• If the value of readFromFile attribute is set to Yes, then the path of the file which has
to be added as an attachment should be provided with this tag.

Example: <Attachment name="attachment" readFromFile="yes"
base64Encoded="no">/path/of/attachment</Attachment>

• The attribute base64encoded attribute specifies whether the attachment is base64
encoded. This property is used only when readFromFile attribute is set to No.

• If base64encoded value is set to Yes, then the value is base64 decoded before sending
as an attachment.

Body: Used to specify the e-mail message body. This element is optional.

• TextBody: Sets the given string as the body content with a MIME type of text/plain.

• HTMLBody: Sets the given value as the body content with MIME type text/html.

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 474

Figure: Input schema with ConnectionFactorySettings

4.1.8.4 Output

If the e-mail is sent successfully, then the component sends an XML output with a single
element Result.

Figure 4: Sample response

4.1.8.5 Functional Demonstration

4.1.8.5.1 Scenario 1

Sending HTML mails with attachment (Note: choose scenario(s) that can be superset in terms
of number of features it can demonstrate).

Configure the SMTP Bridge as described in Configuration and Testing section and use Feeder
and Display component to send sample input and check the response respectively.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 475

Figure 5: Demonstrating Scenario 1 with sample input and output

Figure 6: Mail sent by SMTP Bridge in the Inbox

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 476

4.1.8.6 Use Case Scenario

In an order entry scenario e-mails can be sent to concerned party when a PO is accepted or
rejected.

Figure 7: Event Process demonstrating

The Event Process demonstrating this scenario is bundled with the installer.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Fiorano Studio.

4.1.8.7 Useful Tips
• SMTP component can be used as ESB Alerter when configured with ExceptionListener

component to listen for exceptions from all flows.

4.1.9 SapR3Monitor

The SAPR3 Monitor adapter enables you to process IDocs (Intermediate Documents) of SAP
systems and converts IDOC to XML Message. SAPR3 Monitor adapter listens for IDOC
generated from SAP. SAPR3 Monitor can be used to trigger a event process.

Points to note

• The following third-party files need to be downloaded this component can be used on
windows. The files can be downloaded from the SAP Service Marketplace. The following
URL may be used to navigate to the third-party website from where these files can be
downloaded: http://service.sap.com/. After downloading the files, you need to add them
as resources to the SAPR3 component.

o sapjco.jar

http://service.sap.com/

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 477

o sapidoc.jar

o sapidocjco.jar

o librfc32.dll

o sapjcorfc.dll

4.1.10 HL7Receiver

The HL7 Receiver listens on a port specified on a particular IP address to receive HL7
messages, sends the messages received on to the output port and sends the
acknowledgement to the Sender.

4.1.10.1 Configuration and Testing

The component can be configured using the properties in the Custom Property Sheet (CPS) as
shown in Figure 4.77.

Figure 4.77: Custom Property Sheet (CPS)

Note: Check Advanced check box to see all fields.

• Port #: Port number on which HL7 Receiver is listening.

• Name: The name which is used in the creation of input and output ports. By default, the
component has no ports. Depending on the names provided in the Custom Property Sheet,
a set of input and output ports gets generated.

• Identifiers: It is a string of form <HL7 Message Format> | <Trigger Event> that can be
configured in the Event windows as shown in Figure 4.78.

Example: The identifier ADT|A01 listens for ADT A01 messages.

Note: An asterisk* can be used as wild character for both message format and trigger event.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 478

Figure 4.78: Configuring Identifiers

• Message Type: The type of message that is sent on to the components output port.
Figure 4.79 shows the messages types that can be used.

Figure 4.79: Configuring message types

o Piped – Piped message is expected on input port

o XML – XML message is expected on input port

• Ack Generator class: A class whose instance can be delegated the responsibility of
generating an ack message for HL7 message received. If value is not provided a default
ack generator is used which generates AA if HL7 message is successfully converted to JMS
Message and sent on output port and AE otherwise.

Ack Generator should implement com.fiorano.services.hl7receiver.engine. IAckGenerator and
should have a default constructor.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 479

Figure 4.80: Ack Generator class

4.1.10.2 Functional Demonstration

Figure 4.80 illustrates the event process where HL7Sender accepts ADT and ORU messages
and sends them to HL7Receiver. Figure 4.81 illustrates the event process where HL7Receiver
listens to the messages from HL7Sender and sends them to the output port.

Figure 4.81: Sample Event process using HL7Sender

Figure 4.82: Sample Event process using HL7Receiver

4.1.10.2.1 Scenario 1

Receiving an ADT A01 message

Configure the HL7Receiver as shown in Figure 4.77.

Figure 4.82 illustrates a snapshot of the ADT A01 message received by HL7Receiver, when the
message (shown in figure 4.83) is sent by HL7Sender. Figure 4.84 illustrates the
acknowledgement sent by HL7Receiver.

Figure 4.83: ADT A01 message received by HL7Receiver

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 480

Figure 4.84: Sample ADT A01 message sent by HL7Sender

Figure 4.85: Acknowledgement sent by HL7Receiver

4.1.10.2.2 Scenario 2

Receiving an ORU R01 message

Configure HL7Receiver as shown in Figure 4.77.

Figure 4.85 illustrates a snapshot of the ORU R01 message received by HL7Receiver, when the
message (shown in Figure 4.86) is sent by HL7Sender. Figure 4.87 illustrates the
acknowledgement sent by HL7Receiver.

Figure 4.86: Sample ORU R01 message received by HL7Receiver

Figure 4.87: Sample ORU R01 message sent by HL7Sender

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 481

Figure 4.88: Acknowledgement sent by HL7Receiver

4.1.11 HL7Sender

The HL7 Sender component is used to send the HL7 data on to a port specified on a particular
IP address in a specified format. The component receives the response (acknowledgement)
generated and sends it to the output port.

HL7 Sender allows sending HL7 messages onto different HL7 Receivers. A set of input and
output ports is generated for each configuration.

4.1.11.1 Configuration and Testing

The component can be configured using the properties in the Custom Property Sheet (CPS)
shown in Figure 4.89.

Figure 4.89: Custom Property Sheet (CPS)

Note: Select Advanced check box to see all the fields.

 Name: The name is used in the creation of component input and output ports. By
default the component has no ports. Depending on the names provided in the property
sheet, a set of input and output ports gets generated.

 IP Address: The IP address on which HL7 Receiver service is running.

 Port #: Port number on which HL7 Receiver is listening.

 Request Time Out: Request Time Out is the time out of the HL7 message in
milliseconds. The HL7 Sender waits for the response till the timeout happens and
throws an exception, if it does not receive any response.

 Receive Type: The type of message expected on component’s input port. Figure 4.90
shows the receive types that can be used.

Figure 4.90: Configuring Receive type

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 482

o Piped – Piped message is expected on input port.

o XML – XML message is expected on input port.

o Both – Message received on input port can be of any type (piped or XML).

 Send Type: Type of the Acknowledgement message which is sent on to the
component’s output port. Figure 4.91 shows the Send types that can be used.

Figure 4.91: Configuring Send type

o Piped – Piped message is expected on input port.

o XML – XML message is expected on input port.

 Message Rectifier class: Message Rectifier class is a class whose instance is delegated
the responsibility of rectifying or correcting HL7 message every time a retry is
attempted. If value is not provided here then message rectification will not be done
and retry is attempted with same message.

Message Rectifier should implement com.fiorano.services.hl7sender.engine. IMessageRectifier
and should have a default constructor.

Figure 4.92: Message Rectifier class

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 483

 Ack Codes: Each Ack Code [AA, AR, AE ….] the sender is expected to receive can be
categorized as success or error or warning as shown in Figure 4.93. In case, the ack
code returned to sender is configured as success or warning, the ack message is
simply sent onto the output port of the component. If the received ack code is
configured as warning, then a retry is attempted.

Figure 4.93: Configuring Ack Code categories

Retry Configuration: When ack code returned to sender is categorized as warning, the number
of times retry is to be attempted and interval after which retry is to be attempted can be
configured as shown in Figure 4.94.

Figure 4.94: Retry configuration

4.1.11.2 Functional Demonstration

Figure 4.95 illustrates the event process where HL7Sender accepts ADT and ORU messages
and sends out the corresponding acknowledgements. Figure 4.96 illustrates the event process
where HL7Receiver listens to the messages from HL7Sender.

Figure 4.95: Sample Event process using HL7Sender

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 484

Figure 4.96: Sample Event process using HL7Receiver

4.1.11.2.1 Scenario 1

Sending an ADT A01 message

Configure the HL7Sender as shown in Figure 4.81.

When a sample ADT A01 message (shown in Figure 4.97) is sent from the Feeder ADT_XML,
HL7Sender sends this message to HL7Receiver. When the message receipt is acknowledged by
HL7Receiver, HL7Sender receives it (shown in Figure 4.98) and sends it to the Display
ADT_ACK_REC.

Figure 4.97: Sample ADT A01 message

Figure 4.98: Acknowledgement received by HL7Sender

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 485

4.1.11.2.2 Scenario 2

Sending an ORU R01 message

Configure HL7Sender as shown in Figure 4.81.

When a sample ORU A01 message (shown in Figure 4.99) is sent from the Feeder ORU_MSG,
HL7Sender sends this message to HL7Receiver. When the message receipt is acknowledged by
HL7Receiver, HL7Sender receives it (shown in Figure 4.100) and sends it to the Display
ORU_MSG_REC.

Figure 4.99: Sample ORU R01 message

Figure 4.100: Acknowledgement received by HL7Sender

4.2 Collaboration
The Collaboration category consists of components like chat, csChat, vbChat, and vcChat. The
following section describes each component.

4.2.1 Chat

Chat component is a simple JMS application used to send messages from one chat component
to another through their input and output ports. The font and color of the messages can be
configured in the CPS of the Java chat component.

Note: This component cannot be launched in-memory of the peer server.

4.2.2 C# Chat

CS Chat is a native Csharp based component. CS Chat uses the .Net framework for its GUI
(chat window). The CS Chat component uses the Csharp runtime which is a wrapper on C++
native runtime for running the application.

Points to note

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 486

9. This component cannot be launched in-memory of the peer server.

10. This component doesn’t support Configuration Property Sheet (CPS).

Note: To run csChat component, make sure DOT NET 2003 or above is installed on the
machine where peer server is running.

4.2.3 VB Chat

Vbchat is built upon JNI based cpp client library which uses fmq-cpp-client-msg-adapter.lib for
running the component. Vbchat uses Microsoft ActiveX controls for its GUI (chat window).

Points to note

(vi) This component cannot be launched in-memory of the peer server.

(vii) This component doesn’t support Configuration Property Sheet (CPS).

Note: To run vbChat component, make sure DOT NET 2003 or above is installed on the
machine where peer server is running.

4.2.4 VC Chat

VC Chat is a native C++ based component. VC Chat uses the MFC library for its GUI (chat
window). VC Chat uses the c++ native runtime library for running the application.

Points to note

12. This component cannot be launched in-memory of the peer server.

13. This component doesn’t support Configuration Property Sheet (CPS).

Note: To run vcChat component, make sure Microsoft Visual Studio 6.0 or above is installed
on the machine where peer server is running.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 487

4.3 DB
The DB component is an all encompassing powerful component which can be used to configure
simple and nested queries like insert, update, delete and select. It can also be used to monitor
tables by value, by reference, by using alter tables and by using stored procedures. Monitoring
can also be used for loop detection in replicating databases. The graphic user interface of this
component allows designing queries with the application of zero coding effort using the Design
mode. However, the SQL mode can also be used to write queries. Syntactical validity of the
SQL can be ensured by using the Check Syntax SQL button provided on the SQL configuration
panel in the SQL mode.

DB component is capable of handling:

14. Query execution

15. Nested Query execution

16. Sequencing - Execution of a set of queries in a pre-defined order.

17. Stored Procedures execution

18. Failover Queries - Executed when an SQL Statement fails to execute due to an error.

19. Post Processing - SQL statements to be executed after every query or after a
sequence of queries.

20. Table Monitoring – Data changes due to updates, inserts or deletes.

21. Customized Transactions

22. Customized Response Size

23. Advanced and Complex Data types including User Defined Data types.

24. DB component uses the JDBC 1.0 API.

4.3.1 DB

The DB component is an all encompassing powerful component which can be used to configure
simple and nested queries like insert, update, delete and select. It can also be used to monitor
tables by value, by reference, by using alter tables and by using stored procedures. Monitoring
can also be used for loop detection in replicating databases. The graphic user interface of this
component allows designing queries with the application of zero coding effort using the Design
mode. However, the SQL mode can also be used to write queries. Syntactical validity of the
SQL can be ensured by using the Check Syntax SQL button provided on the SQL configuration
panel in the SQL mode.

The following are some silent features of the DB component:

• Query execution - Using this component, simple select, update, insert and delete
queries can be executed.

• Nested Query Execution - The DB component provides one level of nesting for
insert, update, delete, and stored procedures.

• Grouping - DB components support query grouping which is the execution of a set of
queries in a pre-defined order.

• Stored Procedures - The DB component supports execution of Stored Procedures.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 488

• Failover Queries - These queries are executed when an SQL Statement fails to
execute due to an error. Failover queries maintain data consistency even in a case
when an unexpected error while executing an SQL Statement is experienced by the
component flow.

• Post Processing - SQL statements for post processing can be defined after a single
query execution or after an execution of multiple queries.

• Table Monitoring - The DB component supports monitoring of simple and nested
tables for data insertion, updation, and deletion. This component also supports
monitoring for updation of selected columns. Multiple tables can be monitored using
this component.

• Customized Transactions - The component can be configured to commit the entire
transaction after a row, document, batch, or can be committed automatically.

• Customized Response Size - The response size for the output of the component can
be configured. This allows the processing of multiple records in a single transaction.
For example, if only 100 records should be processed in a transaction, it can be set
using the Response Size field. This ensures that only 100 records are sent as part of
one message. If there are 500 records, 5 responses are sent with 100 records in each.

• Support for Advanced and Complex Data types - The DB component supports
BLOB, CLOB, User Defined Data types (UDTs) and different date-time formats.

Points to note

• It is recommended NOT to use JDBC-ODBC Bridge driver to connect to any RDBMS in
your production environment. Please use a commercial JDBC driver instead.

• The JDBC drivers or the resources must be directly added onto the JDBC system lib
and not as resource to the DB component itself. To add JDBC drivers to DB
component, please refer to section 3.3.3.3.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 489

4.3.1.1 Database Connection Configuration

Connection details are configured in the first panel, which is Managed Connection Factory -
MCF of Configuration Property Sheet - CPS. Figure 4.101 illustrates the panel with expert

properties view enabled.

Figure 4.101: Managed Connection Factory Panel

• Use Connection Details From Input: Parameters to create the connection can be
specified in the input message when this property is set to true. If this property is
selected the validation errors in the managed connection factory panel of the CPS are
treated as warnings. So user can bypass this step without giving valid configuration
and complete the configuration of the component. If valid properties are not provided
even in the input message exception will be thrown at runtime.

• Database: Select the appropriate database in the Database property, the drop-down
list all the supported databases as shown in Figure 4.102. If the required database is
not listed, select Other as the database option.

Note: If a database is not listed in the drop-down list, this does not mean that the
component will not work with the database. This only means:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 490

o Monitor table feature will not be supported for the database

o Appropriate Driver and URL should be specified

Figure 4.102: Database Drop-Down List

• Driver: Driver class name that should be used to connect to the database. On
selecting required database, Driver value is populated with standard value (This can
be changed to required values based on driver being used).

Note: jar/zip file containing the driver class should be added as resource to JDBC
System Library

• URL: URL at which the database is running. On selecting required database, URL
value is populated with standard value (This can be changed to required values based
on driver being used). The populated value will have place holders which have to be
replaced to point to correct database location, for example, replace <hostname>,
shown in Figure4.103, with appropriate IP address

• User name: Name of the user to connect to database as

• Password: Password for user

Figure 4.103: Driver, URL, User name, and Password Properties

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 491

• Connection Properties: Any driver specific connection properties which may have to
be passed while creating a JDBC connection should be provided against Connection
Properties (shown in Figure 4.104). For example, fixedString=true uses FIXED CHAR
semantics for string values in oracle.

Note: Please refer to documentation of driver that is being used for valid name-values
for connection properties.

Figure 4.104: DB Connection Properties

• Auto commit: Commit mode that should be used by the JDBC connection.

 yes no

Commit behavior Transactions are
committed implicitly

Transactions are committed explicitly

Database update Happens
instantaneously

Happens when the commit is called
explicitly

Performance Low High (comparatively)

Granularity of
transaction

Fixed. Every transaction
is atomically committed

User defined. Granularity can be defined
by specifying appropriate value for Commit
Mode in Advanced Properties panel in the
SQL configuration wizard (explained later)

• Query timeout: Time, in seconds (>= 0), after which an exception is thrown if the
query execution is not complete. For example, if this value is set to 60 and a query to
database does not return within 60 seconds, then an exception is thrown and query
execution is stopped.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 492

• Fetch size: Number of rows (>=0), which should be fetched from database into the
component when iterating through result sets. This value provides a tradeoff between
number of trips on networks and memory requirement.

For example, a query results in 1000 rows and fetch size is set to 500, then result set
gets all rows from database in two sets of 500 rows each.

Note: If this value is set to 0, all the rows are returned in one turn.

• Connection ping sql: A SQL statement which is guaranteed to execute without
exception, except when connection to database is lost. When a SQL exception occurs
on executing a configured query, this SQL statement is executed. If execution of this
SQL statement fails as well, then it is assumed that connection to database is lost and
appropriate configured action (say, reconnect) is taken.

Example: select * from dual for oracle, select 1 for MS SQL

• Enable jdbc driver logging: Value yes implies that logging at the driver level should
be enabled. This is used as a debugging option.

• Wrap DB object names: When database object names (viz. table names, column
names, schema names…) contain spaces, they should be wrapped in database
dependent special characters. For example, “ ” for oracle and [] for excel.

Database object names are wrapped as shown below:

Start wrap character + object name + End wrap character

Start wrap character: Character which should be used before the object name

End wrap character: Character which should be used after the object name

4.3.1.2 Interaction Configurations

SQL configuration details and advanced configurations are configured in the second panel
(Interaction configurations) of CPS.

4.3.1.2.1 SQL Configuration

Click on next to SQL configuration property (shown in Figure 4.105) to launch the wizard
(Figure 4.106) which allows configuring queries that have to be executed.

Figure 4.105: Interaction Configurations

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 493

Figure 4.106: SQL Configurations Panel

SQL Configuration panel allows configuring multiple queries. To configure a query, click

 button and select required type of query from the pop-up menu.

4.3.1.2.1.1 Adding Query Configuration

Figure 4.107: Adding a Query

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 494

Explanation for different types of queries is given in the following table:

Type of query Explanation

Insert Statement Inserts / adds data into database table

Update Statement Modifies existing data in database table. This option also allows to
configure upsert queries (explained later)

Delete Statement Deletes data from database table

Select Statement Retrieves data from database table

Stored Procedure Executes stored procedure in database

Monitor Table Checks for inserts / updates/ deletes on a table and reports them

4.3.1.2.1.2 Object Selection

Configuring queries requires selecting database objects on which actions have to be taken.
Three kinds of objects are dealt within SQL configuration – tables, stored procedures, and user
defined data types. UI for selecting objects are very similar in appearance and functionality.
Table selection UI is shown in the Figure 4.108:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 495

Figure 3.6108: Table Selection Dialog

To select a database object, provide selection criteria (schema name pattern and object name
pattern) in corresponding database object selection UI as shown in the Figure 4.109:

Figure 4.109: Table Selection Criteria

Schema/object name pattern may contain SQL wild cards:

• % - matches an number of characters

• _ - matches one character

Example:S% - means all object names starting with S, %S% - means all object names
containing S, and _S% – means all object names whose second character is S.

Schema name can either be typed or selected from drop-down list after clicking on fetch
schemas button.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 496

Figure 4.110: Selecting a Schema

Note: Select <none> to ignore schema while searching. Provide empty value to get objects
without a schema.

Click on Refresh <object> (Refresh Table, for table selection) to fetch the list of objects
matching the criteria specified. Result can be incrementally searched for appropriate value by
typing in first few characters when the result tree is focus as shown in Figure 4.11.

Figure 4.111: Searching a Table

Note: Response time for fetching required objects depends on search criteria, narrower the
search criteria faster the response.

4.3.1.2.1.3 Insert Statement Configuration

Click on Add… Insert Statement to launch Insert Query Builder (shown in Figure
4.112)

Note:

• Do not type in the text area before configuring the query.

• Do any modifications only after all other configurations are done.

• For user modified values, required input/output details (for example, data types) will
not populated and these have to be configured manually.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 497

Figure 4.112: Insert Query Builder

Simple Insert Statement

Behavior: Inserts a row in configured table with column values taken from input XML or with
constant column values.

1. Provide a name for the query against Query Name.

2. Click on (add database table) button to launch Table Selection dialog.

3. Select required table as explained in Object Selection section. Selected table is

added to the easel under Table. Primary key column, if exists, is marked with
adjacent to column name.

Figure 4.113: Selected table added to easel with all columns

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 498

4. Table can be changed by clicking (replace selected table) button and removed by
clicking (remove database table) button.

5. If values are never to be inserted into a particular column, then that column can be
unchecked (this requires column has a default value or supports null values) as shown
in Figure 4.114.

Figure 4.114: Ignoring column for insertion

6. To insert a constant value for a particular column, specify the required value in the
Column Value column against the required column name.

Note:

 If the value is a string value it should be wrapped in single quotes (‘ ’)

 ? indicates value is taken from input or from the output of another query where
possible

Figure 4.115: Inserting constant value into a table

Insert statement is automatically generated and shown in the text editor under SQL Statement

Figure 4.116. The generated SQL can be validated by pressing (check syntax) button.

Note: This feature only checks for invalid tokens, it does not perform a complete syntax check

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 499

Figure 4.116: Generated insert query

7. Click Ok to close the dialog.

Insert Statement with Select

Behavior: Insert rows in configured table by selecting rows from another table.

1. Follow the steps from 1 to 6 as described in section Simple Insert Statement.

2. Select option SELECT Query against Insert values using as shown in Figure 4.117.

Figure 4.117: Option to insert values into a table using select query

3. Click on Wizard… button to launch SELECT Query Builder.

4. Follow the steps as described in section Select Statement Configuration.

5. Insert statement is automatically generated and shown in the text editor under SQL

Statement. The generated SQL can be validated by clicking the (check syntax)
button.

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check

Figure 4.118: Generated query to insert values using select

6. Click Ok to close the dialog.

Insert Statement with failover

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 500

Behavior: Insert rows in configured table. If an exception occurs, insert in the exception
table.

• Follow the steps from 1 to 8 as described in section Simple Insert Statement.

• Click on the check box Exception Table. Another Insert Query Builder launches,
this is the table in which the values are stored which raised exceptions.

Figure 4.119: Exception Table Selection

• Configure inserting into exception table following steps from one of the previous
Insert Statement sections based on the requirement.

• Click Ok to close the dialog.

4.3.1.2.1.4 Update Statement Configuration

Click on Add… Update Statement to launch UPDATE Query Builder (shown in Figure
4.120)

Note:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 501

• Do not type in the text area before configuring the query.

• Do any modifications only after all other configurations are done.

• For user modified values, required input / output details (for example, data types) are
not populated and have to be configured manually.

Figure 4.120: Update Query Builder

Simple Update Statement

Behavior: Update rows satisfying defined condition in configured table, with column values
taken from input XML or with constant values. Condition values can also be taken from input
XML or defined as constant values.

1. Provide a name for the query against Query Name.

2. Click on (add database table) button to launch Table Selection dialog.

3. Select required table as explained in Object Selection section.

4. Selected table is added to the easel under Table. Primary key column, if exists, is

marked with adjacent to column name.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 502

Figure 4.121: Selected table added to easel with all columns

5. Table can be changed by clicking on (replace selected table) button and removed
by clicking on (remove database table) button.

6. Select the columns whose values have to be set (Figure 4.122 shows that NAME and
AGE are selected for update)

Figure 4.122: Ignoring column for update

7. Selected columns are added under the SET tab.

Figure 4.123: Columns added to SET clause

8. Click on WHERE tab and select a column name on which where condition has to be
applied.

Figure 4.124: Adding condition on column to WHERE clause

9. When selecting multiple columns for where condition, conditions can be combined
using AND or OR under And/Or column.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 503

Figure 4.125: Specifying multiple conditions for WHERE clause

10. Operator of choice can be selected from the drop-down list under Operator column.

Figure 4.126: Selecting operator for a condition

Figure 4.127: WHERE tab with conditions and operators selected

11. Constant values can also be set to columns that have to be updated (under SET tab)
or for values in where condition (under WHERE tab).

12. To update a column with a constant value, specify the required value in the Column
Value column against the required column name in SET tab.

Note:

• If the value is a string value it should be wrapped in single quotes (‘ ‘)

• ? indicates value is taken from input or from the output of another query where
possible

Figure 4.128: Specifying constant value for a column in SET clause

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 504

13. To specify a constant value for where condition on a column, specify the required
value in the Column Value column against the required column name in WHERE tab.

Note:

• If the value is a string value it should be wrapped in single quotes (‘’).

• ? indicates value is taken from input or from the output of another query where
possible.

Figure 4.129: Specifying constant value for a column in condition for WHERE
clause

14. To specify where condition on a column whose value is equal to value defined in
another column, select the required column from the drop-down list in the Column
Value column against the required column name in WHERE tab.

Figure 4.130: Specifying comparison between columns in condition for
WHERE clause

15. Update statement is automatically generated and shown in the text editor under SQL

Statement. The generated SQL can be validated by pressing (check syntax)
button.

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check

Figure 4.131: Generated update query

16. Click Ok to close the dialog.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 505

Update Statement with Failover Insert (aka upsert)

Behavior: Update a rows satisfying defined condition in configured table with column values
taken from input XML. Condition values can also be taken from input XML. If the update fails
to update any rows (update count = 0), then insert a row with provided values.

Note:

• Values are inserted only for columns which are either selected for set or where clause

• UPSERT fails if a column which has NOT NULL condition is not a part of either set or
where clause.

• UPSERT when placed under SELECT will not work as we do no support multi-level
processing.

1. Configuring update statement following steps mentioned in Simple Update Statement.

2. Check UPSERT check box.

Figure 4.132: UPSERT Check Box

4.3.1.2.1.5 Delete Statement Configuration

Click on Add… Delete Statement to launch DELETE Query Builder (shown in Figure
4.133)

Note:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 506

• Do not type in the text area under before configuring the query.

• Do any modifications after all other configuration is done.

• For user modified values required input / output details (e.g. data types) will not be
populated and have to configured manually

Figure 4.133: Delete Query Builder

Simple Delete Statement

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 507

Behavior: Delete rows satisfying defined condition in configured table, with column values
taken from input XML or with constant values

1. Provide a name for the query against Query Name.

2. Click on (add database table) button to launch Table Selection Dialog.

3. Select required table as explained in Object Selection section.

4. Selected table is added to the easel under Table.

Figure 4.134: Selected table added to easel with all columns

5. Table can be changed by clicking (replace selected table) button and removed by
clicking (remove database table) button.

6. Specify condition which should be satisfied for deleting row under WHERE condition.
Select a column name on which where condition has to be applied.

Figure 4.135: Adding condition on column to WHERE clause

7. When selecting multiple columns for where condition, conditions can be combined
using AND or OR under And/Or column.

Figure 4.136: Specifying multiple conditions for WHERE clause

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 508

8. Operator of choice can be chosen from the drop down under Operator column.

Figure 4.137: Selecting operator for a condition

Figure 4.138: WHERE Tab with conditions and operators selected

9. To specify a constant value for where condition on a column, specify the required
value in the Column Value column against the required column name in where tab.

Note:

• If the value is a string value it should be wrapped in single quotes (‘ ‘).

• ? indicates value is taken from input or from the output of another query where
possible.

Figure 4.139: Specifying constant value for a column in condition for WHERE
clause

10. To specify where condition on a column whose value is equal to value defined in
another column, select the required column from drop down in the Column Value
column against the required column name in where tab.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 509

Figure 4.140: Specifying comparison between columns in condition for
WHERE clause

11. Delete statement is automatically generated and shown in the text editor under SQL

Statement. The generated SQL can be validated by pressing (check syntax)
button.

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check.

Figure 4.141: Generated delete query

12. Click Ok to close the dialog.

4.3.1.2.1.6 Select Statement Configuration

Click on Add… select Delete Statement to launch SELECT Query Builder (shown in
Figure 4.142).

Note:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 510

• Do not type in the text area under before configuring the query.

• Do any modifications after all other configuration is done.

• For user modified values required input/output details (Example: data types) will not
be populated and have to configured manually.

Figure 4.142: Select Query Builder

Simple Select Statement

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 511

Behavior: Retrieves data from all columns or from selected columns in a configured database
table.

1. Provide a name for the query against Query Name.

2. Click on (add database table) button to launch Table Selection Dialog.

3. Select required table as explained in Object Selection section.

4. Selected table is added to the easel under Table. Primary key column, if exists, is

marked with adjacent to column name.

Figure 4.143: Selected table added to easel with all columns

5. Table can be changed by clicking (replace selected table) button and removed by
clicking (remove database table) button.

6. To retrieve specific columns values from the table, check required columns to build a
select query with specific columns. If no column is checked, then SELECT * is used.
Select the columns in order in which they should appear they should appear in select
clause.

Figure 4.144: Ignoring column for selection

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 512

7. Selected columns are shown under Columns tab. Check/Uncheck the check box in
Output column against required column name to show/not show the corresponding
column in the output XML.

For example, configuration in the following image generates IDNO in the output XML
but does not generate NAME in output XML, though values for both IDNO and NAME
are retrieved from the table.

Figure 4.145: Selecting columns for output XML

8. To define a column alias, provide the alias name under Alias column against required
column name. Aliases are useful when the column name is not intuitive or too long.
When an alias is specify output XML contains an element with defined alias name
instead of the column name.

Figure 4.146: Defining Column Alias

9. To return unique rows check DISTINCT.

Figure 4.147: Distinct option to return unique values

10. Select statement is automatically generated and shown in the text editor under SQL

Statement. The generated SQL can be validated by pressing (check syntax)
button.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 513

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check.

Figure 4.148: Generated select query

11. Click Ok to close the dialog.

Select Statement with Filter

Behavior: Retrieves data from all columns or from selected columns in a configured database
table after applying specified conditions. Condition values can be provided from input XML or
as constant values.

1. Follow the steps from 1 to 8 as described in the section Simple Select Statement.

2. Click on WHERE tab and select a Column name on which WHERE condition has to be
applied.

Figure 4.149: Adding condition on column to WHERE clause

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 514

3. When selecting multiple columns for WHERE condition, conditions can be combined
using AND or OR under And/Or column.

Figure 4.150: Specifying multiple conditions for WHERE clause

4. Operator of choice can be selected from the drop-down list under Operator column.

Figure 4.151: Selecting operator for a condition

Figure 4.152: WHERE tab with conditions and operators selected

5. Constant values can also be set for values in WHERE condition (under WHERE tab).

6. To specify a constant value for WHERE condition on a column, specify the required
value in the Column Value column against the required column name in WHERE tab.

Notes:

 If the value is a string value it should be wrapped in single quotes (‘ ‘).

 ? indicates value is taken from input or from the output of another query where
possible.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 515

Figure 4.153: Specifying constant value for a column in SET clause

7. To specify WHERE condition on a Column whose value is equal to value defined in
another Column, select the required Column from drop-down list in the Column
Value against the required column name in WHERE tab.

Figure 4.154: Specifying comparison between columns in condition for
WHERE

8. Select statement is automatically generated and shown in the text editor under SQL

Statement. The generated SQL can be validated by clicking the (check syntax)
button.

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check.

Figure 4.155: Generated select query with filter

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 516

9. Click the Ok button to close the dialog.

Select Statement with Sorting

Behavior: Retrieves sorted data from all columns or from selected columns in a configured
database table. Data is sorted in configured order on columns configured for sorting.

1. Follow steps 1 to 8 in the section Simple Select Statement.

2. To specify columns which have to be sorted, select the appropriate sort order from
drop-down list under Order By column. Order By for each columns has one of the
following values:

Order By
Value

Explanation

Unsorted Data is not sorted on values in the column, that is, no order by clause
is added in the SQL statement.

Ascending Data is sorted in ascending order on values in the column, that is
order by clause is added in the SQL statement as ORDER BY <column
name> ASC.

Descending Data is sorted in descending order on values in the column, i.e. order
by clause is added in the SQL statement as ORDER BY <column
name> DESC.

Default Data is sorted in default order for order by clause on values in the
column, that is, order by clause is added in the SQL statement as
ORDER BY <column name>.

Figure 4.156: Selecting sorting order for column

An example of SQL statement with different sort orders is shown in the Figure 4.157.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 517

Figure 4.157:SQL Statement with different columns sorted in different order

3. When multiple columns have to be sorted, sorting priority for each column can be set
under Sort Priority. Columns are sorted in order of increasing Sort Priority that is
column with minimum value for Sort Priority is order first.

When values of Sort Priority for multiple columns are same, columns are sorted in the
order in which they appear in select clause.

Figure 4.158: SQL Statement with Sort Priority

4. Select statement is automatically generated and shown in the text editor under SQL

Statement. The generated SQL can be validated by clicking (check syntax)
button.

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check.

5. Click the Ok button to close the dialog.

Select Statement with Grouping

Behavior: Retrieves data, after applying grouping conditions, from all columns or from
selected columns in a configured database table.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 518

Note: Grouping functions are not provided in query builder. Grouping conditions have to be
explicitly added by editing the SQL statement either before closing the query builder or by
launching.

1. Follow the steps from 1 to 8 as described in the section Simple Select Statement.

2. Click on GROUP BY tab and check under Select against the columns under Group By
on which group by condition should be applied.

Figure 4.159: Selecting columns for grouping condition

3. To filter the results click on HAVING tab and define required conditions. HAVING tab
has functionality similar to WHERE tab (described in Select Statement with filter).

Figure 4.160: Adding condition to HAVING clause

4. Select required columns under Tables.

Figure 4.161: Selecting required columns

5. Edit Select and HAVING clauses to apply appropriate grouping condition on selected
columns.

Note: Editing Select and HAVING clauses should be last action before closing the
dialog.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 519

Figure 4.162: Generated select query with grouping

6. Click the Ok button to close the dialog.

Select Statement with Multiple Tables

Behavior: Retrieves data from all columns or from selected columns from multiple configured
database tables.

1. Follow the steps from 1 to 5 as described in the section Simple Select Statement.

2. To add second table, click on (add database table) button to launch Table
Selection dialog.

Notes:

 Multiple tables can be added by repeating this step.

 Specify any conditions after selecting all required tables.

Figure 4.163: Selecting multiple tables

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 520

3. Add WHERE condition, described in section Select Statement with filter, to perform
join on the tables. If no condition is specified, Cartesian product of rows in all selected
tables is returned.

4. To specify the join, in WHERE tab, select the required column from one table under
Column and select the required column from another table under Column Value.

Figure 4.164: Generated SQL statement with join

5. To specify filtering, sorting or grouping conditions refer to sections above.

6. Click the Ok button to close the dialog.

4.3.1.2.2 Stored Procedure Configuration

Behavior: Executes a stored procedure and returns the result (returns return value or out
parameter values).

Note:

• Functions can also be configured

• Stored Procedure/Function has to be executed at configuration time if it returns a
result set to create the output structure.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 521

To configure the Stored Procedure, perform the following steps:

1. Click on Add Stored Procedure to launch Stored Procedure dialog.

Figure 4.165: Stored Procedure Query Builder

2. Provide a name against Query Name.

3. Click against Stored Procedure to launch Procedure Selection dialog.

4. Select required procedure as described in section Object Selection.

Figure 4.166: Stored procedure details

5. Parameters and their configurations are automatically populated.

Note: Stored Procedures currently does not support User Defined Data types.

Column Description

Parameter Name of the parameter for named parameters, blank otherwise.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 522

Parameter Type Type of parameter – IN, OUT, INOUT, UNKOWN, RETURN, RESULT

Values of type OUT, INOUT, RETURN, RESULT form output structure.

Data Type SQL data type of the parameter.

Sample Data NA

6. Select Execute to execute the stored procedure to create output structure when the
Stored Procedure dialog is closed (shown in the Figure 4.167). If Execute is not
selected, the output structure will not be defined and has to be manually defined.

Figure 4.167: Output structure generated for selected stored procedure

7. Click Ok to close the dialog.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 523

4.3.1.2.3 Monitor Table Configuration

Behavior: Monitors a configured table for any changes (data addition, data removal and data
updates). Monitoring a table requires creation of temporary table/stored procedures and data
types and hence is very specific to database in use. This option is not supported when
Database selected is Other in MCF panel (see section Database connection
configuration). This option is supported only for the following databases against Database
in MCF panel – IBM DB2, HSQL, Kingbase, Microsoft Access, Microsoft SQL Server,
Microsoft SQL Server 2005, Mckoi, MySQL, Oracle, Sybase.

1. Click on Add… Monitor Table to launch SQL Creation Wizard (shown in Figure
3.168).

Figure 4.168: Monitor table wizard

Note: Do not use these buttons.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 524

4.3.1.2.3.1 Select DB Table

2. Click against Monitor Table and choose the table to monitor (refer to section
Object Selection).

3. Select actions which have to be monitored.

 Insert – Notifies when a row is added to monitored table.

 Delete – Notifies when a row is deleted from monitored table.

 Update Of Selected Columns – Notifies when a selected column is updated to
new value. Column selection panel appears when this option is checked.

Figure 4.169: Selecting table for monitoring

4. For each action which has to be monitored, specify conditions which filter changes to

be notified, click on button (configure expression to filter inserted records).

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 525

5. Define condition on required columns, similar to WHERE tab in Select Statement
with filter section. Figure 3.170 shows configuring a condition – send notification if a
row is inserted with IDNO > 500.

Note: Do not set column value as? (Like in WHERE tab)

Figure 4.170: Specifying filter condition for monitoring

6. Click the Next button.

4.3.1.2.3.2 Monitor Option

7. Select one of the following options to monitor actions on table:

 Shadow Table

Creates a table containing all columns in the monitored table and a few additional
columns (TIF_RECORDID, TIF_OPERATIONTYPE and TIF_STATUS) required
for monitoring. This option is supported only on following databases – IBM DB2,
Kingbase, Microsoft SQL Server, Microsoft SQL Server 2005, Mckoi, Oracle,
Sybase

Note: Trigger should be allowed by database to use this option.

 Alter Main Table

Modifies the monitored table to add TIF_RECORDID, TIF_OPERATIONTYPE and
TIF_STATUS columns required for monitoring. This option is supported by all
databases that support monitoring.

Notes:

o This option should be used with caution as changing table definition might
break other applications.

o TIF_RECORDID, TIF_OPERATIONTYPE and TIF_STATUS columns
should be populated externally.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 526

8. When monitor option is Shadow Table, select one the following methods to create a
shadow table.

 Monitor By REFERENCE

Shadow table is created with columns TIF_RECORDID, TIF_OPERATIONTYPE,
TIF_STATUS and primary key of monitored table.

 Monitor By VALUE

Shadow table is created with columns TIF_RECORDID, TIF_OPERATIONTYPE,
TIF_STATUS and all columns of monitored table.

Figure 4.171: Selecting monitor option

9. In case of either monitor option, Enable Loop Detection modifies the monitored
table to add an additional column TIF_SOURCE whose value should be NULL for
notifications.

Notes:

o This option should be used with caution as changing table definition might
break other applications.

o TIF_RECORDID, TIF_OPERATIONTYPE and TIF_STATUS columns should
be populated externally.

10. Click the Next button.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 527

4.3.1.2.3.3 Polling Options

11. Based on monitor option selected, either shadow table or monitored table should be
continuously polled to identify changes done to monitored table and notify. Select one
of the following options for polling:

 Stored Procedure

This option is supported only on following databases – IBM DB2, Kingbase,
Microsoft SQL Server, Microsoft SQL Server 2005, Oracle, and Sybase.

Names for all databases that is created are populated automatically and can be
changed.

 Select Statement

This option is supported by all databases that support monitoring. It creates an
update and a select statement instead of a single stored procedure.

Figure 4.172: Selecting polling option

12. Click the Next button.

4.3.1.2.3.4 Statements Overview

13. To check SQLs which create required database objects required for monitoring, click
View SQLs… These SQLs are by default executed when Finish button is clicked.

14. To check SQLs which remove all database objects created for monitoring, click View
Cleanup SQLs…

15. SQLs and Cleanup SQLs are saved at following locations for future reference.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 528

SQLs – %ESB_USER_DIR% \ studio \ <build no>\ cache \ components \ DB \ 4.0 \ <monitor
table name>_config.sql

Cleanup SQLs – %ESB_USER_DIR% \ studio \ <build no>\ cache \ components \ DB \4.0 \
<monitor table name>_cleanup.sql

16. Check Ignore SQL execution errors to finish the wizard even if some exceptions
occur when executing SQLs to create database objects required for monitoring.

Note: If this is checked, appropriate database objects should be created by user.

17. Check Do not execute SQLs on Finish to finish the wizard without creating database
objects required for monitoring.

Note: If this is checked, appropriate database objects should be created by user.

18. Click the Finish button.

4.3.1.2.4 SQL Statement Details Configuration

SQL Statement Details shows detailed configuration of the selected query:

 SQL statement in Query tab.

 Configuration of input parameters which have to be passed to execute the query.

 Configuration of output parameters which are returned after query execution.

Figure 4.173: SQL Statement Details

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 529

Input and output parameters are automatically populated when a query is configured and
connection to database is available. However, the populated values can either be modified or
defined manually. To define input/output structure manually, a sound understanding of
database objects involved is required. ResultSets, parameters, and columns can be added to
input or output structure by right clicking Structure column.

Figure 4.174: Building output structure manually

4.3.1.2.4.1 Configuring Input Parameters

Basic view of input tab is shown in Figure 4.175.

Figure 4.175: Input tab showing basic view of input structure

Check advanced check box to see advanced configuration details.

Figure 4.176: Input tab showing advanced view of input structure

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 530

Each of the columns in Input tab is explained below.

Column Name Description

Structure This value is used to generate the schema for the query. In the above
figure value for IDNO (field name) is changed to IDN. So the schema
generated would contain IDN as the first element instead of default
populated value, IDNO.

Data Type This defines the data type of this column in the database table. This should
be correctly defined.

Default Value This value is taken for the column it is defined against, if the node
satisfying the XPath, defined in MapTo, in the input XML is not present.
Values $EMPTY_STR and $NULL represent empty string and null values
respectively.

Note: String literals need not be wrapped in.

Map To The XPath like expression at which the value for this column is present in
the input XML. This can be edited to any value to suit input XML.

In case of child queries (nested/post processing/fail over), value from the
result of parent can be passed to input of nested query. Value from parent
query which should be mapped can be selected from a drop-down list of
proprietary expressions ending with the index of output. Further, in case of
nested queries, when parent query result is being passed, the following
syntax can be used to configure to pass first or last value from list values:

$First[<expression>].

$Last[<expression>]

Note: Changing this value does not change the input schema. So it is not
recommended to change this value.

Bind Position The position in the query where this value is bound to.

Note: Do not change this value.

Java Type JDBC type which maps to Data Type.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 531

4.3.1.2.4.2 Configuring Output Parameters

Basic view of output tab is shown in the Figure 4.177:

Figure 4.177: Output tab showing basic view of output structure

Check advanced check box to see advanced configuration details.

Figure 4.178: Output tab showing advanced view of output structure

Each of the columns in Output tab is explained in the table below:

Column Name Description

Structure This value is used to generate the schema for the query. In the above
figure value for EMPNO (field name) is changed to EMPN. So the schema
generated would contain EMPN as the first element instead of default
populated value, EMPNO

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 532

Data Type This defines the data type of this column in the database table. This
should be correctly defined.

Default Value NA for output

Output Name NA

Include If the output XML should contain an element corresponding to column
check this check box, else uncheck it. E.g. If the check box against COMM
is unchecked, the output XML will not contain COMM element for any
record

XML NA

Bind Position NA

Java Type JDBC type which maps to Data Type

4.3.1.2.4.3 Configuring Input/Output Parameters for Inner Queries

The component does not recognize the input/output parameters present in the inner query.
These parameters should be manually configured.

If the query has an inner query, when the query wizard is finished, an error occurs. To
configure input/output parameters manually, ignore this error.

Figure: Sample Inner Query

Now, to add Input parameters, click on Input Tab in SQL Statement Details window. Right-
click on Input under Structure column and select Add In Parameter.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 533

Figure: Configuring Input Parameters for Inner Query

Similarly, to add ResultSets, click on Output tab. Right-click on Output structure and select
Add ResultSet.

Figure: Configuring Output Parameters for Inner Query

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 534

4.3.1.2.5 Editing Query Configuration

4.3.1.2.5.1 Editing DML Statements

1. Select a configured stored procedure under SQL Statements.

2. Click Edit to launch Query Builder in edit mode. This mode is same for all DML
statements (Select, Insert, Update, Delete).

Figure 4.179: Editing configured SQL query

3. Make necessary changes in the SQL Statement.

4. The changed SQL can be validated by pressing (check syntax) button.

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check

5. When the dialog is closed, the input / output parameters in Input / Output tab in
SQL Statement Details Configuration are regenerated. If these parameter
configurations are previously changed from generated values and should not be lost,
check Retain Input Parameters / Retain Output Parameters respectively.

6. Click Ok to close the dialog.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 535

4.3.1.2.5.2 Editing Stored Procedure

1. Select a configured stored procedure under SQL Statements.

2. Click Edit… to launch Query Builder for Stored Procedure and follow steps in section
Stored Procedure Configuration.

Figure 4.180: Editing stored procedure

3. Check Execute check box before closing Query Builder, if the structure of result set
returned by stored procedure is changed and Output tab in SQL Statement Details
Configuration have to be regenerated.

Figure 4.181: Execute option to execute stored procedure

4. Click Ok to close the dialog box.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 536

4.3.1.2.6 Removing Query Configuration

Select the query to remove and click Remove button.

Figure 4.182: Selecting query to be removed

4.3.1.2.7 Testing Query Configuration

1. Any configured can be tested from SQL Configuration panel. To test a query, select
the query and click Execute button.

Figure 4.183: Selecting query to be tested

2. Specify Variable Value dialog opens.

Figure 4.184: Input parameters which require user values

3. Specify values for parameters which require user input (marked ? in the SQL
statement) in the Parameters tab under Value column. All other columns are not
editable.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 537

Example: INSERT INTO "SCOTT"."EMP_ORIGINAL" (“IDNO", "NAME", "AGE") VALUES
(?, ?, ?)

Figure 4.185: Specifying values for input parameters

4. Click Run. Result of the query is shown under Results tab.

5. Click Commit to commit an insert / update or a delete to database, click Rollback
otherwise.

6. Click Cancel to close the dialog.

4.3.1.3 Child Queries

For each configured query, different types of child queries can be configured. Different types
of child queries are listed below:

• Nested queries

• Post processing queries

• Failover queries

4.3.1.3.1 Nested Query

A query which executes once for each record returned from parent query.

• Nested query should ideally be configured for select statements.

• Nested query takes values from input.

• Nested query sends values in output.

• Nested query can have a failover query as a child query.

Example:

• For every row in employee table, get the department details to which the employee
belongs.

• For every row in employee table, compute total income (salary + commission) and
update in incomes table.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 538

4.3.1.3.2 Post Processing Query

A query which is executed after the parent query is executed.

• Post processing query should ideally be configured as an insert or update or delete
statements or as a stored procedure which updates database.

• Post processing query takes values from input.

• Post processing query does not send values in output.

• Post processing cannot have any child query.

4.3.1.3.3 Failover Query

A query which is executed when the parent query failed to execute, because of an exception.

• Failover query should ideally be configured as an insert or update or delete statements
or as a stored procedure which updates database.

• Failover query should be configured to take same value, as the parent query, from the
input XML. This can achieved using MapTo column in Output tab of SQL Statement
Details Configuration.

• Output of the parent query and the failover query should match. For example, if both
are either insert or update or delete independently, then the output matches (only
update count is returned).

• Failover query cannot have any child query.

4.3.1.3.4 Child Query Configuration

1. Configure any query.

2. Check advanced check box against SQL Statements.

Figure 4.186: Advanced option for SQL Statements

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 539

3. Right-click on the query, from the popup navigate to:

a. Add Nested Query <query of interest> for nested query.

b. Define Failover Query <query of interest> for failover query.

c. Add Post Processing Query <query of interest> for post processing
query.

Figure 4.187: Adding a child query

4. A query builder is launched. Refer to appropriate section based on the query that has
to be configured. Configured query is shown as a child node to initial query.

Figure 4.188: Configured query is shown as a child

5. If the child query requires any input, it is by default configured to be taken from input
XML. Schema generated on the input port is computed to take inputs for child query
as well.

6. Child query can also take input from the result of parent query.

7. To configure child query to take input from the result of parent query

a. Select the child query.

b. View Input tab in SQL Statement Details panel.

c. Check advanced against SQL Statement Details.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 540

d. In the MapTo column against the required column, click on the drop-down list
to see a list of entries, one for each column in the parent queries result, as
shown in Figure 3.189.

Figure 4.189: MapTo entries for result of parent query

e. From the drop-down list, select appropriate value. For example, Figure 4.190
shows that department number is the eighth field in the output of parent
query.

Figure 4.190: Output of parent query

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 541

So select $OUT/employee/employee/8 to map the DEPTNO of parent
query (employee) to input of child query (department_details)

Note: $OUT/employee/employee/8 is computed using proprietary formula
and should not be modified

f. When parent query returns multiple rows, input for child query can be
specified as value at $OUT/employee/employee/8 from first or last row
returned by parent query by using $First[<MapTo>] or $Last[<MapTo>],
that is, as $First[$OUT/employee/employee/8] or
$Last[$OUT/employee/employee/8]

4.3.1.4 Miscellaneous Configurations

4.3.1.4.1 Request Level Post Processing Query

Post processing query configuration under Child Queries executes once for every execution of
parent query. Request level post processing query is similar to post processing query with
respect to input / output and child queries. However:

• Request level post processing query executes once for each request (input message)
after all configured queries are executed, even when multiple queries are configured.

• Request level post processing query has no parent query.

Steps to configure request post processing query:

1. Check advanced check box against SQL Statements.

Figure 4.191: Advanced view showing Post Processing

2. Right-click on Post Processing and navigate to Add Query <query of interest>

3. A query builder is launched. Refer to appropriate section based on the query that has
to be configured.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 542

4.3.1.4.2 Adapter Mode

Adapter mode can be selected from the Adapter Mode drop-down list in SQL Configuration
panel as shown in Figure 4.192:

Figure 4.192: Adapter Mode

Publish Results – Component waits for input message and executes when an input message
is received.

Scheduler – Component is scheduled and will have no input port. Scheduler configuration can
be specified in Scheduler Configurations panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 543

4.3.1.4.3 Output Options

1. Check advanced check box against SQL Statements and select Execution node.

Figure 4.193: Options on Execution for sending output

2. Go to Options tab.

a. Select Send output immediately after query execution to send output of
each configured query in a separate message.

b. Select Send output after executing all other queries to combine and send
output of all queries in one message (as long as total response size does not
exceed Max Response Size in Advanced Configuration).

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 544

4.3.1.4.4 Post Processing Execution

1. Check advanced check box against SQL Statements and select any top level query
node.

Figure 4.194: Options on configured query for post processing query
execution

2. Check Send Output check box if the result of the selected query has to be sent in
output message, else uncheck.

3. When response size of a query exceeds Max Response Size in Advanced
Configuration, multiple responses are sent for each request. Select Execute post
processing after each send operation if configured query level post processing
query has to executed once for each output message sent, else select Execute post
processing after all send operations.

Example: If a select statement returns 500 rows and Max Response Size in Advanced
Configuration is configured as 200 rows. A post processing query, if defined, executes 3
times if Execute post processing after each send operation is selected, else it is
executed once.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 545

4.3.1.4.5 Advanced Configuration

Figure 4.195: Advanced Properties

4.3.1.4.5.1 Maximum Response Size

The maximum number of records each output message can contain.

For example, if a query returns 900 records, and Maximum Response Size is set as 200,
then for each request there are 5 responses of which 4 responses contain 200 records each
and last response contains 100 records.

4.3.1.4.5.2 Use Batching

Determines whether batching should be used or not. Batching should be used only for insert,
update or upsert. After Row commit mode cannot be used when batching is used. The size of
the batch can be specified by the property Batch Size.

4.3.1.4.5.3 Commit Mode

Granularity of transaction is determined by the value specified against Commit Mode when
Auto Commit is set to no in MCF panel.

Commit Mode Granularity / Behavior

Auto Request database is automatically committed by JDBC driver
implicitly when an operation is performed on the database.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 546

Commit Mode Granularity / Behavior

After Document Request – Database is committed after all the queries in the request
are executed.

After Row Query Database is committed after each top level query is executed
for one input part in the input document. If there are any nested
queries, commit is performed after the nested queries are executed.
This is not relevant when Use Batching is selected.

After Batch Request Database is committed after executing n top-level queries
when n is the batch size. If there are any nested queries, commit is
performed after the nested queries corresponding to top-level are
executed. This mode is visible only when Use Batching is selected.

BasedOnInput Commit is only done when commit instruction is received on the input
port.

Note: While using this commit mode, connection pooling should be
enabled and number of connections should be set to 1. This is
required since a commit or rollback should be done on the same
connection object and having more than one connections will not
guarantee same connection received every time especially if there
are multiple sessions enabled on input port resulting in undesired
behavior.

AfterEachOutput Request Database is committed after sending every output message.
If this commit mode is selected then the last message from the
component (in case of multiple messages for single request) doesn't
contain the property "CLOSE_EVENT" set to true.

BeforeEachOutput Request Database is committed before sending every output
message. If this commit mode is selected then the last message from
the component (in case of multiple messages for single request)
doesn't contain the property "CLOSE_EVENT" set to true.

If an exception / error (which does not require creating new connection like request
processing) occurs during the execution, then the action is taken based on the value for
property Database action on Exception. If this action is set to Rollback, then a rollback is
issued and all queries performed after last commit (based on commit mode) will be rolled
back, that is, they will not take any effect. If this action is set to Commit, then all the queries
except to the query that resulted in exception, performed until the exception are committed to
database.

If a connection error occurs, then it will be equivalent to the rollback action on exception since
commit should be performed on the same connection which executed the queries. Since the
connection is no longer present, a new connection is created and all the uncommitted
transactions are lost.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 547

Example 1:

<ns1:SQL_CFG_1 xmlns:ns1="http://www.fiorano.com/fesb/activity/DB1/Request"
id="7590437537112108032">

 <ns1:insert><ns1:IDNO>401</ns1:IDNO></ns1:insert>

 <ns1:insert><ns1:IDNO>402</ns1:IDNO></ns1:insert>

 <ns1:insert><ns1:IDNO>403</ns1:IDNO></ns1:insert>

 <ns1:insert><ns1:IDNO>404</ns1:IDNO></ns1:insert>

</ns1:SQL_CFG_1>

• After Document – commits all 4 inserts at once

• After Row – commits one insert at a time when use Batching is not selected

• After Batch – commits after 2 inserts, if batch size is 2 and useBatching is selected

• BasedOnInput –The transaction will be committed if the following message is
received on input port

<ns1:SQL_CFG_1 xmlns:ns1=\"http://www.fiorano.com/fesb/activity/DB1/Response\"
id=\"-4393189459883103232\"><ns1:COMMIT/></ns1:SQL_CFG_1>

It will be rolled back if the following message is received on input port

<ns1:SQL_CFG_1 xmlns:ns1=\"http://www.fiorano.com/fesb/activity/DB1/Response\"
id=\"-4393189459883103232\"><ns1:ROLLBACK/></ns1:SQL_CFG_1>

• AfterEachOutput - commits after sending every message, if Maximum Response
Size is set to 1 there will be 4 message from the DB component each contains single
output record.

• BeforeEachOutput - commits before sending every message, if Maximum
Response Size is set to 1 there will be 4 message from the DB component each
contains single output record.

Example 2:

If we have a insert query q1 and a nested update query nq1 and let us assume the input has
details for 4 inputs is as shown below

<SQL_CFG_1 >

 <q1>

 <col1>col1value1</col1>

 <col2>col2value1</col2>

 <nq1>

 <ncol1>ncol1value1</ncol1>

 <ncol2>ncol2value1</ncol2>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 548

 </nq1>

 </q1>

 <q1>

 <col1>col1value2</col1>

 <col2>col2value2</col2>

 <nq1>

 <ncol1>ncol1value2</ncol1>

 <ncol2>ncol2value2</ncol2>

 </nq1>

 </q1>

 <q1>

 <col1>col1value3</col1>

 <col2>col2value3</col2>

 <nq1>

 <ncol1>ncol1value3</ncol1>

 <ncol2>ncol2value3</ncol2>

 </nq1>

 </q1>

 <q1>

 <col1>col1value4</col1>

 <col2>col2value4</col2>

 <nq1>

 <ncol1>ncol1value4</ncol1>

 <ncol2>ncol2value4</ncol2>

 </nq1>

 </q1>

</SQL_CFG_1>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 549

• When commit mode is Auto, 8 commits are done by JDBC driver implicitly, one for
each of the inputs for q1 and nq1. If any error occurs when executing nq1 from 3rd
input (having value 'ncol1value3' and 'ncol2value3'), then, only the 3rd input nested
query will not be present in database irrespective of type of exception and the value
for Database action on Exception.

• When commit mode is AfterDocument, only 1 commit is done by DB component
after processing all inputs for q1 and nq1. If any error happens when executing nq1
from 3rd input (having value 'ncol1value3' and 'ncol2value3'), then, if the Database
action on Exception is set to commit, then the inputs for first, second and third 'q1'
and the inputs for first and second 'nq1' are committed. If the Database action on
Exception is set to rollback, nothing will be committed for the entire request.

• When commit mode is AfterRow, 4 commits are done, this happens after each q1 and
nq1 pair are committed successfully to the database. If any error happens when
executing nq1 from 3rd input (having value 'ncol1value3' and 'ncol2value3'), then, if
the Database action on Exception is set to commit, then the inputs for first,
second, third and fourth 'q1' and inputs for first, second and fourth 'nq1' are
committed. If the Database action on Exception is set to rollback, then the inputs
for first, second and fourth 'q1' and the inputs for first, second and fourth 'nq1' are
committed.

• When commit mode is BasedOnInput, any action will be taken based on input sent.
This option is usually used when a commit should be done after processing more than
one message.

• When the commit mode is AfterBatch, commits are done after processing 'n' inputs
from input message where 'n' is the value mentioned against Batch Size property. If
the Batch Size is 0, then it will be same as AfterDocument. So in the Example 2, if
the batch size is 2, then only two commits are done. This happens after first and
second 'q1', 'nq1' pairs; and second after third and forth 'q2', 'nq2' pairs. If any error
occurs when executing 'nq1' from 3rd input (having value 'ncol1value3' and
'ncol2value3'), then, if the Database action on Exception is set to commit, then
the inputs for first, second and third 'q1' and inputs for first and second 'nq1' are
committed. If the Database action on Exception is set to rollback, then the inputs
for first and second 'q1' and inputs for first and second 'nq1' are committed.

• When commit mode is AfterEachOutput, if the Maximum Response Size is set to
n, then the number of commits will be: 4 commits if n=1, 2 commits if n=2or 3, 1
commit if n is greater than or equal to 4. Commits will be happen after sending every
message. If Maximum Response Size is set to 4 and any error happens when
executing nq1 from 3rd input (having value 'ncol1value3' and 'ncol2value3'), then, if
the Database action on Exception is set to commit, then the inputs for first,
second, third and fourth 'q1' and inputs for first, second 'nq1' are committed, if the
Database action on Exception is set to rollback, then the inputs for first, second
and fourth 'q1' and the inputs for first, second 'nq1' are rollbacked. If any exception
occurs while executing a third input of q1 then DB component will not process the
fourth input.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 550

• When commit mode is AfterEachOutput, if the Maximum Response Size is set to
n, then the number of commits will be: 4 commits if n=1, 2 commits if n=2or 3, 1
commit if n is greater than or equal to 4. Commits will be happen before sending
every message. If Maximum Response Size is set to 4 and any error happens when
executing nq1 from 3rd input (having value 'ncol1value3' and 'ncol2value3'), then, if
the Database action on Exception is set to commit, then the inputs for first,
second, third and fourth 'q1' and inputs for first, second 'nq1' are committed, if the
Database action on Exception is set to rollback, then the inputs for first, second
and fourth 'q1' and the inputs for first, second 'nq1' are rollbacked. If any exception
occurs while executing a third input of q1 then DB component will not process the
fourth input.

4.3.1.4.5.4 Batch Size

The Batch size when batching is used. It indicates number of operations of main query that
have to be performed in single batch. The value cannot be less than 0. If it is 0, all operations
are performed in a single batch. This is valid when the property Use Batching is selected.

4.3.1.4.5.5 Add Response GUID

When checked, an additional attribute id – if present in input message on SQL_CFG_1
element, is set onto all output messages for that particular request. If the input message does
not contain id attribute, a unique value for each request is generated and set on all output
messages for that particular request.

Note: id attribute value can be used to map request with all responses or responses for a
particular request.

4.3.1.4.5.6 Generate response for no selected records

When all queries fail to return any data, an empty message is generated if this property is
checked else there is no response message coming out.

Example: Assume a DB adapter is configured to get data from tables – table1 and table2 and
both table do not have any data in them. If this property is not checked, there is no message
from adapter, else following message appears <SQL_CFG_1/>

4.3.1.4.5.7 Generate result sets for queries returning no records

When one of the queries does not return any results, an empty element is generated if this
property is checked; else it is excluded from result.

Example: Assume a DB adapter is configured to get data from tables – table1 and table2 and
table1 has some data but table2 does not have any data in it.

If this property is not checked there output is:

<SQL_CFG_1>

 <table1>

 …..data here…..

 </table1>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 551

</SQL_CFG_1>

else following message comes out

<SQL_CFG_1>

 <table1>

 …..data here….

 </table1>

 <table2/>

</SQL_CFG_1>

4.3.1.4.5.8 Validate Connection using Dummy Table

Database connectivity, in case of SQL Exception, is validated by querying a dummy table
(created for this purpose alone). Value specified against Dummy Table Name is used as the
table to query for validating connection failure.

While creating a connection to Database:

• If this option is checked and a table name is specified against Dummy Table Name, a
table with name as value specified against Dummy Table Name is created using the
following SQL statement:

CREATE TABLE <DUMMY TABLE NAME>

• If a table with this name already exists, then that table is used for validation

• If a table with this name does not exist and an exception occurs while creating dummy
table, then table with this name should be manually created, else any exception is
treated as a connection failure exception

• If this option is checked and table name is not specified against DUMMY TABLE
NAME connection creation fails

• When a SQL exception occurs while executing any query, if this option is checked,
connection is validated by executing SELECT COUNT(*) FROM <Start wrap
character><DUMMY TABLE NAME><End wrap character>

4.3.1.4.5.9 Dummy Table Name

Name of the table which should be queried to validate connection when a SQL exception
occurs while executing any query

4.3.1.4.5.10 Treat zero update count as Exception

For queries returning an update count – insert or update – an update count of 0 is treated as
an exception if this option is checked, else the query execution is assumed to be successful.

Note: This should definitely be checked when an upsert query is being used.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 552

4.3.1.4.5.11 Enable Native Format

Sends/accepts binary data contained serialized objects. This option should be used only in
case where the output format and input format of data is same (that is similar XSDs if this
option is not checked)

Example: In case of database synchronization where data read from one table on a database
is inserted without any transformation into exactly same table on a different database, check
this option. This option provides better performance, since additional transformation is not
required.

4.3.1.4.5.12 Treat empty node in input XML as null

Empty nodes in input XML (for example, <empno/>) implies corresponding column value is
treated as a null value if this option is checked and treated as empty string value otherwise

4.3.1.4.5.12 Database action on Exception

When auto commit is not turned on and an exception occurs database transaction is
committed if this option is checked and rolled back otherwise. This option provides atomicity
for transactions when auto commit is not turned on.

Example: Consider a request containing 10 instances of an insert query is to be executed
such that either all 10 queries are executed or none of them have to be executed. To achieve
this, set Auto Commit to false in MCF panel, Commit Mode to After Document and
Database action on Exception to false.

4.3.1.5 Input Schema

The input schema is auto generated based on the configuration provided. For the configuration
shown above, the schema would be

Figure 4.196: Input schema

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 553

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

Figure: Input schema with ConnectionFactorySettings

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 554

4.3.1.6 Output Schema

The output schema is auto generated based on the configuration provided. For the
configuration shown above, the schema would be

Figure 4.197: Output schema

4.3.1.7 Functional Demonstration

4.3.1.7.1 Scenario 1

Executing multiple queries using a DB component: The given scenario executes a select query
and if successful executes an update query which changes the e-mail address of the same
record which was selected.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 555

Configure the DB component as described in section Configuration and Testing and use feeder
and display component to send sample input and check the response respectively.

Figure 4.198: Demonstrating Scenario 1 with sample input and output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 556

4.3.1.8 Use Case Scenario

4.3.1.8.1 Scenario 1

In a database replication scenario, updates to one database need to be monitored and
subsequently updated in another database.

Figure 4.199: DB replication demonstration

The event process demonstrating this scenario is bundled with the installer.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.3.1.8.2 Scenario 2

In DB transaction support scenario, transactions can be done across multiple steps in an
event process.

The event process demonstrating this scenario is bundled with the installer.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 557

4.3.1.9 Scheduling

In the DB component, scheduling cannot be directly enabled from the scheduling panel.
Scheduling can be enabled in the SQL configuration panel. The scheduling interval and rate is
determined in the scheduling panel. This is set to scheduler by default when Monitor Table
option is chosen.

Figure 4.200: DB adapter Configuration Property Sheet – SQL Configuration

4.3.1.10 Useful Tips
 It is recommended NOT to use JDBC-ODBC Bridge driver to connect to any RDBMS in

a production environment. Please use a commercial JDBC driver instead.

 The JDBC drivers or the resources must be directly added onto the JDBC system lib
and not as resource to the DB component itself. To add JDBC drivers to DB
component, please refer to section 3.3.3.3.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 558

4.3.2 DBProc

The DBProc component is used to execute Database Stored Procedures. The CPS of this
component allows configuring stored procedures for execution using the Design mode in CPS.
There is no coding effort involved in the configuration.

Points to note:

• Only one stored procedure can be configured in the adapter. Please use the DB component
if multiple stored procedures need to be configured for a single instance.

• It is recommended NOT to use JDBC-ODBC Bridge driver to connect to any RDBMS in your
production environment. Please use a commercial JDBC driver instead.

• The JDBC drivers or the resources must be directly added onto the JDBC system lib and
not as resource to the DBProc component itself. To add JDBC drivers to DBProc
component, please refer to section 3.3.3.3.

4.3.2.1 Managed Connection Factory Panel

Connection details are configured in the Managed Connection Factory (MCF) panel.

Figure below illustrates the panel with expert properties view enabled.

Figure1: Connection configuration details in MCF panel

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 559

4.3.2.1.1 Connection Properties

4.3.2.1.1.1 Use Connection Details From Input

Parameters to create the connection can be specified in the input message when this property
is set to true. If this property is selected the validation errors in the managed connection
factory panel of the CPS are treated as warnings. So user can bypass this step without giving
valid configuration and complete the configuration of the component. If valid properties are
not provided even in the input message exception will be thrown at runtime.

4.3.2.1.1.2 Database Configuration

Click ellipsis button to launch Database Configuration panel shown in figure 2. Details of
the database to which the component should be connected and configured in this panel.

Figure 2: Database Configuration editor with mckoi database details

• Database

This property determines the vendor of the database to which the component has to
connect.

 Vendor name is marked in red if the default JDBC driver class is not present in
component's class path.

 Even if a particular database vendor name is not present in the drop-down list, the
component can still connect to the database.

 If a vendor name is specified in the drop-down list, it only means that vendor
specific handling is done. Example: vendor specific handling for data types,
naming conventions and so on.

 To connect to a database from a vendor whose name is not specified in the drop-
down list, select Other and provide the correct values for Driver and JDBC URL.

• Driver

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 560

Driver class name that should be used to connect to the database. On selecting required
value for Database, Driver value is populated with standard value (This can be changed
to required value based on driver being used).

Note: The jar file(s) that are part of JDBC client libraries for selected vendor have to be
added as resources to JDBC system library.

• JDBC URL

This property determines the location at which the required database is running. On
selecting required database, URL value is populated with standard value (This can be
changed to required values based on driver being used).

Note: The populated value will have place holders which have to be replaced to point to
the correct database location.

Example: In figure 2 <hostname> is replaced with localhost IP, indicating that the
database is running on a local machine.

• Username

User name that should be used to connect to the database.

• Password

Password of the specified user.

4.3.2.1.1.3 Connection Properties

Any driver specific connection properties which may have to be passed while creating a JDBC
connection should be provided against Connection Properties as shown in figure 3. For
example, fixedString=true uses FIXED CHAR semantics for string values in oracle.

Note:

• Please refer to documentation of driver that is being used for valid name-values for
connection properties.

• Connection properties can be loaded from a properties file using File... button. Refer to
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStrea
m) for details on properties file.

Figure 3: Connection property for oracle

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 561

4.3.2.1.1.4 Auto Commit

Commit mode that should be used by the JDBC connection.

• yes

Any transactions (queries executed) will be automatically and implicitly committed to the
database. This is done even before the response is generated.

• no

Any transactions (queries executed) will be committed after the request is processed
successfully and response is generated, but before the message is sent out of the
component.

4.3.2.1.2 Advanced Settings

4.3.2.1.2.1 Connection ping sql

A SQL statement which is guaranteed to execute without exception, except when connection
to database is lost. When a SQL exception occurs on executing a configured query, this SQL
statement gets executed. If execution of this SQL statement fails as well, then it is assumed
that connection to database is lost and appropriate configured action say, reconnect) is taken.
For example, select * from dual for oracle, select 1 for MS SQL

4.3.2.1.2.2 Enable JDBC Driver Logging

Value yes implies that logging at the driver level should be enabled. This is used as a
debugging option.

4.3.2.1.2.3 Wrap DB object names

When database object names (table names, column names, schema names…) contain spaces,
they should be wrapped in database dependent special characters. For example, “ ” for
Oracle, [] for Microsoft Excel and no wrap characters for MySQL.

Database object names are wrapped as shown below -

Start wrap character + object name + End wrap character

Note: Providing a wrong wrap character may lead to problems.

4.3.2.1.2.4 Start wrap character

Character which should be used before the object name.

4.3.2.1.2.5 End wrap character

Character which should be used after the object name.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 562

4.3.2.2 Interaction Configurations Panel

Business logic configuration details are configured in the second panel, Interaction

Configurations. Figure 4 illustrates the panel with expert properties view enabled.

Figure 4: Business logic configuration in Interaction configurations panel

4.3.2.2.1 Attributes

4.3.2.2.1.1 Auto Commit For Test

This property determines whether auto-commit should be enabled when testing from the CPS.

• yes

Any transactions (queries executed) will be automatically committed to the database
while testing. Performed transactions will have to manually undone

• no

Any transactions (queries executed) will be rolled back at the completion of test

This property will override the value provided for property Auto Commit (Y/N) in the MCF
panel.

4.3.2.2.1.2 SP Configuration

1. Click ellipsis button against property SQL configuration property will launch the SP
Configuration wizard which can be used to configure call statement.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 563

Figure 5: SP Configuration Wizard

2. Click ellipsis button against Stored Procedure to launch Procedure Selection dialog box.
Select the Procedure/Function which has to be executed.

Figure 6: Procedure Selection Dialog

3. We can filter the Procedure/Function by selecting the required schema and clicking
Refresh button.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 564

Figure 7: Filtering Stored Procedures based on Schemas

4. Parameters and their configurations are automatically populated.

Figure 8: Populated Parameters

Column Description

Parameter Name of the parameter for named parameters, blank otherwise

Parameter
Type

Type of parameter – IN, OUT, INOUT, UNKOWN, RETURN, RESULT

Values of type OUT, INOUT, RETURN, RESULT form output structure

Data Type SQL data type of the parameter

Sample Data NA

5. For parameters whose data type is a user defined data type Data Type column will be
populated by value OBJECT as shown in figure 9.

Figure 9: populated Parameter of type User defined

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 565

6. We need to explicitly select the user defined data type from User Types Selection dialog.
Select the User Defined Type from the Data Type drop-down list as shown in figure 10
to launch User Types Selection dialog.

Figure 10: Selecting User Defined Type

7. Select the appropriate data type from the dialog.

8. After selecting user defined data type, it will populate in the Data Type column for the
respective parameter.

Figure 11: User Types Selection Dialog to select Data type

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 566

Figure 12: Populated User Defined Datatype

9. We need to generate the Input/Output parameters by clicking the Generate Parameters
button. Then the input/output parameters will be generated as shown in below figure.
After the generation of input/output parameters these parameters will be included in the
input and output port xsd's.

Figure 13: Generated Input/Output Parameters

Each of the columns is explained below.

Column Name Description

BindName This value is used to generate the schema for the query. In the above figure value
for EMPLOYEE_ID (field name) is changed to EMPLOYEE_I. So the schema generated
would contain EMPLOYEE_I as the first element instead of default populated value,
EMPLOYEE_ID.

BindPosition The position in the query where this value is bound to.

Note: Do not change this value.

JavaTypeName JDBC type which maps to Data Type.

SQlTypeName This defines the data type of this column in the database table. This should be
correctly defined.

10. Returns Resultset determines whether the configured stored procedure returns resultsets
or not.

11. Click Ok to close the dialog.

4.3.2.2.1.3 Single Batch Mode

This option determines whether the component should send entire result of a query as a single
message or as multiple messages.

• yes - Complete result of the query from input request is sent out as a single message. If
the result set returned is huge then the component can run into memory problems and
stop. When this value is selected, property Batch Size is hidden.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 567

• no - Result of query from input is split and sent out as multiple messages. Number of
rows from result to be included in each output message is determined by property Batch
Size. When this value is selected, property Batch Size is shown.

Example: If a query returns 100 rows, and the batch size is set to 10, then 10 outputs will be
generated each containing 10 rows.

4.3.2.2.1.4 Batch Size

This property is visible when the value of property Single Batch Mode is set as yes. The
property determines the number of units of result an output message contains.

Each row in a result set (typically result of a select query) or an update result (result of
update, delete, insert operations) is treated as unit of result.

Example: Consider a stored procedure that returns a result of select query followed by 3
update queries and another select query. Assume first select return 18 rows and second query
returns 11 rows. If Single Batch Mode is set as no and Batch Size is set as 10 then there
will be four output messages

• first message: first 10 rows from first query

• second message: remaining 8 rows from first query and 2 update query results

• third message: 3rd update query result and first 9 rows of second select query

• fourth message: remaining 2 rows from second query.

4.3.2.3 Input Schema

The input schema is auto generated based on the configuration provided. When Generate
Parameters button is clicked the input parameters required for the execution of the
procedure will be added as child elements to the CALL element in the input schema as shown
in figure 14.

Figure 14: Input schema for Procedure with input parameter param1

The input XML to the component will thus be in the format shown in figure 15.

Figure 15: Sample XML corresponding to the Input Schema

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 568

Figure 16: Input schema with ConnectionFactorySettings

4.3.2.4 Output Schema

This is auto generated based on the configuration provided. When Generate Parameters
button is clicked the output parameters, if any, required for the execution of the procedure will
be added as child elements to the RESULT element in the input schema as shown in figure 17.

Figure 17: Output schema when there are output parameters

Figure 18: Output Schema when the Procedure returns result set

If the Return Result Set is set to true then an element ResultSet will be added and results
appear as row elements in the output XSD as shown in figure 19.

When the procedure has both Result Set and parameters as output both elements will appear
in output schema as shown in figure 19.

Figure 19: Result Set and parameters as output elements in output schema

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 569

4.3.2.5 Functional Demonstration

4.3.2.5.1 Scenario 1

Execution of a Stored Procedure:

Start mckoiDB present at %FIORANO_HOME%\esb\samples\mckoiDB by executing
CreateMckoiDB.bat and RunMckoi.bat. Configure the DBProc component as described in
section SP Configuration. Use feeder and display components (shown in figure 20) to create a
flow to send sample input and check the response respectively.

Figure 20: Configure the DB Proc component

Figure 21: Demonstrating Scenario 1 with Sample Input

Figure 22: Demonstrating Scenario 1 with Sample output

4.3.2.6 Useful Tips
• Only one stored procedure can be configured in the adapter. Please use the DB component

if multiple stored procedures need to be configured for a single instance.

• It is recommended NOT to use JDBC-ODBC Bridge driver to connect to any RDBMS in your
production environment. Please use a commercial JDBC driver instead.

• The JDBC drivers or the resources must be directly added onto the JDBC system lib and
not as resource to the DBProc component itself. To add JDBC drivers to DBProc
component, please refer to section 3.3.3.3.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 570

4.3.3 DBQueryOnInput

The DBQueryOnInput component is used to execute different SQL statements with each
request on a configured database. The SQL to be executed is not configured in the CPS and is
taken from the input message. In other DB components, the component is configured with
predefined SQL statement(s) in the CPS and some or all of these statements are executed for
all requests.

Points to note:

• Only one query can be processed per message. If multiple queries have to be
processed, use XMLSplitter to split the message into multiple messages each
containing a single query.

• It is recommended NOT to use JDBC-ODBC Bridge driver to connect to any RDBMS in
a production environment. Please, use a commercial JDBC driver instead.

• The JDBC drivers or the resources must be directly added onto the JDBC system lib
and not as resource to the DBQueryOnInput component itself. To add JDBC drivers to
DBQueryOnInput component, please refer to section 3.3.3.3.

4.3.3.1 Managed Connection Factory Panel

The connection details are configured in the first panel, Managed Connection Factory

(MCF). Figure 1 illustrates the panel with expert properties view enabled.

Figure 1: Connection configuration details in MCF panel

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 571

4.3.3.1.1 Connection Properties

4.3.3.1.1.1 Use Connection Details From Input

Parameters to create the connection can be specified in the input message when this property
is set to true. If this property is selected the validation errors in the managed connection
factory panel of the CPS are treated as warnings. So user can bypass this step without giving
valid configuration and complete the configuration of the component. If valid properties are
not provided even in the input message exception will be thrown at runtime.

4.3.3.1.1.2 Database Configuration

Click ellipsis button to launch the Database Configuration editor as shown in Figure 2,
where details of the database to which the component should connect are configured.

Figure 2: Database configuration editor with mckoi database details

• Database

This property determines the vendor of the database to which the component has to
connect.

1. The vendor name is marked in red color if the default JDBC driver class is not
present in component's class path.

2. Even if a particular database vendor name is not present in the drop-down list, the
component can still connect to the database.

3. If a vendor name is specified in the drop-down list, it only means that vendor
specific handling is done. Example: vendor specific handling for data types,
naming conventions etc

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 572

4. To connect to a database from a vendor whose name is not specified in the drop-
down list, select Other and provide the correct values for Driver and JDBC URL.

• Driver

The driver class name that should be used to connect to the database. On selecting
required value for Database, driver values are populated with standard value (This can be
changed to required value based on driver being used).

Note: The jar file(s) that are part of JDBC client libraries for selected vendor have to be
added as resources to JDBC system library.

• JDBC URL

This property determines the location at which the required database is running. On
selecting required database, URL value is populated with standard value (This can be
changed to required values based on driver being used).

Note: The populated values have place holders which have to be replaced to point to
correct database location, Example: In Figure 2 <hostname> is replaced with localhost
IP indicating that the database is running on local machine.

• Username

This property determines the user name that should be used to connect to the database.

• Password

This property determines the password for the specified user.

4.3.3.1.1.3 Connection Properties

Any driver specific connection properties which may have to be passed while creating a JDBC
connection should be provided against Connection Properties (shown in Figure 3). For
example, fixedString=true uses FIXED CHAR semantics for string values in oracle.

Note:

• Please refer to documentation of driver that is being used for valid name-values for
connection properties.

• Connection properties can be loaded from a properties file using File... button. Refer
to the following link
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputS
tream) for details on properties file.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 573

Figure 3: Connection property for oracle

4.3.3.1.1.4 Auto Commit (Y/N)

Commit mode that should be used by the JDBC connection.

• yes - Any transactions (queries executed) are automatically and implicitly committed
to the database. This is done even before the response is generated.

• no - Any transactions (queries executed) are committed after the request is processed
successfully and response is generated, but before the message is sent out of the
component.

4.3.3.1.2 Advanced Settings

4.3.3.1.2.1 Connection ping sql

A SQL statement which is guaranteed to execute without exception, except when connection
to database is lost. when a SQL exception occurs on executing a configured query, this SQL
statement is executed. If execution of this SQL statement fails as well, then it is assumed that
connection to database is lost and appropriate configured action (say, reconnect) is taken.

Example: select * from dual for oracle, select 1 for MS SQL

4.3.3.1.2.2 Enable JDBC Driver Logging

Value yes implies that logging at the driver level should be enabled. This is used as a
debugging option.

4.3.3.1.2.3 Wrap DB object names

When database object names (viz. table names, column names, schema names…) contain
spaces, then they should be wrapped in database dependent special characters. For example,
“ ” for Oracle, [] for Microsoft Excel, and no wrap characters for MySQL.

Database object names are wrapped as shown below -

Start wrap character + object name + End wrap character

Note: Providing a wrong wrap character may lead to problems.

4.3.3.1.2.4 Start wrap character

Character which should be used before the object name.

4.3.3.1.2.5 End wrap character

Character which should be used after the object name.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 574

4.3.3.2 Interaction Configurations Panel

Business logic configuration details are configured in the second panel, Interaction

Configurations panel. Figure 4 illustrates the panel with expert properties view enabled.

Figure 4: Business logic configuration in Interaction configurations panel

4.3.3.2.1 Attributes

4.3.3.2.1.1 Auto Commit For Test

This property determines whether auto-commit should be enabled when testing from the CPS.

• yes - Any transactions (queries executed) are automatically committed to the
database while testing. Performed transactions will have to manually undone.

• no - Any transactions (queries executed) are rolled back at the completion of test.

This property will override the value provided for property Auto Commit (Y/N) in the MCF
panel.

4.3.3.2.1.2 Generate columns as

This property determines how any data returned (result set) by the component is represented
in the output message. Result sets are tabular data returned for a database query. Select
queries always return result sets and stored procedures may return result sets based on the
type of variables returned by stored procedures.

• TAGS - Column names of result set will be generated as XML elements in the output
message (shown in Figure 5). The schema on the output port is not completely defined
(shown in Figure 6) in this case as the schema varies depending on the query sent in
input.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 575

Figure 5: Output when columns (InternalPO, ArrivalTime) are generated as TAGS

Figure 6: Output schema when the columns are generates as TAGS

However, since the column names are generated as elements, if the columns in result are
known and same for all inputs of business scenario, a schema for the output can be generated
by defining rowType element type manually (shown in Figure 7) and loaded into Fiorano
Mapper.

Figure 7: Modified rowType element for query returning InternalPO and ArrivalTime
columns

This option allows direct mappings in XSLT (shown in Figure 8)

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 576

Figure 8: Mapping to set value from InternalPO to Title

• ATTRIBUTES - Column names of result set will be generated as value of attribute
name of element column in the output message (shown in Figure 9). The output
structure (shown in Figure 10) is completely defined and will not vary based on the
input.

Figure 9: Output when columns names are generated as ATTRIBUTES

Figure 10: Output structure when the column names are generated as ATTRIBUTES

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 577

Defining mappings in XSLT using this option will require writing some user defined XSL to loop
through all columns in a row and map only data from column element whose attribute name
contains required column name to required output element.

4.3.3.2.1.3 Single Batch Mode

This option determines whether the component should send entire result of a query as a single
message or as multiple messages.

• yes - Complete result of the query from input request is sent out as a single message.
If the result set returned is huge then the component can run into memory problems
and stop. When this value is selected, property Batch Size is hidden.

• no - Result of query from input is split and sent out as multiple messages. Number of
rows from result to be included in each output message is determined by property
Batch Size. When this value is selected, property Batch Size is shown.

Example: If a query returns 100 rows, and the batch size is set to 10 then 10 outputs will be
generated each contains 10 rows.

4.3.3.2.1.4 Batch Size

This property is visible when the value of property Single Batch Mode is set as yes. The
property determines the number of units of result an output message contains.

Each row in a result set (typically result of a select query) or an update result (result of
update, delete, insert operations) is treated as unit of result.

Example: Consider a stored procedure that returns a result of select query followed by three
update queries and another select query. Assume first select return 18 rows and second query
returns 11 rows. If Single Batch Mode is set as no and Batch Size is set as 10 then there
will be four output messages.

• first message: first 10 rows from first query

• second message: remaining 8 rows from first query and 2nd update query results.

• third message: 3rd update query result and first 9 rows of second select query.

• fourth message: remaining two rows from second query.

4.3.3.3 Input and output

4.3.3.3.1 Input

Input schema for the component is shown in Figure 14

Figure 11: Input schema for the component

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 578

Input message (shown in Figure 15) contains only one element query whose value contains
the query that has to be executed.

Figure 12: Sample input message

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

Figure 13: Input schema with ConnectionFactorySettings

4.3.3.3.2 Output

Output schema for the component depends on the value configured for property Generate
columns as in Interaction Configurations panel. Output schemas based on the property
value are shown in Figures 6 and 10 and sample inputs for them are shown in Figures 5 and 9.

4.3.3.4 Functional Demonstration

4.3.3.4.1 Scenario 1

Execution of a select query with ATTRIBUTES as the mode of column generation.

Start mckoiDB present in %FIORANO_HOME%\esb\samples\mckoiDB by executing
CreateMckoiDB.bat and RunMckoi.bat files. Configure the DBQueryOnInput component as
shown in Figures 14 and 15. Use feeder and display components (shown in Figure 16) to
create a flow to send sample input and check the response respectively.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 579

Figure 14: MCF Panel configuration for scenario1

Figure 15: Interactions configuration of scenario1

Use feeder and display components (shown in Figure 16) to create a flow to send sample input
and check the response respectively.

Figure 16: Flow for scenario1

Send input message, shown in Figure 17, from feeder and notice the output similar to the one
shown in Figure 18 in display.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 580

Figure 17: Input for scenario1

Figure 18: Output for scenario1

4.3.3.4.2 Scenario 2

Use same connection configurations as described in scenario 1 and change the Interactions
Configuration as shown in Figure 19.

Figure 19: Interaction configuration of scenario2

Repeat the test as described in scenario 1 with same input and observe the output similar to
the one shown in Figure 20.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 581

Figure 20: Output of scenario2

4.3.3.5 Useful Tips
• Only one query can be processed per message. If multiple queries have to be

processed, use XMLSplitter to split the message into multiple messages each
containing a single query.

• It is recommended NOT to use JDBC-ODBC Bridge driver to connect to any RDBMS in
a production environment. Please, use a commercial JDBC driver instead.

• The JDBC drivers or the resources must be directly added onto the JDBC system lib
and not as resource to the DBQueryOnInput component itself. To add JDBC drivers to
DBQueryOnInput component, please refer to section 3.3.3.3.

4.3.4 DBQuery

The DBQuery component is used to configure simple queries to insert, update, delete or select
records from database. The CPS of this component allows designing queries with the
application of zero coding effort. However, the SQL mode can also be used to write queries.
Syntactical validity can be verified by using the Check Syntax SQL button provided on the SQL
configuration panel in the SQL mode.

Points to note:

• Only one query can be configured in the adapter. Please use the DB component if
multiple query configurations need to be configured for a single instance.

• Only one query can be processed per message. If multiple queries have to be
processed, use XMLSplitter to split the message into multiple messages each
containing a single query.

• It is recommended NOT to use JDBC-ODBC Bridge driver to connect to any RDBMS in
your production environment. Please use a commercial JDBC driver instead.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 582

• The JDBC drivers or the resources must be directly added onto the JDBC system lib
and not as resource to the DBQuery component itself. To add JDBC drivers to DBQuery
component, please refer to section 3.3.3.3.

4.3.4.1 Managed Connection Factory Panel

The connection details are configured in the first panel, Managed Connection Factory

(MCF). Figure 1 illustrates the panel with expert properties view enabled.

Figure 1: Connection configuration details in MCF panel

4.3.4.1.1 Connection Properties

4.3.4.1.1.1 Use Connection Details From Input

Parameters to create the connection can be specified in the input message when this property
is set to true. If this property is selected the validation errors in the managed connection
factory panel of the CPS are treated as warnings. So user can bypass this step without giving
valid configuration and complete the configuration of the component. If valid properties are
not provided even in the input message exception will be thrown at runtime.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 583

4.3.4.1.1.2 Database Configuration

Click ellipsis button to launch Database Configuration editor, shown in Figure 2, where
details of the database to which the component should connect are configured.

Figure 2 : Database Configuration editor with mckoi database details

• Database

This property determines the vendor of the database to which the component has to
connect.

o Vendor name is marked in red color if the default JDBC driver class is not present in
component's class path.

o Even if a particular database vendor name is not present in the drop-down list the
component can still connect to the database.

o If a vendor name is specified in the drop-down list, it only means that vendor specific
handling is done. Example: vendor specific handling for data types, naming
conventions etc

o To connect to a database from a vendor whose name is not specified in the drop-down
list, select Other and provide the correct values for Driver and JDBC URL.

• Driver

The Driver class name that should be used to connect to the database. On selecting
required value for Database, Driver value will be populated with standard value (This can
be changed to required value based on driver being used).

Note: The jar file(s) that are part of JDBC client libraries for selected vendor have to be
added as resources to JDBC system library.

• JDBC URL

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 584

This property determines the location at which the required database is running. On
selecting required database, URL value is populated with standard value (This can be
changed to required values based on driver being used).

Note: The populated value will have place holders which have to be replaced to point to
correct database location, for example, In Figure 2 <hostname> is replaced with
localhost IP, indicating that the database is running on local machine.

• Username

This property determines the username that should be used to connect to the database.

• Password

This property determines the password for the specified user.

4.3.4.1.1.3 Connection Properties

Any driver specific connection properties which may have to be passed while creating a JDBC
connection should be provided against Connection Properties (shown in Figure 3). For
example, fixedString=true uses FIXED CHAR semantics for string values in oracle.

Note:

• Please refer to documentation of driver that is being used for valid name-values for
connection properties.

• Connection properties can be loaded from a properties file using File... button. Refer
to
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputS
tream for details on properties file.

Figure 3: Connection property for oracle

4.3.4.1.1.4 Auto Commit (Y/N)

Commit mode that should be used by the JDBC connection.

• yes - Any transactions (queries executed) will be automatically and implicitly committed
to the database. This is done even before the response is generated.

• no - Any transactions (queries executed) will be committed after the request is processed
successfully and response is generated, but before the message is sent out of the
component.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 585

4.3.4.1.2 Advanced Settings

4.3.4.1.2.1 Connection ping sql

A SQL statement which is guaranteed to execute without exception, except when connection
to database is lost. When a SQL exception occurs on executing a configured query, this SQL
statement is executed. If execution of this SQL statement fails as well, then it is assumed that
connection to database is lost and appropriate configured action (say, reconnect) is taken.

Example: select * from dual for oracle, select 1 for MS SQL.

4.3.4.1.2.2 Enable JDBC Driver Logging

Value yes implies that logging at the driver level should be enabled. This is used as a
debugging option.

4.3.4.1.2.3 Wrap DB object names

When database object names (viz. table names, column names, schema names…) contain
spaces, they should be wrapped in database dependent special characters. For example, “ ”
for Oracle, [] for Microsoft Excel and no wrap characters for MySQL.

Database object names are wrapped as shown below:

Start wrap character + object name + End wrap character

Note: Providing a wrong wrap character may lead to problems

4.3.4.1.2.4 Start wrap character

Character which should be used before the object name.

4.3.4.1.2.5 End wrap character

Character which should be used after the object name.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 586

4.3.4.2 Interaction Configurations Panel

Business logic configuration details are configured in the second panel, Interaction

Configurations. Figure 4 illustrates the panel with expert properties view enabled.

Figure 4: Business in Interaction panel logic configuration

4.3.4.2.1 Attributes

4.3.4.2.1.1 Auto Commit for Test

This property determines whether auto-commit should be enabled when testing from the CPS.
Business logic configuration in Interaction configurations panel.

• yes - Any transactions (queries executed) will be automatically committed to the database
while testing. Performed transactions will have to manually undone

• no - Any transactions (queries executed) will be rolled back at the completion of test

This property will override the value provided for property Auto Commit (Y/N) in the MCF
panel.

4.3.4.2.1.2 SQL Query type

This property determines SQL query type to be executed. The user can select one of the SQL
query types from SELCET, UPDATE, INSERT and DELETE.

Explanation for types of queries is given in the following table:

Type of query Explanation

INSERT Inserts/adds data into database table

UPDATE Modifies existing data in database table

DELETE Deletes data from database table

SELECT Retrieves data from database table

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 587

4.3.4.2.1.3 SQL Configuration

Click ellipsis button against property SQL configuration to launch the SQL Configuration
wizard which allows configuring queries that have to be executed.

• Table Selection Dialog

Configuring queries requires selecting database object Tables on which actions have to be
taken. The Table Selection Dialog does the required thing. This panel is shown in Figure 5.

Figure 5: Table Selection Dialog dialog box

Select the Table on which the query should execute. Filter the tables by selecting the
required schema and clicking Refresh button.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 588

• Insert Statement Configuration

Click ellipsis button next to SQL configuration property after selecting SQL Query
Type as INSERT will launch the SQL Configuration Wizard which will useful to configure
Insert query.

Figure 6: SQL Configuration Dialog for Insert Query

• Simple Insert Statement

Inserts a row in configured table with column values taken from input XML or with
constant column values.

1. Click add database table button to launch Table Selection Dialog dialog box.

2. Select required table as explained in Table Selection Dialog section. Selected table is

added to the easel under Table. Primary key column, if exists, is marked with
adjacent to column name.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 589

Figure 7: Selected table added to easel

3. Table can be changed by clicking replace selected table button and removed by
clicking remove database table button.

4. If values are never to be inserted into a particular column, then that column can be
unchecked (this requires column has a default value or supports null values) as shown
in Figure 8.

 Figure 8: Ignoring column for insertion

5. To insert a constant value for a particular column, specify the required value in the
Column Value column against the required column name.

Note:

• If the value is a string value it should be wrapped in single quotes (‘ ’)

• ? indicates value will be taken from input or from the output of another query
where possible

6. Insert statement is automatically generated and shown in the text editor under SQL

Statement in SQL tab. The generated SQL can be validated by pressing (check
syntax) button.

Note: This feature only checks for invalid tokens, it does not perform a complete syntax
check.

• Enable Reconfiguration

Select the check box against this option to reconfigure the query, if it is not selected then
the Design tab (which is used to configure the query) will not be visible.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 590

Figure 9: Generated insert query

7. Once the query is configured, the user has to generate the input and output
parameters by clicking the Generate Parameters button.

8. If the query contains any value which should be taken from input XML then the
generated parameters are used to define the input and output port schemas.

9. The Add and Delete buttons are used to add and delete particular parameters from
the list. Delete All button used to delete all the parameters from the list.

Figure 10: Generated Input/Output Parameters

Each of the columns is explained below.

Column Name Description

BindName This value is used to generate the schema for the query. In the Figure
10 value for EMPLOYEE_ID (field name) is changed to EMPLOYEE_I. So
the schema generated would contain EMPLOYEE_I as the first element
instead of default populated value, EMPLOYEE_ID.

Bind Position The position in the query where this value is bound to.

Note: Do not change this value.

Java TypeName JDBC type which maps to Data Type.

SQL TypeName This defines the data type of this column in the database table. This
should be correctly defined.

10. Click Ok to close the dialog.

• Insert Statement with select

Insert rows in configured table by selecting rows from another table.

1. Follow the steps from 1 to 4 as described in section Simple Insert Statement.

2. Select SELECT Query option against Insert values using as shown in Figure 11.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 591

Figure 11: Option to insert values into a table using select query

3. Click Wizard… button to launch Query Builder to specify the Select query.

4. Follow the steps as described in section Select Statement Configuration.

5. The select query is automatically generated and shown in the text editor under Insert
values using in Design tab as shown in Figure 12.

Figure 12: Generated Select query which is used in Insert Query

6. Insert statement is automatically generated and shown in the text editor under SQL

Statement in SQL tab. The generated SQL can be validated by pressing (check
syntax) button.

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check

• Enable reconfiguration:

Select the check box against this option to reconfigure the query, if the option is not
selected then the Design tab (which is used to configure the query) will not be visible.
When a query is reconfigured Generate Parameters button should be clicked to generate
parameters for the modified query.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 592

Figure 13: Generated Insert Query

7. Follow the steps from 7 and 8 as described in section Simple Insert Statement to
complete the query configuration.

• Delete Statement Configuration:

Click ellipsis button next to SQL configuration property after selecting SQL Query
Type as DELETE will launch the SQL Configuration Wizard which will useful to configure
Insert statement.

Figure 14: Sql Configuration Dialog for Delete Query

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 593

• Simple Delete Statement:

Delete rows satisfying defined condition in configured table, with column values taken
from input XML or with constant values.

• Click add database table button to launch Table Selection Dialog dialog box.

• Select required table as explained in Table Selection Dialog section. Selected table
is added to the easel under Table

Figure 15: Selected table added to easel

• Table can be changed by clicking replace selected table button and removed by
clicking remove database table button.

Figure 16: Adding condition on column to WHERE clause

• Specify condition which should be satisfied for deleting row under WHERE condition.
Select a column name in the first column on which WHERE condition has to be applied.

• When selecting multiple columns for where condition, conditions can be combined
using AND or OR under fourth column

Figure 17: Combining multiple conditions for WHERE clause

• Operator of choice can be chosen from the drop-down under second column.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 594

Figure 18: Selecting operator for a condition

• To specify a constant value for WHERE condition on a column, specify the required
value in the third column against the required column name in where tab

 Note:

− If the value is a string value it should be wrapped in single quotes (‘ ’).

− ? indicates value will be taken from input or from the output of another query
where possible.

Figure 19: Specifying constant value for a column in condition for WHERE

clause

• To specify WHERE condition on a column whose value is equal to value defined in
another column, select the required column from drop-down in the third column
against the required column name in where tab

Figure 20: Specifying comparison between columns in condition for WHERE

clause

• Insert statement is automatically generated and shown in the text editor under SQL

Statement in SQL tab. The generated SQL can be validated by pressing check

syntax button.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 595

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check.

• Enable reconfiguration: If this option is checked then the query can be re-configured, if
the option is unchecked then the Design tab (which is used to configure the query) will
not be visible.

Figure 21: Generated Delete Query

• Follow the steps from 7 and 8 as described in section Simple Insert Statement to
complete the query configuration.

• Update Statement Configuration:

Figure 22: SQL Configuration Dialog for Update Query

Click ellipsis button next to SQL configuration property after selecting SQL Query Type

as UPDATE will launch the SQL Configuration Wizard which will useful to configure update

statement.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 596

• Simple Update Statement:

Update rows satisfying defined condition in configured table, with column values taken
from input XML or with constant values. Condition values can also be taken from input
XML or defined as constant values.

3. Click add database table button to launch Table Selection Dialog dialog box.

4. Select required table as explained in Table Selection Dialog section. Selected table
is added to the easel under Table.

Figure 23: Selected table added to easel

5. Table can be changed by clicking replace selected table button and removed by
clicking remove database table button.

6. Select the columns whose values have to be set. Figure 24 shows that NAME and AGE
are selected for update.

Figure 24: Selecting column for update

7. These selected columns will automatically add under the SET tab as shown in Figure
25.

Figure 25: Columns added to SET clause

8. Click WHERE tab and select a column name on which where condition has to be
applied.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 597

Figure 26: Adding condition on column to WHERE clause

9. When selecting multiple columns for where condition, conditions can be combined
using AND or OR under And/Or column.

Figure 27: Combining multiple conditions under where clause

10. Operator of choice can be selected from the drop-down menu under Operator
column.

Figure 28: Selecting operator for a condition

11. Constant values can also be set to columns that have to be updated (under SET tab)
or for values in where condition (under WHERE tab).

• To update a column with a constant value, specify the required value in the Column
Value column against the required column name in SET tab.

 Note:

• If the value is a string value it should be wrapped in single quotes (‘ ’)

• ? indicates value will be taken from input or from the output of another query where
possible.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 598

Figure 29: Specifying constant value for a column in SET clause

• To specify a constant value for where condition on a column, specify the required
value in the Column Value column against the required column name in WHERE tab.

Note:

• If the value is a string value it should be wrapped in single quotes (‘ ‘).

Figure 30: Specifying constant value for a column in condition for WHERE

clause

• ? indicates value will be taken from input or from the output of another query where
possible.

• To specify where condition on a column whose value is equal to value defined in
another column, select the required column from the drop-down menu in the Column
Value column against the required column name in WHERE tab.

Figure 31: Specifying comparison between columns in condition for WHERE

clause

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 599

12. Insert statement is automatically generated and shown in the text editor under SQL

Statement in SQL tab. The generated SQL can be validated by pressing check
syntax button.

Note: This feature only checks for invalid tokens, it does not perform a complete syntax

check.

Enable reconfiguration: If the check box is selected the query can be re-configured, if the
query is uncheck then the Design tab (which is used to configure the query) will not be
visible.

Figure 32: Generated update query

Follow the steps from 7 and 8 as described in section Simple Insert Statement to complete the

query configuration.

• Select Statement Configuration:

Click ellipsis button next to SQL configuration property after selecting SQL Query
Type as SELECT will launch the SQL Configuration Wizard which will useful to configure
Insert statement.

• Simple Select Statement

Retrieves data from all columns or from selected columns in a configured database table.

1. Click add database table button to launch Table Selection Dialog dialog box.

2. Select required table as explained in Table Selection Dialog section. Selected table
is added to the easel under Table

Figure 33: Selected table added to easel

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 600

3. Table can be changed by clicking replace selected table button and removed by
clicking remove database table button.

4. To retrieve specific columns values from the table, check required columns to build a
select query with specific columns. If no column is checked, then SELECT * is used.
Select the columns in order in which they should appear they should appear in select
clause.

Figure 34: Selecting columns for selection

5. Selected columns are shown under Columns tab. Check/Uncheck the check box in
Output column against required column name to show/not show the corresponding
column in the output XML.

For example, configuration in the following image generates IDNO in the output XML, but does
not generate NAME in output XML, though values for both IDNO and NAME are retrieved from
the table.

Figure 35: Selecting columns for output XML

6. To define a column alias, provide the alias name under Alias column against required
column name. Aliases are useful when the column name is not intuitive or too long.
When an alias is specified output XML will contain an element with defined alias name
instead of the column name.

Figure 36: Defining Column Alias

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 601

7. To return unique rows check DISTINCT.

 Figure 37: Distinct option to return unique values

8. Select statement is automatically generated and shown in the text editor under SQL

Statement in SQL tab. The generated SQL can be validated by pressing (check
syntax) button.

Note: This feature only checks for invalid tokens, it does not perform a complete
syntax check.

• Enable reconfiguration:

Select the check box against this option to reconfigure the query, if this option is not
checked then the Design tab (which is used to configure the query) will not be visible.

Figure 38: Generated Select Query

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 602

9. Once this query is configured, generate the input and output parameters by clicking
the Generate Parameters button. These generated parameters are used to define
the input and output port schema.

10. If the query contains any value which should be taken from input XML then the
generated parameters are used to define the input and output port schemas.

11. Add and Delete buttons are used to add and delete particular parameters from the
list. Delete All button used to delete all the parameters from the list. The Output
parameter list contains only those columns for which the Output column is checked
under Columns tab.

Figure 39: Generated Input/Output Parameters

Each of the columns is explained below.

Column Name Description

BindName This value is used to generate the schema for the query. In the Figure
40 value for IDNO (field name) is changed to ID. So the schema
generated would contain ID as the first element instead of default
populated value, IDNO.

Bind Position The position in the query where this value is bound to.

Note: Do not change this value.

Java TypeName JDBC type which maps to Data Type.

SQL TypeName This defines the data type of this column in the database table. This
should be correctly defined.

12. Click Ok to close the dialog.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 603

• Select Statement with Filter:

Retrieves data from all columns or from selected columns in a configured database table
after applying specified conditions. Condition values can be provided from input XML or as
constant values.

1. Follow the steps from 1 to 7 as described in the section Simple Select Statement.

2. Click WHERE tab and select a Column name on which WHERE condition has to be
applied.

Figure 40: Adding condition on column to WHERE clause

3. When selecting multiple columns for WHERE condition, conditions can be combined
using AND or OR under And/Or column.

Figure 41: Adding condition on column to WHERE clause

4. Operator of choice can be selected from the drop-down list under Operator column.

Figure 42: Selecting operator for a condition

5. Constant values can also be set for values in WHERE condition (under WHERE tab).

a. To specify a constant value for WHERE condition on a column, specify the
required value in the Column Value column against the required column
name in WHERE tab.

 Notes:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 604

• If the value is a string value it should be wrapped in single quotes (‘ ‘).

• ? indicates value will be taken from input or from the output of another
query where possible.

Figure 43: Specifying constant value for a column in SET clause

b. To specify WHERE condition on a Column whose value is equal to value
defined in another Column, select the required Column from drop-
down list in the Column Value against the required column name in WHERE
tab.

Figure 44: Specifying comparison between columns in condition for
WHERE

6. Follow the steps from 8 to 10 as described in the section Simple Select Statement.

• Select Statement with Sorting:

Retrieves sorted data from all columns or from selected columns in a configured database
table. Data is sorted in configured order on columns configured for sorting.

• Follow steps 1 to 7 in the section Simple Select Statement.

• To specify columns which have to be sorted, select the appropriate sort order from
drop-down list under Order By column in Columns tab. Order By for each columns
has one of the following values:

Order By Value Explanation

Unsorted Data is not sorted on values in the column, that is, no order by
clause will added in the SQL statement.

Ascending Data is sorted in ascending order on values in the column, that is,
order by clause will be added in the SQL statement as ORDER BY
<column name> ASC.

Descending Data is sorted in descending order on values in the column, that is,
order by clause will be added in the SQL statement as ORDER BY

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 605

<column name> DESC.

Default Data is sorted in default order for order by clause on values in the
column, that is, order by clause will be added in the SQL statement
as ORDER BY <column name>.

 Figure 45: Selecting sorting order for column

• When multiple columns have to be sorted, sorting priority for each column can be set
under Sort Priority. Columns are sorted in order of increasing Sort Priority that is
column with minimum value for Sort Priority is order first.

Figure 46: SQL Statement with different columns sorted in different order

When values of Sort Priority for multiple columns are same, columns are sorted in the
order in which they appear in select clause.

• Follow the steps from 8 to 10 as described in the section Simple Select Statement.

• Select Statement with Grouping:

Retrieves data, after applying grouping conditions, from all columns or from selected
columns in a configured database table.

Note: Grouping functions are not provided in query builder. Grouping conditions have to
be explicitly added by editing the SQL statement either before closing the SQL
Configuration Wizard.

4. Follow steps 1 to 7 in the section Simple Select Statement.

5. Click GROUP BY tab and check under Select against the columns under Group By on
which group by condition should be applied.

 Figure 47: Selecting columns for grouping condition

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 606

6. To filter the results click HAVING tab and define required conditions. HAVING tab
has functionality similar to WHERE tab (described in Select Statement with filter).

Figure 48: Adding condition to HAVING clause

7. Select required columns under Tables.

Figure 49: Selecting required columns

8. Now generate the input and output parameters as described in step 9 in section
Simple Select Statement.

9. Edit the Select statement is which was shown in the text editor under SQL Statement
in SQL tab.

 Note: Editing Select and HAVING clauses should be last action before closing the
dialog.

Figure 50: Generated SQL Select Query

10. Click the Ok button to close the dialog box.

• Select Statement with Multiple Tables

Retrieves data from all columns or from selected columns from multiple configured
database tables. Currently retrieving data from more than one table is not supported.

4.3.4.2.1.4 Single Batch Mode

This option determines whether the component should send entire result of a query as a
single message or as multiple messages.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 607

• yes

Complete result of the query from input request is sent out as a single message. If the
result set returned is huge then the component can run into memory problems and stop.
When this value is selected, property Batch Size is hidden.

• no

Result of query from input is split and sent out as multiple messages. Number of rows
from result to be included in each output message is determined by property Batch Size.
When this value is selected, property Batch Size is shown.

Example: If a query returns 100 rows, and the batch size is set to 10 then 10 outputs will be
generated each contains 10 rows.

4.3.4.2.1.5 Batch Size

This property is visible when the value of property Single Batch Mode is set as yes. The
property determines the number of units of result an output message contains.

Each row in a result set (typically result of a select query) or an update result (result of
update, delete, insert operations) is treated as unit of result.

Example: Consider a stored procedure that returns a result of select query followed by three
update queries and another select query. Assume first select return 18 rows and second query
returns 11 rows. If Single Batch Mode is set as no and Batch Size is set as 10 then there
will be four output messages.

1. first message: first ten rows from first query

2. second message: remaining 8 rows from first query and two update query results

3. third message: third update query result and first nine rows of second select query

4. fourth message: remaining two rows from second query.

4.3.4.3 Input

The input of the component varies with the kind of query configuration. If the query has input
parameters which have to be provided dynamically, these parameters will be included in the
input schema of the component if Generate Parameters button is clicked after configuring
SQL.

4.3.4.3.1 SELECT

In case of select query, the input parameters that have to be provided will be added as child
elements to the SELECT element. When the query is as shown in Sample Query 1, the input
schema will contain the parameters which have to be provided for the query as shown in the
Figure 51.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 608

Sample Query 1, Select with Where and Having clauses

Figure 51: Input schema – Sample Query 1

4.3.4.3.2 INSERT

In case of insert query, the input parameters that have to be provided will be added as child
elements to the INSERT element present in the input port schema of the component. The
input schema corresponding to Sample Query 2 is as shown in the Figure 53.

Figure 52: Sample Query Simple Insert

Figure 53: Input Schema – Sample Query 2

4.3.4.3.3 UPDATE

In case of update query, the input parameters that have to be provided will be added as child
elements to the UPDATE element present in the input port schema of the component. The
input schema corresponding to Sample Query 3 is as shown in the Figure 55.

Figure 54: Sample Query Simple Update

Figure 55: Input Schema – Sample Query 3

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 609

4.3.4.3.4 DELETE

In case of update query, the input parameters that have to be provided will be added as child
elements to the DELETE element present in the input port schema of the component. The
input schema corresponding to Sample Query 4 is as shown in the Figure 57.

Figure 56: Sample Query Delete with Where clause

Figure 57: Input Schema - Sample Query 4

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

Figure 58: Input schema with ConnectionFactorySettings

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 610

4.3.4.4 Output

The output schema is auto generated based on the configuration provided. An element Result
will be used to represent the result of the query configured. In case of SELECT query, an
element Row with zero-many cardinality will be added to this element. Each Row element
represents a single entry in the result set obtained. If Generate Parameters button is
clicked after configuring SQL different elements corresponding to columns in the result set will
be added as child elements to the row elements. The sample output for the Sample Query 1 is
as shown in Figure 58.

Figure 58: Output Schema – Sample Query 1

In case of UPDATE, DELETE, INSERT statements an element UpdateCount will be added as
child to the Result element which holds the number of rows updated as a result of execution of
the query. The output schema for queries 2, 3 and 4 is as shown in Figure 59.

Figure 59: Output Schema – Sample Queries 2,3,4

4.3.4.5 Functional Demonstration

4.3.4.5.1 Scenario 1

Execution of a select query

Start mckoiDB present at %FIORANO_HOME%\esb\samples\mckoiDB by executing
CreateMckoiDB.bat and RunMckoi.bat. Configure the DBQuery component as shown in Figure 2
and configure a select statement as described in Simple Select Statement section. Use feeder
and display components (shown in Figure 60) to create a flow to send sample input and check
the response respectively. DBQuery component configures to a select query. As shown in
sample input (Figure 61) DBQuery takes the CUSTOMER column value and returns that
particular row. The selected row will be organized as XML and it will be returned to the output
port as shown in sample output (Figure 62).

Figure 60: Flow for Scenario 1

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 611

Send input message, shown in Figure 60, from feeder and notice the output similar to the one
shown in Figure 61 in display.

Figure 61: Sample Input for Scenario 1

Figure 62: Sample Output for Scenario1

4.3.4.6 Useful Tips
• Only one query can be configured in the adapter. Please use the DB component if

multiple query configurations need to be configured for a single instance.

• Only one query can be processed per message. If multiple queries have to be
processed, use XMLSplitter to split the message into multiple messages each
containing a single query.

• It is recommended NOT to use JDBC-ODBC Bridge driver to connect to any RDBMS in
your production environment. Please use a commercial JDBC driver instead.

• The JDBC drivers or the resources must be directly added onto the JDBC system lib
and not as resource to the DBQuery component itself. To add JDBC drivers to DBQuery
component, please refer to section 3.3.3.3.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 612

4.4 Error
The Error category consists of ExceptionListener component. The following section describes
this component.

4.4.1 Exception Listener

The Exception Listener component listens for exceptions from components running in a
Fiorano network. It connects to the configured Enterprise Server and obtains details of all
running Peer Servers whose names match the regular expression provided in the
configuration. It then subscribes for messages on all topics, whose names match the regular
expression in configuration, for each Peer Server identified. With the default values for regular
expressions the component listens for messages on topics whose names end with
ON_EXCEPTION on all Peer Servers. It sends out messages received from configured topics
on its output port. Messages sent out from the component have an additional string property
ESBX_SYSTEM_SOURCE_TOPIC_NAME that contains the name of topic to which the message
was actually sent.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 613

4.4.1.1 Configuration and Testing

Figure 1: Configurations of Exception Listener

4.4.1.1.1 Attributes

4.4.1.1.1.1 Connect only to host peer server

This property determines whether the component should listen for messages only from topics
on the Peer Server on which the component is running.

• yes

The component listens for messages only from the configured topics on the Peer
Server on which this component is running. When this value is selected neither
Enterprise Server connection is needed to fetch the details of Peer Servers nor the
regular expression for matching the Peer Server name and hence, properties
Pattern for peer server name, Server URL, Back Up Server URL, JMS User
Name, JMS Password are hidden.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 614

• no -

The component listens for messages from the configured topics on configured Peer
Servers. When this value is selected an Enterprise Server connection to fetch the
details of Peer Servers and the regular expression for filtering Peer Servers are
needed and hence, properties Pattern for peer server name, Server URL,
Backup Server URL, JMS User Name, JMS Password are shown.

4.4.1.1.1.2 Pattern for peer server name

This property determines the Peer Servers from the Fiorano network that have to be
monitored. The Fiorano network from which Peer Servers are filtered is determined by the
Enterprise Server details provided against properties Server URL and Backup Server URL.

Click the ellipsis button to specify the pattern matching condition(s). A dialog box appears
containing a table with two fields:

• Name

This column contains the regular expression that should be used to match the Peer
Server name. Regular expressions should follow the syntax described
java.util.regex.Pattern. Please check the following link for details
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

• Value

The value in this column determines whether Peer Servers whose names match
regular expression defined in Name column should be monitored or not. If this
column value is, ignoring case, true then the Peer Servers whose names match the
regular expression is selected. If the value is false, Peer Servers whose names
match the regular expression is not selected.

Figure 2: Defining regular expression for filtering peer servers

If no patterns are defined, then no Peer Server will be selected and the component
does not listen for any messages. When there are multiple pattern matches
defined for each Peer Server name in Fiorano network, validation against all
pattern matching conditions is performed. If even a single pattern matching
condition is not satisfied, the Peer Server will not be selected.

Patterns can be loaded from a properties file using File... button. Click the
following link
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.In
putStream for details on properties file.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 615

Example:

Figure 3: Sample pattern matching condition

Pattern matching condition in Figure 3 matches and selects all Peer Servers whose
name has English alphabets only, but does not start with B.

4.4.1.1.1.3 Server URL

The URL of Enterprise Server to which the Peer Servers that have to be monitored are
connected. For more information, refer to section Connection to Enterprise Server.

4.4.1.1.1.4 Back Up Server URL

The alternate URL that should be tried for connecting to the Enterprise Server if the Enterprise
Server cannot be connected to using the URL mentioned against property Server URL. For
more information, refer to section Connection to Enterprise Server.

Note: In case of Enterprise Servers in HA mode, this should point to Secondary Server URL if
the primary is set against Server URL property and vice-versa.

4.4.1.1.1.5 JMS User Name

The user name to connect to the Enterprise Server. For more information, refer to section
Connection to Enterprise Server.

4.4.1.1.1.6 JMS Password

The password to connect to the Enterprise Server. For more information, refer to section
Connection to Enterprise Server.

4.4.1.1.1.7 InitialContextFactory

InitialContextFactory implementation class name which can be used to create Initial Context
that is used to lookup Peer Server's administration object. This is required to find the list of
topics created on Peer Server.

Note: This property need not be changed normally.

4.4.1.1.1.8 JNDI User Name

The user name required to create Initial Context for looking up objects on Peer Server. This
user should be present on each of the Peer Servers and have permission to perform lookup for
JMS objects.

4.4.1.1.1.9 JNDI Password

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 616

The password for user provided against property JNDI User Name required to create Initial
Context for looking up objects on Peer Server.

4.4.1.1.1.10 Regex of Topic Name

This property determines the topics on Peer Servers from the Fiorano network that have to be
monitored. Refer help for property Pattern for peer server name to specify pattern
matching conditions for topic names.

4.4.1.1.1.11 Time Slice To Ping Peers

This property determines the time interval in milliseconds after which the component has to
periodically poll for changes in Peer Servers and topics. At every poll interval, the component
does the following:

• Fetches all Peer Servers in Fiorano network or just the Peer Server on which the
component is running based on property Connect only to host peer server.

• For each Peer Server name that matches the pattern matching conditions defined,
checks if the Peer Server is available in network.

• If the Peer Server is not available in the network but the component has
created and cached a connection to the Peer Server during previous polls, then
the connection is discarded.

• If the Peer Server is available in the network, but component has not created
and cached a connection to the Peer Server during previous polls, then a new
connection is made and cached.

• For each Peer Server that is available in network and connected to the component, all
the topics are listed.

• If the topic matches the pattern matching conditions defined and is not in the list of
topics to which the component subscribes, a subscription to the topic is made and a
message listener is set.

4.4.1.1.1.12 Admin User Name

The user name required to create subscribers on topics on specified peer servers. This user
should be present in admin user group.

4.4.1.1.1.13 Admin Password

The password for user provided against property Admin User Name required to subscribe to
topics on specified peer servers.

4.4.1.1.2 Connection to Enterprise Server

A connection to Enterprise Server is required only if property Connect only to host peer
server is set to yes. The connection is made during the component launch using the
properties Server URL, Back Up Server URL, JMS User Name, and JMS Password. If the
Enterprise Server connection cannot be successfully made during the component launch, the
component is automatically stopped and the error is logged in the error logs of the
component.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 617

Whenever, the component tries to check for newly added Peer Servers or topics which match
configured criteria based on property Time Slice To Ping Peers it validates connection with
Enterprise Server and if the connection is found invalid, it tries to reconnect using the
configured Enterprise Server details.

4.4.1.2 Functional Demonstration

4.4.1.2.1 Scenario 1

The Regular Expression can be specified to match or differ based on the configuration. To
allow topics whose name matches with the regular expression, the value column for that
Regular Expression must be set as true. To allow topics whose name does not match with a
regular expression, the value column for that regular expression must be set as false.

To make the exception listener listen to the error ports of all the Event Processes other than
itself, the regular expression list can be specified as shown in Figure 4.

Figure 4: Configuration to listen on exception ports of only one event process

Similarly, regular expressions can be used to match the peers on which the exception listener
has to subscribe to.

4.4.1.2.2 Scenario 2

Configure the Exception Listener as described in Configuration and Testing section; configure a
CBR with any schema. Use feeder to send an improper message to the CBR and display
component to check the output message send by Exception Listener (which is picked from the
exception port of CBR) on its output port.

Figure 5: Event process for scenario 2

Sample Input

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 618

Figure 6: Sample Input

Sample Output

Figure 7: Sample Output

4.4.1.3 Use Case Scenario

In a sales force integration scenario, exception listener component listens for exceptions which
might occur at any step of the process.

Figure 8: Salesforce Integration scenario

The Event Process demonstrating this scenario is bundled with the installer.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 619

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.4.1.4 Useful Tips
• This component does not listen for specified topics, if the Enterprise Server is down.

• This component listens only to topics that match the regular expression list provided in
the CPS.

• Regular expressions are case sensitive.

• [A-Za-z0-9_]* can be used to match any valid character sequence.

• The regular expression for a string with prefix as PREFIX is PREFIX[A-Za-z0-9_]*

• The regular expression for a string with suffix as SUFFIX is [A-Za-z0-9_]*SUFFIX.

4.5 File
File Reader component reads file from the file system and send their contents to the output
port. The source file can either be unstructured (plain) text or binary.

File Reader is capable of handling

Text/Flat files

Text files may be read from a specified file in an unstructured fashion. Unstructured text in the
files to be transferred is read as it is and sends on the output port of the FileReader
component.

Note: The unstructured plain text needs to be transferred into its corresponding XML using the
Text XML component.

Binary Files

Binary file contents are read as bytes of data from the source file and are sent in chunks or
bundles to the output port of the FileReader component based on the configuration properties
of this component.

File Reader uses core Java APIs to read the files.

4.5.1 File Reader

The FileReader component reads files from the file system and sends their contents to the
output port. The source file can either be text or binary.

Text file

Text file may be read from a specified file in an unstructured fashion and the content is sent in
a single message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 620

Binary file

Binary file contents are read as bytes of data from the source file and are sent in chunks or
bundles to the output port of the FileReader component based on the configuration properties
of this component.

Points to note

• The component runs on the peer server and therefore the file paths and directories
mentioned in the CPS should be valid on the machine where the peer server is
running. If the component fails over to another peer server, ensure that the machine
on which the secondary peer server is running must have the same path available.

• The unstructured plain text can be transformed into its corresponding XML using the
Text2XML component.

• Number of outgoing messages for an input binary file = ceil (Size of File/ Chunk Size).

4.5.1.1 Interaction Configurations

Business logic configuration details are configured in the Interaction Configurations panel.

Figure 1 below illustrates the panel with expert properties view enabled.

Figure 1: Interaction Configurations

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 621

4.5.1.1.1 Attributes

4.5.1.1.1.1 Is file Binary?

The property is used to specify if the input file which is being read is binary or a flat file.

• Yes

The contents of the input binary file are read as binary data and are sent to the output
port in chunks whose size, in bytes, is specified through the property Chunk size.

• No

The contents of the target file are read in an unstructured fashion and the content is
sent to the output port as a single message.

4.5.1.1.1.2 Chunk size (bytes)

When the input file being read is binary, user can choose to receive the contents read from the
file in chunks of binary data at the output ports. The size of these chunks (in bytes) can be
specified in this property. When the chunk size is specified as 0 bytes, the whole file is read in
a single run.

Note: This property is visible only when property Is file Binary? is set to Yes.

The number of output messages received = ceil (Size of File / Chunk size). The last output
message received can be identified by the value of the property COMPLETE in its message
headers. Refer Table 1 for information on message headers.

4.5.1.1.1.3 Is configured for different machine?

Specifies whether the Peer Server on which the component is to be launched and Fiorano
Studio are running on the same machine or on different machines. This helps the component
to determine the type of dialog to be shown while providing the paths of Source Directory,
Working Directory and Error Directory. When both the Peer Server and the Studio are running
on the same machine, the paths to the above specified directories can be chosen from a file
dialog with the directory structure of the current machine. Otherwise, a text editor will be
shown where the paths of Source/Working/Error directories need to be specified.

• Yes

If the Peer Server on which the component is to be launched and Fiorano Studio are
running on different machines.

• No

 If Peer Server and Fiorano Studio are running on the same machine.

Note: If Yes is specified, a text editor is shown to set the path of file and if No is specified, a
file dialog is shown with directory structure to set the file path as shown in Figures 2 and 3
respectively.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 622

Figure 2: Specifying directory path using Text Editor

Figure 3: Choosing directory path using File Dialog

4.5.1.1.1.4 Compute Paths relative to Directory

The path of the directory relative to which the paths of Source Directory, Working Directory,
Error Directory and Postprocessing Directory are calculated. By default, this points to the
FIORANO_HOME directory. If the paths specified for Source/Working/Error/Postprocessing
directories are not absolute, their paths are calculated relative to the directory specified here.

Note: If the path specified for Source Directory/Working Directory/Error
Directory/Postprocessing directory is absolute, the path specified for Compute Paths relative to
directory will not be used in the computation of the path for that particular directory.

4.5.1.1.1.5 File name

The name of the file to be read. A pattern of file names can also be provided using wild
character *. Multiple patterns are not allowed. All the files in the Source Directory are checked
against this pattern and are suitably processed.

Example: *.txt includes all the files with a .txt extension.

S*.* would include Sample.txt, Service.doc, but not SampleFile

Note:

• Only a single pattern of names can be specified. Multiple formats are not supported
while specifying the File name

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 623

• When the component is not in scheduling mode, the file name can be specified in the
input message to the component and the name specified in the input message
overrides the file name (if any) provided during the configuration.

• When a pattern of file names is specified, there is no guarantee that the matching files
will be processed in any specific order.

4.5.1.1.1.6 Source Directory

The directory which holds the file(s) to be read has to be specified in Source Directory. All the
files in this directory whose names match the pattern specified for the File name property will
be processed. The files present in the sub-directories are not considered.

An absolute path or a path relative to the directory specified in the Compute Paths relative to
Directory can be provided.

If Is configured on different machine? is set to No, clicking the ellipses button opens a file
dialog as shown in Figure 3, where the directory can be chosen from the file system.
Otherwise a text editor pops up where the path of the directory needs to be specified as
shown in Figure 2.

The path provided here should point to an existing directory.

Note:

• The directory specified in Compute Paths relative to Directory property will be used in
computing the path only if the path specified here is not absolute.

• The FileReader throws an exception if the specified directory does not exist.

• If the component is not configured in scheduling mode, the Source Directory can be
specified in the input message to the component and the directory specified during
configuration, if any, is overridden by the one provided in the input message.

4.5.1.1.1.7 File Encoding

Figure 4: Different type of File Encoding

The encoding to be used while reading the file. Figure 4 shows all the encodings that can be
used.

• ASCII

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 624

A coding standard used to represent plain text. It is based on English Alphabetical
order.

• Cp1252

This is a character encoding of the Latin alphabet

• UTF8

A variable-length character encoding for Unicode

• UTF-16

This too is a variable-length character encoding for Unicode. The encoding form maps
each character to a sequence of 16-bit words

• ISO8859_1

ISO 8859-1, more formally cited as ISO/IEC 8859-1 is part 1 of ISO/IEC 8859, a
standard character encoding of the Latin alphabet

• EUC_KR

• EUC_JP

• EUC_CN

• EUC_TW

EUC_KR, EUC_JP, EUC_CN, EUC_TW are multi-byte character encoding systems used for
Korean, Japanese, Simplified Chinese, and Traditional Chinese languages respectively.

Note: Reading UTF files with a byte order mark (BOM) attached to the beginning of the file
may not give the desired result.

4.5.1.1.1.8 PreProcessing Command

Script or Command that is to be executed before the processing on file starts. A Command can
be entered in the text area provided against this property in the CPS. To provide a script file,
the file dialog which is shown by clicking the ellipses button can be used.

By default, the component appends the absolute path of the file that is currently taken up for
processing to this script / command, that is, the absolute path of the file would be the first
argument to this script / command. More arguments for this command could be specified
using the property PreProcessing Arguments.

The final command formed by the FileReader would be

<PreProcessing Command> + <Absolute path of the file taken up for processing> +
<PreProcessing Arguments>.

4.5.1.1.1.9 PreProcessing Arguments

Arguments that are passed to preprocessing script or command. As mentioned in the
PreProcessing Command section, the component, by default, appends the absolute path of the
file that is currently taken up for processing to the PreProcessing Command. Any other
arguments that need to be passed to the PreProcessing Command can be provided here.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 625

The use of PreProcessing Commands and Arguments is explained in this Sample Scenario

Sample scenario:

Copying all the files present in Error directory to a backup location before the processing
on a file starts.

Solution:

A batch file copyerrors.bat with content copy C:\FileReader\ErrorDir %2 is written and is
placed in C:\. The path of this batch file is specified for PreProcessing Command. The
backup location (C:\ProcessingFailures) is specified as the value for PreProcessing
Arguments.

Let, C:\test.txt be the file picked up for processing. With this configuration, the command
formed by FileReader would be C:\copyerrors.bat C:\test.txt C:\ProcessingFailures. The
copy command executed finally would be copy C:\FileReader\ErrorDir
C:\ProcessingFailures which will move all the files present in C:\FileReader\ErrorDir to the
backup location C:\ProcessingFailures.

4.5.1.1.1.10 Use Working Directory

Specify if the working directory is to used.

• Yes

The files will be moved from the Source Directory to Working directory while
FileReader processes the file. The component needs write/modify permissions on
the Source Directory to be able to use a working directory. If such permissions are
not available, set this property to No.

• No

Files won’t be moved to the Working directory.

Note: The property Working Directory becomes visible only when Use Working Directory is set
to Yes.

4.5.1.1.1.11 Working Directory

The path of the directory which is to be used for intermediate processing of files. If
preprocessing actions are specified, the working directory will be used while processing them.
If Is configured on different machine? is set to No, clicking the ellipses button will open a
file dialog as shown in Figure 3, where the directory can be chosen from the file system.
Otherwise a text editor pops up where the path of the directory needs to be specified as
shown in Figure 2.

Note:

• This property is visible only when Use Working Directory is set to Yes.

• Either an absolute path or a path relative to the directory specified in the
Compute Paths relative to Directory can be provided.

• If this directory doesn’t exist, FileReader creates it while processing the input
message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 626

• FileReader requires write permissions on Working and Error Directories

4.5.1.1.1.12 Error Directory

Path of the directory which should hold the files whose processing has not been successful.

If Is configured on different machine? is set to No, clicking the ellipses button will open a
file dialog as shown in Figure 3, where the directory can be chosen from the file system.
Otherwise a text editor pops up where the path of the directory needs to be specified as
shown in Figure 2.

Note:

• Either an absolute path or a path relative to the directory specified in the Compute
Paths relative to Directory can be provided.

• If this directory does not exist, FileReader creates it while processing the input
message.

• FileReader requires write permissions on Working and Error Directories.

4.5.1.1.1.13 Postprocessing Action

Action to be taken on the file after it is read successfully. Figure 5 shows all the Postprocessing
Actions that are allowed.

Figure 5: Postprocessing Actions

• DELETE

Delete the file after reading it successfully.

• MOVE

Move the file to a different location (specified by the property Postprocessing
Directory)

Note: When MOVE is selected as the Postprocessing Action, four other properties
become visible (Shown in the Figure 6)

Figure 6: MOVE action

• NO_ACTION

Take no action on the file.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 627

4.5.1.1.1.14 Postprocessing Directory

The directory to which files are to be moved when they are read successfully, when MOVE is
selected as the Postprocessing Action.

If Is configured on different machine? is set to No, clicking the ellipses() button will open a
file dialog, as shown in Figure 3, where the directory can be chosen from the file system.
Otherwise a text editor pops up where the path of the directory needs to be typed in as shown
in Figure 2.

Note: This option is visible only when MOVE is selected as the Postprocessing Action.

4.5.1.1.1.15 Append timestamp?

Specifies if a time stamp has to be appended to the file names after they have been moved to
the Postprocessing Directory.

• Yes

FileReader adds a time stamp whose format is provided through the Timestamp format
property and a counter (if Append counter? is set to Yes).

• No

No timestamp is added to the files that have been moved to the Postprocessing
directory.

Note: This option is visible only when MOVE is selected as the Postprocessing Action.

4.5.1.1.1.16 Timestamp format

The format of the time stamp to be appended to the file name can be specified here. The
descriptions of the symbols that can be used in the time stamp formats are depicted in Figure
7.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 628

Figure 7: Symbols used in Timestamp format

Example: ddMMyyyy_HHmm

Note:

• This property is visible ONLY when the Append timestamp is set to Yes.

• Avoid using slashes ('/' or '\') in the time stamp format as they can be mis-interpreted
as File Separators and can lead to confusion.

• Special characters that are not allowed in file names should not be included in the
timestamp format (This can be platform specific).

4.5.1.1.1.17 Append counter?

• Yes

A counter is appended to the file name of each processed file in addition to the time
stamp. Appending counter to file names ensures that no two files in the
Postprocessing directory will have same name. The name of the file would look like
<filename>_<time stamp>_<counter>.

• No

No counter is added to the files that have been moved to the Postprocessing directory.

Note: This property is visible ONLY when the Append timestamp is set to Yes.

4.5.1.1.1.18 Validate Input

If set to Yes, the input request sent to the FileReader is validated against the input port XSD
of the component.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 629

4.5.1.1.1.19 Process Pending files in Working Directory

Specify if the pending files present in the Working directory are to be processed. When this
property is enabled, for every input request to read a file from a specific directory, the file is
searched in Working directory in addition to the specified directory. If the component is in
scheduling mode, enabling this property processes the files in the Working directory as well.

Note:

• If a file with same name exists in both the Source directory and Working directory, the
file in the Source directory is processed.

• Setting this property to Yes will not have any effect if Use Working Directory is NO.

4.5.1.1.1.20 Output XSD

This property is used to set the schema of the output message. If the file content is expected
to be an XML, setting its schema on the output port using the Output XSD can be useful for
applying transformations on the output message. The XSD can be provided using the Schema
Editor as shown in the Figure 8.

Figure 8: Schema editor to provide Output XSD

4.5.1.1.1.21 Header properties

Table 1 shows the descriptions of header properties set by the component on the output
message when Flat/Binary files are processed.

Type of the file
processed

Header property Description

FileName Name of the file being read.

FilePath Path of the directory which holds the source
file.

Flat/Binary

Size The size of the file being read.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 630

Type of the file
processed

Header property Description

START_EVENT An output message with this property set to
true determines that the message is the first
record in the set of responses generated for an
input message.

Note: This property appears only on the first
record in the set of responses.

CLOSE_EVENT An output message with this property set to
true determines that the message is the last
record in the set of responses generated for an
input message.

Note: This property appears only on the last
record in the set of responses.

RECORD_INDEX A value n for this property indicates that this is
the nth response generated for an input
message.

FullName Absolute path of the processed file.

ReadAccess Determines if the processed file is readable.

WriteAccess Determines if the processed file is writable.

Flat

Type File / Directory.

NEW An output message with this property set to
true determines that this is the first chunk of
the binary file being read.

COMPLETE An output message with this property set to
true determines that this is the last chunk of
the binary file being read.

START_INDEX Determines the offset of first byte of the
current chunk read.

Binary

END_INDEX Determines the offset of last byte of the
current chunk read.

Table 1: Header Properties

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 631

4.5.1.2 Input and Output

4.5.1.2.1 Input

When FileReader is not in scheduling mode, messages can be sent onto the input port of the
component specifying the file to be read and the location of the file. The schema of the input
XML message is shown in Figure 10.

Figure 9: Schema of the input message

• FileName is the name of the file which is to be read.

• Directory is the location of the file.

Note: If the values for FileName and Directory are not specified in the input message, the
values configured for the CPS properties File Name and Source Directory are used.

4.5.1.2.2 Output

The output schema depends on the configuration of property Output XSD. Schema provided
for this property is directly set as schema on output port. For more information, please refer to
Output XSD in Interaction Configuration section.

4.5.1.3 Testing the Interaction Configurations

Interaction configurations can be tested from the CPS by clicking the Test button. Figure 10
and Figure 11 show the sample input and the corresponding output respectively.

Figure 10: Sample input

Figure 11: Output produced for sample input shown in Figure 10

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 632

4.5.1.4 Functional Demonstration

4.5.1.4.1 Scenario 1

Reading simple text files and displaying the contents.

Configure the FileReader as described in Configuration and Testing section and use feeder and
display component to send sample input and check the response respectively.

Figure 12: Demonstrating scenario 1 with sample input and output

Input Message:

<ns1:Input xmlns:ns1="http://www.fiorano.com/fesb/activity/FileReader1">

 <FileName>Input.txt</FileName>

 <Directory>C:\Read</Directory>

</ns1:Input>

Output Message:

This is a sample file (Contents of the input file).

4.5.1.5 Use Case Scenario

In a revenue control packet scenario transaction files are read and then transformed.

Figure 13: Revenue Control Packet Scenario

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 633

The event process demonstrating this scenario is bundled with the installer.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.5.1.6 Useful Tips

Best Practices to read a file from a network drive using the FileReader component:

• To access a file present in a network drive, FileReader component needs full permissions
on that directory. Please enable the option "Allow Network Users to change my files" while
sharing a directory.

• If you do not have permissions to change the files, then in the File Reader Custom
Property Sheet you need to set "Use Working Directory" to "No".

• In case running peer server as Windows/Linux service, it is possible that the network drive
is not mounted by the time the peer server has started the file components. In such a
case, making the peer service dependent on the service that is mounting the Network
Drive will help.

4.5.2 File Writer

The FileWriter component writes the received data from its input port to the specified output
file. The received data can either be plain text or binary data.

File Writer is capable of handling:

• Text files

Text content from input message is written to the configured file in text format.

• Binary Files

Binary content from the input message is written to the configured file in binary
format.

File Writer uses core Java APIs to write the files.

Points to note

• The component runs on the Peer Server and therefore the file paths and directories
mentioned in the CPS should be valid on the machine where the Peer Server is
running. If the component fails over to another peer, ensure that the machine on
which the secondary Peer Server is running does have the same path available.

• The received XML equivalent of the unstructured plain text needs to be transformed to
its original format using the XML -> Flat component.

• FileWriter closes the file and moves it to the target directory on receiving a message
having property COMPLETE whose value is set to true. This is useful even when you
use Append if Exists output mode for the FileWriter component and you would like to
close the file on the occurrence of this event.

• The FileWriter component uses the JMS Header filename to get the file name from the
input message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 634

4.5.2.1 Interaction Configurations

Business logic configuration details are configured in the second panel, Interaction

Configurations. Figure 1 illustrates the panel with expert properties view enabled.

Figure 2: Interaction Configurations.

4.5.2.1.1 Attributes

4.5.2.1.1.1 Is input Binary?

Specifies whether the input received on the input port is binary.

• yes -

Writes the data as bytes into the target file.

• no -

Writes text to the specified target file in an unstructured fashion.

Note: The Output message sent to the output port depends on the configuration
provided here. When set to yes, it hides the property Output Mode.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 635

4.5.2.1.1.2 Compute Paths relative to Directory

The path of the directory relative to which the paths of Target Directory, Working Directory,
and Error Directory are computed. By default, this points to the FIORANO_HOME directory. If
the paths specified for Target/Working/Error Directories are not absolute, their paths are
calculated relative to the directory specified here.

Note: If the path specified for Target Directory/Working Directory/Error Directory is absolute,
the path specified for Compute Paths relative to Directory will not be used in the computation
of the directory paths.

4.5.2.1.1.3 Is Configured for Different Machine?

Specifies whether the Peer Server on which the component is to be launched and Fiorano
Studio are running on the same machine or on different machines. This helps the component
to determine the type of dialog to be shown while providing the paths of Source Directory,
Working Directory, and Error Directory. When both the Peer Servers and the Fiorano Studio is
running on the same machine, the paths to the above specified directories can be chosen from
a file dialog with the directory structure of the current machine as shown in Figure 2.
Otherwise, a text editor will be shown where the paths of Source/Working/Error directories
need to be typed in as shown in Figure 3.

• yes -

If the Peer Server on which the component is to be launched and Fiorano Studio are
running on different machines.

• no -

If the Peer Server and Fiorano Studio are on the same machine.

When this property is set to no, paths of directories can be chosen from the file dialog.
When the property is set to yes, the paths of directories should be manually specified
in the Text Editor as shown in Figure 2 and Figure 3.

Figure 3: Choosing directory path using File Dialog

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 636

Figure 4: Specifying directory path using Text Editor

4.5.2.1.1.4 File name

The name of the file to which the input data has to be written is specified here. If the file with
this name does not exist, a new file is created.

Note:

• If the property Use file details from message headers is set to Yes, then this name
would be used only if the FileName property is not present in the header of the
incoming message.

• When no file name is specified both in the CPS and the message header, FileWriter
throws an exception.

4.5.2.1.1.5 Use file details from message headers

Specify if the file details are to be taken from the header of the input message.

• yes -

The name of the target file would be the value of the header property FileName
present on the input message and the target directory would be the value of the
header property directory.

• no -

When the property is set to no, the value specified for the CPS property File name is
used.

Note: If Use file details from message headers is yes and if the property FileName
is not found in the message headers, the File name from the CPS is used. Similarly,
the directory specified in the CPS (Target Directory) is used as the target directory if
the property directory is not found in the message headers.

4.5.2.1.1.6 Target Directory

The path of the directory where the target file (with the data received on the input port) is
created. An absolute path of the target directory or a path relative to the directory specified in
Compute Paths relative to Directory can be specified here. While specifying a directory as
the Target Directory, make sure that you have permissions to create/modify files present in
this directory.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 637

If Is configured for different machine? is set to no, clicking the ellipses button will open
a file dialog, as shown in Figure 21, where the directory can be chosen from the file system.
Otherwise a text editor pops up where the path of the directory needs to be specified as
shown in Figure 22.

Note:

• If this folder does not exist, FileWriter creates it while processing the input message.

• If the property Use file details from message headers is set to yes, the directory
specified here would be used only if the directory property is not present in the
incoming message headers. FileWriter throws an exception if no directory is specified
both in the CPS and in the message headers.

4.5.2.1.1.7 Append timestamp?

Specifies whether a timestamp is to be appended to the name of the target file.

Note: When Is input binary? is set to No, this property appears only when Output mode is
set to New file for each message.

4.5.2.1.1.8 Timestamp format

Specify the format in which the timestamp is to be appended to the name of the target file.
Figure 23 shows the descriptions for the symbols that could be used in the Timestamp format.

Figure 5: Symbols used in Timestamp format.

Example: If Test.txt is the filename to which the data is to be written, the target file created
could be Test_02042008_183950765.txt when the default format (ddMMyyyy_HHmmssSSS) is
used.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 638

Note: This property is visible only when Append timestamp? is set to Yes.

4.5.2.1.1.9 Append Counter?

• yes -

Appends a counter to the name of each file processed by the FileWriter in addition to
the timestamp. The name of the file would look like <filename>_<time
stamp>_<counter>. Appending counter to file names ensures that no two files created
can have same name.

• no -

No counter is appended to the target file processed by the component FileWriter.

Example: If Test.txt is the filename to which the data is to be written, the target file
created could be Test_02042008_183950765_0.txt when Append Counter? is set to
yes.

Note: This property is visible only when Append timestamp? is set to yes.

4.5.2.1.1.10 Output Mode

Specify the way in which the output is to be created with the received data. Figure 5 shows
the output modes that can be used.

Note: This property is visible only when Is input Binary? is set to No.

Figure 6: Output Mode

• New file for each message

This option tells the FileWriter to create a new file for each input message that has
been processed. When this output mode is being used, timestamp and counter can be
appended to the filename using the properties Append timestamp? and Append
counter?. The Append timestamp? option will be visible only when this option is
selected as the Output Mode.

Note: If the same File name is specified for two different input messages and no time
stamp or counter is appended, the existing file is overwritten.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 639

• Append and close on timeout

This output mode is used for appending the content of all messages received till
timeout, to a single file. During this time interval, the file is present in Working
directory. When the timeout occurs, the file is closed and is moved to Target directory.
Selecting this option will show the property File Timeout (min) which can be used to
set the timeout. The property File Timeout is visible only when Output Mode is set to
Append and close on timeout.

Note:

• Only one file holds the content of all messages received during the configured
time interval. The name of this file would be the value specified for the Header
property FileName on the first message received in this time interval, if Use
file details from message header? is set to yes. If not, the file name would
be the value of the property File Name specified in CPS.

• If, for any reason, the component is stopped/relaunched before the specified
timeout, further messages will be processed into a new file.

• Append and close on event

This output mode is used for appending the content of all received messages to a
single file until CLOSE_EVENT occurs. When a message with the header property
CLOSE_EVENT set to true is received, the content of this message is appended to the
file, the file is closed and is moved from Working directory to Target directory.

Note:

 The file will continue to be in the working directory till it receives a closing
event.

 Only one file holds the content of all messages received until CLOSE_EVENT
occurs. The name of this file would be the value specified for the Header
property FileName on the first message received, if Use file details from
message header? is set to yes. Otherwise, the file name would be the value
of File Name specified in CPS.

• Do not write to file but send to output

The received data is sent to the output port instead of writing into a file. Figure 6 and
Figure 7 show the snapshots of the text and binary data sent to output port.

Note: If Is Input Binary? has to be set to yes for treating the input as binary.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 640

Figure 7: Text data received on output port.

Figure 8: Binary data received on output port.

Note: Selecting Do not write to file but send to output will hide the property Return
data on Output? Since, the output will definitely be sent to the output.

• Append if exists

If the file to which the data is to be written already exists, data is appended to the
content in the existing file. The file being processed will be moved to the Working
directory and content received in the input message will be appended to the existing
file until FileWriter receives a message with a property COMPLETE set to true. (JMS
function setStringProperty() can be used to set the value of a JMS property on a
message).

Note: Until FileWriter receives a message with this property COMPLETE set to true, it
keeps the file in Working directory.

4.5.2.1.1.11 File Timeout (min)

The time for which the component has to wait before closing and moving the file from Working
directory to the Target directory is specified using this property. This is visible only when
Append and close on timeout is selected as the Output Mode.

Note: File timeout cannot be a fraction. Hence, the minimum timeout that can be specified is
1 minute.

4.5.2.1.1.12 File Encoding

The encoding to be used while writing the file. The following encodings can be used. Figure 8
shows all the encodings that can be used.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 641

Figure 9: Different types of File Encoding

• ASCII -

A coding standard used to represent plain text. It is based on the order of English
Alphabet

• Cp1252 -

 This is a character encoding of the Latin alphabet.

• UTF8 -

 A variable-length character encoding for Unicode.

• UTF-16 -

 This is a variable-length character encoding for Unicode. The encoding form maps
each character to a sequence of 16-bit words.

• ISO8859_1 -

ISO 8859-1, more formally cited as ISO/IEC 8859-1 is part 1 of ISO/IEC 8859, a
standard character encoding of the Latin alphabet.

• EUC_KR

• EUC_JP

• EUC_CN

• EUC_TW

EUC_KR, EUC_JP, EUC_CN, EUC_TW are multi-byte character encoding systems used
for Korean, Japanese, Simplified Chinese, and Traditional Chinese languages
respectively.

4.5.2.1.1.13 Working directory

The path of the directory which should hold the files during intermediate processing. Either an
absolute path or a path relative to the directory specified in the Compute Paths relative to
Directory can be provided.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 642

If Is configured for different machine? is set to no, clicking the ellipses button will open
a file dialog, as shown in Figure 2, where the directory can be chosen from the file system.
Otherwise, a text editor pops up where the path of the directory needs to be typed in. Shown
in Figure 3.

Note:

• When Output mode is Append and close on timeout or Append and close on event,
Working directory holds the files until the timeout or CLOSE_EVENT occurs.

• If this directory does not exist, FileWriter creates it while processing the input
message.

• FileWriter requires write permissions on Working and Error directories.

4.5.2.1.1.14 Error directory

Path of the directory which should hold the files for which the processing has not been
successful.

Note:

• Either an absolute path or a path relative to the directory specified in the Compute
Paths relative to Directory can be provided.

• If this directory does not exist, FileWriter creates it while processing the input
message.

• For any file, when the processing is successfully finished, FileWriter moves the file
from Working directory to Target directory. If the processing is not successful, the file
gets retained in the Working directory itself. When FileWriter receives data which is to
be written to the file that already exists in the Working directory, FileWriter moves the
existing file in the Working directory to Error directory and then creates a new file with
the input data. Every file that moves to the Error directory will have appended to its
name, the time (in milliseconds) at which it is moved to the Error directory.

• FileWriter requires write permissions on Working and Error Directories.

4.5.2.1.1.15 PostProcessing Command

Script or a Command that is to be executed after the file processing is finished. A command
can be specified by simply typing it in the text area provided against this property. To provide
a script file, the file dialog which is shown by clicking the ellipses button can be used.

By default, the component appends the absolute path of the target file to this script/command
that is. the absolute path of the target file would be the first argument to this
script/command. More arguments for this command could be specified using the property
PostProcessing Arguments. The final command formed by the FileWriter would be
<PostProcessing Command> + <Absolute path of the target file> + <PostProcessing
Arguments>.

4.5.2.1.1.16 PostProcessing Arguments

Arguments that are passed to postprocessing script or command.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 643

4.5.2.2 Sample Scenario

Copying all the files present in Error directory to a backup location after the file is processed.

Solution:

A batch file copyerrors.bat with content copy C:\FileWriter\ErrorDir %2 is written and is placed
in C:\. The path of this batch file is specified for the property PostProcessing Command.
The backup location (C:\ProcessingFailures) is specified as the value for PostProcessing
Arguments.

Let C:\FileWriter\TargetDir\test.txt be the target file. With this configuration, the command
formed by FileReader would be C:\copyerrors.bat C:\FileWriter\TargetDir\test.txt
C:\ProcessingFailures. The copy command executed finally would be copy
C:\FileWriter\ErrorDir C:\ProcessingFailures which moves all the files in C:\FileWriter\ErrorDir
to the backup location C:\ProcessingFailures.

Return data on Output?

Determines if the data written to the file is to be sent onto the output port instead of sending
out an XML message containing the details of the file to which the content has been written.
Figure 6 and Figure 7 show sample views of the text and binary data sent on the output port.
As shown in the figures, setting this property to Yes will send the data in the output message.
However, the file details can still be fetched from the message headers of the output message.
Refer Table 1 for the description of header properties.

Note: This property is not visible when Output mode is set to Don’t write to file but send to
output.

Header Properties

Table 1 shows the descriptions of header properties set by the component on the output
message when binary/flat content is processed.

Type of data
received on input
port

Header Property Description

FileName Name of the file to which the data is being
written.

FilePath Path of the directory which holds the
destination file.

FullName Absolute path of the destination file. For a
binary file, this property appears only on the
message which represents the last chunk of the
file.

Flat/Binary

Size Determines the final size of the destination file.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 644

Type of data
received on input
port

Header Property Description

ReadAccess/
WriteAccess

Determines if the destination file is
readable/writable. For a binary file, these
properties appear only on the message which
represents the last chunk of the file.

START_EVENT Value of the header property START_EVENT
present on the input message to the
component. An input message with this
property set indicates that this is the first
message whose content is to be written to the
file represented by the property FileName.

RECORD_INDEX Value of the header property RECORD_INDEX
present on the input message to the
component. A value ‘n’ for this property
indicates that this is the nth message whose
content is to be appended to the file
represented by the property FileName

CLOSE_EVENT Value of the header property CLOSE_EVENT
present on the input message to the
component. An input message with this
property set indicates that this is the last
message whose content is to be appended to
the file represented by the property FileName.

Flat Type File/Directory

NEW Value of the header property NEW present on
the input message to the component. An input
message with this property set to true
indicates that this message holds the first
chunk of data to be written to the file
represented by the property FileName

Binary

COMPLETE Value of the header property COMPLETE
present on the input message to the
component. An input message with this
property set to true indicates that this
message holds the last chunk of data to be
appended to the file represented by the
property FileName

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 645

Type of data
received on input
port

Header Property Description

START_INDEX Value of the header property START_INDEX
present on the input message to the
component. This value represents the offset of
first byte of the chunk which has been
currently written to the destination file.

END_INDEX Value of the header property END_INDEX
present on the input message to the
component. This value represents the offset of
last byte of the chunk which has been
currently written to the destination file.

Table 1: Header Properties

4.5.2.3 Input and Output

4.5.2.3.1 Input

No schema is set on the input port. If any XML message has to be written into a file then the
XML message is directly sent as input message.

4.5.2.3.2 Output

When a file is written successfully, FileWriter sends out the file information onto the output
port. Figure 9 shows the schema of the output XML message. Table 2 shows the description of
the schema elements.

Figure 10: Schema on the output port

Schema Element Description

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 646

Schema Element Description

FullName Path of the file to which the data has been written

FileName Name of the file to which the data has been written

FilePath Path of the directory which holds the output file

Type The type of output

ReadAccess Specifies if the output file has read access

WriteAccess Specifies if the output file has write access

Size Size of the output file in bytes

Table 2: Description of Output schema elements

4.5.2.4 Testing the Interaction Configurations

Interaction configurations can be tested from the CPS by clicking the Test button. Figure 10
and Figure 11 shows the sample input and the corresponding output message respectively.

Figure 11: Sample input

Figure 12: Output generated for input shown in Figure 10.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 647

4.5.2.5 Functional Demonstration

4.5.2.5.1 Scenario 1

Writing the input message into to a file and displaying the response contents.

Configure the FileWriter as shown in Figure 12.

Figure 13: Sample Configuration of FileWriter

Use feeder and display component to send sample input and check the response.

Figure 14: Demonstrating scenario 1 with sample input and output

Input Message

Input Text

Output Message

<?xml version="1.0" encoding="UTF-8"?>

<ns1:Result xmlns:ns1="http://www.fiorano.com/fesb/activity/FileWriter1">

 <ns1:FileInfo>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 648

 <FullName>/home/geetha/backup/Target/out_10032009_142102262_0.txt</FullName>

 <FileName>out_10032009_142102262_0.txt</FileName>

 <FilePath>/home/geetha/backup/Target</FilePath>

 <Type>File</Type>

 <ReadAccess>true</ReadAccess>

 <WriteAccess>true</WriteAccess>

 <Size>10</Size>

 </ns1:FileInfo>

</ns1:Result>

4.5.2.6 Use Case Scenario

In a revenue control packet scenario if an error occurs while parsing the transaction data,
error message is written to file.

Figure 15: Revenue Control Packet Scenario.

The Event Process demonstrating this scenario is bundled with the installer.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 649

4.5.3 File Transmitter

The FileTransmitter component reads files from the file system and sends their contents to the
output port. Data from the source file is read as bytes and is sent to the output port as
chunks. The component provides flexible monitoring capabilities and ensures reliable data
transfer.

Note: FileTransmitter and FileReceiver components work together as a unit.These components
should not be decoupled.

4.5.3.1 Configuration and Testing

The Configuration property sheet of File Transmitter is shown in Figure 4.262.

Figure 4.262: Sample FileTransmitter Configuration

The table below provides description for the properties in the CPS.

Property Description

Chunk size Number of bytes of the source file to be sent in each
packet.

Source Directory The directory from where the FileTransmitter picks the
files to be transmitted.

Start timeout Transmitter sends a Start packet to know the existence of
receiver(s). This timeout is the time (in milliseconds) to
wait before resending a Start packet.

Packets per update Number of packets to be sent before saving the transfer
state to disk.

Status on Percentage Increase Maximum increase in percentage completion before the
FileTransmitter sends another status report.

Status on Packets Transmitted
Count

Maximum increase in the number of chunks sent before
the FileTransmitter sends another status report.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 650

Property Description

Status on Delay Interval Maximum delay, in milliseconds, before the
FileTransmitter sends another status report.

The configuration can be validated using the Validate button. Note that this button doesn’t
check the existence of the source directory. A sample result of the Validate operation is
shown in Figure 4.263.

Figure 4.263: Validating the configuration

Input Ports

• Command - Accepts the commands.

• Acknowledgement - Receives acknowledgements from the connected FileReceiver
component.

Output Ports

• Data – Sends file data

• Status – Sends the status of file(s) being transmitted.

Commands to FileTransmitter

Send, Stop, Pause, Resume

1. Send

Syntax:

Send <sourceFileName> [o/O] [DestinationDirectory]

Notes:

1. [o/O] represents that the file should be overwritten.

2. Overwrite bit and Destination directory are optional. Absence of Destination
directory puts the file in the default destination directory configured in
FileReceiver.

3. In case a Transmitter is transmitting files to a Receiver present on a different type
of Operating system, specifying an absolute path for the DestinationDirectory may
not work. In such situations, relative path names should be specified (which is
appended to the Destination directory configured in Receiver).

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 651

Examples:

Send Sample.txt o destDir\

Send Sample1.txt O destDir\Sample2.txt

Send Sample1.txt destDir\subDir\Sample2.txt

2. Stop

Syntax:

Stop <sourceFileName>

Note: Aborts the transfer of the file specified and sends a kill packet to the connected File
receiver which in turn deletes the file being transfered.

Example:

Stop Sample1.txt

3. Pause

Syntax:

Pause

Note: Puts the FileTransmitter into the paused state, which suspends file transfers until
the Resume command is entered.

Example:

Pause

4. Resume

Syntax:

Resume

Note: Take the FileTransmitter out of the paused state, the file transfers resumes.

Example:

Resume

5. Status

Syntax:

Status

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 652

Note: This command sends out:

a. The state of the FileTransmitter (Paused or Running).

b. Names of files for which the transfer has to be resumed (to send the missing
packets).

c. Names of files that are yet to be transmitted.

4.5.3.2 Functional Demonstration

Figure 4.264 shows the event process where a FileTransmitter accepts commands from the
Feeder and transmits the files to FileReceiver upon request.

Figure 4.264: Event process showing the File Transfer components

4.5.3.2.1 Scenario 1

Transmitting a file.

Sample Input

The Figure 4.265 shows the sample input from the Feeder.

Figure 4.265: Sample input from the Feeder

Sample Output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 653

The Figure 4.266 shows the status messages sent by the FileTransmitter component.

Figure 4.266: Status messages sent by the FileTransmitter component

4.5.3.2.2 Scenario 2

Requesting a report on the current state of FileTransmitter. In this scenario, 1000 send
requests are being sent as shown below and then a Status command is sent as shown in the
Sample Input to know the files which need data to be resent, the files that are yet to be sent
and the current state of transfer (paused/in progress).

Figure 4.267: Information dialog box

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 654

Sample Input

Figure 4.268: Sample input

Sample Output

Figure 4.269: Sample output

4.5.3.3 Useful Tips
1. Make sure that the three properties Status on Percentage Increase, Status on Packets

Transmitted Count, and Status on Delay Interval are configured depending on the
requirement. If all the three are set to small values, the component sends many status
messages.

2. If file transfer is across internet, the property Start timeout needs to be tuned
appropriately to a higher value in order to avoid FileTransmitter sending multiple Start
packets unnecessarily.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 655

4.5.4 File Receiver

The FileReceiver component writes the data received on its input port to the output file
specified by the user.The component provides flexible monitoring capabilities and robust
acknowledgement mechanism.

Note: FileTransmitter and FileReceiver components work together as a unit. These
components should not be decoupled.

4.5.4.1 Configuration and Testing

The Configuration property sheet of File Receiver is shown in Figure 4.270.

Figure 4.270: Sample FileReceiver Configuration

The table below provides description for the properties in the CPS.

Property Description

Destination Directory Directory where the files being received are to be put by default (in
case the ‘Send’ command doesn’t specify the destination directory).
Relative destination path names specified in the ‘Send’ command
would be evaluated under this directory.

Abort on restart ‘Yes’ aborts all file transfers in progress when the component
restarts.

Restart timeout Time (in milliseconds) to wait before resending the receipt status of a
particular file to the Transmitter.

Abort timeout Time (in milliseconds) to wait before sending an Abort packet to the
Transmitter to abort transfer of a particular file.

Number of packets to
receive before
acknowledging

Number of packets to receive before sending the chunk receipt status
to the corresponding Transmitter.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 656

Property Description

Status on Percentage
Increase

Maximum increase in percentage completion before the FileReceiver
sends another status report.

Status on Packets
Received Count

Maximum increase in the number of chunks received before the
FileReceiver sends another status report.

Status on Delay
Interval

Maximum delay, in milliseconds, before the FileReceiver sends
another status report.

The configuration can be validated using the ‘Validate’ button.Note that this button doesn’t
check the existence of the destination directory. A sample result of the ‘Validate’ operation is
shown in Figure 4.271.

Figure 4.271: Validating the configuration

Input Ports:

Data – Receives file data.

Output Ports:

Status – Sends the status of file(s) being received.

Acknowledgement – Sends acknowledgements to the File Transmitter(s).

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 657

4.5.4.2 Functional Demonstration

Figure 4.272 shows the event process where a FileReceiver receives files transmitted by
FileTransmitter.

Figure 4.272: Event process showing the File Transfer components

4.5.4.2.1 Scenario 1

FileReceiver receiving a file transmitted by the FileTransmitter.

Sample Input

The below shown input is sent to the FileTransmitter from the Feeder.

Figure 4.273: Input from Feeeder component

Sample Output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 658

The below shown figure shows the status messages sent by the FileReceiver component.

Figure 4.274: Status messge from FileReceiver component

4.5.4.3 Useful Tips
• Make sure that the three properties Status on Percentage Increase, Status on Packets

Transmitted Count, and Status on Delay Interval are configured depending on the
requirement. If all the three are set to small values, the component sends many status
messages.

• If file transfer is across internet, the property Restart timeout needs to be tuned
appropriately to a higher value in order to avoid FileReceiver sending additional
acknowledgements unnecessarily.

4.6 Flow
The Flow category consists of components like Aggregator, CBR, Cache, DistributionService,
Join, Sleep, Timer, WorkList, WorkListManager, XMLSplitter, and XMLVerification. The
following section describes each component.

4.6.1 Aggregator

This component collects and aggregates messages received on its IN_PORT based on a
specified Completeness Condition. The collected messages are then forwarded as an
aggregated bundle of messages to a component connected to its OUT_PORT.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 659

The Aggregator is a special message filter that receives a stream of messages and identifies
the messages that are correlated. Once a complete set of messages have been received, the
Aggregator collects information from each of these message and publishes a single,
aggregated message to the output channel for further processing.

The Aggregator is a stateful component unlike other simple routing components like Content
Based Router (CBR) which are generally stateless. Stateless components process incoming
messages one by one and are not required to maintain any information between messages.

The component also has an option to persist the message into a RDBMS.

Note: The component ignores the non-XML messages (like text messages) send to its input
port. The input is expected to be a valid XML message.

4.6.1.1 Configuration and Testing

The configuration of Aggregator is defined as shown in Figure 1.

Figure 4.275: Default Configuration of Aggregator

4.6.1.1.1 Attributes

4.6.1.1.1.1 Completeness Condition

Aggregator starts aggregating the received messages when the completeness condition is
satisfied and sends the aggregated message on to the output port. Completeness condition
can be configured to one of the following values:

• Timeout with Override

Messages are aggregated after a specified Time out (ms) or after configured number of
messages as specified by Completeness Message Count are received, which ever
happens earlier.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 660

Example 1: If Time out (ms) is 5000 ms and Completeness Message Count is 3,
aggregator waits for 5000 milliseconds before aggregating. However, if 3 messages are
received before 5000 milliseconds, then it will immediately aggregate them and send out.
Similarly, if only 2 messages are received in 5000 ms then it aggregates those 2 messages
and send out.

Example 2: When messages with different correlation IDs are received on the input port of
the component and Correlation id is the condition specified for the property Group
Message based on, the following procedure is followed to aggregate those messages.

Let Mn(Cn)@Nsecs denote “nth Message with Correlation ID C has a value n arriving at
Nth Second”

and aggregator is configured as Aggregate after time out with 25 seconds based on
correlation ID.

M1(C1) @0s, M2C2@10s, M3C1@20s, M4C2@30s, M5C1@40s are received on input port
of Aggregator.

@0 seconds, M1 is received, timer T1 is set for 25s for correlation ID 1.

@10 seconds, M2 is received with correlation ID 2, a new timer T2 starts now for 25s for
correlation ID 2.

@20 seconds, M3 is received, since 25s have not passed after M1 (which has same
correlation ID as M3) is received, it is stored.

@25 seconds, timer for correlation ID 1(T1) goes off and messages M1 and M3 are
aggregated and sent out without waiting for M5.

@30 seconds, M4 is received and stored along with M2 since, they have same correlation
ID.

@35 seconds, T2 times out (25 seconds after M2 has arrived) M2 and M4 are aggregated
and sent out.

• Timeout

Messages belonging to the same group are aggregated after time specified by the property
Time out (ms). The grouping is done based on the property Group Message based on.

• Wait for 'N' Messages

Messages belonging to the same group are aggregated after receiving number of
messages as specified by property Completeness Message Count. The grouping is done
based on the property Group Message based on.

• Dynamic Number of Messages

Number of messages to be aggregated is dynamic (that is, changes with time during the
lifespan of the business application). This number depends on properties Aggregation
Condition and Completeness Message Xpath/Property Name containing
completeness condition.

• Timeout with Dynamic number of messages

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 661

Messages are aggregated after a time specified by property Time out (ms) or after
dynamically decided number of messages are received, which ever happens earlier. This
number depends on properties Aggregation Condition and Completeness Message
XPath/Property Name containing completeness condition.

4.6.1.1.1.2 Timeout (ms)

Time (in milliseconds) for which the Aggregator waits, before it aggregates the messages in
Cache. It should not be set to '0 (zero). This property is visible when we set Completeness
Condition to Timeout or Timeout with Dynamic number of messages.

Completeness Message Count

This property specifies the number of messages satisfying the grouping condition after which
messages should be aggregated. Default value 0 (zero) indicates infinite number of messages.
This property is visible only when we set Completeness Condition to Timeout with Override
or Wait for ‘N’ Messages.

Apply completeness on all messages

• No

If a message with a particular correlation ID satisfies the completeness condition then
the cached messages having the same correlation ID will be aggregated and sent out.

• Yes

If a message with a particular correlation ID satisfies the completeness condition then
the cached messages, irrespective of the correlation ID will be aggregated and
grouped based on correlation ID and sent out. Separate output will be sent for each
correlation ID.

Example:

Let Ma(Cn) denote message with Correlation ID(C) value n and Message XPath value as a
and Aggregator is configured to the Completeness XPath value as X.

Ma(C1), Mb(C2), Mb(C1), Mc(C2), Mc(C3), MX(C1), MX(C2), MX(C3) are sent to the input
port of the Aggregator.

• If Apply completeness on all messages is set to No

After receiving MX(C1) message (which satisfies the completeness condition), the
messages Ma(C1), Mb(C1) and MX(C1) which have same correlation ID(1) will be
aggregated and sent out. After receiving MX(C2) the messages Mb(C2), Mc(C2) and
MX(C2) which have same correlation ID(2) will be aggregated and sent out. After
receiving MX(C3), the messages Mc(C3) and MX(C3) will be aggregated and sent out.

• If Apply completeness on all messages is set to Yes

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 662

After receiving MX(C1) message which has the completeness xpath value X, then the
messages Ma(C1), Mb(C1) and MX(C1) which have same correlation ID(1) will be
aggregated and sent out. Now the cached messages Mb(C2), Mc(C2), Mc(C3) will
also be aggregated based on correlation ID and sent out. Mb(C2) and Mc(C2) will be
aggregated and sent out in a separate output. Mc(C3) will be sent in a separate
output. After receiving MX(C2) which satisfies the completeness condition will be send
out without caching. After receiving MX(C3) which satisfies the completeness condition
will be send out without caching.

Completeness criteria source

This property determines criteria on which the completeness condition has to be applied. This
property will be visible and considered when the Completeness Condition set to Dynamic
Number of Messages or Timeout with Dynamic number of messages.

• Input XML Message

Aggregator evaluates the Xpath on the incoming XML message to determine the dynamic
number of messages or to check the completeness condition. The Xpath can be provided
in the property Completeness Message Xpath.

• Event Process Context

Aggregator evaluates the Xpath on the Application Context of an incoming XML message
to determine the dynamic number of messages or to check the completeness condition.
The Xpath can be provided in the property Completeness Message Xpath.

• Document Header Property

Aggregator checks the value of the header of the input message to determine the dynamic
number of messages or to check the completeness condition. The Header name can be
provided in the property Property Name containing Completeness Condition.

Aggregation Condition

This property is visible when the Completeness Condition is set to Dynamic Number of
Messages or Timeout with Dynamic number of messages. Along with Completeness criteria
source, this property is used to compute the dynamic number of messages to be aggregated.

• Aggregate till count of messages

Messages are aggregated upto dynamically decided number of messages satisfying
grouping condition. The number of messages can be determined by evaluating the XPath
on completeness criteria source (Input XML Message/Event Process Context/ Document
Header Property) and checks if the cached messages are equal to the value determined, if
equal then the cached messages are grouped based on the grouping condition and sent
out.

Example: Let Completeness criteria source is set as Document Header Property and
Property Name containing Completeness Condition as No_of_Messages and Apply
completeness on all messages to No.

Let MHN(Cn) - Message with Correlation ID C has a value n and the header
No_of_Messages has value N.

MH3(C1), MH1(C1), MH3(C2), MH3(C1), MH2(C2) are sent to the input port of Aggregator.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 663

When MH3(C1) is received the component caches the message and determines the
completeness message count from the header as 3 and the cached message count as 1.
Since, message count is not equal to 3 the Aggregator waits for another message. After
receiving MH3(C1) the number of cached messages which are having correlation ID value
1 will become 3 which is equal to the header value of the message, so the messages
MH3(C1), MH1(C1) and MH3(C1) will be aggregated and sent out. After receiving MH2(C2)
the number of cached messages which are having correlation id value 2 will become 2
which is equal to the header value of the message so the messages MH3(C2) and MH2(C2)
will be aggregated and sent out.

• Aggregate till matching condition

When this option is selected, then the completeness condition will be evaluated as follows:

The XPath which is provided in Completeness Message Xpath/Property Name
containing completeness condition will be evaluated on the Completeness Criteria
Source (Input XML Message/Event Process Context/ Document Header Property) and this
value is compared to the value provided in the property Matching String. If both are
equal then the Aggregator will aggregate the cached messages based on the grouping
condition.

Completeness Message Xpath

This property is visible when Completeness Condition is set to Dynamic Number of
Messages or Timeout with Dynamic number of messages. This launches an Xpath Editor which
can be used to configure the Xpath. If the completeness criteria source is Input XML
Message, then before configuring this property, input port XSD must be specified against
property Input Ports XSD to show the input XML structure in the XPath editor.

Property Name containing completeness condition

This property specifies the name of Header in the input message based on which Aggregator
will determine the dynamic number of messages or the completeness condition. This property
is visible when Completeness Condition is set to Dynamic Number of Messages or Timeout
with Dynamic number of messages and Document Header Property as Completeness
criteria source.

Matching String

This property specifies the string that is to be matched with the xpath/document header value.
All messages satisfying the grouping condition are aggregated till a message contains the
Completeness Message Xpath or Property Name containing completeness condition
value matching to the Matching string property value. This property is visible only when the
property Aggregation condition is set to Aggregator till matching condition.

4.6.1.1.1.3 Ignore Duplicate Messages

• Yes

Aggregator caches all the messages and doesn’t check if the message is duplicate or not.

• No

Aggregator checks for the duplicate messages and ignores the duplicate messages.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 664

The procedure to determine the duplicate message is as follows

• Checks whether the message has a duplicate Correlation ID. If yes, then computes value
for the property specified by Duplication Identifier.

• Now checks if a message already exists in the cache which have same value for Duplicate
Identifier. If so, the Aggregator treats this message as duplicate.

Duplication Identifier

This property determines a condition to identify duplicate documents that the Aggregator
should use while ignoring duplicate documents.

Document Identifier can be one of the following:

• Document Header Property

Messages having same value for the property (javax.jms.Message.getStringProperty()) are
treated as duplicates. The header name can be provided in the property Header Property
Name.

• Application Context

Messages containing same Application Context satisfying XPath defined against XPath
property are treated as duplicate messages. If the XPath is empty or null then messages
having same Application Context are treated as duplicates.

• Text Body

Messages containing same text satisfying XPath defined against XPath property are
treated as duplicates. If the XPath is empty or null then messages having same text are
treated as duplicates.

• Carry Forward Context

Messages having same value for REQUEST_ID Property of the Carry Forward Context
property are treated as duplicates.

• Senders Identification

Messages having same value for property ESBX__SYSTEM__
SOURCE_SERVICE_INSTANCE of the Carry Forward Context property are treated as
duplicates.

XPath

In case the Duplication Identifier is either Text Body/Application Context, the Text Body or
the Application Context is evaluated by using an Xpath. This property is visible only when the
Duplication Identifier is set to either Text Body or Application Context.

Header Property Name

In case the Duplication Identifier is set to Document Header Property, this value has to be
set. It could be one of the names of the message properties. The Duplication Identification is
done based on the value of this property.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 665

4.6.1.1.1.4 Name Space

This property specifies the namespace to be used for the root element that encapsulates all
aggregated messages. If Output Ports XSD is specified, this should be same as the target
namespace of the output port XSD. This value will be set automatically when output port
XSD is specified.

4.6.1.1.1.5 Group messages based on

This property determines a condition to identify similar documents that the Aggregator should
use while aggregating. Documents which have same correlation ID are aggregated when the
Completeness condition is satisfied.

Correlation ID can be one of the following:

• Document ID

Messages having same javax.jms.Message.getJMSMessageID() are aggregated together.

• Document Correlation ID

Messages having same javax.jms.Message.getJMSCorrelationID() are aggregated
together.

• Document Header Property

Messages having same value for the property (javax.jms.Message.getStringProperty())
specified are aggregated. The header name can be provided in the property Header
Property Name.

• Application Context

Messages containing Application Context satisfying XPath defined against XPath property
are aggregated together. If the XPath is empty or null then messages having same
Application Context are aggregated together.

• Text Body

Messages containing text satisfying XPath defined against XPath property are aggregated
together. If the XPath is empty or null then messages having same text are aggregated
together.

• Carry Forward Context

Messages having same value for REQUEST_ID Property of the Carry Forward Context
property are aggregated together.

• Workflow Instance ID

Messages having same value for Property ESBX__SYSTEM__ WORK_FLOW_INST_ID in
message are aggregated together. This can be used only when Document tracking is
enabled.

• None

Messages are grouped as they are received.

Xpath

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 666

This property specifies the XPath which will be evaluated on Application Context or Text Body
depends on the property Group messages based on for grouping. This will launch XPath
editor to configure the XPath. If the Group messages based on is Text Body, then before
configuring this property input port XSD has to be specified against the property Input Ports
XSD to show the input XML structure in the XPath editor.

 Header Property Name

The name of the property based on which grouping of messages is done. This property is
visible when the property Group messages based on is set to Document Header Property.

4.6.1.1.1.6 Ignore messages after completion

• Yes

Ignores messages containing correlation IDs which are already aggregated.

• No

Restarts aggregating messages containing correlation IDs which are already aggregated.

Example:

Aggregator is configured with completeness condition as Wait for ‘N’ messages and
Completeness Message Count to 3.

Let Mt1(C1) denote message with correlation ID C has a value 1 and text body t1.

Mt1(C1), Mt2(C1), Mt3(C1), Mt4(C1) are sent to the input port of Aggregator. Messages
Mt1(C1), Mt2(C1) and Mt3(C1) will be aggregated after receiving message Mt3(C1).

If the property Ignore messages after completion is set to Yes, then the message Mt4(C1)
will be ignored, since aggregation has been done on the correlation ID 1, and this message is
also having same correlation ID so the message will be ignored.

If the property Ignore messages after completion is set to No, then the message Mt4(C1)
will be cached, and the Aggregator waits for other messages.

4.6.1.1.1.7 Message persistence

• Yes

Persists messages which are not aggregated into a database. If the completeness
condition involves only the count of the messages, the old messages are transmitted along
with the new messages when the completeness condition is satisfied. In case of timeout, if
the timeout occurs when the aggregator is down, the old messages are transmitted when
the aggregator is restarted; else, they are transmitted after timeout. The timeout is
inclusive of the time when the aggregator was down. In case of persisting messages,
message properties are not stored.

Aggregator itself takes the responsibility of starting database and creating tables. It
internally uses Mckoi database.

• No

Maintains all messages that are not aggregated in an inMemory data structure.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 667

Table Name

The name of the table that stores messages received by the Aggregator. The value of this field
can be left as null. In such an instance, a table with tif_ as prefix is used. This property is
visible and the table is used when Message persistence property is set to Yes.

4.6.1.1.1.8 Input Ports XSD

The XSD of the expected input messages.

4.6.1.1.1.9 Output Ports XSD

The XSD for the aggregated output message.

4.6.1.1.1.10 Root Element Name

Root element name that encapsulate all aggregated messages. If Output Ports XSD is
specified, this should be same as the root element set in output port XSD. This value is set
automatically when output port XSD is specified.

4.6.1.1.1.11 Override Message Properties

• Yes

While aggregating messages, if the messages have a same property with different values,
the property value of the last message (having this property) in the aggregation is set as
the property value for the aggregated message.

• No

While aggregating messages, if the messages have a same property with different values,
the property value of the first message (having this property) in the aggregation is set as
the property value for the aggregated message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 668

4.6.1.2 Functional Demonstration

4.6.1.2.1 Scenario 1

Aggregating messages based on the timeout specified.

Configure the Aggregator as described in section Configuration and Testing component to send
sample input and to check the response respectively.

In the example below, only Input ports XSD is set to chat schema (can use Fetch from
Schema for this) in Aggregator Custom Property Sheet and all the remaining properties are
left as default.

Figure 4.276: Demonstrating Scenario 1

On timeout, the aggregated messages are sent from the output port to the Display
component.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 669

4.6.1.2.2 Scenario 2

This scenario explains the usage of Dynamic number of messages completeness condition.

Configure the Aggregator as described in section Configuration and Testing and use chat and
display component to send sample input and to check the response respectively.

In the example below, Aggregator is configured in such a way that if it receives a message
Fiorano at the input port, it aggregates and sends the messages to the output port. The Figure
3 shows the configuration.

Figure 4.277: Sample Configuration used in Scenario 2

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 670

Figure 4.278: Scenario demonstration with sample input and output

4.6.1.3 Useful Tips
• When using the persist option, the database is local to the machine on which the Peer

Server is running. In case of a Peer Server failover, the component creates a new
table and therefore messages cannot be recovered.

• When using header property for grouping messages, properties with names
like/starting with ESBX__SYSTEM__* cannot be used.

4.6.2 CBR

CBR (Content Based Routing) is used to route the incoming messages on to different
destinations based on the content of the messages.

The component creates a port for each of the XPath expressions specified and the messages
satisfying the particular XPath is sent onto the respective port. In addition to these ports an
output port OUT_FALSE is created and messages whose content does not satisfy any of the
XPath expressions will be sent out of this port. If more than one XPath condition is true, the
message is sent on all the ports for which the XPath condition evaluates to true.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 671

4.6.2.1 Configuration and Testing

The CBR component can be configured using its Custom Property Sheet wizard.

4.6.2.1.1 Schema

Figure 4.279: Provide schema

The schema of the XML content that is used for routing should be provided using the Schema
Editor in the Schema panel. The XML content that is used for routing is determined by
property Apply Xpath on Context in Routing Rules panel.

Refer to Schema Editor section in Common Component Configurations chapter for information
about Schema Editor shown in Figure 4.279.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 672

4.6.2.1.2 Namespaces

Figure 4.280: List of namespaces

List of namespace prefixes that are used in the XPath and the namespaces they represent are
provided in the Namespaces panel. The table in this panel is automatically populated with
namespaces defined in XML schema provided in Schema panel.

To remove unnecessary namespaces, select the row containing namespace and click the
Delete button.

To add a new namespace prefix and namespace, enter the details in the empty row and press
Enter key.

4.6.2.1.3 Routing Rules

Figure 4.281: XPath(s) to be evaluated on the input messages

XPaths based on which the routing is done can be configured in Routing Rules panel. XPath
editor can be used to configure XPaths. Click the ellipsis button in the XPath column to open
XPath Editor. Alternatively, a valid XPath expression can be typed directly in the table

An empty row is automatically added after closing the XPath Editor or after pressing Enter key
after the XPath is manually provided.

Refer to XPath Editor section in Common Configuration Configurations chapter for information
about XPath Editor shown in Figure 4.279.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 673

For each configured XPath expression, an output port is created with the name provided in
OutPort_Name column, messages satisfying the given XPath condition are routed onto this
port. Port names ON_EXCEPTION, OUT_FALSE and ON_TRANSACTION_FAIL are reserved and
cannot be set in OutPort_Name column.

Note:

• XPath in CBR should be configured to return a boolean value for routing messages.

• XPath can also contain simply the path of any element, then CBR checks for the existence
of the particular element in the input xml. If the input xml contains the element then it will
be routed to the corresponding output port of that XPath, if the input xml does not contain
the element then it will be routed to the output port OUT_FALSE.

• XPath can be valid JMS Message selectors. If the JMS Message selector is used the runtime
argument useFioranoCBR should be set to yes as shown in Figure 4.282.

Figure 4.282: Setting runtime argument 'useFioranoCBR'.

Figure 5: XPath processor properties in Routing Rules page

4.6.2.1.4 Processor

Specifies the processor used to evaluate XPath conditions. If the number of XPath conditions
are more (greater than 4), then XSLT processor is preferable for better performance. If the
XPath conditions are less then both processors will give equal performance. XPath processor is
preferable if the XPaths are complex. XSLT processor might not work for all XPaths.

• XPath

Uses Saxon based XPath evaluator to evaluate XPaths. Values in column XPath
should be valid XPath expressions. XPaths are validated if XPath processor is
selected. The validation will be done for some simple XPath conditions only. So, if
the XPath is validated, there is no guarantee that the XPath results a boolean
value.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 674

o Use XPath 1.0 – When this property is selected, XPath 1.0 is used for
evaluation. Otherwise, XPath 2.0 is used. This checkbox is visible only when
the Processor is selected as XPath.

o Apply XPath on Context – When this property is selected, the XPath is
evaluated on the Application Context of the input message. Otherwise, XPath
is evaluated on Body of the message.

When XPath is evaluated on Context of the message, no schema is set on the
ports of CBR. In case of evaluating text body of the message, schema
provided earlier in the configuration (if present) will be set on the ports.

Note: When this option is chosen, provide application context schema in the
schema panel.

• XSLT

Uses XSLT to evaluate condition. Values in column XPath can be any valid Boolean
condition in XSLT. There is no validation check on XPath conditions if we select
XSLT processor.

Note: While using XSLT processor, if XPath contains any functions having
namespace prefixes like saxon:parse(), then the appropriate prefix and
namespace URL pair should add in the Namespace panel. For example to use
saxon functions namespace, URL http://saxon.sf.net/ should add to prefix saxon in
the Namespace panel.

Example: For a value /ns1:Transaction/ns1:request/ns1:source = 'tserv' provided
in column XPath the following XSL is used.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ns1="http://www.incomm.com/transaction/2008-02"

xmlns:ns2="http://www.w3.org/2001/XMLSchema">

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match='/'>

<xsl:if test="/ns1:Transaction/ns1:request/ns1:source ='tserv'">TSERV,</xsl:if>

</xsl:template>

</xsl:stylesheet>

http://saxon.sf.net/

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 675

4.6.2.2 Functional Demonstration

4.6.2.2.1 Scenario 1

CBR is configured to filter the messages on the basis of employee age in the input message. It
is sent to one of the output ports depending on the XPath specified in the CBR.

Configure the CBR as described in Configuration and Testing section and use feeder and
display component to send sample input and check the response respectively.

Figure 4.283: Demonstrating Scenario 1 with sample input and output

Sample Input:

<ns1:Employee_Schema xmlns:ns1="http://www.fiorano.com/fesb/activity/XML2Text2">

 <ns1:Employee>

<ns1:EmployeeName>ashish</ns1:EmployeeName>

<ns1:EmployeeID>294</ns1:EmployeeID>

<ns1:EmployeeAge>22</ns1:EmployeeAge>

 </ns1:Employee>

</ns1:Employee_Schema>

Sample Output:

<ns1:Employee_Schema xmlns:ns1="http://www.fiorano.com/fesb/activity/XML2Text2">

 <ns1:Employee>

<ns1:EmployeeName>ashish</ns1:EmployeeName>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 676

<ns1:EmployeeID>294</ns1:EmployeeID>

<ns1:EmployeeAge>22</ns1:EmployeeAge>

 </ns1:Employee>

</ns1:Employee_Schema>

4.6.2.3 Use Case Scenario

In Purchasing System sample, a purchase request is sent by the user to a company through a
web based interface. The purchase order consists of three inputs namely REQUEST,
CREDENTIALS, and SYNC_PO_002. REQUEST is an identifier string for the request. The
request identifier is verified by a CBR (Content Based Router) component to be the correct one
for which this system is expected to service the request.

Figure 4.284: Purchasing System sample

4.6.2.4 Useful Tips

The order of the XPath conditions specified in the CPS does not matter.

The CBR component supports XPath version 1.0 and 2.0. The default is version 2.0. To use
version 1.0, please select the checkbox Use XPath 1.0 in the CPS.

To monitor time taken for executing each request, set log level for logger
com.fiorano.edbc.cbr.monitor to INFO.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 677

When runtime argument for this component, useFioranoCBR is set to yes, please make sure
that the XPaths provided in the configuration are valid JMS Message. More information on JMS
Message Selectors can be found in the documentation for Message interface in JMS APIs.
http://java.sun.com/products/jms/javadoc-102a/index.html.

To apply XPath on context check Apply XPath on Context in Routing rules panel and
provide Application context schema in the schema panel. In this case schema will not be set
on output ports.

4.6.3 Distribution Service

This component is used for distributing workload of N Jobs amongst M Workflow processors.
Typically this component is used before multiple instances of the same component and the
load balancing mechanism in the component is used to distribute the messages received by
this component. The component uses weighted round robin mechanism

Note: The number of ports configured for the component should be the number of instances
being used to share the load.

4.6.3.1 Configuration and Testing

The DistributionService component can be configured using its Custom Proper Sheet wizard.

http://java.sun.com/products/jms/javadoc-102a/index.html

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 678

Figure 4.283: Sample DistributionService configuration

Figure 4.284: Sample DistributionService configuration

4.6.3.2 Functional Demonstration

4.6.3.2.1 Scenario 1

Send multiple requests to DistributionService, each is displayed in separate display
components.

Configure the DistributionService as described in Configuration and Testing section and use
feeder and display component to send sample input and check the response respectively.

Figure 4.285: Demonstrating Scenario 1 with sample input and output

Sample Input:

Input Message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 679

Sample Output:

Output Message

4.6.4 Join

The Join component can be used to join two input XML structures using the Fiorano Mapper
into one output XML. This component has two input ports and three output ports. The two
input ports, IN_PORT1 and IN_PORT2 are used to input the two XML structures that have to
be joined. After the join operation is performed messages are sent on each of the output
ports.

• Message received on input IN_PORT1 is sent on output port OUT_PORT_IN1.

• Message received on input IN_PORT2 is sent on output port OUT_PORT_IN2.

• The result of the join operation is sent on OUT_PORT_RESULT.

When the component receives a message on one of the input ports, it checks if there are
messages that are received on the other port which are not already used in join operation.

• If there are no messages that are received on the other port and are not already used
in join operation, the message received is added to an internal queue. There is a
separate queue for each input port that holds messages until the join operation is
performed.

• If there are messages received on the other port which are not already used in the
join operation, then the first message is picked from the queue and the join operation
is performed.

4.6.4.1 Configuration and Testing

The Join component can be configured using its Custom Property Sheet as shown in figure 1.

Figure 1: Join configuration property sheet

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 680

4.6.4.1.1 Mappings

The mappings between input and output structures can be defined by clicking on the ellipsis
button against this property. Fiorano Mapper gets launched upon clicking the ellipsis as shown
in figure 2.

Figure 2: Configuring mappings using Mappe

XSLT engine for the join operation can be specified by this parameter. Join operation is
performed using a XSLT. The component can be configured to use a specific XSLT engine to
perform XSLT. Xalan (2.7.0) and Saxon (8.4) transformer implementations are bundled with
Fiorano environment for performing transformations. By default, the component uses Xalan.

• Xalan

Xalan implementation (org.apache.xalan.processor.TransformerFactoryImpl) is used to
perform transformation.

Note: Xalan (2.7.0) does not support XSLT 2.0

• Saxon

Saxon implementation (net.sf.saxon.TransformerFactoryImpl) is used to perform
transformation.

Note: Saxon implementation does not support custom functions.

• Other

This option should be used when a custom transformer implementation has to be
used.

Note: Selecting this option enables the property Transformer factory class Name
which can be used to provide the transformation factory implementation that should
be used.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 681

4.6.4.1.2 Transformer factory class Name

This property determines the fully qualified name of the class which should be used to perform
transformation when the property XSLT Engine is specified as Other. The class provided
should be an implementation of javax.xml.transform.TransformerFactory.

Resources (jar files) containing the java class specified against this property should be added
as resources to Join component.

4.6.4.1.3 Use context value from

This property determines the input port from which the value of the application context has to
be picked. This value is set on the joined message coming out of OUT_PORT_RESULT port.
One of IN_PORT1 or IN_PORT2 can be chosen.

4.6.4.1.4 Use properties and headers from

This property determines the input port from which the headers / properties have to be picked
up and set on the joined message coming out of OUT_PORT_RESULT port. If either
IN_PORT1 or IN_PORT2 is chosen, properties are fetched form the chosen port and
properties from the other port are discarded. If BOTH is chosen, properties from both the
ports are set on the joined message.

Note: When BOTH is selected, the property Prefer Properties and Headers from will be
enabled and if both input ports have any properties with same name, the values of
such properties are picked based on that property.

4.6.4.1.5 Prefer Properties and Headers from

When the property Use properties and headers from is set as BOTH and if there are
headers / properties with same name on both IN_PORT1and IN_PORT2 with different
values, the port from which the values of such headers / properties have to be
picked up and set on the joined message is determined by this property.

Note: This property is enabled when the property Use properties and headers from is set
as BOTH.

4.6.4.2 Testing

Join component is configured as shown in Figure 2 and the transformation can be tested from
Mapper using the Test XSL button.

Sample schema for input XML message 1

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

 <xs:element name="shiporder">

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 682

 <xs:complexType>

 <xs:sequence>

 <xs:element name="orderperson" type="xs:string"/>

 <xs:element name="shipto">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="address" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="item" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="note" type="xs:string"
minOccurs="0"/>

 <xs:element name="quantity"
type="xs:positiveInteger"/>

 <xs:element name="price" type="xs:decimal"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="orderid" type="xs:string" use="required"/>

 </xs:complexType>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 683

 </xs:element>

</xs:schema>

Figure 3: Sample Join input 1 message

Sample schema for input XML message 2

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.fiorano.com/fesb/activity/FileWriter1"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.fiorano.com/fesb/activity/FileWriter1">

 <xsd:complexType name="Result">

 <xsd:sequence>

 <xsd:element ref="FileInfo" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="Result" type="Result"/>

 <xsd:element name="FileInfo">

 <xsd:complexType>

 <xsd:sequence>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 684

 <xsd:element name="FullName" type="xsd:string"/>

 <xsd:element name="FileName" type="xsd:string"/>

 <xsd:element name="FilePath" type="xsd:string"/>

 <xsd:element name="Type" type="xsd:string"/>

 <xsd:element name="ReadAccess" type="xsd:string"/>

 <xsd:element name="WriteAccess" type="xsd:string"/>

 <xsd:element name="Size" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

Figure 4: Sample Join input 2 message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 685

Figure 5: Sample Join output message

4.6.4.3 Functional Demonstration

4.6.4.3.1 Scenario 1

Send two different messages for which mapping is configured in the Join component and
displaying the response message.

Configure the Join as described in Configuration and Testing section and use Feeders and
Display component to send sample input and check the response.

Figure 6: Demonstrating Scenario 1 with sample input and output

4.6.4.4 Sample Input

Input 1

<shiporder orderid="orderid">

 <orderperson>orderperson</orderperson>

 <shipto>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 686

 <name>Fiorano</name>

 <address>address</address>

 <city>city</city>

 <country>country</country>

 </shipto>

 <item>

 <title>title</title>

 <note>note</note>

 <quantity>60</quantity>

 <price>-162</price>

 </item>

</shiporder>

Input 2

<ns1:FileInfo xmlns:ns1="http://www.fiorano.com/fesb/activity/FileWriter1">

 <FullName>Software</FullName>

 <FileName>FileName</FileName>

 <FilePath>FilePath</FilePath>

 <Type>Type</Type>

 <ReadAccess>ReadAccess</ReadAccess>

 <WriteAccess>WriteAccess</WriteAccess>

 <Size>-84</Size>

</ns1:FileInfo>

Sample Output

<?xml version="1.0" encoding="UTF-8"?>

<shiporder xmlns:ns2="http://www.fiorano.com/fesb/activity/FileWriter1"
xmlns:ns1="http://www.w3.org/2001/XMLSchema">

 <shipto>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 687

 <name>Fiorano Software</name>

 </shipto>

</shiporder>

4.6.4.5 Useful Tips
• It is advised to configure the components connected to IN_PORT1, IN_PORT2 and

OUT_PORT_RESULT of the Join component before configuring Join component. This
allows join component to pick input and output structures appropriately. Input and
output structures can also be provided in the CPS of Join. But, to make sure there are
no schema mismatches after configuring all components, it is suggested to configure
the components connected to this component before Join is configured

• More than three input structures (including Application Context) and one output
structure cannot be added.

• Only after Join component receives at least one input message on each input port, it
will perform the join operation and sends message onto output ports. If ten messages
are received on the first input port and five on the second input port or vice versa,
then the join is performed five times.

4.6.5 Sleep

The Sleep component is used to induce a specified delay in the flow of execution of an event
process. The component holds the message in memory for the said amount of time and sends
it to the output port.

Note: If the property Sleep after Every Message is set to yes, then every message received
sleeps for the specified duration. If the property is set to no, the message will only sleep for
(specified interval – (current time – message received time))

4.6.5.1 Configuration

Sleep component has the following properties in its Custom Property Sheet.

Sleep Interval Time Unit - Specifies the unit in which the Sleep Interval time duration is
specified.

Sleep Interval - Specifies the time duration after which the flow of execution is allowed to
leave this component.

Sleep after Every Message - Specifies whether a sleep delay is to be induced after every
message is received.

Input/Output XSD - Specifies the XSD schema for the IN_PORT / OUT_PORT ports. If you
provide the XSD, it is only set on the ports so that it can be used during transformations. This
is not used by the component during execution.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 688

4.6.5.2 Functional Demonstration

4.6.5.2.1 Scenario 1

Simple flow demonstrating the basic functionality of Sleep.

Configure the Sleep as described in Configuration section and use feeder and display
component to send sample input and to check the response respectively.

The Sleep adapter is configured to sleep after every message for an interval of 60,000
milliseconds. Check the time of the messages in Feeder and Display components in the
attached screenshots.

Figure 4.291: Scenario demonstration with sample input and output

4.6.5.3 Useful Tips

If the property Sleep after Every Message is set to yes, then every message received sleeps
for the specified duration. If the property is set to no, the message only sleeps for specified
interval - (current time - message received time).

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 689

4.6.6 Timer

The Timer component is used to trigger sending of messages to a component connected to its
output ports. The date and the time at which this component needs to start sending messages
can be configured. The number of messages and the format of the message can also be
specified.

This component has no input ports, but 2 output ports:

 Message Port

 Timer Port

Timer component is capable of sending messages with the format specified in the Custom
Property Sheet to its Message port. Sending messages which contains the date and time to its
Timer Port. The component uses java.util.Timer class for scheduling.

Points to note

If the Timer component is configured for a start date and time which is in past when the
component starts, all messages which could have been sent had the component started at the
configured date and time, is sent immediately on startup. To avoid this, the component can be
configured to send the first message at the first interval which comes in the future of the time
when the component launched. The configuration parameter to check is Start execution from
next interval.

4.6.6.1 Configuration and Testing

4.6.6.1.1 Scheduler Configuration

The Scheduling information can be configured in Scheduler Configuration panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 690

Figure 4.292: Scheduler Configuration Panel

In this panel, the following parameters are configured:

Start Time – The Time at which the Timer has to start sending the messages. This can also
be configured for a future time or for the past time.

Interval between consecutive messages.

Number of messages to be sent.

Start Date.

4.6.6.1.2 Message Format

The output message format for the Message Port can be configured in this panel. Timer
supports plain text format and XML format messages.

If you select the message format as XML, then you need to provide sample XSD in this panel.

4.6.6.1.3 Message Content

This panel is used to generate the sample message which has to be sent by the Timer service.

If you configure to send the XML message in Message Format Panel, then you can generate
the message in XML by using the Generate Sample XML button.

If the timer is configured to send Plain Text message, then the content can be specified in the
text area.

4.6.6.2 Output Schema

The messages that are sent from the Timer Port have the following schema:

Schema Description

<Timer> Root element of the schema

 <time> The number of milliseconds since January 1, 1970

 <second> Seconds

 <minute> Minutes

 <hour> Hour

 <dayOfWeek> Day of the week(Eg: 1 for Sunday)

 <dayOfMonth> Day of month

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 691

 <weekOfMonth> Week of month

 <weekOfYear> Week of year

 <month> Month

 <year> Year

 <date> Date

4.6.6.3 Functional Demonstration

4.6.6.3.1 Scenario 1

Sending messages on its output ports when the timer clicks.

Configure the Timer as described in, Configuration section to send sample XML message to
its Message Port and Timer Port after every 10 seconds after the component launch.To display
components are connected to Timer output ports to receive the sample output.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 692

Figure 4.293: Scenario demonstration

4.6.6.4 Useful Tips

If the Timer component is configured for a start date and time which is in past when the
component starts, all messages which could have been sent had the component started at the
configured date and time, are be sent immediately on startup. To avoid this, the component
can be configured to send the first message at the first interval which comes in the future of
the time when the component launched. The configuration parameter to check is Start
execution from next interval.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 693

4.6.7 WorkList

The Work List component enables you to define manual intervention based business processes
to define rules to perform time-based or role-based escalation of designated tasks.

Every user can use the web interface to access the designated tasks and perform the action as
required and available based on the role.

Points to note

• To use the web interface, please start the ESB Web Container and access
http://localhost:1980/worklistexplorer.

• All WorkList components should be running on the same peer as the WorkListManager
component.

• Changing the Node Name at runtime for Worklist and Aggregator Components is not
supported. Unlike other components, Worklist and Aggregator components have state
information written to the local disk.Moving the Worklist (or Aggregator) from one
peer server to another one results in state data loss. In case of Worklist, not only the
data loss, the external application, that is, Worklist web application will not show work
items saved in the Worklist after the node change.

• To achieve high availability for Stateful components, configure the back-end data store
in clustered/HA relational database, like Oracle, DB2, and so on. Or deploy the
components on a Peer Server that is running in Shared HA mode.

• Character encoding of web pages can be changed in
%FIORANO_HOME%\esb\server\jetty\fes\webapps\worklistexplorer\WEB-
INF\web.xml. By default this value is set to UTF-8 in web.xml as shown in following
fragment of web.xml

 <filter>

 <filter-name>EncodingFilter</filter-name>

 <filter-class>worklistexplorer.EncodingFilter</filter-class>

 <init-param>

 <param-name>encoding</param-name>

 <param-value>UTF-8</param-value>

 </init-param>

 </filter>

4.6.8 WorkList Manager

The WorkListManager component is used to manage one or more instances of the WorkList
component. This component offers a web-based interface to enable you to track your set of
tasks as well as administer various task specific activities and escalate or re-assign them
based on individual requirements.

http://localhost:1980/worklistexplorer/

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 694

This is a non-configurable component and acts as the Manager of all WorkList components
part of an Event Process. An instance of this component is used in the WorkListManager
Sample Event Process.

Points to note

• To use the web interface, please start the ESB Web Container and access
http://localhost:1980/worklistexplorer.

• Running more than one instance of this component is not advisable.

• This component should be running on the same peer server where all the WorkList
components are running.

• Character encoding of web pages can be changed in
%FIORANO_HOME%\esb\server\jetty\fes\webapps\worklistexplorer\WEB-
INF\web.xml. By default this value is set to UTF-8 in web.xml as shown in following
fragment of web.xml

 <filter>

 <filter-name>EncodingFilter</filter-name>

 <filter-class>worklistexplorer.EncodingFilter</filter-class>

 <init-param>

 <param-name>encoding</param-name>

 <param-value>UTF-8</param-value>

 </init-param>

 </filter>

4.6.9 XMLSplitter

XMLSplitter can be used to split XML documents based on the configured XPath. This
component is useful when there are repeated elements in the documents that can be
processed by independently by subsequent components.

4.6.9.1 Configuration and Testing

The following attributes can be configured in the interaction configuration panel.

http://localhost:1980/worklistexplorer/

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 695

Figure 1: Interaction Configuration Properties

4.6.9.1.1 Attributes

4.6.9.1.1.1 Schema

The XSD of the input XML message has to be specified here. The XSD can be provided using
schema editor which opens up on clicking ellipsis button against this property. If the
schema has any namespaces then they will be automatically populated in the Namespaces
table shown in figure 2.

4.6.9.1.1.2 Namespaces

Namespace prefixes that are used instead of complete namespace in XPath expression can be
specified by clicking the ellipsis button against this property which opens a Namespaces
table as shown in the figure 2. The namespaces present in the input schema, if any, are
automatically populated in the table. If the user wish to provide XPaths manually and wish to
use namespaces which are not present in the schema provided, they can be added using the
namespaces table.

Figure2: Namespace Table

• Prefix

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 696

The prefix with which a given namespace is identified. Prefix fsoa is reserved.

• URI

The URI of the namespace.

Operations that can be performed in the namespace table:

• Add

Namespaces present in the schema provided against property Schema are populated
by default in the table. To use any namespaces that are not present in that schema,
this option can be used. When the add button is clicked, a new namespace will be
added with default prefix and URI. The columns are editable and thus an appropriate
value can be specified in place of the default values.

• Delete

Existing namespaces can be deleted from the table using this option. When
namespaces are fetched from connected components or some XSD, there is a
possibility that namespaces with same URI are added with different namespace prefix.
In such cases, redundant namespaces can be deleted. This will not affect the schemas
in which the namespaces are present.

• Delete all

Deletes all the namespaces in the table.

• Fetch

Fetches namespaces from the schemas present on ports of other components
connected to XMLSplitter component. Thus it is advisable to configure the connected
components completely before using this option.

• Load XSD

Loads namespaces from the schema which is provided in the text editor opened when
this button is clicked. This option can be used when there are XSDs whose
namespaces are required for configuration. One schema must be loaded a time. The
schemas are not stored in the component.

4.6.9.1.1.3 XPath

The XPath of the element based on which the split or group operation has to be performed is
configured here. Click the ellipsis button to open XPath editor. Choose an element/attribute
from the list displayed in the left side panel of XPath editor and drag it onto the easel on the
right side. The configured XPath expression must always evaluate an element or an
attribute. XPath expressions that evaluate to any other types are not valid.

Note: There is no validation check for the XPath provided at configuration time, so the user
has to configure XPath to return element.

4.6.9.1.1.4 Operation

The operation that has to be performed on the input XML message.

• Split

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 697

Splits the input XML at XPath defined and sends out output XMLs. The number of
output XMLs is equal to the number of times the element/attribute defined by the
property XPath is present in the input message.

'Processor' property is visible when this option is selected and 'Root Element Name'
and 'Root Element Namespace' are hidden.

Note: when the XPath is specified as an attribute, then the value of the attribute is
sent as the output message.

Example: If the input contains all the Employees details conforming to schema as
shown in figure 3 and if it is required to split individual Employee details into separate
messages then configure ‘XPath’ to ns1:Employee_Schema/ns1:Employee and select
‘Operation’ as Split. Refer to scenario 1 under Functional demonstration section.

Figure 3: Schema for Employees details

• Group

Splits the input XML at the element whose XPath is specified by the property XPath
and then regroups the split XMLs which have the same value for that element into a
single message. Thus the number of messages sent onto the output port depends on
number of unique values present in XML for the element whose XPath is specified by
the property XPath.

'Root Element Name' and 'Root Element Namespace' properties are visible when
this option is selected and 'Processor' property is hidden. XSLT Processor is used for
this operation.

Note: When an element is selected using property XPath then those elements having
same value will be grouped. If an attribute is selected as XPath then those elements
for which this attribute is defined and having same value for this attribute will be
grouped.

Example: If the input contains all the Employees details conforming to schema shown
in figure 4 and if it is required to group individual employee details which are in the
same group. (group information is stored in the attribute Group of Employee element),
then configure ‘XPath’ to ns1:Employee_Schema/ns1:Employee/@Group and choose
property ‘Operation’ as Group. Employee elements whose group attribute is same
will be combined into a single message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 698

Figure 4 Schema for Employees details with a group attribute

o Root Element Name: Root Element Name for the output XML(s). This property
will be visible when the Operation is selected as Group.

o Root Element NameSpace: Namespace for the root element in output XML(s).
If the default value is selected, then the root element namespace will be same
as the target namespace of the input XSD provided. This property will be
visible when the Operation is selected as Group.

4.6.9.1.1.5 Processor

The Processor to be used for splitting.

• Xpath

Uses XPath Processor for splitting.

• XSLT

Uses XSLT for splitting. When the ‘Operation’ is ‘Group’, XSLT processor will be used
for processing, so this property will not be visible in that case.

Note: Prefer XSLT for simple split Paths and XPath for complex paths. All kinds of split
paths may not be supported by XSLT.

4.6.9.1.1.6 Output Schema

Schema for the output message can be specified. Schema can be specified exclusively or can
be generated with the help of input schema and XPath by clicking Get schema based on
input and XPath button in the schema editor. This is not guaranteed to give a valid schema
always. Please verify when using this feature.

4.6.9.2 Sample Input and Output

The configuration can be tested by clicking the Test button in the interaction Configuration
panel.

Figure 5: Sample Input Message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 699

Figure 6: Response Generated for XPath /ns1:BookStore/ns1:Book/ns1:Author

4.6.9.3 Functional Demonstration

4.6.9.3.1 Scenario 1

Splitting the input XML with respect to an element.

Configure the XMLSplitter as shown in Figure 7.

Figure 7: configuration for scenario 1

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 700

Use feeder and display component to send sample input and to check the response
respectively. In the example given below, the split element selected is Author.

Figure 8: Scenario demonstration with sample input and output

4.6.9.3.2 Scenario 2

Grouping the input XML based on the XPATH provided.

Configure the XMLSplitter as described in Configuration and Testing section. The configuration
for this example is shown below. In the example given below, the xpath element selected is
Author.

Observe the two outputs shown in below figure

Figure 9: Configuration Properties panel

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 701

Figure 10: Sample input and output for Scenario 2.

4.6.9.4 Use Case Scenario

In the Bond Trading sample Event Process, XML splitter is used to split the Isin data into
individual Isin elements.

Figure 11: Sample use case scenario

The event process demonstrating this scenario is bundled with the installer.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 702

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.6.9.5 Useful Tips
• The output schema can be computed from the input schema and the XPath used to

split the XML document using the Get Schema based on Input and XPath
button in the schema editor for property OutputSchema. This is not guaranteed to
give a valid schema always. Please verify when using this feature.

• Prefer XSLT for simple split paths and XPath for complex paths. All kinds of split paths
may not be supported by XSLT.

• When component configuration sends multiple messages, messages contain the
following JMS properties to identify first and last messages.

o First document - START_EVENT=true

o All documents - RECORD_INDEX=<index of output message>

o Last document - CLOSE_EVENT=true

• When the input XML does not contain the element specified at Xpath,
splitting/grouping is not performed and there will be no output messages in this case.

• The output generated has the same instance id for all the split elements. This causes
issues when document tracking, if you try to track both documents on the output of
the splitter, you only get a single entry (due to the duplicate instance ID's).

• To have different Instance Ids for different documents, workflow items in the flow
have to be set properly.

• The Instance ID is set at the first "Workflow Item" encountered in the event process,
so if the 1st workflow item is set before OUT_PORT of XMLSplitter then there will be
only one "Instance ID" for all splitted messages, however all splitted messages can
have different "Document ID". On the other hand if the first "Workflow Item" is set at
OUT_PORT of XMLSplitter each element will have a different "Instance ID".

4.6.10 XMLVerification

The XMLVerification allows user to validate content present in the message body or application
context or both, against configured XSD(s) or DTD(s).

The component has two output ports OUT_PORT and FAILED_PORT. If the validation is
successful then the message “without any changes” is sent out on OUT_PORT, else the
message is sent on FAILED_PORT with two additional properties ERROR_MESSAGE and
STACKTRACE containing the error message indicating the problem and the source of
problem.

Content present in message body or application context or both is considered valid only if

• The content has to be validated and is an XML instance.

• The structure of XML instance is valid according to corresponding XSD/DTD configured.

• The qualified root element of XML instance matches the configured qualified root
element.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 703

4.6.10.1 Configuration and Testing

The configuration for XML Verification is defined as shown in Figure 1

Figure 1: Configuration of XML Verification

4.6.10.1.1 Attributes

4.6.10.1.1.1 XSD Structures

This property determines the source(s) of content that should be validated

• Body - Only content of message body has to be validated with XSD/DTD defined
against property Body. When this option is selected, property Body is visible and
property Context is hidden.

• Context - Only content of application context has to be validated with XSD/DTD
defined against property Context. When this option is selected, property Context is
visible and property Body is hidden.

• Context-Body - Contents of both message body and application context have to
be validated with XSD/DTD defined against properties Body and Context
respectively. When this option is selected, both properties Context and Body are
visible.

4.6.10.1.1.2 Body

This property defines the XSD/DTD with which content of message body has to be validated.
Click ellipsis button to open the editor to provide XSD/DTD as shown in Figure 2

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 704

Figure 2: Defining XSD / DTD

4.6.10.1.1.3 Context

This property defines the XSD/DTD with which content of application context has to be
validated. Click on ellipsis button to open the editor to provide XSD/DTD as shown in Figure
2.

4.6.10.2 Functional Demonstration

4.6.10.2.1 Scenario 1

Validation of input XML based on the schema provided.

Configure the XMLVerification as described in Configuration section for XSD Structure Body
and use feeder and display components to send sample input and to check the response
respectively. If the Sample Input verification is successful, then the input message is sent to
Display_Out and if the verification fails, the input message is sent to Display_False.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 705

Figure 3: Demonstrating scenario with sample input and sample output

4.6.10.3 Useful Tips
 When the XSD defines multiple imported schemas containing same target namespace,

only the first schema is used for validation and any elements defined in other schema
are identified by the component.

4.6.11 Cache

Cache component holds data in an in-memory lookup table as a set of name value pairs,
identified by one or more designated key name value pairs. A set of key fields and data
fields are defined in the CPS of the component. The component stores values for the defined
fields as Name Value pairs, where name is the name of the field and value is the data held in
the field. A field can be a key field or a data field.

The component support the following operations

• lookup – returns all the data fields that are mapped for a given key field from the in-
memory lookup table.

• add – adds a set of mappings from key field to data fields to the in-memory lookup
table.

• update – updates a set of mappings that are defined for a key field in the in-memory
lookup table.

• delete – deletes a set of mappings that are defined for a key field in the in-memory
lookup table.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 706

The component has the following ports:

• ADD_PORT – Input port ADD_PORT is used to send input request to perform add,
update or lookup operations.

• DEL_PORT – Input port DEL_PORT is used to send input request to perform delete
operations.

• OUT_PORT – Output port OUT_PORT is used to read output request that contains
results of add, lookup, update or delete operations.

4.6.11.1 Configuration and Testing

Figure 1: CPS of Cache component

4.6.11.1.1 Attributes

4.6.11.1.1.1 Field Definition Table

Click to launch Field Definition Table – an editor to define fields.

Figure 2: Editor to define fields in lookup table

The Field Definition Table contains Name, Type and Key fields.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 707

• Name – Name of the field.

• Type – Data type of the field. Data type field contains the following field values – int,
long, short, float, double, boolean, string and date.

• Key – Specifies whether the current field is a Key or a Data field.

To define field definitions –

1. Click Add button to add a new field definition.

2. Edit the value in Name column of the newly added row and provide the name of the
field.

3. Select the data type of field value from the drop-down list in Type column.

4. Select the check box in Key column, if the field is a key field.

5. Repeat steps 1 to 4 to add all field definitions.

6. Click Ok.

Note:

• To delete any field definitions, select the field definitions and click Remove.

• There should be at least one key field and one data field defined in the Field
Definition Table.

4.6.11.1.1.2 Cache threshold

This property determines the maximum number of entries that are held in the lookup table. If
the number of entries in the lookup table exceeds the value defined by this property, oldest
entries are discarded based on the property Criteria to remove entry.

Note:

• Value should be either -1 or greater than 0.

• -1 implies infinite threshold size.

• The property Criteria to remove entry is visible only when this value is greater than
0.

• Entry is removed from lookup table only after addition of an entry results in cache size
exceeding the value defined by this property. The entry is removed in the same
operation which adds the additional entry.

4.6.11.1.1.3 Criteria to remove entry

When a threshold is defined, this property determines which entry should be removed after
the threshold is reached. Figure 3 shows all the available criteria.

Figure 3: Criteria for removing entries after the threshold is reached

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 708

• Least recently added - The oldest entry in the lookup table will be removed first
irrespective of the frequency at which an entry is used/updated.

• Least recently updated - The entry which has been in the lookup table for the
longest duration without being updated will be removed.

• Least recently accessed – The entry has been in the lookup table for the longest
time without being looked up or updated for the longest duration will be removed first.

4.6.11.1.1.4 Initial cache size

Initial size with which lookup table has to be initialized. The table will be resized depending on
the underlying implementation. Providing an appropriate initial size will reduce the number of
resizes.

4.6.11.1.1.5 Validate input

This property determines whether the input message has to be validated against the schema
defined on the input ports.

• yes

Input messages are validated against the schema defined on the input port on which
the message is received.

• no

Input messages are not validated.

Note:

If the input message is not valid and the input validation is disabled, the behavior of the
component is undefined.

4.6.11.2 Input and Output

The schema for input and output are auto generated based on the field definitions provided in
the CPS.

4.6.11.2.1 Input

The structure of messages on ADD_PORT for the field definitions shown in Figure 2 is shown
in Figure 4.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 709

Figure 4: Structure of messages on ADD_PORT

Note: If the value is not defined for any of the keys, the behavior is not defined.

When a message is received on the ADD_PORT an entry is added, updated or looked up from
lookup table based on the elements defined in the input message.

• An add operation is performed if Data element is present under CacheEntry element
and at least one of the data fields is present and the value defined for a key field is not
already present in the lookup table.

• An update operation is performed if Data element is present under CacheEntry
element and at least one of the data fields is present and the value defined for a key
field is already present in the lookup table.

• A lookup operation is performed if Data element is not present under CacheEntry
element or none of the data fields are present.

• A lookup of all entries is performed if All element is present as defined in the
structure.

The structure of messages on DEL_PORT for the field definitions shown in Figure 2 is shown
in Figure 5.

Figure 5: Structure of messages on DEL_PORT

Note: If the value is not defined for any of the keys, the behavior is not defined.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 710

4.6.11.2.2 Output

Figure 6 contains the structure of messages on OUT_PORT for the field definitions shown in
Figure 2.

Figure 6: Structure of messages on OUT_PORT

4.6.11.3 Functional Demonstration

4.6.11.3.1 Scenario 1

This scenario demonstrates the functioning of the Cache component. Perform the steps shown
in this scenario in strict order.

Configure the Cache component as shown in Figure 2 and create a flow as shown in Figure 7.
Output port of AddUpdateLookupRequest should be connected to ADD_PORT and output
port of DeleteRequest should be connected to DEL_PORT.

Figure 7: Sample flow to demonstrate scenario 1

4.6.11.3.2 Add operation

Send the input shown in Figure 8 from Feeder AddUpdateLookupRequest to add the
following entries to lookup table.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 711

• ssn:ssn1334 → age:29, name:name

• emp_id:88544 → age:29, name:name

Where an entry is in form <key field name>:<key field value> → <data field name>:<data
field value>, <data field name>:<data field value>....

Figure 8: Input for add operation

The output message contains all the entries that are added as shown in Figure 9.

Figure 9: Result of add operation

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 712

4.6.11.3.2 Update operation

Send the input shown in Figure 10 from Feeder AddUpdateLookupRequest to update the
name field for the entry with key field ssn whose value is ssn1334.

Figure 10: Input for update operation

The output message contains the updated entry as shown in Figure 11.

Figure 11: Result of update operation

Entries in the database after the update operation are:

 ssn:ssn1334 → age:29, name:name1

 emp_id:88544 → age:29, name:name1

Note:

Since both key fields ssn and emp_id are defined under single CacheEntry element in the
input of add operation shown in Figure 8, updating a data field value for entry corresponding
to ssn key field implicitly updates the entry for emp_id key field as well.

In general, all the key fields defined under single CacheEntry maintain same reference to
data fields and updating one effects the other. If this is not the desired behavior modify the
input to contain to CacheEntry elements one for each key field as shown in Figure 12

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 713

Figure 12: Input in Figure 8 modified to not maintain same reference for key fields

4.6.11.3.3 Lookup operation

Send the input shown in Figure 13 from Feeder AddUpdateLookupRequest to lookup the
name and age fields for the entry with key field ssn whose value is ssn1334.

Figure 13: Input for lookup operation

The output message contains the entries looked up from lookup table as shown in Figure 14.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 714

Figure 14: Result of lookup operation

To lookup all the entries in the lookup send, the input shown in Figure 15 from
AddUpdateLookupRequest.

Figure 15: Input for lookup of all entries

The output containing all the entries in the lookup table is shown in Figure 16

Figure 16: Output of lookup of all entries

4.6.11.3.4 Delete operation

Send the input shown in Figure 17 from Feeder DeleteRequest to delete the entry with key
field ssn whose value is ssn1334.

Figure 17: Input for delete operation

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 715

The output message contains the entries that are deleted from lookup table as shown in Figure
18.

Figure 18: Output for delete operation

Send the input shown in Figure 18 from Feeder DeleteRequest to delete all entries in lookup
table.

Figure 19: Input for deleting all entries

The output message contains the entries that are deleted from lookup table as shown in Figure
20. Since there is only undeleted entry in the database the output message contains only one
entry.

Figure 20: Result of delete all entries operation

4.6.11.4 Useful Tips
• Size of the lookup table should be within in the memory limit available for the

component.

• The lookup table should always be populated after the component starts as the lookup
table is not persisted implicitly.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 716

• Use this component in conjunction with a DB component to improve the performance
of lookups and updates.

• Lookup can be performed using any of key fields which are part of add request.

• Update to any key field also effects the lookup data returned by other key fields which
are part of add request.

• Disable input message validation to improve the performance of the component.

• Send All element in the input request on ADD_PORT to retrieve all the entries from
the lookup table

• Send All element in the input request on DEL_PORT to delete all the entries from the
lookup table

• When performing multiple add, update or lookup operation in a single input request on
ADD_PORT the output contains corresponding result for each of the operation based
on the state of lookup table when the operation is performed. If operations are
performed in the order - add, lookup, add, lookup – the first lookup will contain only
entry but the second lookup contain both the entries.

4.7 MOMs
The MOMs category consists of components like JMSIn, JMSOut, JMSReplier, JMsRequestor,
MQSeriesIn, MQSeriesOut, MSMQReceiver, MSMQSender, TibcoRVIn, and TibcoRVOut. The
following section describes each component.

4.7.1 JMSIn 4.0

The JMSIn component is used to transfer messages to a JMS topic or queue. Using the
Configuration Property Sheet wizard, you can specify the topic or queue on which the message
is to be sent. This component retrieves messages from a component and sends them to a JMS
topic or queue. Additionally, you can create a Publisher or a Sender on Topic or Queue
respectively, and configure the component to publish or send a message on a JMS Server at
runtime.

This component can be used to send Text, Bytes or Map messages. The only restriction on
Map Messages is that this component does not support Objects in Map Messages.JMSIn is
capable of handling following types of messages:

Text messages

A TextMessage object's message body contains a java.lang.String object.

Map messages

A MapMessage object's message body contains a set of name-value pairs, where names are
String objects, and values are Java primitives. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined.

Bytes Message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 717

A BytesMessage object's message body contains a stream of uninterrupted bytes. This
message type is for literally encoding a body to match an existing message format.

JMSIn uses JMS APIs to process the messages.

Points to note

13. The only restriction on Map Messages is that this component does not support Objects
in Map Messages.

14. When adding the Initial Context Factory class for non Fiorano MQ server, the jar file(s)
should be added as resource(s) to the JMSAdapters system library.

4.7.1.1 Configuration and Testing

The JMSIn component connection related properties can be configured in the Managed
Connection Factory panel of CPS.

Figure 4.315: Sample JMSIn MCF configuration

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 718

Use Connection Details From Input: Parameters to create the connection can be specified
in the input message when this property is set to true. If this property is selected the
validation errors in the managed connection factory panel of the CPS are treated as warnings.
So user can bypass this step without giving valid configuration and complete the configuration
of the component. If valid properties are not provided even in the input message exception
will be thrown at runtime.

The JMS providers supported are Fiorano MQ, BEA Weblogic, Oracle AQ and Oracle Streams
AQ. For working with these JMS providers the jars that should be explicitly added as resources
to the component are given below:

BEA WebLogic:

• %BEA_HOME%\server\lib\wlclient.jar

• %BEA_HOME%\server\lib\wljmsclient.jar (required only when the Weblogic server is
running on a remote machine)

Note: For BEA Weblogic 10.0, %BEA_HOME% refers to <BEA WebLogic Installation
directory>\wlserver_10.0

Oracle AQ:

• %ORACLE_HOME%\rdbms\jlib\aqapi13.jar (If JDK1.2 / JDK1.1 is used,
aqapi12.jar/aqapi11.jar has to be used respectively)

• %ORACLE_HOME%\jdbc\lib\classes12.zip

• %ORACLE_HOME%\jdbc\lib\nls_charset12.jar

Note: For Oracle Database 9.2.0.1.0, %ORACLE_HOME% refers to <Oracle Installation
directory>\ora92

Oracle Streams AQ:

• %ORACLE_HOME%\rdbms\jlib\aqapi.jar

• %ORACLE_HOME%\jdbc\lib\ojdbc14.jar

Note: For Oracle Database 10.2.0.1.0, %ORACLE_HOME% refers to <Oracle Installation
directory>\product\10.2.0\db_1

Note the following:

• If these jars are added to resources of the System library JMSAdapters, the jars are
available for JMSIn, JMSOut and JMSRequestor components.

• In case of BEA Weblogic, InitialContext can be created by specifying empty values for
JNDI Username and JNDI password as well.

Working with Fiorano MQ HA profiles

When Configuring JMSIn with Fiorano MQ HA profiles we should provide Intial Context
Properties in Adavnced Info in the MCF Panel of the cps.

These Properties are "java.naming.provider.url" set to Server Url and "BackupConnectURLs"
set to backupUrl's.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 719

Server connection can be tested from within the CPS by clicking on Test in the connection
properties panel.

Figure 4.316: Sample connection test result indicating success

The JMSIn component can be configured using its Custom Proper Sheet wizard.

Figure 4.317: Sample JMSIn configuration

Destination specified for the property Destination Name should already exist if BEA
Weblogic/Oracle AQ/Oracle Streams AQ is being used. Dynamic creation of destinations is not
supported for these providers.

For BEA Weblogic, value for Destination Name should be the JNDI name of the destination.
Example: weblogic.examples.jms.exampleTopic.

Above configuration shown in the Figure 4.317 can be tested from within the CPS by clicking
on test button in the CPS panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 720

Figure 4.318: Sample JMSIn input message

Figure 4.319: Sample JMSIn output message.

Input Schema

When the property Use Connection details from input is chosen, the following input schema
with the element ConnectionFactorySettings, is generated. Properties that are used to create
the connection are present under this element.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 721

Figure 4.320: Input schema with ConnectionFactorySettings

Output Schema

Schema Element Description

<Body> Body of the response message

<SentMessage> Message sent to the destination

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 722

4.7.1.2 Functional Demonstration

4.7.1.2.1 Scenario 1

Putting a simple Text message on a destination and displaying the response message.

Configure the JMSIn as described in Configuration and Testing section and use feeder and
display component to send sample input and check the response respectively.

Figure 4.321: Demonstrating Scenario 1 with sample input and output

Sample Input:

Input Text

Sample Output:

<?xml version="1.0" encoding="UTF-8"?>

<ns1:Message xmlns:ns1="http://www.fiorano.com/fesb/activity/JMSIn1/jmsIn/Out">

 <ns1:Body>Message sent to Destination PrimaryTopic</ns1:Body>

 <ns1:SentMessage>Input Text</ns1:SentMessage>

</ns1:Message>

4.7.1.3 Useful Tips
15. Set optimal message age (Time-to-live property) so as to reduce memory overhead,

thus improving performance.

16. Less message size gives better performance and vice versa. For example,
ByteMessage takes less memory than TextMessage, hence choose message type
carefully to avoid unnecessary memory overhead.

17. Delivery mode defines whether the message can be persistent or non-persistent; this
factor has an impact on the performance. Choose non-persistent messages where
appropriate.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 723

4.7.2 JMSIn 5.0

The JMSIn component is used to send messages to a JMS destination (topic or queue). This
component sends the messages received on the input port to the configured JMS destination.
The destination on which the message is to be sent can be specified in the Configuration
Property Sheet wizard.

This component can be used to send Text, Bytes or Map messages. The only restriction on
Map Messages is that this component does not support Objects in Map Messages.

Points to note:

• Currently the component supports sending messages to destinations created in
Fiorano servers

• Set optimal message age (Time-to-live property) so as to reduce memory overhead,
thus improving performance.

• Less message size gives better performance and vice versa. For example,
ByteMessage takes less memory than TextMessage, hence choose message type
carefully to avoid unnecessary memory overhead.

• Delivery mode defines whether the message can be persistent or non-persistent. This
factor has an impact on the performance. Choose non-persistent messages where
appropriate.

4.7.2.1 Connection

4.7.2.1.1 Connection Configuration

Connection configuration details can be specified in this panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 724

JMS Username :

The user name with which the client connects to the MQ server.

Note: When the username is not provided, the password is ignored too and JMS connection
creation is attempted without username and password.

JMS Password:

The password for the username that is provided.

Use specific client ID:

Select this option to specify a user defined Client ID. If it is not selected client ID is generated
automatically at runtime.

Client ID:

The client ID that will be set on the connection with the server.

Note: This will be used only when the option “Use specific client ID” is selected.

Server URL:

The URL of the server to which the component connects.

Backup URLs:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 725

The backup URLs to which the component tries to connect if the server specified by the
property “server URL” is down. Multiple backup URLs can be specified by separating them with
“;”.

CF lookup name:

The lookup name of the Connection Factory.

JNDI Username:

The name with which the user connects to the JNDI server to perform lookup operations.

JNDI Password:

The password for the JNDI username.

Initial context factory:

The name of the initial context factory.

Initial context properties

Additional properties which can be used for creating an Initial Context can be specified here.
For instance, if JMSAdapter has to connect to the FMQ server using HTTP protocol instead of
the default TCP protocol, then a property 'TransportProtocol' can be specified with the value
'HTTP’.

• Is transacted: Select this option if session to be created should be transacted. If this is
not selected appropriate Acknowledge mode has to be chosen.

• Acknowledgement mode: The type of Acknowledgement mode can be specified here. A
session retains messages it consumes until they have been acknowledged.

o Dups OK Acknowledge: This acknowledgment mode instructs the session to
lazily acknowledge the delivery of messages.

o Auto Acknowledge: The session automatically acknowledges a client's receipt of
a message either when the session has successfully returned from a call to
receive or when the message listener the session has called to process the
message successfully returns.

o Client Acknowledge: With this acknowledgment mode, the client acknowledges
a consumed message.

Note: This option is relevant only when isTransacted is not selected.

4.7.2.1.2 Send Configuration

Send configuration details can be specified in this panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 726

Destination Name:

The name of the destination to which the messages have to be sent.

Destination Type:

The JMS type of the destination. This can be chosen as either Topic or Queue.

Lookup Destination:

This option can be chosen if the destination is already present and needs to be looked up
using JNDI.

AutoCreate Destination:

This option has to be chosen if the destination has to be created, if it doesn’t exist.

Note:

• One of Lookup destination or Autocreate destination is mandatory.

• If both are chosen, the component first tries to lookup the destination and if it fails it
will create the destination.

4.7.2.1.3 Producer Configuration

Delivery Mode:

• PERSISTENT: The PERSISTENT delivery mode, instructs the JMS provider to take
extra care to ensure that a message is not lost in transit in case of a JMS provider
failure. A message sent with this delivery mode is logged to stable storage when it is
sent.

• NON-PERSISTENT: The NON_PERSISTENT delivery mode does not require the JMS
provider to store the message or otherwise guarantee that it is not lost if the provider
fails.

Priority:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 727

The priority of the message to be sent to the destination.

Time to Live:

The time to live (in milliseconds) of the message to be sent to the destination. After the
timeout the message will be discarded.

4.7.2.1.4 Message Definition

Message type configuration can be defined in this panel. The schema of the input port of the
component will be determined based on the configuration provided.

Use XML Interface:

This option has to be chosen if the component needs an XML interface. If this is not selected,
schema will not be set on input port of the component and the message received on the input
port will be sent to the destination as it is.

 Message Type:

The type of the message that needs to be sent can be chosen as one of the following.

• Text message: Use this option to send a plain text message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 728

• Map message: A Map Message object's message body contains a set of name-
value pairs, where names are String objects, and values are Java primitives. The
entries can be accessed sequentially or randomly by name. The order of the
entries is undefined.

• Stream message: A Stream Message object's message body contains a stream of
un-interpreted bytes. This message type is for literally encoding a body to match
an existing message format.

Include JMS Headers:

This option can be selected to set the JMSHeaders on the message at runtime.

When this option is selected, the fields JMSCorrelationID and JMSDestination will be generated
in the input schema of the component.

Include Properties:

This option can be selected to set the JMS properties on the message at runtime.

When this option is selected, the elements ApplicationContext and Property (ZeroMany)
are generated in the input schema of the component.

The properties and application context can be set as shown in the figure.

Depending on the Message Type selected, the appropriate parsing option is shown. Message
Type and the corresponding parsing option is explained below.

Text message – XML Content:

Select this option if the content of the input message conforms to a specific schema. The
schema can be specified using the schema editor.

Map message – Define Body:

Select this option to define the body fields of the Map message. The message body fields
(name and type of the field) can be added in the table and the input schema will be generated
corresponding to the each field defined.

Stream message – Parse Body:

Select this option to set the content of the stream message in input XML. The name, type and
length of the field can be added in the table. An element will be added to the schema
corresponding to each field with the same name.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 729

4.7.2.1.5 Additional Configuration

Validate Input: Select this option if the input message has to be validated against the
schema that is set on the input port.

If a complex schema is used in the component, then enabling this option has an impact on the
performance.

Target namespace: The target namespace of the schema can be provided here. The schema
on ports will be suffixed with the component name and type of the port. For example,
/JMSIn/In.

Error Handling Configuration

The actions that have to be taken in case of different kinds of errors can be chosen using this
panel.

4.7.2.2 Functional Demonstration

Scenario 1: To send a Map message to the destination PrimaryQueue.

The component is configured to send a Map message as described in section Message
Definition and the option include JMSHeader is enabled to set JMS headers on the message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 730

Feeder and display components are connected to the component to send sample input and
check the response respectively.

4.7.2.2.1 Sample Input

4.7.2.2.2 Sample Output

4.7.2.3 Useful Tips
• Set optimal message age (Time-to-live property) so as to reduce memory overhead,

thus improving performance.

• Less message size gives better performance and vice versa. For example,
ByteMessage takes less memory than TextMessage, hence choose message type
carefully to avoid unnecessary memory overhead.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 731

• Delivery mode defines whether the message can be persistent or non-persistent, this
factor has an impact on the performance. Choose non-persistent messages where
appropriate.

• Enabling validate input option when a complex schema is used has an impact on the
performance of the component.

4.7.3 JMSOut 4.0

The JMSOut component may be used to retrieve messages from a JMS Topic/Queue. Using the
Configuration Property Sheet, you can specify the topic or queue from which the message is to
be retrieved. The JMSOut component sends the JMS message received from a Topic/Queue to
another component. You can create a Subscriber or a Receiver for a Topic or a Queue
respectively, and configure the component to retrieve or subscribe to messages from a JMS
server at runtime.

This component can be used to receive Text, Bytes or Map messages. The only restriction on
Map Messages is that this component does not support Objects in Map Messages.JMSOut is
capable of handling following types of messages:

Text messages

A TextMessage object's message body contains a java.lang.String object.

Map messages

A MapMessage object's message body contains a set of name-value pairs, where names are
String objects, and values are Java primitives. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined.

Bytes Message

A BytesMessage object's message body contains a stream of uninterrupted bytes. This
message type is for literally encoding a body to match an existing message format.

JMSOut uses JMS APIs to process the messages

Points to note

18. The only restriction on Map Messages is that this component does not support Objects
in Map Messages.

19. When adding the Initial Context Factory class for non Fiorano MQ server, the jar file(s)
should be added as resource(s) to the JMSAdapters system library.

20. For creating Durable Subscriber, use Topic Connection Factory in place of Unified
Connection Factory.

21. If IsDurableSubscriber property is changed to No or Destination Type is changed from
Topic to Queue or ClientID is changed - the durable subscriptions created earlier
should be unsubscribed to avoid persisting messages for the durable subscriber in
runtimedata. For more information on unsubscribing, please refer to FioranoMQ
Handbook - Section 29.3: Connecting to Web Management Tool -
DurableSubscribers view.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 732

22. If a timeout is not specified (left as zero – infinite), and after starting the component,
the JMS server (to which the component is connected) crashes, the receive call on the
Queue or Topic waits endlessly. Therefore, it is advisable to give a definite timeout
value.

23. If the component is being used in scheduling mode, the execution timeout for the
component should be less than the scheduler interval if the message is being received
from a Queue.

24. The property 'Cleanup resources (excluding connection) after each document' is set to
'No' by default. If this is set to 'Yes', then only one message is received by JMSOut and
after that resources like message consumers are closed and the component will not
receive further messages.

4.7.3.1 Configuration and Testing

The JMSOut component connection related properties can be configured in the Managed
Connection Factory panel of CPS.

Figure 4.321: Sample JMSOut MCF configuration

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 733

Use Connection Details From Input: Parameters to create the connection can be specified
in the input message when this property is set to true. If this property is selected the
validation errors in the managed connection factory panel of the CPS are treated as warnings.
So user can bypass this step without giving valid configuration and complete the configuration
of the component. If valid properties are not provided even in the input message exception
will be thrown at runtime.

The JMS providers supported are Fiorano MQ, BEA Weblogic, Oracle AQ and Oracle Streams
AQ. For working with these JMS providers the jars that should be explicitly added as resources
to the component are given below:

BEA WebLogic:

• %BEA_HOME%\server\lib\wlclient.jar

• %BEA_HOME%\server\lib\wljmsclient.jar (required only when the Weblogic server is
running on a remote machine)

Note: For BEA Weblogic 10.0, %BEA_HOME% refers to <BEA WebLogic Installation
directory>\wlserver_10.0

Oracle AQ:

• %ORACLE_HOME%\rdbms\jlib\aqapi13.jar (If JDK1.2 / JDK1.1 is used,
aqapi12.jar/aqapi11.jar has to be used respectively)

• %ORACLE_HOME%\jdbc\lib\classes12.zip

• %ORACLE_HOME%\jdbc\lib\nls_charset12.jar

Note: For Oracle Database 9.2.0.1.0, %ORACLE_HOME% refers to <Oracle
Installation directory>\ora92

Oracle Streams AQ:

• %ORACLE_HOME%\rdbms\jlib\aqapi.jar

• %ORACLE_HOME%\jdbc\lib\ojdbc14.jar

Note: For Oracle Database 10.2.0.1.0, %ORACLE_HOME% refers to <Oracle
Installation directory>\product\10.2.0\db_1

Note the following:

• If these jars are added to resources of the System library JMSAdapters, the jars are
available for JMSIn, JMSOut and JMSRequestor components.

• In case of BEA Weblogic, InitialContext can be created by specifying empty values for JNDI
Username and JNDI password as well.

Working with Fiorano MQ HA profiles

When Configuring JMSOut with Fiorano MQ HA profiles we should provide Intial Context
Properties in Adavnced Info in the MCF Panel of the cps.

These Properties are "java.naming.provider.url" set to Server Url and "BackupConnectURLs"
set to backupUrl's.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 734

Server connection can be tested from within the CPS by clicking on test in the connection
properties panel.

Figure 4.322: Sample connection test result indicating success

4.7.3.1.1 Interaction Configurations

Figure: Interaction Configurations

Destination Settings

LookupDestination Disabled

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 735

25. yes – This property specifies if the destination lookup is disabled

26. no - specifies if the destinations could be looked up.

Destination Type

27. Topic - This value is selected when the type of destination is 'Topic'.

28. Queue – This value is selected when the type of destination is 'Queue'.

Destination Name

Name of the topic or queue to which messages are to be transferred.

Note: For BEA Weblogic, value for Destination Name should be the JNDI name of the
destination. Ex: weblogic.examples.jms.exampleTopic.

IsDurableSubscriber

This property is used to create a durable subscription when the destination type is Topic.

Action when message is not available?

Figure: Option to configure when message is not available

This property specifies the action to be taken when there are no messages on the queue
within the timeout specified.

• Send Empty Message

• An empty message is sent to output port.

• Treat as Exception

• An exception message is sent to error port and no message is sent to output port.

• No Action

• No message is sent to either output port or error port.

Execution Timeout

Maximum time in milliseconds the component should wait for a message. Default value is 0
which specifies infinite wait time that is, waits until a message is received.

AutoCreate Destination

If destination provided is not present, then it is created dynamically.

Note: Destination specified for the property Destination Name should already exist if BEA
Weblogic/Oracle AQ/Oracle Streams AQ is being used. Dynamic creation of destinations is not
supported for these providers.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 736

The JMSOut component can be configured using its Custom Proper Sheet wizard.

Figure 4.323: Sample JMSOut configuration

Destination specified for the property Destination Name should already exist if BEA
Weblogic/Oracle AQ/Oracle Streams AQ is being used. Dynamic creation of destinations is not
supported for these providers.

For BEA Weblogic, value for Destination Name should be the JNDI name of the destination.
Example: weblogic.examples.jms.exampleTopic.

Above configuration shown in the Figure 4.323 can be tested from within the CPS by clicking
on test button in the CPS panel.

Figure 4.324: Sample JMSOut input message

Figure 4.325: Sample JMSOut output message

When the property Use Connection details from input is chosen, the following input schema
with the element ConnectionFactorySettings, is generated. Properties that are used to create
the connection are present under this element.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 737

Figure: Input schema with ConnectionFactorySettings

4.7.3.2 Functional Demonstration

4.7.3.2.1 Scenario 1

Putting a simple Text message on a destination and displaying the response message.

Configure the JMSOut as described in Configuration and Testing section and use feeder and
display component to send sample input and check the response respectively.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 738

Figure 4.326: Demonstrating Scenario 1 with sample input and output

Sample Input:

Input Text

Sample Output:

Raw Text Message

4.7.3.3 Useful Tips
 Choose non-durable messages where appropriate

 When using the durable delivery mode, each message has to be stored by the JMS
server either in the database or the file system depending on the vendor before
delivery of message to consumer and removed after delivery of message. This has a
huge impact on the performance. So as far as possible restrict the use of durable
delivery mode unless and until absolutely necessary for your application to avoid the
overheads involved.

 Choose proper acknowledgement mode

4.7.4 JMSOut 5.0

The JMSOut component is used to retrieve messages from a JMS destination (topic or queue).
The JMSOut component can work either in synchronous or asynchronous mode to fetch the
messages from the configured destination.

This component can be used to receive Text, Bytes or Map messages. The only restriction on
Map Messages is that this component does not support Objects in Map Messages.

Points to Note:

When using the Durable Subscriber mode, each message has to be stored by the JMS server
either in the database or the file system depending on the vendor before delivery of message
to consumer and removed after delivery of message. This has a huge impact on the
performance. So as far as possible restrict the use of durable delivery mode unless it is
necessary for your application to avoid the overheads involved.

4.7.4.1 Configuration

4.7.4.1.1 Connection Configuration

Connection configuration details can be specified in this panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 739

JMS Username:

The user name with which the client connects to the MQ server.

Note: When the username is not provided, the password is ignored too and JMS connection
creation is attempted without username and password.

JMS Password:

The password for the username that is provided.

Use specific client ID:

Select this option to specify a user defined Client ID. If it is not selected client ID is generated
automatically at runtime.

Note: If user defined client ID is used in the component and if durable subscription is enabled,
while reconfiguring the component if the durable subscription changes, then the previously
created durable subscription will also receive the messages. To avoid this there is an option to
remove the previously created durable subscription. Refer “Useful tips” for more details.

Client ID:

The client ID that will be set on the connection with the MQ server.

Note: This will be used only when the option “Use specific client ID” is selected.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 740

Server URL:

The URL of the server to which the component connects.

Backup URLs:

The backup URLs to which the component tries to connect if the server specified by the
property “server URL” is down. Multiple backup URLs can be specified by separating them with
“;”.

CF lookup name:

The lookup name of the connection factory.

JNDI Username:

The name with which the user connects to the JNDI server to perform lookup operations.

JNDI Password:

The password for the JNDI username.

Initial context factory:

The name of the initial context factory.

Initial context properties:

Additional properties which can be used for creating an Initial Context can be specified here.
For instance, if JMSAdapter has to connect to the FMQ server using HTTP protocol instead of
the default TCP protocol, then a property 'TransportProtocol' can be specified with the value
'HTTP’.

• Is transacted: Select this option if session to be created should be transacted. If this
is not selected appropriate Acknowledge mode has to be chosen.

• Acknowledgement mode: The type of Acknowledgement mode can be specified
here. A session retains messages it consumes until they have been acknowledged.

o Dups OK Acknowledge: This acknowledgment mode instructs the session to
lazily acknowledge the delivery of messages.

o Auto Acknowledge: The session automatically acknowledges a client's
receipt of a message either when the session has successfully returned from a
call to receive or when the message listener the session has called to process
the message successfully returns.

o Client Acknowledge: With this acknowledgment mode, the client
acknowledges a consumed message.

Note: This option is relevant only when “isTransacted” is not selected.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 741

4.7.4.1.2 Receive Configuration

The details corresponding to the retrieval of messages from the server can be configured in
this panel.

Destination Name:

The name of the destination from which the messages have to be retrieved.

Destination Type:

The JMS type of the destination. This can be chosen as either Topic or Queue.

Lookup Destination:

This option can be chosen if the destination is already present and needs to be looked up
using JNDI.

AutoCreate Destination:

This option has to be chosen if the destination has to be created.

Note:

• One of “Lookup destination” or “Autocreate destination” is mandatory.

• If both are chosen, the component first tries to lookup the destination and if it fails it
will create the destination.

Message Selector: The message selector for the messages to be received by this consumer.
More information on message selectors is available at
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 742

Is Durable: This option has to be chosen if a durable subscriber has to be created on the
destination.

Note:

• If a durable subscriber is already created by this component and the checkbox is
deselected, when the CPS is finished, User is provided with an option to remove
durable subscription that is created previously. This can be done by providing the
administrator credentials of the JMS Server.

• This option is relevant only when the destination type is selected as “TOPIC” in the
destination configuration.

• Selecting this option enables the user to specify the subscription name.

Subscription Name: The name of the subscription corresponding to the durable subscriber
that is created by the component.

Note: This option is relevant only when the destination type is selected as “TOPIC” in
the destination configuration and the property “Is Durable” is selected.

Delivery Mode:

• ASYNCHRONOUS: When this option is selected, the component retrieves messages
asynchronously by registering a listener to the destination.

• SYNCHRONOUS: When this option is selected, the component retrieves messages
when a message is sent on to the input port. Selecting this option enables the
property “Should wait”

Should Wait: If this option is selected, the component waits for the time specified by the
property “wait time” for the retrieval of messages.

Note: This option is relevant only when the delivery mode is chosen as
“SYNCHRONOUS”.

Wait time: The time in milliseconds for which the component waits for the message after
sending request in synchronous mode.

Note: This option is relevant only when the delivery mode is chosen as
“SYNCHRONOUS” and “Should Wait” is selected.

Action when no message is available: The action that has to be taken if the message is
not available on the destination in case of synchronous mode. If “Should wait” is enabled, the
component waits for the specified timeout before taking the chosen action. Otherwise the
action will be done immediately. The action can be chosen as one of the following

• EMPTY_MESSAGE_ACTION: An empty message is sent onto the output port of the
component.

• NO_ACTION: Nothing is done if no message is received.

• ERROR_ACTION: The situation will be treated as a request execution error and
action will be taken based on the configuration of Error Actions defined in Additional
Configuration page.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 743

4.7.4.1.3 Message Definition Configuration

Use XML Interface:

Select this option if the message that is received has to be converted to XML format before
sending to the output port of the component.

Message Type:

The type of the message that has to be received can be chosen as one of the following.

• Text message - Use this option to receive a plain text message.

• Map message - A MapMessage object's message body contains a set of name-value
pairs, where names are String objects, and values are Java primitives. The entries can
be accessed sequentially or randomly by name. The order of the entries is undefined.

• Stream message - A Stream Message object's message body contains a stream of
uninterpreted bytes. This message type is for literally encoding a body to match an
existing message format.

Include JMS Headers:

This option can be selected to include JMSHeader information of message in the output XML.
An element “JMSHeader” will be added to the output schema and all relevant JMS headers
appear as child elements in the output schema as shown in figure.

Include Properties:

This option can be selected to retrieve the JMS properties on the message.

When this option is selected, the elements “ApplicationContext” and “Property” (ZeroMany)
will be generated in the schema of output port.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 744

Depending on the type of the message, the parsing of the message content can be chosen.

• Text message – XML Content: This option can be chosen if the content of the
output message conforms to a specific schema. The schema can be specified using the
schema editor. This schema will be set as the schema of the body element. Setting the
schema enables doing necessary transformations.

• Map message – Define Body:This option can be chosen to retrieve the body fields of
the map message. The message body fields (name and type of the field) can be added
in the table and the output schema will be generated corresponding to the each field
defined.

• Stream message – Parse Body:This option can be chosen to retrieve the content of
the stream message. The name, type and length of the field can be added in the table.
An element will be added to the schema corresponding to each field with the same
name.

4.7.4.1.4 Additional Configuration

Validate Input: This option has to be chosen if the message has to be validated against the
schema that is set on the input port.

Target namespace: The target namespace of the schema can be provided here. The schema
on ports will be suffixed with the component name and type of the port. Eg. /JMSIn/In

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 745

Error Handling Configuration:

The actions that have to be taken in case of different kinds of errors can be chosen using this
panel.

4.7.4.2 Functional Demonstration

4.7.4.2.1 Scenario 1

The component is configured to receive message from “PrimaryQueue” in asynchronous mode.
Display component is connected to the component to check the response.

Sample Output:

4.7.4.3 Useful Tips
• When using the Durable Subscriber mode, each message has to be stored by the JMS

server either in the database or the file system depending on the vendor before
delivery of message to consumer and removed after delivery of message. This has a
huge impact on the performance. So as far as possible restrict the use of durable
delivery mode unless it is necessary for your application to avoid the overheads
involved.

• The durable subscription created by this component earlier will become unnecessary if
the following gets changed while reconfiguring the component.

o IsDurable property is deselected in consumer configuration

o Subscription name is changed.

o Response Destination Type is changed from Topic to Queue

o ClientID is changed

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 746

Therefore the previous subscription has to be removed to avoid persisting messages in
runtimedata.

If the “use specific client ID” is selected in connection configuration step, a dialog Confirm will
appear prompting the user if the durable subscription has to be removed. The user can select
“yes” and then give the admin credentials to remove the previous durable subscription.

Otherwise, the subscription has to be removed manually. For more information on
unsubscribing, please refer to Section 29.3 Connecting to Web Management Tool -
DurableSubscribers view of FioranoMQ Handbook.

4.7.5 JMSReplier

The JMS Replier component is used to retrieve messages from a JMS Topic / Queue and send
the response to a configured destination after the message is processed by the flow. Using the
CPS, the topic or queue where from the message is to be retrieved can be specified. The
message received from the destination should have a JMSReplyTo destination set in the JMS
message header properties; else the message not be processed by JMS Replier. The JMS
Replier component sends the JMS message received from a Topic / Queue to another
component.

After the message is processed by the downstream components, the JMS message should
return to the Input Port of the JMSReplier which sends the processed message to the
JMSReplyTo destination set in the JMS message header properties. In case an error occurs
while processing the message, the message is send to the error destination. In case the error
destination is not provided, then the message is send to the JMSReplyTo destination set in the
JMS message header properties (which may be a temporary destination).

This component can be used to receive Text, Byte or Map messages.

Note: The only restriction on Map Messages is that this component does not support Objects
in Map Messages.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 747

4.7.5.1 Configuration and Testing

The fields that make JMS connection etc. can be configured in the CPS.

Figure 4.327: Sample JMS Replier component configuration

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 748

4.7.5.2 Input Schema

The input schemas are auto generated based on the configuration provided (type of message).
For the configuration shown above, the schemas would be

Figure 4.328: Input Schema

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 749

4.7.5.3 Output Schema

The output schema is auto generated based on the configuration provided (type of message).
For the configuration shown above, the schema would be

Figure 4.329: Output Schema

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 750

4.7.5.4 Functional Demonstration

4.7.5.4.1 Scenario 1

Replying on a temporary destination set by request / reply invocation

Configure the JMS Replier component as described in Configuration and Testing section and
use display component to receive the sample message receive and response sent back.

Figure 4.330: Demonstrating Scenario 1 with sample input and output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 751

4.7.5.5 Use Case Scenario

In an order entry system scenario, the JMS Replier can be used for receiving and
acknowledging purchase orders.

Figure 4.331: Order entry system scenario

The event process demonstrating this scenario is bundled with the installer. The JMS Replier
has been used instead of the HTTP Receive adapter as we are replacing the transport from
HTTP to JMS.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.7.5.6 Useful Tips
• The only restriction on Map Messages is that this component does not support Objects

in Map Messages.

• If IsDurableSubscriber property is changed to No or Destination Type is changed from
Topic to Queue or ClientID is changed - the durable subscriptions created earlier
should be unsubscribed to avoid persisting messages for the durable subscriber in
runtimedata. For more information on unsubscribing, please refer to FioranoMQ
Handbook - Chapter29: FioranoMQ Web Management Tool - Section 29.3:
Connecting to Web Management Tool - DurableSubscribers view.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 752

4.7.6 JMSRequestor 4.0

The JMSRequestor component is used to send messages to a JMS Topic/Queue and wait till a
message reply is received from the same. After sending the message to the Destination set in
the CPS, JMSRequestor waits for the response message on the Response Destination. If
Response Destination is not specified in the CPS, then a temporary destination is created on
which the response message is expected. User can also specify an Error Destination on which
JMSRequestor receives the error message.

JMSRequestor is capable of handling following types of messages:

• Text messages

• A TextMessage object's message body contains a java.lang.String object.

Text Message

A TextMessage object's message body contains a java.lang.String object.

Map messages

A MapMessage object's message body contains a set of name-value pairs, where names are
String objects, and values are Java primitives. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined.

Bytes Message

A BytesMessage object's message body contains a stream of uninterrupted bytes. This
message type is for literally encoding a body to match an existing message format.

JMSRequestor uses JMS APIs to process the messages.

Points to note

• The only restriction on Map Messages is that this component does not support Objects
in Map Messages.

• When adding the Initial Context Factory class for non Fiorano MQ server, the jar file(s)
should be added as resource(s) to the JMSAdapters system library.

• JMSRequestor will not process further messages it receives on its input port till it
receives the response for the current message.

• If IsDurableSubscriber property is changed to No or Destination Type is changed from
Topic to Queue or ClientID/Subscriber ID is changed - the durable subscriptions
created earlier should be unsubscribed to avoid persisting messages for the durable
subscriber in runtimedata. For more information on unsubscribing, please refer to
FioranoMQ Handbook - Chapter29: FioranoMQ Web Management Tool - Section
29.3: Connecting to Web Management Tool - DurableSubscribers view.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 753

4.7.6.1 Configuration and Testing

The JMSRequestor component connection related properties can be configured in the Managed
Connection Factory panel of CPS.

Figure 4.332: Sample JMSRequestor MCF configuration

Use Connection Details From Input: Parameters to create the connection can be specified
in the input message when this property is set to true. If this property is selected the
validation errors in the managed connection factory panel of the CPS are treated as warnings.
So user can bypass this step without giving valid configuration and complete the configuration
of the component. If valid properties are not provided even in the input message exception
will be thrown at runtime.

The JMS providers supported are Fiorano MQ, BEA Weblogic, Oracle AQ and Oracle Streams
AQ. For working with these JMS providers the jars that should be explicitly added as resources
to the component are given below:

BEA WebLogic:

• %BEA_HOME%\server\lib\wlclient.jar

• %BEA_HOME%\server\lib\wljmsclient.jar (required only when the Weblogic server is
running on a remote machine)

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 754

Note: For BEA Weblogic 10.0, %BEA_HOME% refers to <BEA WebLogic Installation
directory>\wlserver_10.0

Oracle AQ:

• %ORACLE_HOME%\rdbms\jlib\aqapi13.jar (If JDK1.2 / JDK1.1 is used,
aqapi12.jar/aqapi11.jar has to be used respectively)

• %ORACLE_HOME%\jdbc\lib\classes12.zip

• %ORACLE_HOME%\jdbc\lib\nls_charset12.jar

Note: For Oracle Database 9.2.0.1.0, %ORACLE_HOME% refers to <Oracle
Installation directory>\ora92

Oracle Streams AQ:

 %OR ACLE_HOME%\rdbms\jlib\aqapi.jar

 %ORACLE_HOME%\jdbc\lib\ojdbc14.jar

Note: For Oracle Database 10.2.0.1.0, %ORACLE_HOME% refers to <Oracle
Installation directory>\product\10.2.0\db_1

Note the following:

 If these jars are added to resources of the System library JMSAdapters, the jars is
available for JMSIn, JMSOut and JMSRequestor components.

 In case of BEA Weblogic, InitialContext can be created by specifying empty values for
JNDI Username and JNDI password as well.

Server connection can be tested from within the CPS by clicking on test in the connection
properties panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 755

Figure 4.333: Sample connection test result indicating success

The JMSRequestor component can be configured using its Custom Proper Sheet wizard.

Figure 4.334: Sample JMSRequestor configuration

Destination specified for the property Destination Name should already exist if BEA
Weblogic/Oracle AQ/Oracle Streams AQ is being used. Dynamic creation of destinations is not
supported for these providers.

For BEA Weblogic, value for Destination Name should be the JNDI name of the destination.
Example: weblogic.examples.jms.exampleTopic.

Above configuration shown in the Figure 4.334 can be tested from within the CPS by clicking
on test button in the CPS panel.

Figure 4.335: Sample JMSRequestor input message

Figure 4.336: Sample JMSRequestor output message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 756

Input Schema

When the property Use Connection details from input is chosen, the following input schema
with the element ConnectionFactorySettings, is generated. Properties that are used to create
the connection are present under this element.

Figure: Input schema with ConnectionFactorySettings

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 757

4.7.6.2 Functional Demonstration

4.7.6.2.1 Scenario 1

Putting a simple Text message on a destination and displaying the response message.

Configure the JMSRequestor as described in Configuration and Testing section and use feeder
and display component to send sample input and check the response respectively.

Figure 4.337: Demonstrating Scenario 1 with sample input and output

Sample Input:

Input Text

Sample Output:

Raw Text Message

4.7.7 JMSRequestor 5.0

The JMSRequestor component is used to send messages to a JMS Topic/Queue and wait till a
message reply is received from the same. After sending the message to the Destination set in
the CPS, JMSRequestor waits for the response message on the Response Destination. If
Response Destination is not specified in the CPS, then a temporary destination is created on
which the response message is expected. User can also specify an Error Destination on which
JMSRequestor receives the error message.

Points to Note:

When using the Durable Subscriber mode, each message has to be stored by the JMS server
either in the database or the file system depending on the vendor before delivery of message
to consumer and removed after delivery of message. This has a huge impact on the
performance. So as far as possible restrict the use of durable delivery mode unless it is
necessary for your application to avoid the overheads involved.

4.7.7.1 Configuration

4.7.7.1.1 Connection Configuration

Connection configuration details can be specified in this panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 758

JMS Username :

The user name with which the client connects to the MQ server.

Note: When the username is not provided, the password is ignored too and JMS connection
creation is attempted without username and password.

JMS Password:

The password for the username that is provided.

Use specific client ID:

Select this option to specify a user defined Client ID. If it is not selected client ID is generated
automatically at runtime.

Note: If user defined client ID is used in the component and if durable subscription is enabled,
while reconfiguring the component if the durable subscription changes, then the previously
created durable subscription will also receive the messages. To avoid this there is an option to
remove the previously created durable subscription. Refer “Useful tips” for more details.

Client ID:

The client ID that will be set on the connection with the MQ server.

Note: This will be used only when the option “Use specific client ID” is selected.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 759

Server URL:

The URL of the server to which the component connects.

Backup URLs:

 The backup URLs to which the component tries to connect if the server specified by the
property “server URL” is down. Multiple backup URLs can be specified by separating them with
“;”.

CF lookup name:

The lookup name of the connection factory.

JNDI Username:

The name with which the user connects to the JNDI server to perform lookup operations.

JNDI Password:

The password for the JNDI username.

Initial context factory:

The name of the initial context factory.

Initial context properties:

Additional properties which can be used for creating an Initial Context can be specified here.
For instance, if JMSAdapter has to connect to the FMQ server using HTTP protocol instead of
the default TCP protocol, then a property 'TransportProtocol' can be specified with the value
'HTTP’.

• Is transacted: Select this option if session to be created should be transacted. If this
is not selected appropriate Acknowledge mode has to be chosen.

• Acknowledgement mode: The type of Acknowledgement mode can be specified
here. A session retains messages it consumes until they have been acknowledged.

o Dups OK Acknowledge: This acknowledgment mode instructs the session to
lazily acknowledge the delivery of messages.

o Auto Acknowledge: The session automatically acknowledges a client's
receipt of a message either when the session has successfully returned from a
call to receive or when the message listener the session has called to process
the message successfully returns.

o Client Acknowledge: With this acknowledgment mode, the client
acknowledges a consumed message.

Note: This option is relevant only when “isTransacted” is not selected.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 760

4.7.7.1.2 Requestor Configuration

Requestor ID:

The ID specific to an instance of requestor. This is used to set the message selector on the
response destination. Providing a value is optional. If no value is provided then a unique
requestor ID will be automatically generated by the component.

Match Response:

This option has to be chosen if the response that is received from the response destination has
to be matched with the request that is sent based on the header JMSCorrelationID. Choosing
this option enables the property “CorrelationID prefix”.

CorrelationID prefix:

The String that has to be prefixed to the correlationID that is generated. Providing value is
optional. If no value is provided, a default value “Correlation_” will be generated and used by
the component.

Execution Timeout:

The time in milliseconds for which the component has to wait for a response from the
response destination after sending a request. A value of 0 indicates infinite timeout.

Action when message is not available:

The action that has to be performed when no message is received within the timeout specified
by the property “Execution Timeout”.

The action can be chosen as one of the following

• EMPTY_MESSAGE_ACTION: An empty message is sent onto the output port of the
component.

• NO_ACTION: Nothing is done if no message is received.

• ERROR_ACTION: The situation will be treated as a request execution error and
action will be taken based on the configuration of Error Actions defined in Additional
Configuration page.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 761

4.7.7.1.3 Request Configuration

The details of the destination to which the request message from input port has to be sent can
be configured using the Request configuration tab.

Destination Name:

The name of the destination to which the messages have to be sent.

Destination Type:

The JMS type of the destination. This can be chosen as either Topic or Queue.

Lookup Destination:

This option can be chosen if the destination is already present and needs to be looked up
using JNDI.

AutoCreate Destination:

This option has to be chosen if the destination has to be created, if it doesn’t exist.

Note:

• One of “Lookup destination” or “Autocreate destination” is mandatory.

• If both are chosen, the component first tries to lookup the destination and if it fails it
will create the destination.

4.7.7.1.4 Producer Configuration

Delivery Mode:

• PERSISTENT: The PERSISTENT delivery mode, instructs the JMS provider to take
extra care to ensure that a message is not lost in transit in case of a JMS provider
failure. A message sent with this delivery mode is logged to stable storage when it is
sent.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 762

• NON-PERSISTENT: The NON_PERSISTENT delivery mode does not require the JMS
provider to store the message or otherwise guarantee that it is not lost if the provider
fails.

Priority:

The priority of the message to be sent to the destination.

Time to Live:

The time to live (in milliseconds) of the message to be sent to the destination. After the
timeout the message will be discarded.

4.7.7.1.5 Response Configuration

Response Destination Configuration:

The details of the destination to which the response is sent can be specified here.

Destination Name:

The name of the destination on which the response for the request will be received. This is
optional. If the destination name is not defined, then a temporary destination will be created
and will be set as the JMSReplyTo Destination on the request message. The type of the
temporary destination created will be same as the type of the request destination.

Destination Type:

The JMS type of the destination. This can be chosen as either Topic or Queue. This option is
relevant only when the destination name is not empty.

Lookup Destination:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 763

This option can be chosen if the destination is already present and needs to be looked up
using JNDI.

AutoCreate Destination:

This option has to be chosen if the destination has to be created.

Note:

• One of “Lookup destination” or “Autocreate destination” is mandatory.

• If both are chosen, the component first tries to lookup the destination and if it fails it
will create the destination.

• Both options are relevant only when the destination name is not empty.

4.7.7.1.6 Error Destination Configuration

The details of the destination to which the errors are sent can be specified here.

Destination Name:

The name of the destination on which the errors occurred after sending the message will be
received. This is optional. If the destination name is not defined, then a temporary destination
will be created whose type is same as the type of the request destination.

Destination Type:

The JMS type of the destination. This can be chosen as either Topic or Queue. This option is
relevant only when the destination name is not empty.

Lookup Destination:

This option can be chosen if the destination is already present and needs to be looked up
using JNDI.

AutoCreate Destination:

This option has to be chosen if the destination has to be created.

Note:

• One of “Lookup destination” or “Autocreate destination” is mandatory.

• If both are chosen, the component first tries to lookup the destination and if it fails it
will create the destination.

• Both options are relevant only when the destination name is not empty.

4.7.7.1.7 Consumer Configuration

The details of the consumers that has to be created for the response and error destinations
can be configured here. The configuration provided is relevant only when destination name is
provided either for response destination or error destination.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 764

Message Selector: The message selector for the messages to be received by this consumer.
More information on message selectors is available at
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

Is Durable: This option has to be chosen if a durable subscriber has to be created on the
destination.

Note:

• If a durable subscriber is already created by this component and the checkbox is
deselected, when the CPS is finished, User is provided with an option to remove
durable subscription that is created previously. This can be done by providing the
administrator credentials of the JMS Server.

• This option is relevant only when the destination type is selected as “TOPIC” in the
response destination configuration.

• Selecting this option enables the user to specify the subscription name.

Subscription Name: The name of the subscription corresponding to the durable subscriber
that is created by the component.

Note: This option is relevant only when the response destination type is selected as “TOPIC”
in the destination configuration and the property “Is Durable” is selected.

Request Message Definition

Request Message type configuration can be defined in this panel. The schema of the input port
of the component will be determined based on the configuration provided.

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Message.html

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 765

Use XML Interface:

This option has to be chosen if the component needs an XML interface. If this is not selected,
schema will not be set on input port of the component and the message received on the input
port will be sent to the destination as it is.

 Message Type:

The type of the message that needs to be sent can be chosen as one of the following.

• Text message - Use this option to send a plain text message.

• Map message - A Map Message object's message body contains a set of name-value
pairs, where names are String objects, and values are Java primitives. The entries can
be accessed sequentially or randomly by name. The order of the entries is undefined.

• Stream message - A Stream Message object's message body contains a stream of
uninterrupted bytes. This message type is for literally encoding a body to match an
existing message format.

Include JMS Headers:

This option can be selected to set the JMSHeaders on the message at runtime.

When this option is selected, the fields JMSCorrelationID and JMSDestination will be generated
in the input schema of the component.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 766

Include Properties:

This option can be selected to set the JMS properties on the message at runtime.

When this option is selected, the elements “ApplicationContext” and “Property” (ZeroMany)
are generated in the input schema of the component.

The properties and application context can be set as shown in the figure.

Depending on the Message Type selected, the appropriate parsing option is shown. Message
Type and the corresponding parsing option is explained below.

Text message – XML Content:

Select this option if the content of the input message conforms to a specific schema. The
schema can be specified using the schema editor.

Map message – Define Body:

Select this option to define the body fields of the Map message. The message body fields
(name and type of the field) can be added in the table and the input schema will be generated
corresponding to the each field defined.

Stream message – Parse Body:

Select this option to set the content of the stream message in input XML. The name, type and
length of the field can be added in the table. An element will be added to the schema
corresponding to each field with the same name.

Response Message Definition

Use XML Interface:

Select this option if the response message has to be converted to XML format before sending
to the output port of the component.

 Message Type:

The type of the message that has to be received can be chosen as one of the following.

• Text message - Use this option to receive a plain text message.

• Map message - A Map Message object's message body contains a set of name-value
pairs, where names are String objects, and values are Java primitives. The entries can
be accessed sequentially or randomly by name. The order of the entries is undefined.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 767

• Stream message - A Stream Message object's message body contains a stream of
uninterpreted bytes. This message type is for literally encoding a body to match an
existing message format.

Include JMS Headers:

This option can be selected to include JMSHeader information of message in the output XML.
An element “JMSHeader” will be added to the output schema and all relevant JMS headers
appear as child elements in the output schema as shown in figure.

Include Properties:

This option can be selected to retrieve the JMS properties on the message.

When this option is selected, the elements “ApplicationContext” and “Property” (ZeroMany)
will be generated in the schema of output port.

Depending on the type of the message, the parsing of the message content can be chosen.

• Text message – XML Content: This option can be chosen if the content of the
output message conforms to a specific schema. The schema can be specified using the
schema editor. This schema will be set as the schema of the body element. Setting the
schema enables doing necessary transformations.

• Map message – Define Body: This option can be chosen to retrieve the body fields
of the map message. The message body fields (name and type of the field) can be
added in the table and the output schema will be generated corresponding to the each
field defined.

• Stream message – Parse Body: This option can be chosen to retrieve the content of
the stream message. The name, type and length of the field can be added in the table.
An element will be added to the schema corresponding to each field with the same
name.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 768

4.7.7.1.8 Additional Configuration

Validate Input: This option has to be chosen if the input message has to be validated against
the schema that is set on the input port.

Target namespace: The target namespace of the schema can be provided here. The schema
on ports will be suffixed with the component name and type of the port. Eg. /JMSIn/In

Error Handling Configuration:

The actions that have to be taken in case of different kinds of errors can be chosen using this
panel.

4.7.7.2 Functional Demonstration

4.7.7.2.1 Scenario 1

The component is configured to send message to “PrimaryTopic”. A replier is used to resend
the request that is send to it as shown in figure.

Sample Input

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 769

Sample Output

4.7.7.3 Useful Tips
• When using the Durable Subscriber mode, each message has to be stored by the JMS

server either in the database or the file system depending on the vendor before
delivery of message to consumer and removed after delivery of message. This has a
huge impact on the performance. So as far as possible restrict the use of durable
delivery mode unless it is necessary for your application to avoid the overheads
involved.

• The durable subscription created by this component earlier will become unnecessary if
the following gets changed while reconfiguring the component.

• IsDurable property is deselected in consumer configuration; Subscription name is
changed.

• Response Destination Type is changed from Topic to Queue; ClientID is changed.

Therefore the previous subscription has to be removed to avoid persisting messages in
runtimedata.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 770

If the “use specific client ID” is selected in connection configuration step, a dialog Confirm will
appear prompting the user if the durable subscription has to be removed. The user can select
“yes” and then give the admin credentials to remove the previous durable subscription.

Otherwise, the subscription has to be removed manually. For more information on
unsubscribing, please refer to Section 29.3 Connecting to Web Management Tool -
DurableSubscribers view of FioranoMQ Handbook.

4.7.8 MQSeriesIn

The MQSeriesIn component provides an interface to queues on IBM WebSphere MQ 5.3 and
above using MQSeries client for Java. The component sends messages that are received to
queues on the MQSeries Server. The input message contains details of the message to be sent
to the queue.

4.7.8.1 Configuration and Testing

4.7.8.1.1 Creating queues on IBM WebSphere MQ using WebSphere MQ explorer

Required queue should be created on IBM WebSphere MQ prior to configuring the component.
This section can be skipped if the queue to which messages are sent is already created.

Steps for creating a queue on IBM Websphere MQ:

1. Start WebSphereMQ Explorer.

2. In the WebSphereMQ Explorer – Navigator pane, expand the IBM WebSphere MQ and
right-click Queue Managers node.

3. From the pop-up menu, select New and click Queue Manager... (shown in Figure 1)

Figure 1: Adding new queue manager

4. Enter the Queue manager name with required name in Enter basic values (Step 1).

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 771

Figure 2: Providing a name for queue manager

5. Proceed to Enter listener options (Step 4) wizard page.

6. Provide a port number which is not used by any other application or any other Queue
Manager in IBM WebSphere MQ as shown in Figure 3.

Figure 3: Providing port number

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 772

7. Click Finish. A new Queue Manager with given name is created and shown in
WebSphereMQ Explorer – Navigator.

Figure 4: New Queue Manager Sample QM

8. In the WebSphereMQ Explorer – Navigator, expand IBM WebSphere MQ > Queue
Managers > SampleQM > Advanced and right-click Channels node as shown in
Figure 5.

9. From the pop-up menu, select New and click Server-connection Channel to add a
server-connection channel as shown in Figure 5.

Figure 5: Adding a server-connection channel

10. Enter the Name in Create a Server-connection Channel step, as shown in Figure
6, and click Finish.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 773

Figure 6: Configuring Server-connection Channel with required name

11. On successful completion, newly added server-connection channel is shown when IBM
WebSphere MQ > Queue Managers > SampleQM > Advanced > Channels node
is expanded as shown in Figure 7.

Figure 7: Newly added server connection channel

12. Right-click the newly added Server-connection Channel and click Start option from
the pop-up menu as shown in Figure 8.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 774

Figure 8: Starting Server-connection Channel

13. In the WebSphereMQ Explorer – Navigator, expand IBM WebSphere MQ > Queue
Managers > SampleQM and right-click Queues node as shown in Figure 8.

14. From the pop-up menu, select New and click Local queue to add a local queue as
shown in Figure 9.

Figure 9: Adding a new local queue

15. Enter the Name in Create a Local Queue step, as shown in Figure 10, and click
Finish.

Figure 10: Name for local queue

On successful completion, newly added Local Queue is shown when IBM WebSphere MQ >
Queue Managers > SampleQM > Queues node is expanded as shown in Figure 11.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 775

Figure 11: Newly added Local Queue

4.7.8.2 Managed Connection Factory

The connection details are configured in the first panel, Managed Connection Factory

(MCF). Figure 12 illustrates the panel with expert properties view enabled.

Figure 12: Connection configuration details in MCF panel

4.7.8.2.1 Attributes

4.7.8.2.1.1 Host Address

The hostname or IP address of the machine on which IBM WebSphereMQ Server is running.
If connecting to IBM WebSphereMQ on the same machine on which the component is
running, use localhost.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 776

4.7.8.2.1.2 Port for MQSeries server

The port number on which IBM WebSphere MQ listens for connection requests to connect to
configured Queue Manager. To view the port number for required Queue Manager (value for
property Queue Manager Name), expand IBM WebSphere MQ > Queue Managers >
SampleQM > Advanced > Listeners in WebSphereMQ Explorer – Navigator as shown in
Figure 13.

Figure 13: Port number of Queue Manager Sample QM

4.7.8.2.1.3 Server Channel Name

The name of the channel to be used for communicating with the Queue Manager. Note: The
channel name is case-sensitive.

4.7.8.2.1.5 Queue Manager Name

The name of the Queue Manager in which destination queue is present.

4.7.8.2.1.6 Is Authentication required

• yes

Use authentication when connecting to the MQSeries Server. When this value is
selected, values for properties Username and Password are used for authentication.

• no

Do not use authentication when connecting to the MQSeries Server. When this value is
selected, values for properties Username and Password (if provided) are ignored while
connecting to Queue Manager.

4.7.8.2.1.7 User name

The user name to connect to the MQSeries Queue Manager.

4.7.8.2.1.8 Password

The user password to connect to the MQSeries Queue Manager.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 777

4.7.8.2.1.9 SendExitClass

The class that implements the MQsendExit interface. This class allows you to examine and
possibly alter the data sent to the queue manager by the MQSeries client. At runtime new
instance of this class is created and assigned to the variable MQEnvironment.sendExit (class in
IBM MQSeries API).

4.7.8.2.1.10 ReceiveExitClass

The class that implements the MQReceiveExit interface. This class allows you to examine and
possibly alter the data received from the queue manager by the MQSeries client. At runtime
new instance of this class is created and assigned to the variable MQEnvironment.receiveExit.

4.7.8.2.1.11 SecurityExitClass

The class that implements the MQSecurityExit interface. This class allows you to customize the
security flows that occur when an attempt is made to connect to a queue manager. At
runtime, new instance of this class is created and assigned to the variable
MQEnvironment.securityExit.

A WebSphere MQ JMS application can use channel security, send, and receive exits on the MQI
channel that starts when the application connects to a queue manager. An application
connects to a queue manager by setting channel related fields or environment properties in
the MQEnvironment class. Further information can be found at
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.
doc/uj21370_.htm

4.7.8.3 Interaction Configuration

Business logic configuration details are configured in the second panel, Interaction

Configurations. Figure 14 illustrates the panel with expert properties view enabled.

Figure 14: Business logic configuration in Interaction Configurations panel

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/uj21370_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/uj21370_.htm

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 778

4.7.8.3.1 Attributes

4.7.8.3.1.1 DestinationQueue

This property defines the queue on IBM WebSphere MQ to which messages are sent, format
of message, and message sending options.

Click the ellipsis button to launch an editor for providing these configurations.

Figure 15: Launching editor for configuring queue and message sending options

• Queue Name

Name of the queue on IBM WebSphere MQ to which messages are sent.

• Text Type

A MQ message contains message descriptor (a set of headers that define the
message) and data. The data is stored in binary format. Multiple fields are written
in a sequence using a type specific API. The data in the message is read by the
consuming application exactly in the same order as the data is written.

The MQSeriesIn component takes in an input message in text format (either XML
or raw), builds a MQ message internally from the message in text format based on
message details configured in CPS and sends the message to the configured
queue.

There are two formats for defining the input message:

o XML Text

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 779

This option defines a XML structure with headers and fields of message body
defined in CPS. The input XML contains values for headers and message body
fields, which are parsed and respective values, are set on MQ message. The
MQ message will then be sent to MQ queue.

This option should be used in any of the following cases:

- When the message body contains data for multiple fields. Example: Name
and age of a person MQMD or RFH2 headers and/or their values vary with
each input message.

- When this option is selected, both Structure and Headers buttons are
enabled.

o Raw Text

This option does not define any structure for input message. The input
message is set on the message body as a single string field. Headers (MQMD
and RFH2) with values defined in CPS are sent on every message. Only one
RFH2Header is added to the message.

This option should be used when the all of the followings conditions are met:

- When the message body contains only a single text field and complex
transformation and XML parsing can be avoided. A typical case, when a
message is pulled from one system and passed on without any
modifications to IBM WebSphere MQ series. MQMD or RFH2 headers and
their values are constant for all messages.

- When this option is selected, Structure button is disabled and Headers
button is enabled.

Refer to section Input and Output for details about the effects of these
configurations on input and output structures.

• Structure

The structure button is enabled only when Text Type is XML Text. Click this
button to launch editor to define the fields of the message. Refer Figure 16.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 780

Figure 16: Editor to define fields in message

The editor contains a table with Tag Name and Data Type columns. Each row corresponds to
a field in the MQ message. The value in Tag Name column is the element name for the
element in XML structure which holds data for the field. The value in Data Type column is the
type of the data that is held in the field. It can only contain following values (case-sensitive) -
Char, Double, Float, Integer, Long Integer, Short Integer, UTF, String, Boolean, Byte Array.
The Figure 16 shows the definition of structure to build a MQ message with data for a ID,
name and age of a person.

The order of the fields is important and the order of the rows in this table defines the order of
fields in the MQ message. The Move Up and Move Down buttons are used to reorder the
fields. The Add and Delete buttons are used to add or remove the fields.

The schema for input XML is built based on the fields defined here. However, the types for
elements in schema do not use the types defined here. All the elements are defined as string
type and hence, the schema does not validate content of element with appropriate data type.

Note:

• Data in input XML for Boolean type fields should contain true or false (not case
sensitive). Any other value is treated as false.

• Data in input XML for Byte Array type fields should contain Base64 encoded string.
The Base64-Encode function under Advanced Functions in Fiorano Mapper
can be used to convert byte array into Base64 encoded string.

• Data in input XML for Char type fields should contain only one character. If there is
more than one character, only the first character is picked.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 781

• If the order of elements in input XML differs from the order defined or if there are
additional elements or if some of the elements are missing, one of the following
happens:

o error when building MQ message

o mixed up values between fields

o junk data is set on MQ message

Refer to section Input and Output for details about the effects of these configurations
on input and output structures.

• Headers

Click Headers button to launch an editor, refer to Figure 17, that defines MQ message
descriptor (MQMD) fields and RFH2 Headers to be used. This property depends on Text
Type.

Defining headers when Text Type is XML Text

When Text Type is set to XML Text the editor defines the following:

• MQMD headers whose values have to be provided in input message.

• RFH2 headers, if required, and their default values.

Figure 17: Headers editor when Text Type is XML Text

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 782

Defining MQMD headers

Available Headers: Contains MQMD headers that can be defined on MQ message and whose
values are not taken from input message. Headers in this list are set with default values on
MQ message.

Included Headers: Contains MQMD headers that can be defined on MQ message and whose
values are taken from input message.

Headers in Available Headers and Included Headers together contain all MQMD headers.

MQMD headers can be selected or unselected as

• To populate values for MQMD headers from input message, select required headers from

Available Headers list and click .

• To populate values for all MQMD headers from input message, click .

• To use default values for MQMD headers, select required headers from Included Headers

list and click .

• To use default values for all MQMD headers, click .

The default values are used for MQMD headers which are in Available Headers list or which
are in Included Headers, but corresponding elements are not present in input XML.

Refer to section MQMD headers for default values

Defining RFH2 headers

Select the Include RFH2 headers check box to set RFH2 headers on MQ Message, refer to
Figure 17. If the check box Include RFH2 headers is unchecked the input schema created
will not contain elements related to RFH2 headers.

Multiple RFH2 headers can be set in the input message. Each RFH2 header should contain all
the fields shown in Figure 17. If any RFH2 header in input XML does not contain the particular
field then corresponding value from the Default Value column is used. The Variable data is
also a field of RFH2 header and is treated similar to other RFH2 fields in the table.

Refer to section RFH2 header fields for default values.

Defining headers when Text Type is Raw Text

When Text Type is set to Raw Text the editor defines the following:

• MQMD headers and their values that have to be set on MQ message.

• RFH2 headers, if required, and their values that have to be set on MQ message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 783

Figure 18: Selection of MQBD headers that has to be set on the input message

Defining MQMD headers

Select the check box in Select column if a particular MQMD header value in Name column has
to be set on the input message with value specified in Constant Value column, refer to Figure
18. If the check box in Select column is not checked, then the default value for corresponding
MQMD header is used. The values provided in Constant Value column are not validated against
the data type of the corresponding MQMD header and hence, should be carefully defined.

Note: MQMD headers are set with same values on all messages.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 784

Refer to section MQMD headers for default values and data types.

Defining RFH2 headers

Select the Include RFH2 headers check box to set RFH2 header on MQ Message, refer to
Figure 18. If the check box Include RFH2 headers is unchecked RFH2 header is not set on
the message.

Only one RFH2 header can be set on message. Values for each field of RFH2 header can be
provided in Constant Value column against corresponding field as shown in Figure 18. The
Variable data is also a field of RFH2 header and is treated similar to other RFH2 fields in the
table. By default, when this editor is opened for the first time default values for all fields are
loaded.

Refer to section RFH2 header fields for additional information.

MQMD Headers

Only some of most commonly used MQMD headers are provided in the CPS of the component.
Refer to Table 1 for a short description and default value used for each MQMD header. Refer to
link
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.d
oc/mqmd.htm for detailed information on MQMD headers.

Note: Values in Default value column of Table 1 are the defaults defined in the component
and may vary from the actual default values of IBM WebSphere MQ.

Table 1 Short descriptions, default values and data types of MQMD headers used in the
component

MQMD header name Description Default value Data type

MQApplicationName Name of application that put the
message.

Empty string (“”) String

MQApplicationType Type of application that put the
message

0 (MQAT_NO_CONTEXT) Integer

MQCharacterSet Character set identifier of character
data in the message

0 (MQCCSI_Q_MGR) Integer

MQCorrelationID A byte string that the application
can use to relate one message to
another, or to relate the message to
other work that the application is
performing

null (MQCI_NONE) byte array as a
hex string

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/mqmd.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/mqmd.htm

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 785

MQMD header name Description Default value Data type

MQMessageID A byte string that is used to
distinguish one message from
another. The message identifier is a
permanent property of the
message, and persists across
restarts of the queue manager.

null (MQMI_NONE) byte array as a
hex string

MQDeliveryMode Delivery mode indicating whether
the message survives system
failures and restarts of the queue
manager.

0 (MQPER_NOT_PERSISTENT) Integer

MQExpirationTime A period of time expressed in tenths
of a second, set by the application
that puts the message. The
message becomes eligible to be
discarded if it has not been
removed from the destination
queue before this period of time
elapses.

-1 (MQEI_UNLIMITED) Integer

MQEncodingBinaryInte
gers

Subfield of encoding header that
specifies encoding for binary
integers

1 (MQENC_INTEGER_NORMAL) Integer

MQEncodingPackedDec
imal

Subfield of encoding header that
specifies encoding for packed-
decimal integers

16
(MQENC_DECIMAL_NORMAL)

Integer

MQEncodingFloatPoint
Numbers

Subfield of encoding header that
specifies encoding for floating-point
integers

256
(MQENC_FLOAT_IEEE_NORMAL)

Integer

MQPriorityTag Priority of the Message -1
(MQPRI_PRIORITY_AS_Q_DEF)

Integer

MQReplyToQueueNam
e

Name of the message queue to
which the application that issued
the get request for the message
sends MQMT_REPLY and
MQMT_REPORT messages

Empty string (“”) String

MQMessageType Type of message 8 (MQMT_DATAGRAM) Integer

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 786

MQMD header name Description Default value Data type

MQUserId User identifier of the application
that originated the message. The
queue manager treats this
information as character data, but
does not define the format of it.

Empty string (“”) String

MQMessageFormat A name that the sender of the
message uses to indicate to the
receiver the nature of the data in
the message

null String

RFH2 Header fields

Refer to Table 2 for a short description and default value used for each RFH2. Refer to link
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.d
oc/csqzak10172.htm for detailed information on RFH2 header fields.

Note: Values in Default value column of Table 2 are the defaults defined in the component
and may vary from the actual default values of IBM WebSphere MQ.

Table 2 Short descriptions, default values and data types of RFH2 header fields used in the
component

RFH2 Header
field

Description Default value Data type

StructId Structure identifier. This field should
strictly contain 4 characters. If there are
more than 4 characters content after 8th
character is pruned by the component. If
there are less than 8 characters required
additional blank spaces are padded at the
end by the component.

RFH (MQRFH_STRUC_ID) String of length 4
characters

Version Structure version number 2 (MQRFH_VERSION_2) Integer

Encoding The numeric encoding of the data that
follows the last NameValueData field; it
does not apply to numeric data in the
MQRFH2 structure itself

273 (MQENC_NATIVE) Integer

CodedCharSet
Id

The character set identifier of the data
that follows the last NameValueData field;

1208 Integer

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/csqzak10172.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/csqzak10172.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/mqmd.htm

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 787

RFH2 Header
field

Description Default value Data type

it does not apply to character data in the
MQRFH2 structure itself.

Format The format name of the data that follows
the last NameValueData field. This field
should strictly contain 8 characters. If
there are more than 8 characters content
after 8th character is pruned by the
component. If there are less than 8
characters required additional blank
spaces are padded at the end by the
component.

MQSTR (MQFMT_STRING) String of length 8
characters

Flags This value should be set to MQRFH_NONE 0 (MQRFH_NO_FLAGS) Integer

NameValueCC
SID

The coded character set identifier of the
data in the NameValueData field.

1208 Integer

Variable Data A variable-length character string
containing data encoded using an XML-
like syntax. Refer to link
http://publib.boulder.ibm.com/infocenter/
wmqv6/v6r0/index.jsp?topic=/com.ibm.m
q.csqzak.doc/js07180.htm for additional
details about this field

null String

Variable Data

The variable portion contains a variable number of MQRFH2 folders. Each folder contains a
variable number of elements or properties. Folders group together related properties. Each
MQRFH2 folder can be added as an entry in the table as shown in the figure 18 using the add
button. Refer to link
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.d
oc/js07180.htm for additional details about this field

RFHFolder format

When the input type is XML, the way MQRFH2 folders can be specified in the input message
depends on this property.

• TEXT

When this option is chosen the RFHFolders can be specified as CDATA. For
example a sample jms Folder
<jms><Dst>queue:///Test</Dst><Dlv>4</Dlv><Tms>3543534</Tms
></jms> can be specified as
<![CDATA[<jms><Dst>queue:///Test</Dst><Dlv>4</Dlv><Tms>3543534</Tm
s></jms>]]>

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/js07180.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/js07180.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/js07180.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/js07180.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/js07180.htm

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 788

• CUSTOM XML

When this opton is chosen the RFHFolders can be specified as parseable elements
in the input schema. If the property value is empty then an attribute isNull="true"
must be added to corresponding Property element. For example a sample jms
Folder
<jms><Dst>queue:///Test</Dst><Dlv>4</Dlv><Tms>3543534</Tms
></jms> can be specified as

<ns1:Folder type="jms">

<ns1:Property name="Dst">queue:///Test</ns1:Property>
<ns1:Property name="Dlv">4</ns1:Property>
<ns1:Property name="Tms">3543534</ns1:Property>

</ns1:Folder>

Sync Point Control

The IBM WebSphere MQ series support transactions similar to JMS transaction. Select the
check box if the messages sent to MQ queue have to be committed after sending a batch of
messages. The messages are not visible or available for consumption on queue until a commit
is performed. If the check box is unchecked, any messages sent are immediately available for
consumption on the queue.

The Batch Size is taken into account only if this check box is checked.

• Batch Size

The number of messages after which a commit should be performed, if the check
box Sync Point Control is checked. The Batch size is counted based on the
number of messages that are successfully sent to MQ Queue. If any message
could not be sent to MQ Queue due to an error that message is not counted, but
the count continues.

4.7.8.3.1.2 CCSID

The Coded Character Set Identification should be an integer or null, in case of null, 819 (ISO
8859-1 ASCII) is used as CCSID. This character set is set on the MQMessage. This overrides
the MQCharacterSet header property set in MQMD headers.

4.7.8.4 Input and Output

4.7.8.4.1 Input

The input schema for the component is defined based on the configuration selected.

• When the Text Type is set to Raw Text there is no schema defined for the input.
The input message text is written MQ message body as a single String field.
Selected MQMD headers with values defined in CPS and unselected MQMD headers
with default values mentioned in section MQMD Headers are set on MQ Message.
If RFH2 header is checked, one RFH2 header with field values defined in CPS is
added. The MQMD headers and RFH2 header added is same for all messages.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 789

• When the Text Type is set to XML Text the input schema varies based on the
configuration of structure and headers.

• When only fields of message body are defined in Structure dialog as shown in
Figure 19.

Figure 19: Fields defined for message body

The input schema is defined as shown in Figure 20 and a sample input is shown in Figure 21.

Figure 20: Schema when only fields of message body are defined

Figure 21: Sample input XML for schema in Figure 20

All the fields defined are added as child elements under MessageBody in the same order in
which these fields are defined in CPS. The Input XML should have all the fields and should
strictly follow the order. MQMD headers are not explicitly set by the component.

• When fields of message body are defined in Structure dialog as shown in Figure 19 and
MQMD headers are defined in Headers dialog as shown in Figure 22.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 790

Figure 22: Selecting MQMD headers whose values have to be taken from input XML

The input schema is defined as shown in Figure 23 and a sample input is shown in Figure 24.

Figure 23: Input schema when fields of message body and some MQMD headers are
defined

Figure 24: Sample input XML for schema defined in Figure 23

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 791

All the fields defined are added as child elements under MessageBody in the same order in
which these fields are defined in CPS and all the MQMD headers selected are added as child
elements under Message Header in the same order in which these headers are defined in
CPS.

If Message Header element is not present MQMD headers are not explicitly set by the
component and it behaves exactly like the case where only the fields of message body are
defined.

If Message Header element is present, then for the MQMD fields that are present under the
Message Header element in input XML, values are taken from input XML. For the MQMD
fields that are not present under the Message Header element, default values as described in
section MQMD Headers are used irrespective of whether the header is selected or not in CPS
as shown in Figure 22.

• When fields of message body are defined in Structure dialog as shown in figure 19 and
both MQMD headers and RFH2 header are defined in Headers dialog as shown in Figure
25.

Figure 25: Selecting some MQMD headers and enable RFH2 header

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 792

The input schema is defined as shown in Figure 26 and a sample input is shown in Figure 27.

Figure 26: Schema when RFH2 headers are selected as well

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 793

Figure 27: Sample input XML for schema defined in Figure 26

All the fields defined are added as child elements under MessageBody in the same order in
which these fields are defined in CPS, and all the MQMD headers selected are added as child
elements under Message Header in the same order in which these headers are defined in
CPS. The RFH2 headers are added as well under Message Header element as RFH2Headers
element, and the RFH2Headers element can contain multiple RFH2Header elements.

If Message Header element is not present, MQMD headers and RFH2 header are not
explicitly set by the component and it behaves exactly like the case where only the fields of
message body are defined.

If Message Header element is present, then for the MQMD fields that are present under the
Message Header element in input XML, values are taken from input XML. For the MQMD
fields that are not present under the Message Header element, default values as described in
section MQMD Headers are used irrespective of whether the header is selected or not in CPS
as shown in Figure 25. If RFH2Headers element is not present or if RFH2Headers element
is present but does not have any child RFH2Header elements then RFH2 headers are not set.
If there is a RFH2Headers element which contains one or more RFH2Header elements as
children, then one RFH2 header is added for each of the RFH2Header elements present in the
same order. A RFH2 header is populated with field values from the values present at elements
with corresponding field names. If a particular field element is not present, as a child to RFH2
header then the default value defined in the CPS for that field is taken.

If the input message contains a property with name TargetQueueName and the value of
property is not null message, the message is sent to the queue with name specified by the
property. If the property is not defined or a value is not set for the property the message is
sent to queue with name configured in CPS.

4.7.8.4.2 Output

The output schema for the component is fixed. The schema is shown in Figure 28.

Figure 28: Schema for output message

The output message contains only two elements:

• QueueName – The name of queue to which the message is sent.

• status – success

The queue name to which the message is sent is also set as message property with name
TargetQueueName.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 794

4.7.8.5 Functional Demonstration

4.7.8.5.1 Scenario 1

Configure the component for Text type mode as Raw Text and configure Headers as shown in
Figure 29.

Figure 29: Configuration of headers for scenario 1

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 795

Input Message

testMessage

Output Message

<?xml version="1.0" encoding="UTF-8"?>

<MessagePublishReport xmlns="http://www.fiorano.com/fesb/activity/MQSeriesIn1In/Out">

 <QueueName>TestQueue</QueueName>

 <status>success</status>

</MessagePublishReport>

Note: MQMD headers that are selected in Figure 19 are set on MQMessage with values
provided in Constant Value column. For the MQMD headers which are not selected in CPS,
default values are set on MQ Message.

4.7.8.5.2 Scenario 2

Configure the component for XML type message.

Add two fields Name1 and Name2 with type String in Structure editor as shown in Figure 30.

Figure 30: Fields in message body for scenario 2

Select MQMD headers MQCharacterSet and MQApplicationName and check RFH2 Headers as
shown in Figure 31

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 796

Figure 31: Headers defined for scenario 2

InputMessage:

<ns1:MQMessage xmlns:ns1="http://www.fiorano.com/fesb/activity/MQSeriesIn1In/In">

 <ns1:MessageHeader>

 <ns1:MQCharacterSet>1208</ns1:MQCharacterSet>

 <ns1:RFH2Headers>

 <ns1:RFH2Header>

 <ns1:StructId>RFH</ns1:StructId>

 <ns1:Version>2</ns1:Version>

 <ns1:Encoding>273</ns1:Encoding>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 797

 <ns1:CodedCharSetId>1208</ns1:CodedCharSetId>

 <ns1:Format>MQSTR</ns1:Format>

 <ns1:Flags>0</ns1:Flags>

 <ns1:NameValueCCSID>1208</ns1:NameValueCCSID>

 <ns1:VariableData><![CDATA[<mcd>jms_text</mcd>]]></ns1:VariableData>

 </ns1:RFH2Header>

 </ns1:RFH2Headers>

 </ns1:MessageHeader>

 <ns1:MessageBody>

 <ns1:Name1>Name1value</ns1:Name1>

 <ns1:Name2>Name2value</ns1:Name2>

 </ns1:MessageBody>

</ns1:MQMessage>

OutputMessage:

<?xml version="1.0" encoding="UTF-8"?>

<MessagePublishReport xmlns="http://www.fiorano.com/fesb/activity/MQSeriesIn1In/Out">

 <QueueName>TestQueue</QueueName>

 <status>success</status>

</MessagePublishReport>

Note: In the above sample, input message only not all MQMD headers which are selected in
CPS are provided. For those MQMD headers which are not provided in input message, default
values are set. And for RFH2 headers, default values are taken from the CPS if they are not
provided in input message.

4.7.8.5.3 Scenario 3

Configure the component for XML type message.

The RFH Format is chosen as "CUSTOM XML" instead of "TEXT" in figure 31. The input and
output will be as below.

InputMessage:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 798

<ns1:MQMessage xmlns:ns1="http://www.fiorano.com/fesb/activity/MQSeriesIn1In/In">

 <ns1:MessageHeader>

 <ns1:MQCharacterSet>1208</ns1:MQCharacterSet>

 <ns1:RFH2Headers>

 <ns1:RFH2Header>

 <ns1:StructId>RFH</ns1:StructId>

 <ns1:Version>2</ns1:Version>

 <ns1:Encoding>273</ns1:Encoding>

 <ns1:CodedCharSetId>1208</ns1:CodedCharSetId>

 <ns1:Format>MQSTR</ns1:Format>

 <ns1:Flags>0</ns1:Flags>

 <ns1:NameValueCCSID>1208</ns1:NameValueCCSID>

 <ns1:RFH2Folders>

 <ns1:Folder type="mcd">
 <ns1:Property name="msd">jms_text</ns1:Property>
 </ns1:Folder>

 </ns1:RFH2Folders>

 </ns1:RFH2Header>

 </ns1:RFH2Headers>

 </ns1:MessageHeader>

 <ns1:MessageBody>

 <ns1:Name1>Name1value</ns1:Name1>

 <ns1:Name2>Name2value</ns1:Name2>

 </ns1:MessageBody>

</ns1:MQMessage>

OutputMessage:

<?xml version="1.0" encoding="UTF-8"?>

<MessagePublishReport xmlns="http://www.fiorano.com/fesb/activity/MQSeriesIn1In/Out">

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 799

 <QueueName>TestQueue</QueueName>

 <status>success</status>

</MessagePublishReport>

Note: In the above sample, input message does not have all MQMD headers which are
selected in CPS. For such MQMD headers default values are set. For RFH2 headers, default
values are taken from the CPS if they are not provided in input message.

4.7.8.6 Useful Tips

The correct CCSID should be set for message encoding when transferring messages from AS
400 systems to other platforms and vice versa.

4.7.9 MQSeriesOut

The MQSeriesOut component provides an interface to queues on IBM WebSphere MQ 5.3 and
above, using MQSeries client for Java. The MQSeriesOut component receives messages from
queues on MQSeries Queue Manager.

4.7.9.1 Configuration and Testing

4.7.9.1.1 Creating Queues on IBM WebSphere MQ using WebSphere MQ Explorer

Required queue should be created on IBM WebSphere MQ prior to configuring the
component. This section can be ignored if the queue from which messages are received is
already created.

Steps for creating a queue on IBM Websphere MQ

7. Start WebSphereMQ Explorer.

8. In the WebSphereMQ Explorer – Navigator, expand IBM WebSphere MQ, right-
click Queue Managers node.

9. From the pop-up menu point to New and click Queue Manager... (shown in Figure 1)

Figure 1: Adding new queue manager

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 800

10. Enter the Queue manager name with required name in Enter basic values (step
1).

Figure 2: Providing a name for queue manager

11. Proceed to Enter listener options (Step 4) of the wizard.

12. Provide a port number which is not used by any other application or any other Queue
Manager in IBM WebSphere MQ as shown in Figure 3.

Figure 3: Providing port number

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 801

13. Click the Finish button.

14. A new Queue Manager with given name is created and shown in WebSphereMQ
Explorer – Navigator.

Figure 4: New Queue Manager Sample QM

15. In the WebSphereMQ Explorer – Navigator, expand IBM WebSphere MQ >
Queue Managers > SampleQM > Advanced and right-click Channels node as
shown in Figure 5.

16. From the pop-up menu, point to New and click Server-connection Channel to add a
server-connection channel as shown in Figure 5

Figure 5: Adding a server-connection channel

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 802

17. Enter the Name in Create a Server-connection Channel step, as shown in Figure
6, and click Finish.

Figure 6: Configuring Server-connection Channel with required name

18. On successful completion, newly added server-connection channel is shown when
IBM WebSphere MQ > Queue Managers > SampleQM > Advanced > Channels
node is expanded as shown in Figure 7.

Figure 7: Newly added server connection channel

19. Right-click the newly added Server-connection Channel and click Start option from
the pop-up menu as shown in Figure 8.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 803

Figure 8: Starting Server-connection Channel

20. In the WebSphereMQ Explorer – Navigator, expand IBM WebSphere MQ >
Queue Managers > SampleQM and right-click Queues node as shown in Figure 8.

21. From the pop-up menu, point to New and click Local queue to add a local queue as
shown in Figure 9

Figure 9: Adding a new local queue

22. Enter the Name in Create a Local Queue step, as shown in Figure 10, and click
Finish.

Figure 10: Name for local queue

23. On successful completion, newly added Local Queue is shown when IBM WebSphere
MQ > Queue Managers > SampleQM > Queues node is expanded as shown in
Figure 11.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 804

Figure 161: Newly added Local Queue

Note: To put a test message in the Queue from the wizard, expand SampleQM
-> Queues, right-click on SampleQueue and select Put Test Message and then
enter some message in the Queue.

4.7.9.2 Managed Connection Factory

The Connection details are configured in the first panel, Managed Connection Factory

(MCF). The Figure 12 illustrates the panel with expert properties view enabled.

Figure 12: Connection configuration details in MCF panel

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 805

4.7.9.2.1 Attributes

4.7.9.2.1.1 Host Address

The hostname or IP address of the machine on which IBM WebSphereMQ Server is running.
If connecting to IBM WebSphereMQ on the same machine on which the component is
running, use localhost.

4.7.9.2.1.2 Port for MQSeries server

The port number on which IBM WebSphere MQ listens for connection requests to connect to
configured Queue Manager. To view the port number for required Queue Manager (value for
property Queue Manager Name, expand the node IBM WebSphere MQ > Queue
Managers > SampleQM > Advanced > Listeners as shown in Figure 13. The value in Port
column is the required port number.

Figure 13: Port number of Queue Manager Sample QM

4.7.9.2.1.3 Server channel Name

The case-sensitive name of the channel to be used for communicating with the Queue
Manager.

4.7.9.2.1.4 Queue Manager Name

The name of the Queue Manager in which destination queue is present.

4.7.9.2.1.5 Is Authentication required

• yes

Use authentication when connecting to the MQSeries Server. When this value is selected,
values for properties Username and Password are used for authentication.

• no

Do not use authentication when connecting to the MQSeries Server. When this value is
selected, values for properties Username and Password are be used for
authentication.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 806

4.7.9.2.1.6 Username

The user name to be used to connect to the MQSeries Queue Manager. The ID is used to
identify the WebSphere® MQ client. It overrides the value of WebSphere MQ environment
variable MQ_USER_ID.

If no security exit is defined for this client, the value of userID is transmitted to the server and
is available for use by the server security exit.

The default value is "" (empty string).

4.7.9.2.1.7 Password

The password to be used to connect to the MQSeries Queue Manager. The password is used to
verify the identity of the WebSphere® MQ Client. It overrides the value of MQEnvironment
variable MQ_PASSWORD .

If a security exit is not defined for this client, the value of password is transmitted to the
server and is available to the server security exit when it is invoked.

The default value is "" (empty string).

4.7.9.2.1.8 Send Exit Class

The class that implements the MQsendExit interface. This class allows you to examine and
possibly alter the data sent to the queue manager by the MQSeries client. At runtime new
instance of this class is created and assigned to the variable MQEnvironment.sendExit (class in
IBM MQSeries API).

4.7.9.2.1.9 Receive Exit class

The class that implements the MQReceiveExit interface. This class allows you to examine and
possibly alter the data received from the queue manager by the MQSeries client. At runtime
new instance of this class is created and assigned to the variable MQEnvironment.receiveExit.

4.7.9.2.1.10 SecurityExit Class

The class that implements the MQSecurityExit interface. This class allows you to customize the
security flows that occur when an attempt is made to connect to a queue manager. At
runtime, new instance of this class is created and assigned to the variable
MQEnvironment.securityExit.

A WebSphere MQ JMS application can use channel security, send, and receive exits on the MQI
channel that starts when the application connects to a queue manager. An application
connects to a queue manager by setting channel related fields or environment properties in
the MQEnvironment class. Further information can be found at
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.
doc/uj21370_.htm

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/uj21370_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/uj21370_.htm

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 807

4.7.9.3 Interaction Configuration

Business logic configuration details are configured in the second panel, Interaction

Configurations. The Figure 14 illustrates the panel with expert properties view enabled.

Figure 14: Business logic configuration in Interaction Configurations panel

4.7.9.3.1 Attributes

4.7.9.3.1.1 MonitoredQueue

This property defines the queue on IBM WebSphere MQ from which messages are received,
format of message, and message selection options.

Click the ellipsis button to launch an editor for providing these configurations.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 808

Figure 15: Launching editor for configuring queue and message selection options

• Queue Name

Name of the queue on IBM WebSphere MQ from which messages are received.

• Text Type

An MQ message contains message descriptor (a set of headers that define the
message) and data. The data is stored in binary format. Multiple fields are written in a
sequence using a type specific API. The data in the message is read by the consuming
application exactly in the same order as the data is written.

The MQSeriesOut component parses messages read from a MQ queue based on
Structure and Headers configurations in the CPS. It builds output message based on
Text Type, Output Mode, Structure and Headers configurations in the CPS.

 Parse Message

This option is used when the MQ message contains multiple fields in the message
body. When this option is selected, both Structure button and Headers button
are enabled. Fields in the MQ message are defined in Structure editor.

The MQ message is parsed based on the fields defined and a XML message
containing fields and headers with their respective values is generated. The output
message is always a XML message.

 Raw Text

This option is used if MQ message contains only a single string field. MQ message
is read from the queue and the data from the message is set in text format on
output message. Any headers that have to be read from the MQ message are
defined in Headers editor. The output message can either be in raw text or in XML
format based on the value for property Output Mode.

When this option is selected, Structure button is disabled and Headers button is
enabled.

Refer to section Input and Output for details about the effects of these
configurations on input and output structures.

• Output Mode

When Text Type is Raw Text, format of the message to be sent on output port can
be set either as XML or Raw Text.

There are two formats for defining the output message:

 Raw Text

This option is used when the user wants the output message to be set as raw text.
Headers defined in CPS are set as message properties on output message.

 XML

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 809

This option is used when the user wants the output message in XML format.
Output XML contains values for header fields defined in CPS and message body
which contains the text read from MQ message.

Note: When the Include RFH2 Headers is selected in Headers option, the
Output Mode gets disabled and output message is always set to xml format.

• Structure

This button is enabled only when Text Type is Parse Message. Click Structure button
to launch editor to define the fields of the message, as shown in Figure 16.

Figure 16: Editor to define fields in message

The editor contains a table with Tag Name, Data Type and Length columns. Each
row corresponds to a field in the MQ message. The value in Tag Name column is the
element name for the element in XML structure which holds data for the field. The
value in Data Type column is the type of the data that is held in the field. It can only
contain following values (case-sensitive) - Char, Double, Float, Integer, Long Integer,
Short Integer, UTF, String, Boolean, Byte Array. The value in Length column is the
length of the field that has to be read from MQ message. This value is applicable for
only String and Byte Array data types and the value is ignored for other data types.
For String data type, default value is -1 which means whole message is read from MQ
message and is set on the output message. Figure 16 shows the definition of structure
to build the output message from MQ message with data for an ID, name and age of a
person.

Order of the fields is important and the order of the rows in this table defines the
order of fields in the MQ message. Move Up and Move Down buttons are used to
reorder the fields. Add and Delete buttons are used to add or remove the fields.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 810

Schema for output XML is built based on the fields defined here. However, the types
for elements in schema do not use the types defined here. All the elements are
defined as string type and hence, the schema does not validate content of element
with appropriate data type.

Note:

 Data in output XML for Boolean type fields contains true or false.

 Data in output XML for Byte Array type fields contains Base64 encoded string. The
Base64-Decode function under Advanced Functions in Fiorano Mapper can be
used to convert Base64 encoded string into byte array.

 If the order of elements defined in Structure editor differs from order of fields in MQ
message or if there are additional fields defined in Structure editor or if some of the
fields present in the MQ message are not defined in the Structure editor, one of the
following happens:

o error when building output message from MQ message.

o mixed up values between fields.

o junk data is set on output message.

Refer to section Input and Output for details about the effects of these configurations on input
and output structures.

• Headers

Click Headers button to launch an editor, Figure 17 defines MQ message
descriptor(MQMD) fields that have to be read from the MQ message and set on output
message.

Figure 17: Headers editor

Defining MQMD headers

Available Headers - Contains MQMD headers that are defined on MQ message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 811

Included Headers - Contains MQMD headers that can be defined on output message and
whose values are taken from MQ message received from the queue.

Selected headers are set in Output XML when

• Text type is parse message or

• Text type is Raw Text and Output mode is XML

When output message is raw text, selected headers are set as message properties on the
output message.

Headers in Available Headers and Included Headers together contain all MQMD headers.

MQMD headers can be selected or unselected as

• To read values of MQMD headers from MQ message and set them on output message,

select required headers from Available Headers list and click .

• To read values of all MQMD headers from MQ message and set them on output

message, click .

• To remove any of selected headers, select required headers from Included Headers

and click .

• To remove all selected headers, click .

Refer to section MQMD headers for default values.

Include RFH2 Headers- Select this option to parse MQRFH2 headers present in MQ message
and set them on output message.If this option is not selected,then MQRFH2 headers are
discarded and the output message contains only message data present in MQ message.

RFHFolder format - This property is used to specify the way in which the variable portion of
the RFHHeaders has to be sent in output XML. The variable portion of a RFH Header contains
variable number of MQHRF2 folders. Refer to link
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.d
oc/js07180.htm for additional details. It can be chosen as explained below

• TEXT

When this option is chosen the RFHFolders in the header is output as CDATA. For
example a sample jms Folder
<jms><Dst>queue:///Test</Dst><Dlv>4</Dlv><Tms>3543534</Tms></jms>
present in the retrieved message is output as
<![CDATA[<jms><Dst>queue:///Test</Dst><Dlv>4</Dlv><Tms>3543534</Tms>
</jms>]]>

• CUSTOM XML

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/js07180.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/js07180.htm

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 812

When this opton is chosen the RFHFolders in the header is output as elements
confirming to a schema. For example a sample jms Folder
<jms><Dst>queue:///Test</Dst><Dlv>4</Dlv><Tms>3543534</Tms></jms>
present in the retrieved message is output as

<ns1:Folder type="jms">

<ns1:Property name="Dst">queue:///Test</ns1:Property>
<ns1:Property name="Dlv">4</ns1:Property>
<ns1:Property name="Tms">3543534</ns1:Property>

</ns1:Folder>

Note:

• When the Include RFH2 Headers is selected, the output message is always in XML
format and Output Mode is disabled.

• The component is able to parse MQRFH2 headers present in MQ message. Any other
headers except MQMD and MQRFH2 headers (if present) are not parsed and are set
in message body of the output message.

Refer to section Input and Output for details about the effects of these configurations on input
and output structures

MQMD Headers

Only some of most commonly used MQMD headers are provided in the CPS of the component.
Refer to Table 1 for a short description and default value used for each MQMD header. Refer to
link
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.d
oc/mqmd.htm for detailed information on MQMD headers.

Table 1 Short descriptions, default values and data types of MQMD headers used in the
component

MQMD header name Description Default value Data type

MQApplicationName Name of application that put the
message.

Empty string (“”) String

MQApplicationType Type of application that put the
message

0
(MQAT_NO_CONTEXT)

Integer

MQCharacterSet Character set identifier of character
data in the message

0 (MQCCSI_Q_MGR) Integer

MQCorrelationID A byte string that the application
can use to relate one message to
another, or to relate the message
to other work that the application is
performing

null (MQCI_NONE) byte array as a
hex string

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/mqmd.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzak.doc/mqmd.htm

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 813

MQMD header name Description Default value Data type

MQMessageID A byte string that is used to
distinguish one message from
another. The message identifier is
a permanent property of the
message, and persists across
restarts of the queue manager.

null (MQMI_NONE) byte array as a
hex string

MQDeliveryMode Delivery mode indicating whether
the message survives system
failures and restarts of the queue
manager.

0
(MQPER_NOT_PERSIST
ENT)

Integer

MQExpirationTime A period of time expressed in
tenths of a second, set by the
application that puts the message.
The message becomes eligible to
be discarded if it has not been
removed from the destination
queue before this period of time
elapses.

-1 (MQEI_UNLIMITED) Integer

MQEncodingBinaryIn
tegers

Subfield of encoding header that
specifies encoding for binary
integers

1
(MQENC_INTEGER_NOR
MAL)

Integer

MQEncodingPackedD
ecimal

Subfield of encoding header that
specifies encoding for packed-
decimal integers

16
(MQENC_DECIMAL_NOR
MAL)

Integer

MQEncodingFloatPoi
ntNumbers

Subfield of encoding header that
specifies encoding for floating-point
integers

256
(MQENC_FLOAT_IEEE_N
ORMAL)

Integer

MQPriorityTag Priority of the Message -1
(MQPRI_PRIORITY_AS_
Q_DEF)

Integer

MQReplyToQueueNa
me

Name of the message queue to
which the application that issued
the get request for the message
sends MQMT_REPLY and
MQMT_REPORT messages

Empty string (“”) String

MQMessageType Type of message 8 (MQMT_DATAGRAM) Integer

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 814

MQMD header name Description Default value Data type

MQUserId User identifier of the application
that originated the message. The
queue manager treats this
information as character data, but
does not define the format of it.

Empty string (“”) String

MQMessageFormat A name that the sender of the
message uses to indicate to the
receiver the nature of the data in
the message

null String

Sync Point Control Option

• Sync Point Control

The IBM WebSphere MQ series support transactions similar to JMS transaction. Select
the check box if the transaction has to be committed after receiving a batch of messages.
On selecting this option, the component assigns the message with sync point control. The
message is not visible outside the unit of work (in this case, the sync point batch size)
until the unit of work is committed. If the unit of work is rolled back from the server, the
message is deleted.

The Batch Size is taken into account only if this check box is checked.

• Batch Size

The number of messages after which a commit should be performed if the check box Sync
Point Control is checked. The Batch size is counted based on the number of messages
that are successfully received from MQ Queue. If any message could not be sent to MQ
Queue due to an error that message is not counted but the count continues.

Note: If the batch size is 'n', then all the n messages are sent out as a

single aggregated message.

Message Selection Properties

• Message Selection

This option is used to receive specific messages from the MQ queue. Selection is based on
the MQMD headers Message ID, Correlation ID and Message Sequence Number.

o Message Sequence Number

This is the sequence number of a logical message within a group.

o Message ID

This is a byte string that is used to distinguish one message from another.

o Correlation ID

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 815

This is a byte string that the application can use to relate one message to another, or
to relate the message to other work that the application is performing

• Message Count

The number of messages to be received from the Queue. If the message count is specified
as ‘n’, then the component aggregates and sends all the messages at a time after
receiving ‘n’ messages. If Sync Point Control is checked this property is disabled and batch
size is used to aggregate. Default value is 1. If this value is 0, all messages are fetched till
the time out occurs as specified by Wait Interval and the aggregated message is sent to
output port.

• Wait Interval

Maximum time in milliseconds the component should wait for a message on the MQ queue.
When a request is sent to get message from queue, a message is received if it is present
on the queue. If there are no messages on the queue, it waits for the specified interval of
time for the message. Default value is -1 which specifies infinite wait time that is, waits
until a message is received. Any value which is less than 0 (zero) specifies infinite time.

This property works in conjunction with Message Count property.

Example: If the Message Count is set to 10000 and Wait Interval is set to 10 seconds.
The component tries to fetch 10 messages from MQ queue. For each request to fetch
message, if an unconsumed message is present on the MQ queue it is immediately
fetched. If there are no messages on the MQ queue, then the component waits for utmost
10 seconds. If a message is not available on the queue during this wait time, the
component builds output XML based on messages received so far for this request and
sends it on the output port. If there are no messages received an empty output is sent on
the output port.

If there are no messages on the queue till the time out occurs, then an empty message is
sent to output port. Please refer to Scenario 4 in Functional demonstration section for the
affects of this property on output message.

Note: When Message Count is 0 (zero) and Wait Interval is -1, the component
receives messages from the queue and processes them for aggregation but no message is
sent to output port. This combination of Message Count and Wait Interval should not
be used.

4.7.9.3.1.2 CCSID

Coded Character Set Identification (should be an integer or null), in case of null, 819 (ISO
8859-1 ASCII) is used as CCSID. Data in MQ message is always present in the form of bytes.
This field is used while converting this data bytes (decodes bytes into string using the specified
Charset) and this conversion depends on the type of output message.

• When text type is Raw Text and Output mode is Raw Text, the data bytes in MQ message
is converted to string data using the CCSID value and set as output message.

• When text type is Raw Text and Output mode is XML, the data bytes in MQ message is
converted to string data using the CCSID value and set as message body in output
message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 816

• When text type is parse message, the data bytes in MQ message are read based on the
structure fields. Whenever there is a String data field, CCSID value is used for conversion
of the data bytes.

• The behavior is unspecified if the data bytes present in message are not valid in specified
Charset. There can be error while building the output message or they can be junk data in
output message.

4.7.9.3.1.2 Action when message is not available?

This property specifies the action to be taken when there are no messages on the queue
within the timeout specified.This property is disabled when the wait interval(timeout) is -
1(infinite).

• Send Empty Message

This value is set by default.An empty message is sent to output port when 'Text type' is
set to 'Raw Text'. When Texttype is set to 'Parse message', a default xml message with
empty 'MQMessages' element is sent to output port.

• Treat as Exception

An exception message is sent to error port and no message is sent to output port.

• No Action

No message is sent to either output port or error port.

4.7.9.4 Input and output

4.7.9.4.1 Input

The input schema for the component is fixed. The schema is shown in Figure 18.

Figure 18: Schema for input message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 817

All the elements present in the Input message are optional. If a particular element is present,
its value is used while receiving the message; else default value specified in CPS is used.

Figure 19: Input message with no elements specified

Note: The component also accepts null message as an input. When null/empty message is
sent as an input, then the value specified in CPS is used.

Data in the fields EBCDIC_TO_ASCII_CONVERSION, IsSelectionRequired, IsSyncPointControl
should be of boolean type and for data in SyncSize should be of Integer type, if data is not
present in proper data types, error occurs while creating the output message.

4.7.9.4.2 Output

The output schema for the component is based on the configuration selected.

When the Text Type is set to Raw Text and Output Mode is set to XML Text, then there is no
schema defined for the output. The output message text contains a single String field.
Selected MQMD headers in CPS with values present of MQ message are set on output
message.

When the Text Type is set to Parse Message the output schema varies based on the
configuration of structure and headers.

• When only fields of message body are defined in Structure dialog as shown in Figure 20.

Figure 20: Fields defined for message body

The output schema is defined as shown in Figure 21 and a sample output message is
shown in Figure 22.

Figure 21: Schema when only fields of message body are defined

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 818

All the fields defined are added as child elements under MessageBody in the same order
in which these fields are defined in CPS. MQMD headers are not explicitly set by the
component.

• When fields of message body are defined in Structure dialog as shown in Figure 20 and
MQMD headers are defined in Headers dialog as shown in Figure 23

Figure 22: MQMD headers are defined in Headers

Figure 23: Selecting MQMD headers whose values have to be taken from input
XML

The output schema is defined as shown in Figure 24 and a sample output is shown in Figure
25.

Figure 24: output schema

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 819

Figure 25: Sample input XML for schema defined in Figure 23

All the fields defined are added as child elements under MessageBody in the same order in
which these fields are defined in CPS and all the MQMD headers selected are added as child
elements under Message Header in the same order in which these headers are defined in
CPS.

When the Text Type is set to Raw Text and Output Mode is set to XML Text, the output
schema varies based on the configuration headers.

• When there are no selected headers in CPS, then the output Schema is set as shown in
Figure 26 and a sample output is shown in Figure 27.

Figure 26: Schema when there are no selected headers

Figure 27: Ouput XML when there are no selected headers

• When MQMD headers are defined in Headers dialog as shown in Figure 23, then the output
Schema is set as shown in Figure 28 and a sample output is shown in Figure 29.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 820

Figure 28: Schema when there are selected headers

Figure 29: Ouput XML when there are selected headers

When Include RFH2 Headers option is selected in Headers as shown in Figure 30 and Text
Type is set to Raw Text, then output schema is set as shown in Figure 31 and a sample
output is shown in the Figure 32.

Figure 30: Option to include RFH2 headers

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 821

Figure 31: Output Schema when Include RFH2 Headers is selected.

Figure 32: Sample output XML when Include RFH2 Headers is selected.

Note: When the Include RFH2 headers option is selected, the headers are set in output
message in xml format.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 822

For all the messages that are sent to output port, a message property QueueName is set with
the value of queue name from which message has been received.

4.7.9.5 Functional Demonstration

4.7.9.5.1 Scenario 1

Configure the component for Text type mode as Raw Text, Output Mode as Raw Text and
configure Headers as shown in Figure 33.

Figure 33: Configuration of headers for Scenario 1

Input Message

<ns1:QueueProperties
xmlns:ns1="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/In">

</ns1:QueueProperties>

Output Message

TestMessage

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 823

Figure 34: Message properties of output message

4.7.9.5.2 Scenario 2

Configure the component for Text type mode as Raw Text, Output Mode as XML and configure
Headers as shown in Figure 33.

InputMessage

<ns1:QueueProperties
xmlns:ns1="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/In">

</ns1:QueueProperties>

OutputMessage

<?xml version="1.0" encoding="UTF-8"?>

<MQMessages xmlns="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/Out">

 <MQMessage>

 <MessageHeader>

<MQCorrelationID>00</MQCorrelati
onID>

 <MQMessageType>8</MQMessageType>

 <MQExpirationTime>-1</MQExpirationTime>

 <MQFeedBack>0</MQFeedBack>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 824

 <MQEncoding>273</MQEncoding>

 <MQCharacterSet>819</MQCharacterSet>

 <MQMessageFormat> </MQMessageFormat>

 <MQPriorityTag>0</MQPriorityTag>

 <MQPersistence>0</MQPersistence>

<MQMessageID>414D512054657374514D202020202020F41CA64920004004</MQMessageID
>

<MQGroupID>00</MQGroupID>

 <MQBackoutCount>0</MQBackoutCount>

 <MQReplyToQueueName> </MQReplyToQueueName>

 <MQReplyQueueManagerName>TestQM
</MQReplyQueueManagerName>

 <MQUserId>MUSR_MQADMIN</MQUserId>

 <MQPutApplicationType>28</MQPutApplicationType>

 <MQPutApplicationName>Websphere MQ Client for Java</MQPutApplicationName>

<MQPutDateTime>java.util.GregorianCalendar[time=?,areFieldsSet=false,areAllFieldsSet=fals
e,lenient=true,zone=sun.util.calendar.ZoneInfo[id="GMT",offset=0,dstSavings=0,useDaylight
=false,transitions=0,lastRule=null],firstDayOfWeek=1,minimalDaysInFirstWeek=1,ERA=?,YEA
R=2009,MONTH=1,WEEK_OF_YEAR=?,WEEK_OF_MONTH=?,DAY_OF_MONTH=26,DAY_OF_YE
AR=?,DAY_OF_WEEK=?,DAY_OF_WEEK_IN_MONTH=?,AM_PM=0,HOUR=4,HOUR_OF_DAY=4,
MINUTE=59,SECOND=46,MILLISECOND=50,ZONE_OFFSET=?,DST_OFFSET=?]</MQPutDateT
ime>

 <MQApplicationOrigindata> </MQApplicationOrigindata>

 <MQMsgSequenceNumber>1</MQMsgSequenceNumber>

 <MQOffset>0</MQOffset>

 <MQFlags>0</MQFlags>

 <OriginalLength>-1</OriginalLength>

 </MessageHeader>

 <MessageBody>testMessage</MessageBody>

 </MQMessage>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 825

</MQMessages>

4.7.9.5.3 Scenario 3

Configure the component for Text type mode as Parse Message and configure Headers as
shown in Figure 33.

InputMessage

<ns1:QueueProperties
xmlns:ns1="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/In">

</ns1:QueueProperties>

OutputMessage

<?xml version="1.0" encoding="UTF-8"?>

<MQMessages xmlns="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/Out">

 <MQMessage>

 <MessageHeader>

<MQCorrelationID>00</MQCorrelati
onID>

 <MQMessageType>8</MQMessageType>

 <MQExpirationTime>-1</MQExpirationTime>

 <MQFeedBack>0</MQFeedBack>

 <MQEncoding>273</MQEncoding>

 <MQCharacterSet>819</MQCharacterSet>

 <MQMessageFormat> </MQMessageFormat>

 <MQPriorityTag>0</MQPriorityTag>

 <MQPersistence>0</MQPersistence>

<MQMessageID>414D512054657374514D202020202020F41CA64920004002</MQMessageID
>

<MQGroupID>00</MQGroupID>

 <MQBackoutCount>0</MQBackoutCount>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 826

 <MQReplyToQueueName> </MQReplyToQueueName>

 <MQReplyQueueManagerName>TestQM
</MQReplyQueueManagerName>

 <MQUserId>MUSR_MQADMIN</MQUserId>

 <MQPutApplicationType>28</MQPutApplicationType>

 <MQPutApplicationName>Websphere MQ Client for Java</MQPutApplicationName>

<MQPutDateTime>java.util.GregorianCalendar[time=?,areFieldsSet=false,areAllFieldsSet=fals
e,lenient=true,zone=sun.util.calendar.ZoneInfo[id="GMT",offset=0,dstSavings=0,useDaylight
=false,transitions=0,lastRule=null],firstDayOfWeek=1,minimalDaysInFirstWeek=1,ERA=?,YEA
R=2009,MONTH=1,WEEK_OF_YEAR=?,WEEK_OF_MONTH=?,DAY_OF_MONTH=26,DAY_OF_YE
AR=?,DAY_OF_WEEK=?,DAY_OF_WEEK_IN_MONTH=?,AM_PM=0,HOUR=4,HOUR_OF_DAY=4,
MINUTE=59,SECOND=40,MILLISECOND=760,ZONE_OFFSET=?,DST_OFFSET=?]</MQPutDate
Time>

 <MQApplicationOrigindata> </MQApplicationOrigindata>

 <MQMsgSequenceNumber>1</MQMsgSequenceNumber>

 <MQOffset>0</MQOffset>

 <MQFlags>0</MQFlags>

 <OriginalLength>-1</OriginalLength>

 </MessageHeader>

 <MessageBody>

 <Name2>Name2</Name2>

 </MessageBody>

 </MQMessage>

</MQMessages>

4.7.9.5.4 Scenario 4

This scenario describes the aggregation of messages using the property Message Count and

Wait Interval. Configure the component as described in any of the above 3 scenarios.

InputMessage

<ns1:QueueProperties
xmlns:ns1="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/In">

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 827

 <ns1:MessageCount>2</ns1:MessageCount>

 <ns1:WaitInterval>5000</ns1:WaitInterval>

</ns1:QueueProperties>

When there are two messages available on the MQ queue, then both of them are fetched as
shown in the OutputMessage.

OutputMessage

<?xml version="1.0" encoding="UTF-8"?>

<MQMessages xmlns="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/Out">

 <MQMessage>

 <MessageBody>

 <Name1>Name1</Name1>

 </MessageBody>

 </MQMessage>

 <MQMessage>

 <MessageBody>

 <Name1>Name1</Name1>

 </MessageBody>

 </MQMessage>

</MQMessages>

When time out occurs and no message is available on the queue, sample message sent to
output port is shown below.

OutputMessage

<?xml version="1.0" encoding="UTF-8"?>

<MQMessages xmlns="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/Out"/>

4.7.9.5.5 Scenario 5

This scenario describes to include RFH2 headers in output message .Configure the
component for Text Type to Raw Text and headers as shown in Figure 30.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 828

InputMessage

<ns1:QueueProperties
xmlns:ns1="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/In">

</ns1:QueueProperties>

OutputMessage

<?xml version="1.0" encoding="UTF-8"?>

<MQMessages xmlns="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/Out">

 <MQMessage>

 <MessageHeader>

 <MQMessageFormat>MQHRF2 </MQMessageFormat>

 <RFHHeaders>

 <RFHHeader>

 <StructId>RFH </StructId>

 <Version>2</Version>

 <Encoding>273</Encoding>

 <CodedCharSetId>1208</CodedCharSetId>

 <Format>MQSTR </Format>

 <Flags>0</Flags>

 <NameValueCCSID>1208</NameValueCCSID>

 <VariableData>vardata </VariableData>

 </RFHHeader>

 </RFHHeaders>

 </MessageHeader>

 <MessageBody>test message</MessageBody>

 </MQMessage>

</MQMessages>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 829

4.7.9.5.6 Scenario 6

This scenario describes the property 'Action when message is not available' property. Set 'Wait
Interval' to a finite value(say 1000 msec) and TextType to 'Parse Message'.

Set 'Action when message is not available' to 'Send Empty Message'.

InputMessage

<ns1:QueueProperties
xmlns:ns1="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/In">

</ns1:QueueProperties>

OutputMessage

<?xml version="1.0" encoding="UTF-8"?>

<MQMessages xmlns="http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/Out"/>

Note: For the same scenario,but when TextType is set to 'RawText', a message with empty
content is sent to output port

4.7.9.6 Useful Tips

The correct CCSID should be set for message encoding when transferring messages from AS
400 systems to other platforms and vice versa.

http://www.fiorano.com/fesb/activity/MQSeriesOut1Out/Out

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 830

4.7.10 MSMQ Receiver

The MSMQReceiver component is used to receive messages from MSMQ. The name of the
queue from which a message needs to be retrieved can be specified using the CPS.

4.7.10.1 Configuration and Testing

The MSMQ server and queue can be configured in the connection properties panel of CPS.

Figure 4.353: Sample MSMQ server configuration

Use Connection Details From Input: Parameters to create the connection can be specified
in the input message when this property is set to true. If this property is selected the
validation errors in the managed connection factory panel of the CPS are treated as warnings.
So user can bypass this step without giving valid configuration and complete the configuration
of the component. If valid properties are not provided even in the input message exception
will be thrown at runtime.

Server connection can be tested from within the CPS by clicking on test in the connection
properties panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 831

Figure 4.354: Sample connection test result indicating success

No specific information is required to be captured in Interaction properties panel.

The configuration can be tested by sending a test message when you click on the Test option
in the interaction properties panel.

Figure 4.355: Sample input

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 832

Figure 4.356: Sample response

4.7.10.2 Input and Output

4.7.10.2.1 Input Schema

There is no input schema for this adapter.

When the property Use Connection details from input is chosen, the following input schema
with the element ConnectionFactorySettings, is generated. Properties that are used to create
the connection are present under this element.

Figure: Input schema with ConnectionFactorySettings

4.7.10.2.1 Output Schema

There is no output schema for this adapter.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 833

4.7.10.3 Functional Demonstration

4.7.10.3.1 Scenario 1

Receive messages from a local MSMQ Server.

Configure the MSMQ Receiver as described in Configuration and Testing section and use feeder
and display component to send sample input and check the response respectively.

Figure 4.357: Configuration the MSMQ Receiver

Sample Input

Figure 4.358: Demonstrating Scenario 1 with sample input

Sample Output

Figure 4.359: Demonstrating Scenario 1 with sample output

4.7.10.4 Use case scenario

In the revenue control packet example the transaction file details are received from an MSMQ
server from where they are picked up by other applications for processing.

Figure 4.360:Rrevenue control packet

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 834

The event process demonstrating this scenario is bundled with the installer. The bundled
process shows it as a File Reader component instead of a MSMQ Receiver component.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.7.10.5 Useful Tips
• If a queue specified in the CPS does not exist in a local or remote MSMQ server, it is

not automatically created.

• This component runs only on Windows Platform.

4.7.11 MSMQ Sender

The MSMQ Sender component is used to send messages to MSMQ. The name of the queue to
which a message needs to be sent can be specified using the CPS.

4.7.11.1 Configuration and Testing

The MSMQ server and queue can be configured in the connection properties panel of CPS.

Figure 4.361: Sample MSMQ server configuration

Use Connection Details From Input: Parameters to create the connection can be specified
in the input message when this property is set to true. If this property is selected the
validation errors in the managed connection factory panel of the CPS are treated as warnings.
So user can bypass this step without giving valid configuration and complete the configuration
of the component. If valid properties are not provided even in the input message exception
will be thrown at runtime.

Server connection can be tested from within the CPS by clicking on test in the connection
properties panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 835

Figure 4.362: Sample connection test result indicating success

No specific information is required to be captured in Interaction properties panel.

The configuration can be tested by sending a test message when you click on the Test option
in the interaction properties panel.

Figure 4.363: Sample input

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 836

Figure 4.364: Sample response

4.7.11.2 Input and Output

4.7.11.2.1 Input Schema

There is no input schema for this adapter.

When the property Use Connection details from input is chosen, the following input schema
with the element ConnectionFactorySettings, is generated. Properties that are used to create
the connection are present under this element.

Figure: Input schema with ConnectionFactorySettings

4.7.11.2.2 Output Schema

There is no output schema for this adapter.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 837

4.7.11.3 Functional Demonstration

4.7.11.3.1 Scenario 1

Sending messages to a local MSMQ Server.

Configure the MSMQ Sender as described in Configuration and Testing section and use feeder
and display component to send sample input and check the response respectively.

Figure 4.365: Feeder and Display Component Sample Input

Sample Input

Figure 4.366: Sample input

Sample Output

Figure 4.367: Sample Output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 838

4.7.11.4 Use case scenario

In the purchasing system example the record purchase details are sent to an MSMQ server
from where they are picked up by other applications for processing.

Figure 4.368: Purchasing System

The event process demonstrating this scenario is bundled with the installer. The bundled
process shows it as a HTTP component instead of a MSMQ Sender component.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.7.11.5 Useful Tips
• If a queue specified in the CPS does not exist in a local or remote MSMQ server, it is

not automatically created.

• This component runs only on Windows Platform.

4.7.12 TibcoRVIn

The TibcoRVIn component is used to send messages to the messaging queue server of TIBCO
Rendezvous. The name of the queue to which a message needs to be sent can be specified
using the CPS.

Points to note

The following required files need to be copied from the TIBCO installation directory for the
component to run on windows platform. All these should be added as resources Tibrv system
library.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 839

• tibrvj.jar

• libeay32.dll

• ssleay32.dll

• TIBCO.Rendezvous.dll

• tibrv.dll

• tibrvcm.dll

• tibrvcmq.dll

• tibrvcom.dll

• tibrvft.dll

• tibrvjsd.dll

• tibrvj.dll

• tibrvsd.dll

• tibrvsdcom.dll

4.7.13 TibcoRVOut

The TibcoRVOut component is used to receive messages from the messaging queue server of
TIBCO Rendezvous. The name of the queue from which a message needs to be retrieved can
be specified using the CPS.

Points to note

The following required files need to be copied from the TIBCO installation directory for the
component to run on windows platform. All these should be added as resources Tibrv system
library.

• tibrvj.jar

• libeay32.dll

• ssleay32.dll

• TIBCO.Rendezvous.dll

• tibrv.dll

• tibrvcm.dll

• tibrvcmq.dll

• tibrvcom.dll

• tibrvft.dll

• tibrvjsd.dll

• tibrvj.dll

• tibrvsd.dll

• tibrvsdcom.dll

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 840

4.8 Performance
The Performance category consists of components like Receiver and Sender. The following
section describes each component.

4.8.1 Receiver

Receiver component is used to consume JMS messages (on its input port) to measure the
performance. The rate at which the messages are consumed depends upon the message size,
number of connections, sessions, producers, so on. Please check the logs to see the
performance. User can configure the component parameters as Runtime Arguments.

The component stops after receiving all the messages.

Points to note

• NumConsumers should be >= NumSessions and NumSessions should be >=
NumConnections, otherwise it is waste of resources. Consumers are uniformly
distributed over Sessions and Sessions over Connections.

• The component automatically stops once all the messages are received.

4.8.1.1 Configuration and Testing

The Receiver component doesn’t have a Custom Property Sheet. It accepts the following
parameters as runtime arguments.

• Total message count - Number of messages to be published on the output port.

• Is Transacted - Specify whether the session is transacted.

• Transaction size - Specify the number of messages to be transacted at a time.

• Selectors – Message Selector if any (This selector is used in creating the consumer
object).

• Number of connections - Number of connections to be created.

• Number of sessions - Number of sessions to be created.

• Number of Consumers - Number of producers to be created.

• Sleep time – Sleep time till all messages are received.

These runtime arguments can be configured from Receiver Properties.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 841

From the Studio, click on the component and you can see the properties window at the right
side. Check the below screenshot for runtime arguments.

Figure 4.369: Screenshot showing the Receiver properties

4.8.1.2 Functional Demonstration

4.8.1.2.1 Scenario 1

Scenario demonstration of Receiver which is configured to receive 1000 messages.

Configure the Receiver as described in section 2 and use a Sender component to send the
input messages to the Receiver. Both the sender and receiver are configured for 1000
messages.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 842

Figure 4.370: Scenario demonstration showing the performance numbers

4.8.1.3 Useful Tips

NumConsumers should be >= NumSessions and NumSessions should be >= NumConnections,
otherwise it is waste of resources. Consumers are uniformly distributed over Sessions and
Sessions over Connections.

The component automatically stops once all the messages are received.

4.8.2 Sender

Sender component is used to publish JMS messages (on its output port) to measure the
performance. The rate at which the messages are published depends upon the message size,
number of connections, sessions, producers, and so on. Please check the logs to see the
performance. User can configure the component parameters as Runtime Arguments.

The component stops after sending all the messages.

Points to note

• NumProducers should be >= NumSessions and NumSessions should be >=
NumConnections, otherwise it is waste of resources. Producers are uniformly
distributed over Sessions and Sessions over Connections.

• The component automatically stops once all the messages are sent.

4.8.2.1 Configuration and Testing

The Sender component doesn’t have a Custom Property Sheet. It accepts the following
parameters as runtime arguments.

Total message count - Number of messages to be published on the output port.

Is Transacted - Specify whether the session is transacted.

Transaction size - Specify the number of messages to be transacted at a time.

Message size - Size of the message (in Bytes) to be published. Default message is sent in
case xml file path is not provided.

Xml file path - Location of the xml file to be sent as the message content. If the path is not
provided, then the component sends the default XML message to its output port.

Number of connections - Number of connections to be created.

Number of sessions - Number of sessions to be created.

Number of Producers - Number of producers to be created.

These runtime arguments can be configured from Sender Properties.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 843

From the Studio, click on the component and you can see the properties window at the right
side. Check the below screenshot for runtime arguments.

Figure 4.371: Screenshot showing the Sender properties

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 844

4.8.2.2 Functional Demonstration

4.8.2.2.1 Scenario 1

Scenario demonstration of Sender which is configured to send 1000 messages. Sender by
default sends an XML message if we don’t provide the xmlFilePath runtime argument.

Configure the Sender as described in Configuration and Testing section to send 1000
messages and use a display component to check the response respectively.

Figure 4.372: Scenario demonstration showing sample output and performance
numbers

4.8.2.3 Useful Tips

NumProducers should be >= NumSessions and NumSessions should be >= NumConnections,
otherwise it is waste of resources. Producers are uniformly distributed over Sessions and
Sessions over Connections.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 845

The component automatically stops once all the messages are sent.

4.9 Samples
The Samples category consists of components like BinaryFileReader, CRM, CompositeBC,
LDAPLookup, LDAPAuthenticator, MarketPricesGui, Prices, RfqManager, TradeBus, and ERP.
The following section describes each component.

4.9.1 Binary File Reader

BinaryFileReader reads the binary content which is provided as input and converts it into xml
message. The message contains CRC info and other details.

Note: The source code for this component is available with the installer.

4.9.2 CRM

CRM is a simulator for Clarify Management Adapter. Its output is a purchase order in xml
format. Username and password can be set using CPS. The purchase order details can be
modified using the runtime UI.

Points to note

• The source code for this component is available with the installer.

• This component cannot be launched in-memory of the peer server.

4.9.3 Composite BC

The CompositeBC component is an EDBC component which enables you to execute more than
one BC component programmatically. The sample CompositeBC is configured for the HTTP and
SMTP (both are BC) components to execute in a linear sequence. The message request on the
input port of CompositeBC component is fed as input to the HTTP component. The output of
HTTP component is provided as input to the SMTP component (with some modifications) and
the output of the SMTP component is put on the response port of the CompositeBC. Similarly,
one can modify the CompositeBC component to execute ‘N’ number of BC components.

Note: The source code for this component is available with the installer.

4.9.4 LDAP Lookup

The LDAPLookup component enables the lookup of information organized in a directory-like
fashion on a Lightweight Directory Access Protocol (LDAP) server. This information could be
encryption certificates, pointers to printers and other services on a network, and provide a
single logon facility where one password for a user is shared between many services.

Points to note

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 846

• In case of Authentication/Lookup/Binding failure, messages are sent to the output port
with the appropriate messages like Authentication failed/Lookup failed and so on... No
message comes out onto the Error port.

• In the Lookup operation, when the user enters the Root node (in CPS), the substring
starting with ‘dc’ is checked against the substring starting with ‘dc’ of the string
‘SECURITY_PRINCIPAL’ specified in Managed Connection Factory panel. In case of
mismatch, an appropriate error message is shown. If it matches, the Base node and
Filter is cleared.

• In the Bind operation, adding new attributes/ adding multiple values to an existing
attribute can be achieved with the help of the attribute ‘AdditionalAttribute’. Always
make sure that ‘cn’ (at least one, if you are giving multiple ‘cn’s) holds the value of
‘cn’ given in ‘dn’. Also make sure that ‘sn’ is provided if the value of ‘objectClass’ is
‘person’. One can add multiple users at a time also.

• The source code for this component is available with the installer.

4.9.5 LDAP Authenticator

The LdapAuthenticator is used to authenticate against an LDAP server. It’s a light weight
component which only does authentication. It does not do lookup or bind.

Note: The source code for this component is available with the installer.

4.9.6 Market Prices GUI

This component is used for the Bond Trading Demo Sample where the user can view the list of
stock quotes which changing prices. The user can raise a RFQ (request for quote) for any
listed stock for a specified number. The runtime UI helps the user to track the price changes
and the raise requests.

Points to note

• The source code for this component is available with the installer.

• This component cannot be launched in-memory of the peer server.

4.9.7 Prices

The Prices adapter is used to generate the price for a bond.

Note: The source code for this component is available with the installer.

4.9.7.1 Configuration and Testing

Component is not configurable.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 847

4.9.7.2 Input and Output

4.9.7.2.1Input Schema

Schema Element Description

<ISIN> International Securities Identification Numbering. This is the
unique identifier of the bond.

<ISSUER> The issuer of the bond.

<CURRENCY> Currency of the bond.

<MATURITY_RANGE_FROM>

<MATURITY_RANGE_TO>
Range for the maturity value.

COUPON_RANGE_MIN

COUPON_RANGE_MAX
Range for the coupon value.

CREDITRATING_RANGE_FROM

CREDITRATING_RANGE_TO

Range for credit rating value.

CREDITRATING_AGENCY Agency for credit rating.

4.9.7.2.2 Output Schema

Schema Element Description

<ISIN> International Securities Identification Numbering. This is the
unique identifier of the bond.

<BID_PRICE> Maximum price a buyer is willing to pay for a bond.

<ASK_PRICE> Minimum price the seller is willing to accept for a bond.

<TIME_STAMP> The time at which the prices are generated.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 848

4.9.7.3 Use Case scenario

In a bond trading scenario, the price is generated using Prices adapter.

Figure 4.373: Bond Trading Scenario

The event process demonstrating this scenario is bundled with the installer. Documentation of
the scenario and instructions to run the flow can be found in the Help tab of flow when open
in Studio.

4.9.8 RFQ Manager

This component is used for the Bond Trading Demo Sample to respond the quoted price for
the request for quotes received by this component. It provides a runtime UI for the stock
exchange to send the quotation with price back to the requested user.

Points to note

• The source code for this component is available with the installer.

• This component cannot be launched in-memory of the peer server.

4.9.9 Trade Bus

This component is used for the Bond Trading Demo Sample co-relates the changes in price for
every stock and shows up a maintenance screen for all changes occurring for all stocks listed.
The runtime UI is used to show the changes as they occur.

Points to note

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 849

• The source code for this component is available with the installer.

• This component cannot be launched in-memory of the peer server.

4.9.10 ERP

The ERP component is a simulator for an ERP System. Input to the system is a Purchase Order
in XML format. Output to the system is a Rejection or Acceptance of Purchase Order on
respective ports. Username and password can be set using CPS. The purchase order can be
accepted or rejected using the runtime UI.

Points to note

• The source code for this component is available with the installer.

• This component cannot be launched in-memory of the peer server.

4.10 Script
This component is used for executing BeanShell Scripts. The BeanShell Script to be executed
is specified in the Custom Property Sheet (CPS). This component executes the script on
documents it receives as input and returns the result.

4.10.1 Bean Shell Script

This component is used for executing BeanShell scripts. The BeanShell script to be executed is
specified using the CPS This component executes the script on documents it receives as input
and returns the result.

Note: The component uses the document object to get the content and properties of the
message. The result (return value) after executing the script is set as content of the output
message.

4.10.1.1 Interaction Configuration

The following properties can be configured in the Interaction Configuration panel.

1. Read Script from a File? - If this attribute is set to ‘Yes’ then you can provide the
complete path of the BeanShell Script file (file should have “.bsh” extension) which
you want to execute. If it is set to ‘No’, then you have to specify the BeanShell Script
in the CPS.

2. BeanShell Script - Specify the BeanShell Script to be executed to modify the
incoming document.

3. Script File Path - Path of the BeanShell Script File which has to be executed.

Points to Note

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 850

• Input message content and properties can be accessed using document object. For
example, 'document.getText()' returns input message content. To access a message
property named 'TestProperty, 'document.getRecord().getProperty('TestProperty')'
returns the value of the property.

• Message properties can be set using 'setProperty' method.

• Message properties which are set on input message also appear on output message
unless they are changed in the script. For example, if a property named 'TestProperty'
is present on input message then output message also contains the property unless it
is changed in script provided.

• If there is no return value in the script, input record is sent as output message with
empty message content.

4.10.1.2 Sample Input and Output

The configuration can be tested by clicking the Test button in the interaction Configuration
panel.

The below screenshots show the sample input and output for the following BeanShell script.

map = new HashMap();

map.put("foo", "bar");

importObject(map);

return (get("foo"));

Figure 1: sample BeanShell Script

Figure 2: Sample Input Message

Figure 3: Response Generated

4.10.1.3 Functional Demonstration

4.10.1.3.1 Scenario 1

Execution of BeanShell Script provided.

Configure the BeanShell Script adapter as described in section 2 and use feeder and display
component to send sample input and to check the response respectively. In the example given
below, the script provided is same as that of in Fig 1:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 851

Figure 4: Scenario demonstration with sample input and output

4.10.1.3.2 Scenario 2

This sample shows accessing an input message. Configure the component with the following
script.

return (document.getText());

Figure 5: sample BeanShell Script

Figure 6: Sample Input Message

Figure 7: Response Generated

4.10.1.4 Useful Tips

The component uses the document object to get the content and properties of the message.
The result (return value) after executing the script is set as output message.

4.10.2 Groovy Scrip

This component is used for executing Groovy Scripts. The Groovy Script to be executed is
specified in the Custom Property Sheet (CPS). This component executes the script on
documents it receives as input and returns the result.

Note: The component uses the document object to get the content and properties of the
message. The result after executing of the script should be set back onto the document object.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 852

4.10.2.1 Configuration and Testing

4.10.2.1.1 Interaction Configuration

The following properties can be configured in the Interaction Configuration panel.

• Read Script from a File? - If this attribute is set to ‘Yes’ then you can provide the
complete path of the Groovy Script file (file should have “.groovy” extension) which
you want to execute. If it is set to ‘No’, then you have to specify the Groovy Script in
the CPS.

• Groovy Script - Specify the Groovy Script to be executed to modify the incoming
document.

• Script File Path - Path of the Groovy Script File which has to be executed.

Points to Note

• Input message content and properties can be accessed using document object. For
example, 'document.getText()' returns input message content. To access a message
property named 'TestProperty, 'document.getRecord().getProperty('TestProperty')'
returns the value of the property.

• Message properties can be set using 'setProperty' method.

• Message properties which are set on input message also appear on output message
unless they are changed in the script. For example, if a property named 'TestProperty'
is present on input message then output message also contains the property unless it
is changed in script provided.

• Output message content can be set either by using 'setText(String value)' of
document object or by specifying a return value in the script provided. If both present,
return value is set as message content.

4.10.2.1.2 Sample Input and Output

The configuration can be tested by clicking the Test button in the interaction Configuration
panel.

The below script show the sample input and output for the following groovy script.

def foo(list, value) {

 list << value

 list << 2

 list << 3

 list << 4

 return list

 }

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 853

 x = []

 foo(x, 1)

Figure 4.374: sample Groovy Script

Figure 4.375: Sample Input Message

Figure 4.376: Response Generated

4.10.2.2 Functional Demonstration

4.10.2.2.1 Scenario 1

Execution of Groovy Script provided.

Configure the Groovy Script adapter as described in Configuration and Testing section and use
feeder and display component to send sample input and to check the response respectively. In
the example given below, the script provided is same as that of in Figure 4.377.

Figure 4.377: Scenario demonstration with sample input and output

4.10.2.2.2 Scenario 2

This sample shows accessing an input message. Configure the component with the following
script.

return (document.getText());

Figure 5: sample Groovy Script

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 854

Figure 6: Sample Input Message

Figure 7: Response Generated

4.10.2.3 Useful Tips

The component uses the document object to get the content and properties of the message.
The result after executing of the script should be set back onto the document object.

4.10.3 Java Script

This component is used for executing JavaScript. The JavaScript to be executed is specified
using the Custom Property Sheet (CPS). This component executes the script on documents it
receives as input and returns the result.

The component uses bsf API to evaluate the script.

Note: The component uses the document object to get the content and properties of the
message. The result after executing of the script should be set back onto the document object.

4.10.3.1 Configuration and Testing

4.10.3.1.1 Interaction Configuration

In the interaction configuration panel, the attribute Read Script from a File? can be configured.
If the attribute is set to Yes then you can provide the complete path of the Java Script file (file
should have .js extension) which you want to execute.

If Read Script from a File? is set to No, then you have to specify the Java Script in the CPS.

Points to Note

• Input message content and properties can be accessed using document object. For
example, 'document.getText()' returns input message content. To access a message
property named 'TestProperty, 'document.getRecord().getProperty('TestProperty')'
returns the value of the property.

• Message properties can be set using 'setProperty' method.

• Message properties which are set on input message also appear on output message
unless they are changed in the script. For example, if a property named 'TestProperty'
is present on input message then output message also contains the property unless it
is changed in script provided.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 855

• Output message content can be set either by using 'setText(String value)' of
document object.

4.10.3.1.2 Sample Input and Output

The configuration can be tested by clicking the Test button in the interaction Configuration
panel.

The below script show the sample input and output for the following java script.

var time = 15;

if (time < 10)

{

document.setText("Good morning")

}

else

{

document.setText("Good Day")

}

Figure 4.378: Sample Input Message

Figure 4.379: Response Generated

4.10.3.2 Functional Demonstration

4.10.3.2.1 Scenario 1

Execution of Java Script provided.

Configure the Java Script as described in Configuration and Testing section and use feeder and
display component to send sample input and to check the response respectively. In the
example given below, the script provided is:

var r=Math.random()

if (r>0.5)

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 856

{

document.setText("Learn Web Development!")

}

else

{

document.setText("Visit Refsnes Data!")

}

Figure 4.380: Scenario demonstration with sample input and output

4.10.3.3 Useful Tips

The component uses the document object to get the content and properties of the message.
The result after executing of the script should be set back onto the document object.

4.10.4 Perl Script

This component is used for executing Perl Script. The Perl Script to be executed is specified
using the Custom Property Sheet (CPS). This component executes the script on documents it
receives as input and returns the result.

Points to note

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 857

• The input message to the PerlScript component is provided as an command line
argument to the Perl script to be executed. If the input message contains white
spaces, then please provide the message in courses if the whole message is required
in one argument.

• This component can be executed on Windows platform only.

4.10.4.1 Configuration and Testing

4.10.4.1.1 Interaction Configuration

The following properties can be configured in the Interaction Configuration panel.

• Read Script from a File? - If this attribute is set to ‘Yes’ then you can provide the
complete path of the Perl Script file (file should have “.pl” extension) which you
want to execute. If it is set to ‘No’, then you have to specify the Perl Script in the
CPS.

• Perl Script - Specify the Perl Script to be executed to modify the incoming
document.

• Script File Path - Path of the Perl Script File which has to be executed.

• Perl Executable Path (Optional) - If you have installed Perl on your local system,
you can provide the Perl executable path. If you don’t provide any path here, then
the default executable path is used.

4.10.4.1.2 Sample Input and Output

The configuration can be tested by clicking the Test button in the interaction Configuration
panel.

The below script show the sample input and output for the following Perl script.

$top_number = 100;

$x = 1;

$total = 0;

while ($x <= $top_number) {

 $total = $total + $x; # short form: $total += $x;

 $x += 1; # do you follow this short form?

}

print "The total from 1 to $top_number is $total\n";

Figure 4.381: Sample Perl Script

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 858

Figure 4.382: Sample Input Message

Figure 4.383: Response Generated

4.10.4.2 Functional Demonstration

4.10.4.2.1 Scenario 1

Execution of Perl Script provided.

Configure the Perl Script adapter as described in Configuration and Testing section and use
feeder and display component to send sample input and to check the response respectively. In
the example given below, the script provided is same as that of in Figure 4.384.

Figure 4.384: Scenario demonstration with sample input and output

4.10.4.2.2 Scenario 2

This sample shows accessing an input message. Configure the component with the following
script.

print $ARGV[0];

Figure 5: Sample perl Script

Figure 6: Sample Input Message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 859

Figure 7: Response Generated

4.10.4.3 Useful Tips

The input message to the PerlScript component is provided as an command line argument to
the Perl script to be executed. If the input message contains white spaces, then please provide
the message in courses if the whole message is required in one argument.

This component can be executed on Windows platform only.

4.10.5 Python Script

This component is used for executing Python Script. The Python Script to be executed is
specified using the Custom Property Sheet (CPS). This component executes the script on
documents it receives as input and returns the result.

Note: The component uses the document object to get the content and properties of the
message. The result after executing of the script should be set back onto the document object.

4.10.5.1 Configuration and Testing

4.10.5.1.1 Interaction Configuration

The following properties can be configured in the Interaction Configuration panel.

• Read Script from a File? - If this attribute is set to ‘Yes’ then you can provide the
complete path of the Python Script file (file should have “.py” extension) which you
want to execute. If it is set to ‘No’, then you have to specify the Python Script in the
CPS.

• Python Script - Specify the Python Script to be executed to modify the incoming
document.

• Script file path - Path of the Python Script File which has to be executed.

• Path Locations - Specifies the locations to be used in path for the imports in
PythonScript.

Points to Note

• Input message content and properties can be accessed using document object. For
example, 'document.getText()' returns input message content. To access a message
property named 'TestProperty, 'document.getRecord().getProperty('TestProperty')'
returns the value of the property.

• Message properties can be set using 'setProperty' method.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 860

• Message properties which are set on input message also appear on output message
unless they are changed in the script. For example, if a property named 'TestProperty'
is present on input message then output message also contains the property unless it
is changed in script provided.

• Output message content can be set either by using 'setText(String value)' of
document object or by specifying a return value (using 'print') in the script provided. If
both present, return value is set as message content.

4.10.5.1.2 Sample Input and Output

The configuration can be tested by clicking the Test button in the interaction Configuration
panel.

The below screenshots show the sample input and output for the following Python script.

width = 20;

height = 5*9;

print width * height;

Figure 4.385: Sample Python Script

Figure 4.386: Sample Input Message

Figure 4.386: Response Generated

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 861

4.10.5.2 Functional Demonstration

4.10.5.2.1 Scenario 1

Execution of Python Script provided.

Configure the Python Script adapter as described in Configuration and Testing section and use
feeder and display component to send sample input and to check the response respectively. In
the example given below, the script provided is same as that of in Figure 4.387.

Figure 4.387: Scenario demonstration with sample input and output

4.10.5.2.2 Scenario 2

This sample shows accessing an input message. Configure the component with the following
script.

print (document.getText());

Figure 5: sample Groovy Script

Figure 6: Sample Input Message

Figure 7: Response Generated

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 862

4.10.5.3 Useful Tips

The component uses the document object to get the content and properties of the message.
The result after executing of the script should be set back onto the document object.

4.11 Transformation
The Transformation category consists of components like EDI2XML, HL7Reader, HL7Writer,
Text2XML, XML2EDI, XML2PDF, XML2Text, and XSLT. The following section describes each
component.

4.11.1 EDI 2 XML

The EDI2XML component is used for transforming information from EDI format to XML format.
This business component accepts data in EDI format and transforms it to the required XML
format.

Note: The component takes EFL file as input in the CPS which describes the conversion rules.
EFL files can be created or modified using the Fiorano Studio tool.

4.11.1.1 Configuration and Testing

The EDI2XML component can be configured using its Custom Proper Sheet wizard. Following is
the Interaction properties panel.

Figure 4.388: Sample EDI2XML configuration

Above can be tested from within the CPS by clicking on test button in the CPS panel.

Sample EDI format schema to be provided in EDI2XML component.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Message

PUBLIC "-//mendelson.de//DTD for m-e-c eagle//EN" "http://www.fiorano.com/dtds/m-e-
c.dtd">

<Message standard="EDIFACT" version="93" release="A" enableMissValue="0"
name="Empty" minRepeat="0" maxRepeat="1" hideElement="0">

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 863

 <Segment id="ABC" delimiter="~" name="segment" description="" minRepeat="0"
maxRepeat="1" hideElement="0">

<DataElement type="AN" default="ABC" minLength="3" maxLength="3" name="ABC"
description="" minRepeat="0" maxRepeat="1" hideElement="0"/>

 </Segment>

</Message>

Figure 4.398: Sample EDI2XML input message

Figure 4.399: Sample EDI2XML output message

4.11.1.2 Functional Demonstration

4.11.1.2.1 Scenario 1

Send a message in EDI format as defined in the Configuration and Testing section and
displaying the output XML message.

Configure the EDI2XML as described in Configuration and Testing section and use feeder and
display component to send sample input and check the response respectively.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 864

Figure 4.400: Demonstrating Scenario 1 with sample input and output

Sample Input:

ABC

Sample Output:

<?xml version="1.0" encoding="UTF-8"?>

<ns1:Root xmlns:ns1="http://www.fiorano.com/fesb/activity/EDI2XML1">

 <Empty>

<segment>

 <ABC>ABC</ABC>

</segment>

 </Empty>

</ns1:Root>

4.11.2 HL7 Reader

The HL7Reader component is used to parse through documents in HL7 (Health Level Seven)
format. HL7 is a standard to exchange management and integration of data that supports
clinical patient care and the management, delivery and evaluation of healthcare components.
This component is used to extract data, present in HL7 format and convert it to XML format.
This XML format needs to comply with a specified XSD (XML Schema Definition).

Note: Please refer to http://www.hl7.org/ for more details.

4.11.2.1 Configuration and Testing

4.11.2.1.1 Interaction Configuration:

In the interaction configuration panel, the following attributes can be configured.

Choose Schema Source - The steps for configuring the component are based on the source
of schema specified for the HL7 file that needs to be parsed by this component. The source of
schema can be selected from the Choose Source Schema dropdown list.

http://www.hl7.org/

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 865

XSD Defined Here – If you select this you need to provide the schema in the Custom
Property Sheet itself or you can also give the repository URL if there are any references in
your XSD. For example,
file:///E:\\tif\\components\\HL7Reader\\test\\schemas/v2.3.1/ORU_R01.XSD.

XSD Defined in Input Message - The contents of XSD are received from a feeder
component or any other component that feeds the input to the HL7Reader component. The
input contains the HL7 data to be transformed as well as the schema the output should
conform to.

XSD URL Defined in Input Message - On selecting this option, the path of the XSD is
received from a feeder component or any other component that feeds the input to the
HL7Reader component.

XSD from Repository using Input Message Header - In this case, in addition to the XSD
repository, the header format for the HL7 content can be configured.

Schema - Enter the XSD in the given text area or enter the path of the XSD (in case the XSD
includes other XSDs).

Repository URL - Specifies the repository of the XSD that needs to be referred to. For
example, file:///E:\\tif\\components\\HL7Reader\\test\\schemas/v2.3.1/ORU_R01.XSD.

Root Element - Specifies the name of the root tag of the XML that would be generated in
compliance with the XSD provided in Schema Source.

Header format of HL7 input - Specifies the format of the header in the input data. In this
case the Header format appears with a default value of MSH|^|||||||XSD^VER|. MSH is a
segment name that denotes the Message header. XSD^VER specifies the XSD that is being
referred to, for example, ORU^R01. Based on the input HL7 data, the corresponding XSD is
invoked. The first tag encountered in a HL7 file is the segment tag. MSH, in this case, the first
line contains the following: (| - field delimiter, ^ - Component delimiter, ~ - repeat tag, \ -
Escape delimiter, and - subcomponent delimiter).

4.11.2.1.2 Sample Input and Output

The configuration can be tested by clicking the Test button in the interaction Configuration
panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 866

Figure 4.401: Sample Input Message

Figure 4.402: Response Generated

4.11.2.2 Functional Demonstration

4.11.2.2.1 Scenario 1

This scenario explains the basic functionality of HL7Reader component.

Configure the HL7Reader as shown in the Screenshot below and use feeder and display
component to send sample input and to check the response respectively. The HL7 input is sent
from the feeder and the corresponding XML is generated using the schema specified in the
CPS.

Figure 4.403: Configuration used in this scenario

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 867

Figure 4.404: Scenario demonstration with sample input and output

4.11.2.3 Useful Tips

Please refer to http://www.hl7.org/ for more details.

4.11.3 HL7 Writer

The HL7Writer component is used to parse through XML documents and convert it to HL7
(Health Level Seven) format. HL7 is a standard to exchange management and integration of
data that supports clinical patient care and the management, delivery and evaluation of
healthcare components. This component is used to extract data present in XML format and
convert it to HL7 format.

Note: Please refer to http://www.hl7.org/ for more details.

http://www.hl7.org/
http://www.hl7.org/

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 868

4.11.3.1 Configuration and Testing

4.11.3.1.1 Interaction Configuration

Only advanced parameters can be configured in the Interaction Configuration panel. No
component specific details can be configured. Just open and close the Custom Property Sheet
to save the default configuration.

4.11.3.1.2 Sample Input and Output

The configuration can be tested by clicking the Test button in the interaction Configuration
panel.

Figure 4.405: Sample Input Message

Figure 4.406: Response Generated

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 869

4.11.3.2 Functional Demonstration

4.11.3.2.1 Scenario 1

This scenario explains the basic functionality of HL7Writer component.

Configure the HL7Writer with the default configuration and use feeder and display component
to send sample input and to check the response respectively. The XML input is sent from the
feeder and the corresponding HL7 response is generated.

Figure 4.407: Scenario demonstration with sample input and output

4.11.3.3 Useful Tips

Please refer to http://www.hl7.org/ for more details.

http://www.hl7.org/

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 870

4.11.4 Text 2 XML

The Text2XML component transforms data from any flat file format to XML format. This
component accepts data in Text (delimited, positional or both) format and transforms it to the
required XML format.

Note: The component takes TFL file as input in the CPS which describes the conversion rules.
TFL files can be created or modified using the Fiorano Studio tool.

4.11.4.1 Configuration and Testing

4.11.4.1.1 Managed Connection Factory

Figure 1: Managed Configuration Properties

The following attributes can be configured in the managed configuration panel.

Attributes

File Format Schema content:

Flat Format Schema content (TFL file), which describes the conversion rules has to be
specified here. The TFL schema can be provided using "Flat Format Schema content editor"
which opens up on clicking ellipsis button against this property. This editor is shown in
Figure 2.

Figure 2: File Format Schema content Editor

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 871

4.11.4.1.2 Interaction Configuration

Figure 3: Interaction Configuration Properties

The following attributes can be configured in the interaction configuration panel.

Attributes

Enable dos2unix conversion:

This property should be used when CRLF(0D0A) should be converted to LF(0A) before
processing the input message. New line is treated as CRLF(0D0A) in windows and as LF(0A) in
unix.

If the TFL file contains delimiter as new line character, and we are not confident about where
the flat file was generated either in windows or linux, then we need to set this property to yes.
If we set this property to yes then the component converts all CRLF’s to LF’s in the input flat
file and TFL file and then it applies the conversion rules specified in TFL file.

The transformation can be tested by clicking the Test button in the Interaction Configuration
Panel. Sample message is generated depending on the Flat Format schema provided in the
Managed Connection Factory panel.

4.11.4.2 Sample Input and Output

Sample CSV file format schema is shown in Figure 4. The structure of the schema is shown in
Figure 5. Sample schema contains Employee records and each record contains
EmployeeName, EmployeeID and EmployeeAge fields. This sample schema has Record
Delimiter as CRLF and Filed delimiter as comma(,).

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 872

Figure 4: Sample CSV Schema Format

Figure 5: Structure for the Sample CSV SchemaFormat

Sample input is shown in Figure 6. It contains CSV formated Employee records, which are
separated by a new line character. The fields are separated by comma.

Figure 6: Sample input

Output generated for the sample input is shown in Figure 6. The output xml structure is same
as the structure of the CSV Schema Format.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 873

Figure 7: Sample Output

4.11.4.3 Functional Demonstration

4.11.4.3.1 Scenario 1

The scenario demonstrates the transformation of comma separated values (CSV) to XML.

Configure the Text2XML component as described in Configuration and Testing section and use
feeder and display component to send sample input and check the response respectively. CSV
File Schema is used in this scenario.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 874

Figure 8: Demonstrating Scenario 1 with sample input and output.

4.11.4.4 Use Case Scenario

In the Bond Trading sample Event Process, Text2XML component is used to convert the data
from CSV format to the XML format.

The event process demonstrating this scenario is bundled with the installer. Documentation of
the scenario and instructions to run the flow can be found in the Help tab of flow when opened
in Studio.

4.11.4.5 Useful Tips

The documentation related to creating the Text Format Layout (TFL) files can be found under
section 3.10 Text Schema Editor.

4.11.5 XML 2 EDI

The XML2EDI component is used for transforming information from XML format to EDI format.
This component accepts data in XML format and transforms it to the required EDI format. It
uses Eagle library to do the transformation.

Note: The component takes EFL file as input in the CPS which describes the conversion rules.
EFL files can be created or modified using the Fiorano Studio tool.

4.11.5.1 Configuration and Testing

The XML2EDI component can be configured using its Custom Proper Sheet wizard. Following is
the Interaction properties panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 875

Figure 4.412: Sample XML2EDI configuration

Above configuration shown in the Figure 4.412 can be tested from within the CPS by clicking
on test button in the CPS panel.

Sample EDI format schema to be provided in XML2EDI component.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Message

PUBLIC "-//mendelson.de//DTD for m-e-c eagle//EN" "http://www.fiorano.com/dtds/m-e-
c.dtd">

<Message standard="EDIFACT" version="93" release="A" enableMissValue="0"
name="Empty" minRepeat="0" maxRepeat="1" hideElement="0">

 <Segment id="ABC" delimiter="~" name="segment" description="" minRepeat="0"
maxRepeat="1" hideElement="0">

<DataElement type="AN" default="ABC" minLength="3" maxLength="3" name="ABC"
description="" minRepeat="0" maxRepeat="1" hideElement="0"/>

 </Segment>

</Message>

Figure 4.413: Sample XML2EDI input message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 876

Figure 4.414: Sample XML2EDI output message

4.11.5.2 Functional Demonstration

4.11.5.2.1 Scenario 1

Send a message in EDI format as defined in the Configuration and Testing section and
displaying the output XML message.

Configure the XML2EDI as described in the Configuration and Testing section and use feeder
and display component to send sample input and check the response respectively.

Figure 4.415: Demonstrating Scenario 1 with sample input and output

Sample Input:

<ns1:Root xmlns:ns1="http://www.fiorano.com/fesb/activity/XML2EDI1">

 <Empty>

<segment>

 <ABC>ABC</ABC>

</segment>

 </Empty>

</ns1:Root>

Sample Output:

ABC~

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 877

4.11.6 XML 2 PDF

The XML2PDF component allows you to transform XML data / messages / documents of an
Event Process to their corresponding Portable Document Format (PDF).

Points to note

• The component runs on the peer server and therefore the file paths and directories
mentioned in the CPS should be valid on the machine where the peer server is
running. If the component fails over to another peer, ensure that the machine on
which the secondary peer server is running does have the same path available.

• The component requires a PDF template which can be created using Adobe Acrobat. All
form fields in the PDF template are used by the component to generate its output.

4.11.6.1 Configuration and Testing

4.11.6.1.1 Interaction Configuration

In the interaction configuration panel, the following attributes can be configured:

• Template File – Specifies the template file containing the form fields.

• Master Password for the template file – Specifies the master password to be used to
access the template file.

• Output Type – Specifies whether the incoming message / document have to be saved as
a Message Attachment or a stand-alone file. The default value for this parameter is
Message Attachment. But if you select the File option, the Output File Name and the
Output Directory parameters are activated on the CPS.

• Output File Name – Specifies the name of the file which contains the incoming message
/ document.

• Output Directory – Specifies the complete path of the directory which contains the
stand-alone file.

• Message attachment name – This parameter is only visible when the Output Type
parameter is set as Message Attachment. This parameter specifies the name of the
message attachment which contains the incoming message / document.

• Enable security settings for the output file – Specifies whether security settings are to
be enabled for the output file. If you select the yes option, the Master password for the
output file, User password for the output file, printing Allowed, Enable copying of text,
images and so on from this document, and the Changes Allowed parameters are activated
on the CPS.

• Master password for the output file – Specifies the master password for the output
document.

• User Password for the output file – Specifies the user password for the output
document which is applicable when it is viewed using a PDF reader software like Adobe
Acrobat Reader.

• Printing Allowed – Specifies whether printing of the output PDF document is to be
allowed.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 878

• Enable copying of text, images etc from this document – Specifies whether copying
of text / images or any other document elements is to be enabled in the output document.

• Changes Allowed – Specifies whether any of the following changes to the output PDF
document are to be allowed which are self-explanatory.

− Inserting deleting and rotating of pages

− Filling in form fields and signing

− Commenting filling in form fields and signing

− Any except extracting pages

− The default value for this parameter is None.

User gives a PDF Template file through CPS (The template file contain form fields). The
document is read to extract out the form elements and those form elements are to be
organized as a XFDF document structure. This structure can be seen by filling forms in Acrobat
5.0 and above (not reader) and saving it out as XFDF.The form schema thus obtained is the
input port schema. Once a message is received the data needs to be put into the PDF
document and saved.

4.11.6.1.2 Sample Input and Output

The Figure 4.416 shows screenshot of a template file which is used in this example:

Figure 4.416: Template File

After configuring the Interaction Configurations panel, the configuration can be tested by
clicking the Test button.

Figure 4.417: Sample Input Message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 879

Figure 4.418: Response Generated

If you open the file \Documents and Settings\Administrator\Desktop\asd.pdf it contains the
following data.

Figure 4.419: Generated PDF file

4.11.6.2 Functional Demonstration

4.11.6.2.1 Scenario 1

This scenario demonstrates the usage of XML2PDF to create a PDF based on the template
provided and send it as a message attachment which is in turn used to send as an attachment
using SMTP.

Configure the XML2PDF component as described in Configuration and Testing section for
Output Type, Message Attachment and provide some Message attachment Name (in this
example attachment name is asd.pdf).

Configure the XML2PDF as described in Configuration and Testing section and use feeder and
SMTP components to send sample input and to send the mail.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 880

Figure 4.420 shows the transformation used.

Figure 4.420: Transformation using Fiorano Mapper

Figure 4.421: Scenario demonstration with sample input and output

4.11.6.3 Useful Tips
• The component runs on the peer server and therefore the file paths and directories

mentioned in the CPS should be valid on the machine where the peer server runs. If
the component fails over to another peer, ensure that the machine on which the
secondary peer server runs does have the same path available.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 881

• The component requires a PDF template which can be created using Adobe Acrobat. All
form fields in the PDF template are used by the component to generate its output.

4.11.7 XML 2 Text

The XML2Text component transforms data from any XML format to flat file format. This
component accepts data in XML format and transforms it to the required Text (delimited,
positional or both) format.

Note: The TFL file, used in the configuration of the XML2Text component, which describes the
conversion rules, may be created or modified using the Fiorano Studio tool.

4.11.7.1 Configuration and Testing

4.11.7.1.1 Managed Connection Factory

Figure 1: Managed Configuration Properties

The following attributes can be configured in the managed configuration panel.

Attributes

File Format Schema content:

Flat Format Schema content (TFL file), which describes the conversion rules has to be
specified here. The TFL schema can be provided using "Flat Format Schema content editor"
which opens up on clicking ellipsis button against this property. This editor is shown in
Figure 2.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 882

Figure 2: File Format Schema content Editor

4.11.7.1.2 Interaction Configuration

In the Interaction Configuration panel, only the advanced settings like Monitoring
Configuration, Cleanup resources after each document, Validate Input and so on can be
provided (if needed). Click on the Expert Properties icon to view these attributes. No
properties are present in the Interaction Panel specific to XML to flat format conversion

4.11.7.2 Sample Input and Output

Sample CSV file format schema is shown in Figure 3. The structure of the schema is shown in
Figure 4. Sample schema contains Employee records and each record contains
EmployeeName, EmployeeID and EmployeeAge fields. This sample schema has Record
Delimiter as CRLF and Filed delimiter as comma(,).

Figure 3: Sample CSV Schema Format

Figure 4: Structure for the Sample CSV SchemaFormat

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 883

4.11.7.2.1 Sample Input

The input XML structure is same as that of the sample CSV file format schema which is shown
in Figure 4. Sample input is shown in Figure 5. It contains multiple Employee elements under
EmployeeSchema element. Each Employee element contains EmployeeName, EmployeeAge
and EmployeeID elements.

Figure 5: Sample Input

4.11.7.2.2 Sample Output

Sample output contains CSV formated Employee Records, which are separated by new line
character (CRLF) and the fields are separated by comma (,).

Figure 6: Sample input

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 884

4.11.7.3 Functional Demonstration

4.11.7.3.1 Scenario 1

This scenario demonstrates the transformation of XML into comma-separated values (CSV).

Configure the XML2Text component as described in Configuration and Testing section and use
feeder and display component to send sample input and check the response respectively. CSV
File Schema is used in this scenario.

Figure 7: Demonstrating Scenario 1 with sample input and output.

4.11.7.4 Useful Tips

The documentation related to creating Text Format Layout (TFL) files can be found under
section 3.10 Text Schema Editor.

4.11.8 XSLT

The XSLT component allows user to configure source and target document structures using
Fiorano Mapper and create a XSL used for transforming documents. Alternatively, it allows
users to define XSL created using external tools. Documents passed to the component are
transformed using the XSL defined.

4.11.8.1 Interaction Configurations

The configuration for XSLT is defined in the Custom Property Sheet panel as shown in
Figure 1.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 885

Figure 1: Custom Property Sheet with expert view enabled

4.11.8.1.1 Attributes

Error Handling Configuration

Click on the ellipsis button against Error Handling Configuration property to configure Error
Handling properties.

Figure 2: Error Handling Configuration

The remedial actions to be taken when a particular error occurs can be configured here.

The default actions configured are:

• Log to error logs

• Send to error port

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 886

4.11.8.1.1.1 Use Mapper to define transformation

This property determines the means of defining XSL that is used for transformation.

• yes

When this value is selected property Mappings is visible and property XSL is
made expert. Fiorano Mapper is used to define transformation.

• no

When this value is selected property Mappings is not visible and property XSL is
visible as a normal property. Fiorano Mapper cannot be used to define
transformation and XSL for transformation has to be manually provided.

Note:

Changing this value from yes to no does the following changes

• Removes value defined for property Mappings

• Changes the value of Transformation source data to Body, if this value is not changed
explicitly by the user even once after the CPS is opened.

Any mappings previously defined using Fiorano Mapper will have to be redone. However the
XSL(s) computed from mappings and set against properties XSL and JMS-Message XSL will
still be present and can be used for transformation if the property value for property
Transformation source data is not changed. If the value for property Transformation
source data is automatically changed it should be reverted back manually.

Changing the value back to yes does not restore the value of property Mappings and removes
values for properties XSL and JMS-Message XSL. These XSL(s) have to be redefined.

4.11.8.1.1.2 Transformation source data

This property determines the source for XML instance(s) from the input message on which XSL
transformation should be applied for generating output XML. The source for XML instance(s)
can be:

• Body

The transformation is applied to XML instance that is taken from the message
body of the input message. Input structure in Fiorano Mapper contains the
XSD/DTD defined for message body (same as structure on the input port of the
component).

• Context

The transformation is applied to XML instance that is taken from the application
context property of input message. Input structure in Fiorano Mapper contains the
XSD/DTD defined for application context.

• Context-Body

The transformation is applied to XML instances that are taken from both message
body and application context property of input message. Input structure in Fiorano
Mapper contains XSD/DTD defined for application context as well as XSD/DTD for
input body.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 887

Note: In this case, XML instance of application context is treated as primary
source. Elements in primary source can be referenced directly in XSL, where as
elements of other structure should be referenced as document
(<StructureName>)/<ElementName>.

4.11.8.1.1.3 Set transformation result as

This property determines where the result of transformation of source data using XSL is set in
the output message.

• Body -

The result of the transformation is set as message body on the output message.

• Context -

The result of the transformation is set as the application context property of the
output message.

4.11.8.1.1.4 Mappings

The property defines the Fiorano Mapper project (contents of .tmf file) that can be created
using Fiorano Mapper. XSL required for transformation is created automatically based on the
mappings defined in Fiorano Mapper. Click the ellipsis button to open the Fiorano Mapper
tool for visually defining the XSL.

Figure 3: Launching Fiorano Mapper

Every time the Fiorano Mapper is closed after saving the mappings defined, XSL(s) computed
using the mappings defined are set against the properties XSL and JMS-Message XSL. Any
previously set XSL(s) content against these properties are overwritten.

Loading input and output structures in Fiorano Mapper

 Maximum number of structures that can loaded in the Input Structure of Fiorano Mapper
is determined by the value for property Transformation source data.

o Body – one input structure that describes the XML instance present in message
body of input message.

o Context – one input structure that describes the XML instance present in
application context of input message.

o Context-Body – Two input structures, first structure that describes the XML
instance present in application context of input message and second structure that
describes the XML instance present in message body of input message. The order
of these structures should strictly be as described.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 888

 Maximum of two structures can be loaded in the Output Structure of Fiorano Mapper.
First structure that describes output XML instance which is the result of transformation and
second structure is JMS-Message structure available from Import Output Structure...
The order of these structures should strictly be as described and the second structure
should only be JMS-Message structure, any other structure results in erroneous behavior
at component's runtime.

 When the Fiorano Mapper is launched, input structures are loaded as described below.

o If value for property Transformation source data is set to Body, Input Structure
in Fiorano Mapper will be loaded with structure as described below.

 Previously configured structure, if the component is already configured using
Fiorano Mapper. If the structure defined on the output port of other
component connected to input port of this component is changed, it is logged
in the Messages window in Fiorano Mapper, but the previously configured
structure is retained.

 One of the structures on other component's output port which is connected to
this component's input port, if the component is not previously configured
using Fiorano Mapper.

 No structures, if the component is not previously configured and the
component's input port is not connected to any other component's output port
which has a structure defined. In such a case, structure can be loaded
manually either by typing in/copying the structure or from a file system.

o If value for property Transformation source data is set to Context, Input
Structure in Fiorano Mapper will be loaded with structure as described below.

 Structure defined for application context in Event Process. If application
context structure is changed after the previous configuration, then the new
structure is loaded.

 Default application context structure (<!ELEMENT Context (#PCDATA)>) if
application context structure is not defined.

o If value for property Transformation source data is set to Context-Body, Input
Structure in Fiorano Mapper will be loaded with structures in order as described
below.

 Structure for application context as described for the case where
Transformation source data is set to Context.

 Structure for message body as described for the case where Transformation
source data is set to Body.

 When the Fiorano Mapper is launched, output structures are loaded as described below.

o If value for property Set transformation result as is set to Body, Output Structure
in Fiorano Mapper will be loaded with structure as described below

 Previously configured structure, if the component is already configured using
Fiorano Mapper. If the structure defined on the input port of other component
connected to output port of this component is changed, it is logged in the
Messages window in Fiorano Mapper, but the previously configured structure is
retained.

 One of the structures on other component's input port which is connected to
this component's output port, if the component is not previously configured
using Fiorano Mapper.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 889

 No structures, if the component is not previously configured and the
component's output port is not connected to any other component's input port
which has a structure defined. In such a case, structure can be loaded
manually either by typing in/copying the structure or from a file system.

o If value for property Set transformation result as is set to Context, the Output
Structure in Fiorano Mapper will be loaded with structure as described below.

 Structure defined for application context in Event Process. If application
context structure is changed after the previous configuration, then the new
structure is loaded.

 Default application context structure (<!ELEMENT Context (#PCDATA)>) if
application context structure is not defined.

o If the JMS-Message structure is loaded during previous configuration, then it is
loaded as second structure.

 When structure of connected component's output or input port is changed, but previously
configured structure is restored, to update the structure right-click the structure that
should be changed and click Update with imported structure... and select IN_PORT or
OUT_PORT respectively.

Note: When the structure is changed, mappings for nodes that are not at same Xpath location
before and after the change is discarded.

 When the Fiorano Mapper is closed structures defined for message body, if any, in Input
Structure or Output Structure is set on the input port or the output port of the
component respectively.

4.11.8.1.1.5 XSL

This property defines the XSL that is used to transform source data from source defined
against property Transformation source data to required output that is set on target
defined against property Set transformation result as. When the value for property Use
Mapper to define transformation is set to yes this value is automatically populated after
defining mappings in Fiorano Mapper. When the value for property Use Mapper to define
transformation is set to no, XSL should be manually provided here.

Note: If the XSL contains any custom java functions, jar files containing such functions should
be added as resources to XSLT component.

4.11.8.1.1.6 Structure name for Input

This property is enabled when Use Mapper to define transformation is set to no. This
property defines name of the input structure that is referenced in XSL provided.

Example: If the XSL has reference to Input as <xsl:variable name="document_IN_PORT"
select="document('STRUCTURE_NAME')"/> then, the Structure name for Input must be
provided as STRUCTURE_NAME

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 890

4.11.8.1.1.7 JMS-Message XSL

This property defines the XSL that is used to transform source data from source defined
against property Transformation source data to required interim XML which defines JMS
message properties and text that has to be set. The component parses this interim XML and
sets the required JMS properties and their values on the output message. When the value for
property Use Mapper to define transformation is set to yes this value is automatically
populated after defining mappings in Fiorano Mapper. When the value for property Use
Mapper to define transformation is set to no, XSL which generates XML corresponding to
structure shown in Figure 4 should be manually provided here.

Figure 4: Structure of XML which is result of applying JMS-Message XSL

Note: JMS properties can be set alternatively using JMS Message Functions in Funclet
tab of Fiorano Mapper.

Defining JMS-Message XSL using Fiorano Mapper

1. Define first output structure which represents the structure of message body or application
context that has to be set on output message based on property Set transformation
result as

2. Click Import Output Structure and choose JMS-Message as shown in Figure 5.

Figure 5: Loading JMS-Message structure on output

3. An output structure JMS-Message is added in the Output Structure as shown in figure
6.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 891

Figure 6: JMS-Message Structure loaded on output

4. For the property that has to be set on the output message, the name and type of the
property should be mapped to the attributes name and type respectively. The value of the
property should be mapped to the element Property. Figure 7 shows the mappings for
name, type, and Property respectively.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 892

Note: The type values can be Byte, Short, Integer, Long, Float, Double, and Boolean. Any
other value defined for type is treated as String type.

Figure 7: Mappings for defining a String property with name "FileName" and value
"samplefile.txt"

5. Multiple properties can be added by duplicating the element Property Right-click the
property element, select Configure and click the Duplicate option as shown in Figure 8.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 893

Figure 8: Duplicating Property node

6. To set the content of message body on the output message, required content should be
mapped to Text as shown in Figure 9.

Figure 9: Setting message body

Note: When content is mapped to Text element of JMS-Message structure and Set
transformation result as property is set to Body, content mapped to Text element of JMS-
Message structure takes precedence of result of transformation and the body of output
message contains content mapped to Text element of JMS-Message structure.

4.11.8.1.1.8 Xslt Engine

This property along with Transformer factory class property when this property's value is
Other determines the transformer implementation that should be used to perform the
transformation.

Xalan (2.7.0) and Saxon (8.4) transformer implementations are bundled with Fiorano
environment for performing transformations.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 894

• Xalan

Xalan implementation (org.apache.xalan.processor.TransformerFactoryImpl) is used to
perform transformation.

Note: Xalan (2.7.0) does not support XSLT 2.0

• Saxon

Saxon implementation (net.sf.saxon.TransformerFactoryImpl) is used to perform
transformation.

Note: Saxon implementation does not support custom functions

• Other

This option should be used when a custom transformer implementation has to be used.
Selecting this option shows property Transformer factory class which can be used to
provide the transformation factory implementation that should be used.

4.11.8.1.1.9 Transformer factory class

This property determines the fully qualified name of the class which should be used to perform
transformation when the transformer implementation other than that is provided by Saxon or
Xalan has to be used. The class provided should be an implementation of
javax.xml.transform.TransformerFactory.

Resources (jar files) containing the java class specified against this property should be added
as resources to XSLT component.

4.11.8.1.1.10 Strip White Spaces

This property determines whether elements in input XML which have only whitespace content
should be stripped of the content unconditionally before the transformation is done.

Note: This property works only with Saxon.

• None -

Attribute to strip whitespace is not set at all. Behavior dependents on the transformer's
implementation. For Saxon implementation shipped with Fiorano the behavior is same as
that of False.

• True -

Whitespace content is stripped from input XML before the transformation is done.

• False -

Whitespace content is retained as it is.

Example: Figure 10 shows a sample transformation defined.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 895

Figure 10: Sample transformation

Xslt Engine is chosen as Saxon and Strip White Spaces property is set to True as shown in
Figure 10. Input XML in Figure 11 contains Title element which has whitespace.

Figure 11: Saxon engine with Strip White Spaces set to True

Input XML, shown in Figure 12, contains only whitespace for element Title. After the
transformation train element of output XML does not whitespace though there is a simple
mapping from input XML's Title element.

Figure 12: Input XML with whitespace in element Title and output XML without
whitespace for train

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 896

4.11.8.1.1.11 Fail transformation on error

This property determines how the problems that occur during the transformation have to be
handled. There are three levels of problems that can occur during the transformation.
Warnings, errors, and fatal errors.

 no

o Transformer warnings are only logged at log level WARNING

o Transformer errors are only logged at log level WARNING

o Transformer fatal errors are reported as errors in component

 yes

o Transformer warnings are logged at level WARNING and are also treated as errors
in component if Throw fault on warnings remedial action is enabled under
Request Processing Error in Error Handling panel (Figure 2)

o Transformer errors are reported as errors in component and remedial actions, if
any, defined in Error Handling panel are taken.

o Transformer fatal error are reported as errors in component.

4.11.8.1.1.12 Optimization

This property determines whether some internal structures can be cleared so as to make some
additional memory available for transformation.

When property Set transformation result as is set to Body, message body is cleared from
input message after message body is loaded into input for transformer and before
transformation begins. In this case, Text-Content and Byte-Content functions of JMS
Message functions in Fiorano Mapper (shown in Figure 13) cannot be used.

Figure 13: JMS Message functions in Fiorano Mapper

When property Set transformation result as is set to Context, content in application context
is cleared from input message after content in application context is loaded into input for
transformer and before transformation begins.

Note: This property comes into effect only when there is no JMS-Message XSL defined.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 897

4.11.8.2 Functional Demonstration

4.11.8.2.1 Scenario 1

The scenario demonstrates a simple XSLT mapping. In this mapping,

1. The String Hello is appended before the Name in the Input message

2. Element Message is mapped to Message

3. Email is ignored

4. The response is sent to the output port

Configure the XSLT component as described in Configuration and Testing section and use
feeder and display component to send sample input and check the response respectively.

Figure 14: Mapping used

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 898

Figure 15: Demonstrating scenario 1 with sample input and sample output

4.11.8.3 Use Case Scenario

In EAI Demo sample, XSLT is used in extracting the Email ID, Order ID from the input XML
and some mappings are defined between them with the POP3 schema elements and to
construct the message body.

Figure 16: Sample use-case scenario

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 899

The Event Process demonstrating this scenario is bundled with the installer.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.11.8.4 Useful Tips

Suitable JDBC drivers required for Lookup functions have to be added as Service
Dependencies or as Resources to XSLTFunctions System Lib.

4.12 Util
The Util category consists of components like Compression, Decompression, Decryption,
DiskUsageMonitorService, Display, Encryption, and Feeder. The following section describes
each component.

4.12.1 Compression

The Compression component is used to compress the incoming data and send it forward. It
makes use of the APIs available in the java.util.zip package. The component compresses the
text and attachment contained in the incoming document.

Note: Currently the component’s compression algorithm is not configurable.

4.12.2 Decompression

The Decompression component is used to decompress the incoming data and send it forward.
It makes use of the APIs available in the java.util.zip package. The component decompresses
the text and the hash table values existing in the incoming document, and then sends the
document forward.

Note: Currently the component’s decompression algorithm is not configurable.

4.12.3 Decryption

The Decryption component is used for decrypting data, based on a key (that is entered by the
user) and an algorithm. To decrypt the data accurately, user must know the correct key and
algorithm, using which the data has been encrypted.

The supported algorithms are DES, PGP and Base64..

Note: The Decryption component uses Cryptix as the Security provider. Hence you have to
configure the JRE so that the JVM can pick up the Cryptix security provider.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 900

4.12.3.1 Configuration and Testing

The type of decryption and key to be used can be configured in the Interaction properties
panel.

Figure 4.447: The decryption algorithm and the key can be provided as given above.

The configuration can be tested when you click on the Test option in the interaction properties
panel.

Figure 4.448: Sample input

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 901

Figure 4.449: Sample output

4.12.3.2 Input and Output

4.12.3.2.1 Input Schema

This adapter does not have an input schema.

4.12.3.2.2 Output Schema

This adapter does not have an output schema.

4.12.3.3 Functional Demonstration

4.12.3.3.1 Scenario 1

Encryption of data received from input.

Configure the Decryption component as described in Configuration and Testing section and use
feeder and display component to send sample input and check the response respectively.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 902

Figure 4.450: Demonstrating Scenario 1 with sample input and output

4.12.3.4 Use Case Scenario

In a bond trading scenario, request for quotes (RFQ) are sent in encrypted form to the
appropriate exchanges and the received encrypted responses are decrypted at the user end

Figure 4.451: Bond Trading Scenario

The event process that demonstrates this scenario is bundled with the installer. Note
encryption and decryption components may not be present.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 903

4.12.3.5 Useful Tips

The Decryption component uses Cryptix as the Security provider. Hence you need to configure
the JRE so that the JVM can pick up the Cryptix security provider.

4.12.4 DiskUsageMonitorService

The DiskUsageMonitorService component can be used to monitor the hard disk usage of a
particular drive or path on a host machine. This component also triggers sending of alerts to
its output port whenever the usage reaches a maximum limit specified as a percentage

Points to note

• This component can only be used on Windows, Solaris and Linux platforms.

• This component cannot be launched in-memory of the peer server.

4.12.4.1 Configuration and Testing

The following parameters can be configured from the Custom Property Sheet of the
component.

Name Description

Disk to Monitor Specifies the path of the disk that you intend to monitor.

Disk Usage Limit (%) Specifies the maximum disk usage allowed. This value may be
specified as a percentage. If the disk usage crosses the limit
specified by this parameter, alerts are sent to the output port.

Monitoring Interval
(sec)

Specifies the time duration, in seconds, for which this component
waits to poll the disk to check its usage.

Display Service GUI The user interface of the component is displayed if selected.

You can validate the above configured parameters by clicking on the Validate button.

4.12.4.2 Functional Demonstration

4.12.4.2.1 Scenario 1

Scenario demonstration of Disk Usage Monitor Service component which is configured to
monitor the disk usage of ‘C drive’ on a windows machine.

Configure the parameters mentioned in section 2 and use a Display component to receive the
alerts when the disk usage limit exceeds.

The Disk Usage Limit is configured for 80% in the following example.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 904

Figure 4.452: Scenario demonstration showing the Disk Usage GUI and Alerts

4.12.4.3 Useful Tips

This component cannot be launched in-memory of the peer server.

4.12.5 Display

The Display component is used to display messages passing through it. It reads the contents
of the incoming message, displays them, and then forwards them as is. Also it is used to
display an exception/error message which comes from the exception port of a component

Note: This component cannot be launched in-memory of the peer server.

4.12.5.1 Configuration and Testing

The Display component can be configured using its Custom Proper Sheet wizard.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 905

Figure 4.453: Sample Display configuration

4.12.5.2 Functional Demonstration

4.12.5.2.1 Scenario 1

Send input message using Chat component, the output message from the Chat component is
displayed in the Display component.

Figure 4.554: Demonstrating Scenario 1 with sample input and output

Sample Input:

Hello

Sample Output:

<ChatMessage><Sender><Name>FioranoESB
Demo</Name><Email>fesb@fiorano.com</Email></Sender><Message>Hello</Message></
ChatMessage>

4.12.5.2.2 Scenario 2

Send some garbage input message using Feeder to CBR component, Display component is
show the Exception message sent by the CBR.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 906

Figure 4.455: Garbage input message

Sample Input:

Garbage

Sample Output:

<?xml version="1.0" encoding="UTF-8"?><ns1:Error
xmlns:ns1="http://www.fiorano.com/fesb/activity/fault"><errorCode/><errorMessage>error_
processing_messagefiorano.jms.common.FioranoException: Invalid input
XML</errorMessage><errorDetail/></ns1:Error>

4.12.5.3 Use Case Scenario

In a revenue control packet scenario transaction files are read and then transformed, after
which DB is updated. The result is shown in the Result_Display component. In case of error,
error message is displayed in the Error_Display

Figure 4.456: Revenue control packet scenario

The event process demonstrating this scenario is bundled with the installer.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 907

4.12.6 Encryption

The Encryption component is used for encrypting data, based on a key (that is entered by the
user) and an algorithm. This provides sufficient security to data. To decrypt the data correctly,
user must know the correct key and algorithm.

Note: The Encryption component uses Cryptix as the Security provider. Hence you have to
configure the JRE so that the JVM can pick up the Cryptix security provider.

4.12.7 Feeder

The Feeder component is used to feed data to any other component connected to its output
port.

Note: This component cannot be launched in-memory of the peer server.

4.12.7.1 Configuration and Testing

We can have the Feeder send text messages or XML messages to the component(s) connected
to its output port. Figure 4.457 shows the CPS of the Feeder configured to send XML messages
defined by the provided XSD.

Figure 4.457: Specifying the XSD of the outgoing messages

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 908

Feeder provides the feature of auto generation of XML messages corresponding to the XSD
provided in the first panel of the CPS. Figure 4.458 shows a sample XML generated for the
XSD provided in Figure 4.457. If a different XML is specified, it can be validated against the
XSD using the Validate button visible in Figure 4.458.

Figure 4.458: Auto generation of sample XML messages

4.12.7.2 Input and Output

4.12.7.2.1 Input Schema

Feeder does not have any input schema as it does not have an input port.

4.12.7.2.2 Output Schema

The XSD provided in the CPS is itself the output schema of the component.

4.12.7.3 Functional Demonstration

4.12.7.3.1 Scenario 1

Sending XML messages corresponding to the provided XSD.

Configure the Feeder as shown in Figure 4.457 and Figure 4.458. Connect a Display to its
output port as shown in Figure 4.459.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 909

Figure 4.459: Sample event process depicting the functionality of Feeder

Now, we have two pop-up frames on the screen one each for Feeder and Display components.
Click the Send button in the Feeder frame shown in Figure 4.460 to get the output in the
Display component as shown in Figure 4.461.

Figure 4.460: Sending a sample XML message from the Feeder

Figure 4.461: Display component showing the XML message received from Feeder

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 910

4.12.7.4 Use Case Scenario

In the sample event process Hospitality Service, the Feeder component is used to send the
operation type.

Figure 4.462: A sample event process

4.12.7.5 Useful Tips

Feeder is very useful in testing the functionality of components by feeding in the data they
require.

This component cannot be launched in-memory of the peer server.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 911

The Replace “$index” feature of the Feeder could be used to auto generate unique keys for
every outgoing message. The $index in the outgoing message would be replaced by the
number of the message that is currently being sent. For example, for the message shown in
Figure 4.463, the first outgoing message would be as shown in Figure 4.464.

Figure 4.463: Using the feature ‘Replace $index’

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 912

Figure 4.464: The first outgoing message when the message is sent

4.12.8 PrintPDF

The PrintPdf component can be used to print a PDF file on to a local or remote printer. This
component uses Adobe executable to print a PDF

Points to note

• This component can be used on Windows platform only.

• This component cannot be launched manually on the peer server.

4.12.8.1 Configuration and Testing

The following parameters can be configured from the Custom Property Sheet of the
component.

Name Description

Error handling Configuration Allows to configure actions to be taken when an exception
occurs during execution

Adobe Executable The Executable path of the adobe application.

Default Printer The Printer Name is used as a default when no name is
specified in the input.

Wait Time The time in milli seconds the component should wait for the
printer to print the file.

Validate Printer If yes, the printer name specified is validated.

4.12.8.1.1 Error Handling Configuration

The remedial actions to be taken when a particular error occurs can be configured here.

Click on the ellipsis button against this property to configure Error Handling properties for
different types of Errors.

By default, the options Log to Error Logs and Send to error port are enabled.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 913

Figure 1: Error handling configuration

4.12.8.1.2 Sample Input and Output

Configure the parameters mentioned in section 2. A Feeder component can be used to provide
input and a Display component to receive the output from the PrintPdf component.

The component is configured to print a PDF file to a local printer in this example.

Launch the flow and send the sample input through Feeder component.

The PDF file is opened using the specified Adobe executable before it is sent to the printer. The
file is closed automatically after the specified wait time and the component sends an XML
message which contains FilePath, PrinterName and Message elements on to its output.

An error document will be sent to the component’s ON_EXCEPTION port if one of the following
cases is encountered

• If the printer name specified is not valid

• If the path of the PDF file given in the input is not valid

• If the path of the Adobe executable provided is not valid

Note: There will be no error document if the print is not successful

Figure 2 shows the sample input and output for the scenario mentioned.

Sample Input sent from Feeder

Output Generated

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 914

4.12.8.2 Recommendations
• Configure the component for a local printer connected to the production box where

FPS runs.

• Use Adobe Version 8.0 or later for printing the file.

4.12.8.3 Limitations
• When the print fails, it does not report the failure

• After a system restart, print does not work for some initial tries.

• FPS on which the component is running should not be launched as NTService.

• The system has to be restarted if printing stops after processing many requests.

4.13 Web
The Web category consists of components like HTTPAdapter, HttpReceive, HttpStub, and
SimpleHTTP. The following section describes each component.

4.13.1 HTTPAdapter

The HTTPAdapter component enables the user to get content from an external HTTP Server
(Web Server).

The Hyper Text Transfer Protocol (HTTP) is one of the most widely used protocols on the
Internet today. Various Event Processes are being hosted on the World Wide Web, due to
which Event Process developers face the challenge of integrating their existing solutions to
work with HTTP. The Fiorano HTTPAdapter component helps Event Process developers to
achieve this task with minimum knowledge of this protocol.

The Fiorano HTTPAdapter component enables Event Processes to use either the Get or the
Post method. This component can function in conjunction with other Fiorano components to
solve business problems in a highly productive manner.

The Get implementation

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 915

Consider a stock portfolio management company that employs several consultants who advise
clients on investing their money. The Shares and Scripts section consists of three clerks who
track the stock quotes in three different verticals: IT, Automobiles, and Pharmaceuticals. The
task of sending requests for stock quotes can be accomplished by running multiple instances
of the Get implementation. Each instance constantly provides information for a different stock
quote. The results can then be sent to other components for further processing.

The Post implementation

Consider an enterprise implementing an Enterprise Resource Planning (ERP) system to
automate its inventory management system across its suppliers and customers. The suppliers
are generally not in the vicinity of the manufacturing facility and hence it is not possible to
have a dedicated link between the two parties. In this case, the supplier can provide web
access to the enterprise through a secure interface and the Post method can be used to post
purchase order information at the supplier server.

Points to note

24. The component never tries to guess the content type like most browsers.

25. If the HTTP Server is secured using Basic or Digest authentication and required details
are not provided in the component CPS, a runtime UI is displayed to capture the
same.

26. If the response has an application/xml content type, then in the Http Response
configuration, the Response Body has to be set as "Headers". The XML can be
extracted from the binary data using XSLT component.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 916

4.13.1.1 Configuration and Testing

4.13.1.1.1 Managed Connection Factory

Connection details are configured in the Managed Connection Factory (MCF) panel. Figure

1 illustrates the panel with expert properties view enabled.

Figure 1: Connection configuration details in MCF panel

4.13.1.1.1.1 Connection Properties

Use Connection Details From Input

Parameters to create the connection can be specified in the input message when this property
is set to true. If this property is selected the validation errors in the managed connection
factory panel of the CPS are treated as warnings. So user can bypass this step without giving
valid configuration and complete the configuration of the component. If valid properties are
not provided even in the input message exception will be thrown at runtime.

HTTP Host Name/IP

The host name or the IP address where the Web Server is located. The URI relative to this
host name/IP has to be configured in the request details editor in Interaction Configurations.
It can also be sent in the URI element of the input message.

HTTP Port

The port number on which Web Server is running.

HTTP Request Timeout

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 917

Specifies the time for which this component will wait for an HTTP request to be acknowledged.
The default value is 0, specifies infinite timeout.

Allow Auto Redirection

Determines the action to be taken if the requested page sends the request to another page.

• yes

This is used to allow automatic redirection of request page if required.

• no

Do no allow automatic redirection of request page.

Force HTTP1.0

• yes

HTTP1.0 protocol is used while sending requests to the web server.

• no

HTTP1.1 protocol is used while sending requests to the web server.

Authentication Mode

This property enables the user to specify authentication information, if any.

• None

This is the default selection. This is used when the requested resource does not
require any authentication.

• Basic

A method designed to allow client program to provide credentials in the form of
user name and password while making a request. These credentials are passed in
plain text format using Base64 encoding.

• Digest

In this method, request is encrypted using MD5 cryptographic hashing and sent to
web server.

When Authentication Mode is either Basic or Digest, following credentials have to
be specified.

• Username

The name of the user with privileges to access the protected resource.

• Password

The password for the user name specified above.

Proxy Settings

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 918

ByPass Proxy for Hosts

The semi-colon separated list of hostnames/IP addresses for which the request must be sent
without passing the proxy specified, if any. If no proxy is defined, this property is ignored.

4.13.1.2 Interaction Configuration

The business logic configuration details are configured in the Interaction Configurations

panel. Figure 2 illustrates the panel with expert properties view enabled.

Figure 2: Business logic configuration in Interaction Configurations panel

4.13.1.2.1 Attributes

4.13.1.2.1.1 HTTPRequestProperty

This property defines properties of the request that is sent to Web Server.

Click the ellipsis button to launch an editor for providing these configurations.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 919

Figure 3: Launching editor for configuring Request properties

Method

The HTTP method that is used to send the request to the server. This is either set to GET or
POST.

The usage of these methods are described in the sections The GET Implementation and The
POST Implementation respectively.

The Request Properties depends on the HTTP method specified. Figure 3 shows the request
properties when HTTP method is set to GET. Request properties when HTTP method is set to
POST are shown in Figure 6.

URI

The Uniform Resource Identifier of the resource that is being requested by the component.
This will be calculated relative to the host name/IP and port number provided in the Managed
Connection Factory.

Cookie

The HTTP cookies provide the server with a mechanism to store and retrieve state information
on the client application's system. This mechanism allows Web-based applications the ability
to store information about selected items, user preferences, registration information, and
other information that can be retrieved later.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 920

The cookie can be specified in the form of name value pairs separated by semicolon. For
example, name1=value1;name2=value2. The input schema will have an element Cookie
corresponding to this property.

Note: Cookies set by the server will be discarded after servicing the client request If
Connection pooling is disabled.

Pragma

The Pragma general-header field is used to include implementation- specific directives that
might apply to any recipient along the request/response chain. For more information refer
section 14.32 Pragma at http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

The input schema will have an element Pragma corresponding to this property.

Custom Headers

If there are any custom headers that have to be sent along with the request, then select the
checkbox against this property and click the Headers button. Headers can be added using the
editor as shown in the Figure 4.

Figure 4: Custom Headers configuration

If custom headers are enabled, then the Header element of the input schema will have a child
element CustomHeaders and any custom headers specified in the table are added as child
elements of this CustomHeaders element.

Parameter/PostData Details

If there are any parameters to be sent along with the request, then the select the checkbox
against this property and click the Parameters button. Parameters can be added using the
editor as shown in the Figure 5.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 921

Figure 5: Parameters/PostData configuration

The schema of the component has an element entity which accepts parameters as name value
pairs.

Apply URL Encoding on Parameters

If this property is selected, parameters are converted to the application/x-www-form-
urlencoded MIME format (HTML form encoding) using the platform’s default encoding scheme.

When HTTP method is set as POST, request properties appear as shown in Figure 6.

Figure 6: Request properties when HTTP method is set POST

Refer to previous section for description of properties URI, Cookie, Pragma, Custom Headers,
and Apply URL Encoding on Parameters. Additional properties are described below.

Content-Encoding

The Content-Encoding header field is used as a modifier to the media-type. When present, its
value indicates what additional content coding have been applied to the body, and thus what
decoding mechanisms must be applied in order to obtain the media-type referenced by the
Content-Type header field.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 922

Content-Encoding is primarily used to allow a document to be compressed without losing the
identity of its underlying media type.

An element Content-Encoding will be added corresponding to this property in the input schema
of the component.

Content-Length

The Content-Length header field indicates the size of the body of the posted content. An
element Content-Length will be added corresponding to this property in the input schema of
the component.

Content-Type

The Content-Type header field indicates the media type of the body sent to the recipient.
Component supports the following values:

• text/html

• image/jpeg

• model/vrml

• video/quickline

• application/java

• text/css

• text/javascript

• multipart/form-data

 An element Content-Type will be added corresponding to this property in the input schema of
the component.

To upload files Content-Type has to be set to multipart/form-data. When the Content-Type is
set to multipart/form-data, then the generated input schema doesn’t contain Content-Type
element and the value specified in the CPS is used internally.

Parameters/PostData Details

When HTTP method is set to POST, then the post data type can be configured as shown in
Figure 7.

Figure 7: PostData configuration when HTTP method is set to POST

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 923

• Simple Text

This is used when data to be posted is simple text. The text to be posted can be specified
by using the text area that opens by clicking the button Post Data. In this case, an
element text is added as a child to entity element in the schema of the input port
corresponding to the text that is being posted.

• Binary Data

This is used when data to be posted is in binary format. The content can be specified by
clicking on the Load from File button in the UI that opens up when the Post Data button is
clicked. In this case, an element BinaryData is added as child to entity element in the
schema of the input port corresponding to the data that is being posted.

• XML Data

This is used when data to be posted is in the form of XML conforming to a specific schema.
The content can be specified in the schema editor that opens up when the Post Data
button is clicked. In this case, an element XMLData is added as child to entity element in
the schema of the input port, whose type is same as the schema provided.

• Parameters

This is used when parameters are being posted and these can be configured as shown in
Figure 5.

Files

When HTTP method is set to POST and the Content-Type is set to multipart/form-data, then
the files to be posted can be specified by clicking Files button. This button will be enabled
when the Content-Type is set to multipart/form-data. The file parameters will be set as name-
value pairs where the name is the parameter name and the value is the complete path of the
file which has to be uploaded.

Figure 8: Files Button

Example: To upload a file on http://www.filefactory.com the following parameters has
to be set

• redirect to 1

• enabled to 1

• file to the path of the file which has to be uploaded

• uploadStart to true

• uploadOne to true

These parameters can be determined by looking at the HTML page source.

http://www.filefactory.com/upload.php

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 924

If the input type of the parameter is file, then it has to be provided under Files and all the
other parameters have to be provided under Parameters.

In the above example, parameters redirect, enabled, uploadStart, and uploadOne should be
provided under Parameters and the parameter file should set under Files. These parameters
can also be provided in the input message. If a parameter is specified in both the CPS and in
the input, then the value provided in CPS will be overridden by the value provided in input.

The sample input is shown in Figure 24.

Refer to section Input and Output for details about the effects of these configurations on input
and output structures.

4.13.1.2.1.2 HTTPResponseProperty

When a request is sent to HTTP Server, a HTTP response is obtained. Output message is
created from this HTTP response based on the configuration details of this HTTPResponse
property.

Click the ellipsis button to launch HTTPresponseProperty dialog box as shown in Figure 9.

Figure 9: HTTPResponse Property configuration

Response Code

The HTTP response code that is sent from the server. If the corresponding checkbox is
selected, this is included in the output message. If the response type property is chosen as
XML, an element Response-Code is added to the schema of the output port. Other wise a
message Header with name HTTP_Response-Code is set as message property on output
message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 925

o Response Message

The message corresponding to the response code returned. If corresponding
checkbox is selected, it is included in the output message. If the response type
property is chosen as XML, an element Response-Message is added to the schema
of the output port. Other wise a message Header with name HTTP_Response-
Message is set as message property on output message.

Headers form part of the HTTP response stream which carries information about
the response stream that is sent. The headers below are standard HTTP response
headers. If corresponding checkbox is selected, it is included in the output
message. An element with same name as the header is added as child element of
Header element in the schema of the output port if the response type property is
chosen as XML. Other wise a message header with name prefixed with HTTP_ is
set as message property on output message.

Content-Type

The Content-Type header field indicates the media type of the body sent to the recipient.

o Content-Length

The Content-Length header field indicates the size of the body sent to the server.
Any Content-Length greater than or equal to zero is a valid value.

o Content-Location

The Content-Location header field is used to supply the resource location for the
entity enclosed in the message when that entity is accessible from a location
separate from the requested resource's URI.

o Content-Range

The Content-Range header is sent with a partial body to specify where in the full
body the partial body should be applied.

o Content-Encoding

The Content-Encoding header field is used as a modifier to the media-type. When
present, its value indicates what additional content coding have been applied to
the body, and thus what decoding mechanisms must be applied in order to obtain
the media-type referenced by the Content-Type header field.

o Set-Cookie

The Set-Cookie header is sent by the server in response to an HTTP request, which
is used to create a cookie on the user's system. The Cookie header is included by
the client application with an HTTP request sent to a server, if there is a cookie
that has a matching domain and path.

The Set-Cookie value can be specified in the following format
name1=value1;name2=value2.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 926

o Last-Modified

The Last-Modified header field indicates the date and time at which the origin
server believes the variant was last modified. The exact meaning of this header
field depends on the implementation of the origin server and the nature of the
original resource. For files, it may be just the file system last-modified time. For
entities with dynamically included parts, it may be the most recent of the set of
last-modify times for its component parts. For database gateways, it may be the
last-update time stamp of the record. For virtual objects, it may be the last time
the internal state changed.

For detailed information on standard HTTP headers, please refer to
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html .

Headers to be included (comma-separated)

If there are any custom headers apart from the standard HTTP headers, those headers can be
specified here in a comma-separated list.

If the custom headers are added and the response type is chosen as XML, the specified
properties appear as the child elements of Custom-Headers element in the output message. If
response type is chosen as Headers, then a message header with name prefixed with HTTP_
will be sent in the output message.

o Response Body

This property defines the format of output message that is sent to output port. At
runtime, the component converts the HTTP response obtained from HTTP Server
into output message based on this property.

 Headers

This property is used to set the selected headers (both standard HTTP and
custom headers) as message properties on output message. All the
selected headers are read from HTTP response obtained and set on output
message. The response message from HTTP response is set body of the
output message.

 XML

When this property is used, all the selected headers are set as elements in
output schema created by the component.

o Response

The message body of the output message that is generated from HTTP response
can be specified in schema editor that opens on clicking this button. This property
is optional. If specified, output schema depends on the response type (Headers or
XML). If response type is Headers, the schema specified here is set output
schema. If response type is XML, a response message is created in the form of
XML data conforming to the schema specified here and set as CDATA in the body
of the output message.

Please refer to section Input and Output for details about the effects of these
configurations on input and output structures.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 927

Treat Null Content-Type As

When the Content-Type header in HTTP response stream is null, the action to be taken is
specified here as shown in Figure 10.

Figure 10: Configuration of null 'Content-Type'

• Exception

If this property is set, an exception is sent to error port.

• application/octet-stream

If this property is set, then Content-Type header of the response is set to
Application/octet-stream.

4.13.1.3 Input and Output

4.13.1.3.1 Input

The input schema for the component is defined based on the configuration of
HTTPRequestProperty.

When the HTTP method is set to GET, the input schema varies based on the configuration of
headers. Configuration of parameters does not affect the input schema generated.

• When no headers are selected, input schema is defined as shown in Figure 11 and a
sample input is shown in Figure 12.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 928

Figure 11: Schema when there are no headers

Figure 12: Sample input XML for schema in Figure 11

• When custom headers are added as shown in Figure 13

Figure 13: Sample Headers configuration

The input schema is defined as shown in Figure 14 and a sample input is shown in Figure 15.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 929

Figure 14: Schema when custom headers are selected

Figure 15: Sample input XML for schema in Figure 14

Note: Headers and parameter values defined in input XML override the values set in CPS. If
the corresponding header or parameters elements are not present in the input XML values
from CPS are used.

When the HTTP method is set to Post, the input schema varies based on the configuration of
headers and parameters/post data details.

• When no custom headers are added and Parameters/PostData Details is set to Simple
Text, input schema is defined as shown in Figure 16 and a sample input is shown in Figure
17.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 930

Figure 16: Schema when parameters/postdata set to SimpleText

Figure 17: Sample input XML for schema in Figure 16

• When custom headers are added as shown in Figure 12 and Parameters/PostData
Details is set to Binary Data, input schema is defined as shown in Figure 18 and a sample
input is shown in Figure 19. Content of element BinaryData in input XML should be a
base64 encoded value of actual binary input.

Figure18: Schema when parameters/postdata set to 'BinaryData'

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 931

Figure 19: Sample input XML for schema in Figure 18

• When custom headers are added as shown in Figure 12 and Parameters/PostData
Details is set to XML, input schema is defined as shown in Figure 20 and a sample input
is shown in Figure 21.

Figure 20: Schema when parameters/postdata set to 'XML'

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 932

Figure 21: Sample input XML for schema in Figure 20

A sample schema is provided by clicking PostData button. This schema is set as child element
under XMLData element. In the input message, xml data conforming to the schema specified
should be set else an error can be thrown as this is a required field.

• When Content-Type is set as multipart/form-data and the custom headers are added then
the input schema is defined as shown in Figure 22 and a sample input is shown in Figure
23. The Schema doesn’t contain the Content-Type element in this case.

Figure 23: Schema when parameters/postdata set to Parameters

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 933

Figure 23: Sample input XML for schema in Figure 21

The files to be uploaded can be provided under Files element as shown in Figure 25. In the
element File the Name attribute specifies the name of the parameter and the Value specifies
the path of the file to be uploaded. If the custom headers are not configured, then the
element CustomHeaders will not be present in the schema.

When custom headers are added as shown in Figure 13 and Parameters/PostData Details
is set to parameters, input schema is defined as shown in Figure 24 and a sample input is
shown in Figure 25.

Figure 24: Schema when parameters/postdata set to Parameters

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 934

Figure 25: Sample input XML for schema in Figure 24

When custom headers are added, they are added as child elements under CustomHeaders
element. The addition of parameter does not affect the input schema generated.

In all the above cases except when PostData is set to XML, all the elements present in the
Input message are optional. A Sample input message with no fields can be used as shown in
Figure 26.

Figure 26: Sample input XML

If there are no fields as shown in above Figure 24, the default values which are configured in
CPS are set on the request message. Else the value of the corresponding field is taken from
input message.

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 935

Figure 27: Input schema with ConnectionFactorySettings

4.13.1.3.2 Output

The output schema for the component is based on the configuration details provided for
HTTPResponseProperty.

When the Response Body for output message is set as Headers and no schema is provided
for the Response, then no schema is set on output port. If a schema is provided by clicking
the Response button, it is set as the output schema. If any headers are selected or if any
custom headers are configured, then they are set as message properties on the output
message.

When the Response Body for output message is set as XML, output schema generated
depends on the schema provided by clicking the Response button.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 936

• When no schema is provided in Response, output schema is defined as shown in Figure 28
and a sample output XML is shown in Figure 28.

Figure 28: Output Schema when no schema is set in Response

Figure 29: Sample XML for schema in Figure 28

If any custom headers are configured, then they are added as child elements under
CustomHeaders element which is set as child element under Header element.

• When schema is provided in Response, output schema is defined as shown in Figure 30
and a sample output XML is shown in Figure 31.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 937

Figure 30: Output Schema when sample schema is set in Response

Figure 31: Sample XML for schema in Figure 30

4.13.1.4 SSL Setup

To communicate with https websites, SSL has to be enabled in HTTPAdapter and the values for
KeyStore, TrustStore, KeyStore Password, TrustStore password and KeyStore Client Key have
to be specified in the SSL settings dialog in the CPS.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 938

Client keystore and truststore are required for SSL communication. The procedure to obtain
the certificate from the https website and to generate the client keystore and truststore is
explained in sections 3.11.2.1, 3.11.2.2 and 3.11.2.3 of Fiorano SOA User Guide.

Section 3.11.2.4 (Using the Keystore and Truststore in an SSL Application) explains the
procedure to use the generated Client keystore and truststore in HTTPAdapters for SSL
configuration.

The default HTTP Port to be used for SSL communication is 443. If the http server uses a
different port then it has to be mentioned.

4.13.1.5 Functional Demonstration

4.13.1.5.1 Scenario 1

Send a request to Web Server and display the response.

Configure the HTTPAdapters as described in Configuration and Testing section and use feeder
and display component to send sample input and check the response respectively.

Figure 32: Demonstrating Scenario 1 with sample input and output

Input Message

<ns1:HTTPRequest xmlns:ns1="http://www.fiorano. /fesb/activity/HTTPAdapters1/HTTP/In">

 <URI>www.google.com</URI>

 <Header>

<Cookie>Cookie</Cookie>

<Pragma>Pragma</Pragma>

 </Header>

 <Entity>

<NVPairs>

 <ns1:NVPair Name="Name" Value="Value"/>

</NVPairs>

 </Entity>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 939

</ns1:HTTPRequest>

Output Message

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML><HEAD>

<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">

<META content="MSHTML 6.00.2600.0" name=GENERATOR>

<script language="JavaScript" type="text/JavaScript">

<!--

function MM_preloadImages() { //v3.0

var d=document; if(d.images){ if(!d.MM_p) d.MM_p=new Array();

var i,j=d.MM_p.length,a=MM_preloadImages.arguments; for(i=0; i<a.length; i++)

if (a[i].indexOf("#")!=0){ d.MM_p[j]=new Image; d.MM_p[j++].src=a[i];}}

}

//-->

</script>

<link href="css/fiorano.css" rel="stylesheet" type="text/css">

</HEAD>

<BODY bgcolor="#FFFFFF" leftmargin="0" topmargin="0" marginwidth="0"
marginheight="0">

<Script Language="JavaScript" >

<!--

function search_check()

{

 if(document.search.query.value == "")

 {

 alert("Query cannot be blank")

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 940

 }

 else

 {

 document.search.submit()

 }

}

-->

</Script>

<html>

<head>

<link rel="stylesheet" href="/css/fiorano.css" type="text/css">

………………….

</body>

</html>

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 941

4.13.1.6 Use Case Scenario

In Order Entry sample, a user is provided a web based interface to send a purchase order to a
company. In case the order is accepted, HTTPAdapters is used to POST the order delivery
request to a third party vendor.

Figure 33: Order Entry

4.13.1.7 Useful Tips

When connecting to secured sites, the component accesses truststore from different locations
in different launch modes -

• Separate Process - %JAVA_HOME%\jre\lib\security\cacerts

• In-memory - %FIORANO_HOME%\esb\server\profiles\certs\jssecacerts

'jssecacerts' in %FIORANO_HOME% does not have trusted certificates required by most of the
secured sites. Hence, to connect to secured sites when component is launched in-memory,
either the trusted certificates should be added to 'jssecacerts' or the property
'javax.net.ssl.trustStore' (in %FIORANO_HOME%\esb\server\bin\server.conf, if FPS is
launched using server.bat/server.sh and %FIORANO_HOME%\esb\fps\bin\fps.conf, if FPS is
launched using fps.bat/fps.sh) should be set to %JAVA_HOME%\jre\lib\security\cacerts

4.13.2 HTTP Receive

The HTTPReceive component acts as an interface between an HTTP client and an Event
Process and receives HTTP requests using the Hyper Text Transfer Protocol (HTTP). The
request is then converted into an XML Message by the HTTPReceive component and is sent to
the Event Process which in turn processes it and sends the result to the HTTPReceive
component. The HTTPReceive component processes the input in either of the following ways.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 942

The Event Process processes the input and sends the output to the HTTPReceive component.
In this case, the input port of the HTTPReceive component receives the output, converts it into
HTTP response and sends it back to the HTTP client through HTTP protocol.

The Event Process sends a response error message to the HTTPReceive component. In this
case, the error event port of the HTTPReceive component receives the response error through
its input event port, converts it into a HTTP response error and then sends it to the HTTP client
using HTTP.

The Event Process need not return response. In this case, the HTTPReceive component is
preconfigured to the
one-way-send mode wherein the HTTPReceive component does not expect and wait for any
response. By default, HTTP(S) default response or OK would be returned to the HTTP client for
each HTTP request.

Note: The Stream Read Buffer size field should be set only by advanced users as the optimum
value depends on specific scenarios in which the component is used.

4.13.2.1 Configuration and Testing

The configuration of HTTPReceive is defined as shown in Figure 1.

Figure 1: Configuration of HTTPReceive

4.13.2.1.1 General Configuration

4.13.2.1.1.1 HostName

The host name or the IP address of the system on which the web server is present.

4.13.2.1.1.2 Port

The port on which the Web Server is running.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 943

4.13.2.1.1.3 Max Idle Time (ms)

The maximum time in milliseconds for which the component has to wait for processing the
request.

For more details, refer http://jetty.codehaus.org/jetty/jetty-
6/apidocs/org/mortbay/jetty/AbstractConnector.html#setMaxIdleTime(int)

4.13.2.1.1.4 Contexts

A Context will encapsulate details of a single HTTP service. Multiple contexts can be configured
as shown in Figure 2.

Figure 2: Configuration of Multiple Contexts

A Context can be added by clicking on the Add button. For each context added, ports will be
added to the component based on the value given in the editable table as explained below.

Context Specific path:

The unique context path of the HTTP request corresponding to a context. The path of the
context will be computed relative to the server details provided by properties Host Name and
Port.

The URI of a context will be http://<Host Name>:<Port>/<Context Spec Path>.

Display Name:

The unique display name for the context. The names of the ports that are generated
corresponding to a context are suffixed by __<Display Name>.

Connection Mode:

The connection mode defines the way the client interacts with the server. The client sends the
request to the server. The HTTPReceive adapter parses the request and sends it to the Event
Process through output port HTTPRequest__<Display Name> which will be sent to the
Event Process. The behavior of the component after this will be dependant on the connection
mode chosen.

http://jetty.codehaus.org/jetty/jetty-6/apidocs/org/mortbay/jetty/AbstractConnector.html#setMaxIdleTime%28int%29
http://jetty.codehaus.org/jetty/jetty-6/apidocs/org/mortbay/jetty/AbstractConnector.html#setMaxIdleTime%28int%29

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 944

 Request/Response

In this mode, the HTTPReceive adapter waits for reply from the Event Process after
sending the request. Two input ports with names HTTPResponse__<Display
Name> and ERROR__<Display name> will be created for receiving response and
error messages respectively. Then the component handles the response based on the
response generation details provided for the context.

 One Way Send

In this mode, the HTTPReceive adapter will send a default response, HTTP(S) default
response/OK back to the HTTP client after sending the request message to the Event
Process. No input ports will be created in this case for this context.

When a context is selected the details of handling the request and response can be
configured using the tabs Request Parsing Details and Response Generation Details.

Request Parsing Details:

The HTTP Request stream received by the component when a client sends request will be
parsed based on the details provided in this tab. The UI has three tabs at the bottom which
define various types of request parsing details as shown in Figure 3.

Figure 3: Configuration of Request Parsing Details

When a HTTP request is received by the component, it is transformed into a JMS message and
sent to the Event Process through the output port of the component based on the details
configured using this property. Schema of the output port HTTPRequest_<Context Display
Name> will change based on the details provided for this property.

 Parameters

Parameters define the characteristics of the HTTP request data stream being parsed
for converting the request to message. Parameters can be added by clicking Add
button in the Parameters tab in request parsing details tab. Added parameters can be
removed by clicking on the Remove button. For each parameter added a new element
will be added as child of Params element in the schema of the corresponding output
port based on the following details.

- Name

The name of the parameter that is passed in the request. The name for
corresponding element in the output schema will be set to this value.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 945

- Cardinality

If a parameter is definitely necessary for the processing of a request then it must
be marked required, otherwise, optional must be chosen. The cardinality of the
corresponding element in the output schema will be the same.

- Type

The data type of he parameter can be specified as one of String, Boolean, Decimal
or Integer. The XSD type of corresponding element in the output schema will be
same.

- Include All/Others

If this option is selected, parameters from the request that are not defined as
parsing parameters will also be added in output message. These will be added
under the Params element in the output schema.

- Treat empty string as null

If this option is selected, and the content of this parameter in HTTP Request
stream is empty, the parameter will be considered as null otherwise it will be
considered as an empty string.

 Post Data

If data is relatively large and is to be posted from the request, the way it has to be
parsed must be specified by selecting the Post Data tab in the request parsing details
tab.

The data to be posted by the client can be one of the following types.

- -----------

This option must be specified when data is not posted as part of the request. If
chosen, post data, if passed as part of the HTTP request will not be present in the
request message. In this case parameters or headers must be compulsorily
included.

- XML Text [Provide an XSD for the XML text]

This must be chosen if the data posted is XML that conforms to a schema. The
schema can be provided using the XSD editor as shown in Figure 4. If parameters
or headers are specified then an element XMLData will appear in the schema of
output port whose type is same as that of the provided schema. Otherwise, this
schema will be set as output port schema.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 946

Figure 4: Configuration of Post Data in Request Parsing Details

- Simple Text

If data from the request stream is text not conforming to any schema. This option
can be selected if the data need not be transformed using Fiorano Mapper and
needs to be transferred as is. If parameters or headers are specified, an element
Data of string type will appear in the schema of output port and the text will be
inserted as CDATA. Otherwise, it will be set as message text.

- Bytes

Data from the request stream will be filled as bytes in the JMS Message. Use this
option in case you need to send media files as binary data via HTTP.

 Headers

A Header is a part of a data stream which specifies information about the data stream.
This option is used to specify the type of information being sent across the data
stream. Headers can be added by clicking Add button in the Headers tab in request
parsing details tab. Added Headers can be removed by clicking on the Remove button.
For each Header added a new element will be added as child of Headers element with
attributes name, cardinality and type similar to Parameters.

- Fill Defaults

This button can be used to include the default headers as shown in the Table1.

Scheme Optional String

Version Optional String

IsCommitted Optional String

Host Optional String

Port Optional String

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 947

EncodedPath Optional String

Method Optional String

Connection Optional String

Pragma Optional String

Content-
Length

Optional String

Content-Type Optional String

Cookie Optional String

Table 1: Default headers and their data types

- Include All/Others

If this option is selected all headers from the request stream are included in the
message from the output port. The headers will be added under Headers element.

Response Generation details:

If the context connection mode is chosen as Request/Reply, the component sends the request
message and waits for response from the Event Process. The response message that is
received on input port HTTPResponse__<Context Display Name> is converted to HTTP
Response stream suitable for the invoking client based on the details provided here.

The selection can be made in the Response Generation Details tab and selecting the Response
Data tab at the bottom, as shown in the Figure 5.

Figure 5: Response Generation Details – Response Data

 Response Data

- -------

When this option is used, no information is put on the response stream.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 948

- Simple Text

Text portion of the JMS Message will be read and put in the response stream. This
option can be chosen when the invoking client does not expect a response that
conforms to a specific schema. No schema is set on the input port RESPONSE.

- XML Text [Provide an XSD for the XML Text]

If the client expects the response to be compliant to a particular schema, then the
schema must be provided using the schema editor. The schema will be set as
schema of the input port RESPONSE.

- Bytes

If the client expects the response to be compliant to a particular schema, then the
schema must be provided using the schema editor. The schema will be set as
schema of the input port RESPONSE.

 Headers

This option is used to specify the type of information being sent across the response
stream. Headers can be added by clicking Add button in the Headers tab in Request
Parsing Details tab. Added Headers can be removed by clicking on the Remove button.
For each header added, a new element will be added as child of Headers element in
the schema of the input port with attributes name, cardinality and type similar to
Parameters in Request Parsing Details.

- Fill Defaults

This is used to include all default headers in the response message. Please refer to
Table 1 for default headers.

- Handle All

If this option is selected all headers that are present in the response received from
the Event Process will be added as headers in the response stream.

Advanced Properties:

The advanced properties for a context can be configured by clicking on the Advanced
Properties button in Context Details panel. These properties depend on the connection
mode between the adapter and the client.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 949

 If the Connection Mode of the adapter is Request/Response, then clicking this button
pops up the following details as shown in Figure 6.

Figure 6: Advanced Properties - Request/Response

- Request TimeOut (msec)

It is the length of time in milliseconds which the HTTP Receive adapter will wait for
the response message.

- Number of Retries

It is the number of times adapter will retry in case there is no response.

- Stream Read Buffer Size (Bytes)

It is the size of the buffer that will be used to read a HTTP request stream.

- Validate Stream

Validates the request and response stream based on the schema generated. It has
the following options:

o Both Request and Response Stream: validates both the request and response
streams.

o Only Request Stream: Validates only request stream

o Only Response Stream: Validates only response stream

o None: No validation is done for request and response streams

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 950

- Resource Base

Location of the resource that contains the static content like images, css and so
on. This can be any valid path in the file system (may also be relative to
%FIORANO_HOME%\runtimedata\PeerServers\<profile-
name>\FPS\run\components\HttpReceive\4.0) or a web URL. The resources
present in resource base will then be hosted in URLs of the form
http://<hostname>:<port>/<contextpath>/<resource>

- Cache Control

The cache control mechanism that is to be used to cache the static content. For
example, cache control value "max-age=3600,public" states that static content
would be cached for up to an hour and shared between all users, without checking
the server. For valid Cache-Control values, please refer to section 14.9 in the
following link http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

- Request TargetNameSpace

The target name space for the schema generated for the output port
HTTPRequest_<Context Display Name>.

- Response TargetNameSpace

The target name space for the schema generated for the input port
HTTPResponse_<Context Display Name>.

 If the Connection Mode is One Way Send, the following properties as shown in
Figure 7 can be configured.

Figure 7: Advanced Properties - One Way Send

For description of these properties, refer to the section of Advanced properties for
Request/Response connection mode.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 951

4.13.2.1.1.5 Error Actions Map

The suitable actions that have to be taken for possible errors that might happen while the
component is running can be specified using the Error Actions Map editor, by clicking on the
ellipsis button against this property.

Figure 8: Configuration of Error Actions Map

The various options for handling errors that might occur while sending or receiving data
streams can be configured. The various instances when an error might occur are as follows:

 While parsing HTTP Request

These errors may occur while parsing the HTTP request.

- [1001] - I/O Exception: This error may occur while reading the HTTP Request
Stream

- [1002] - Invalid Request: This error may occur when HTTP Request does not
match with the configured Format.

 While processing Request over Bus

These errors may occur while processing the request over the bus.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 952

- [2001] - Request Timed Out: This error may occur when the request is timed out.

- [2002] - No Response: This error may occur when there is no response.

- [2003] - Connection Lost: This error may occur when the Connection to Peer
Server is lost while sending Request Document over the Bus.

- [2004] - Error Response: This error may occur when the Response received from
the Bus contains one or more errors.

- [2005] - Invalid Response: This error may occur when the Response does not
match with the configured Format.

 While Generating HTTP Response

These errors may occur when the HTTPReceive adapter is generating the HTTP
Response.

- [3001] - Illegal State: This error may occur while setting HTTP Response Headers.

- [3002] - I/O exception: This error may occur while sending data over the HTTP
Response Stream.

Various remedial actions can be specified for each of the above mentioned errors to handle the
errors effectively. The remedial actions that are displayed in the Error Handling panel are as
follows:

 Log using service log settings

The error is logged using the settings for the business service. These settings can be
changed by using the properties view of the component.

 Raise User Event

The error is logged as a user event.

 Send Error on error port

The error is sent to the error port of the component.

 Send Error to HTTP client

The error is sent to the HTTP client invoking the service.

4.13.2.1.1.6 Timed out Message

This is an expert property which will be displayed by clicking the button show expert

properties in the CPS. The message that has to be sent to the client invoking a context
when the request sent gets timed out.

4.13.2.1.2 Multithread Configuration

4.13.2.1.2.1 Maximum No of Threads

A thread pool ensures threads are used efficiently within the container. A number of threads
are created at initialization and placed in the pool. When there is work to be done, for
example, to service a request, a free thread from the pool is allocated and then returned to
the pool when the work has been completed.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 953

If the maximum pool size is reached, jobs wait for a free thread.

4.13.2.1.2.2 Minimum No of Threads

The minimum number of threads that have to be present in the thread pool. Idle threads in
the pool will timeout and terminate until the minimum number of threads are running.

4.13.2.2 Input and Output

4.13.2.2.1 Input

The input schema is auto generated based on the configuration of Response Generation
Details provided for the context as described under Response Generation Details.

 When Handle Response Stream in Response Data is set to option ------ or Bytes,
and no headers are configured, then no schema is set on the input port RESPONSE.

If headers are configured as shown in Figure 9, input schema generated is shown in
Figure 10 and sample input XML is shown in Figure 11.

Figure 9: Sample Configuration of Response Generation Details – Headers

Figure 10: Sample Input Schema when headers are configured

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 954

Figure 11: Sample Input XML for schema shown in Figure 10

Figure 12: Input port Schema when Response data is XML

 When Handle Response Stream in Response Data is set to XML, and headers are
configured as shown in Figure 9, input schema generated is shown in Figure 12 and
sample input XML in Figure 13.

Figure 13 : Sample Input XML for schema shown in Figure 12

The schema provided in Response data is set under XMLData element in input port
schema. If headers are not configured, then this schema is directly set on the input
port.

 When Handle Response Stream in Response Data is set to Simple Text, and headers
are configured as shown in Figure 9, input schema generated is shown in Figure 14
and sample input XML in Figure 15.

Figure 14: Input port Schema when Response data is Simple Text

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 955

Figure 15: Sample Input XML for schema shown in Figure 14

4.13.2.2.2 Output

The output schema is auto generated based on the configuration of request parsing details
provided. If parameters are also provided, then the schema is a concatenation of the
parameters and the schema provided.

 When Post Data in Request Parsing details is set to a option ------ or Bytes.

Configure headers shown in Figure 9 in Request details and parameters as shown in
Figure 16.

Figure 16: Sample Configuration of Request details – Parameters

For the above configuration, schema set on output port RESPONSE is shown in Figure
17 and sample XML in Figure 18.

Figure 17: Output Schema with parameters and headers.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 956

Figure 18: Output XML for schema shown in Figure 17

When Post Data is set to Bytes and if no headers and parameters are configured then
no schema is set on the output port. When Post Data is set to -----, configuration of
parameters is mandatory, at least one parameter should be configured.

 When Post Data in Request Parsing details is set to a option either XML, output
schema is defined as shown in Figure 19 and sample XML shown in Figure 20.

Figure 19: Output schema when Post Data set to 'XML'

Figure 20: Output XML for schema shown in Figure 19

Schema which is provided in Post Data is set under XMLData of output schema. If no
headers and parameters are provided, the schema provided is directly set on the
output port.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 957

 When Post Data in Request Parsing details is set to a option Simple Text,
parameters defined as shown in Figure 16 and headers configured as shown in Figure
9, then output schema is defined as shown in Figure 21 and sample XML shown in
Figure 22.

Figure 21: Output schema when Post Data set to 'Simple Text'

Figure 22: Output XML when Post Data set to Simple Text.

When Post Data is set to Simple Text and if no headers and parameters are
configured, then no schema is set on the output port.

4.13.2.3 Functional Demonstration

4.13.2.3.1 Scenario 1

Receiving a HTTP request and returning the parsed request as response.

Configure the HTTP Receive adapter as described in Configuration section. Add two
parameters REQUEST and CREDENTIALS in Request Parsing Details.

Connect a Display component to its output port and also the output port of Display to the
response port of HTTP Receive as shown in Figure 23.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 958

Figure 23: Sample Event Process demonstrating Scenario 1

Open
%FIORANO_HOME%\esb\samples\EventProcesses\PurchasingSystem\resources\PurchasingSy
stem_Input.html in web browser. The web page looks like Figure 24. Click the Submit button
to send the HTTP request. Check the port number by editing the html page, it should be same
as provided in the component CPS.

Figure 24: Sample HTTP Request

Now, HTTPReceive picks the parameters REQUEST and CREDENTIALS as configured in the
Context details and sends the same XML back to the web page. Figure 25 shows the response
sent by HTTP Receive.

Figure 25: Response sent by HTTPReceive adapter

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 959

4.13.2.3 Use Case Scenario

In the Purchasing System sample Event Process, the purchase details submitted from the web
page are received using the HTTP Receive component.

Figure 26: Sample use case scenario

4.13.2.4 Useful Tips

The error ports of the components that receive the HTTP request through HTTP Receive could
be connected to the Error port of HTTP Receive to report errors.

4.13.3 HTTP Stub

The HTTPStub component acts as an interface between an HTTP client and an Event Process
and receives HTTP requests using the Hyper Text Transfer Protocol (HTTP). This component
creates a context in the HTTP gateway hosted on the peer server based on the configuration
provided.

The component receives client request on its output port and passes the request message to
the connected components in the Event Process.

4.13.3.1 Configuration and Testing

The component has the following attributes which can be configured from its Configuration

Property sheet. Figure 1 illustrates the panel with expert properties view enabled.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 960

Figure 1: Configurable properties for HTTPStub component

4.13.3.1.1 Deployment Configuration

4.13.3.1.1.1 Context Name

The name of the context which will be created for this component. The Effective End Point URL
for this context will be computed based on the context name as

http://<PEER_SERVER_IP>:<PEER_SERVER_HTTP_PORT>/<CONTEXT_ROOT>/<CONTEXT_N
AME>

Peer server PEER_SERVER_HTTP_PORT is 1880 by default.

4.13.3.1.1.2 Context Description

The description of the context which will be displayed in HTTP gateway.

4.13.3.1.1.3 Is One Way

Determines whether a response has to be sent back to client invoking the service.

 Yes

No response will be sent back to the client. Only an output port REQUEST will be
present to send the request to the Event Process.

 No

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 961

Response is sent after processing the request. Two input ports RESPONSE and
FAILURE will be added in addition to the output port to send response, to receive
response and error details from the Event Process.

Note: The properties Response details and Error details will not be present if this property is
set to yes.

4.13.3.1.1.4 Admin End Point URI

URI of the admin context. This is not an editable property. This is used to deploy/undeploy
HTTP contexts.

4.13.3.1.2 FES Connection Configuration

4.13.3.1.2.1 FES URL

The URL of Enterprise Server to which the Peer Server on which the component is running is
connected.

4.13.3.1.2.2 Backup FES URL

The alternate URL that should be tried for connecting to the Enterprise Server if the Enterprise
Server cannot be connected to using the URL mentioned against property FES URL.

Note: In case of Enterprise Servers in HA mode, this should point to Secondary Server URL if
the primary is set against Server URL property and vice-versa.

4.13.3.1.2.3 Username

User name that should be used to connect to the Enterprise Server.

4.13.3.1.2.4 Password

Password that should be used to connect to the Enterprise Server.

4.13.3.1.3 Execution Configuration

4.13.3.1.3.1 Execution Details

The details necessary for execution of a request that is sent to the component can be
configured using the UI shown in Figure 2.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 962

Figure 2: Configuration of Execution details

 Message ttl

The request received by the component is parsed and converted into a JMS message.
This property indicates the time in milliseconds for which the JMS messages will be
stored on the Peer Server. The default value 0 (zero) indicates that the messages will
be stored on the server without any timeout.

 Request Timeout

If the property IsOneWaySend, the component accepts the response it reaches before
the timeout period. If no response is received, on timeout Error message will be sent
to the client.

Note: Request will be processed by the connected components in the Event Process
even after the timeout, but the response is not sent back to the client by HTTPStub. 0
(zero) indicates infinite timeout.

 Close After each request

If this option is chosen, all the resources (excluding connection) used by the
component will be cleaned up after processing the request and recreated for the next
request.

4.13.3.1.3.2 Request Details

When a HTTP request is received by the component, it is transformed into a JMS message and
sent to the Event Process through the output port of the component based on the details
configured using this property. These properties can be configured by clicking on the ellipsis
against this property which opens request details editor as shown in the Figure 3.

Figure 3: Request Details – Parameters

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 963

 Parameters

Parameters define the characteristics of the HTTP request data stream being parsed
for converting the request to message. Parameters can be added by clicking Add
button in the Parameters tab of the request details editor shown in Figure 3. Added
parameters can be removed by clicking on the Remove button.

 Name

The name of the parameter that is passed in the request. The name for
corresponding element in the output schema will be set to this value.

 Cardinality

If a parameter is definitely necessary for the processing of a request then it
must be marked required, otherwise optional must be chosen. The cardinality
of the corresponding element in the schema set on output port will be the
same.

 Type

The data type of he parameter can be specified as one of String, Boolean,
Decimal or Integer. The XSD type of corresponding element will be same.

 Include All/Other Parameters

This option is used if all the parameters that are present in request stream have to be
included, not only the parameters configured, but also the other parameters (if any)
which are not configured are parsed from the request stream and set on the response
stream.

For each added parameter, a new element will be added as child of Params element in
the schema of the output port REQUEST.

 Post Data

If data is relatively large and is to be posted from the request, the way it has to be
parsed must be specified by selecting the Post Data tab and providing details as shown
in the Figure 4.

Figure 4: Request Details - PostData

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 964

This option must be specified when the data is not required to be posted as
part of the request. If chosen, then post data if passed as part of the HTTP
request, will not be present in the request message and parameters must be
added.

 XML Text [Provide a XSD for the XML Text]

This must be chosen if the data posted is XML that conforms to a schema. The
schema can be provided using the schema editor. If chosen, an element
XMLData will appear in the schema of output port which is of the same schema
type.

 Simple Text

Data from the request stream will be considered as text not conforming to any
schema. Hence, it will be added as CDATA. This option can be selected if the
data is not required to be transformed using the Fiorano Mapper and needs to
be transferred as is. If chosen, an element Data of string type will appear in
the schema of output port.

 Bytes

Data from the request stream will be filled as bytes in the JMS Message. Use
this option in case you need to send media files as binary data via HTTP.

HTTP headers are received from the gateway as message properties with the
header name prefixed with http_. Example http_Content-Type. For more
information about HTTP Headers refer
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 965

4.13.3.1.3.3 Response Details

If the property Is One Way is set to no, the component sends the request message and waits
for response from the Event Process. The response message that is received is converted to
HTTP Response stream suitable for the invoking client based on the details provided here.

Figure 5: Response Details

 Simple Text

Text portion of the JMS Message will be read and put in the response stream.

This option can be chosen when the invoking client does not expect a response that
confirms to a specific schema. No schema is set on the input port RESPONSE.

 XML Text [Provide an XSD for the XML Text.]

If the client expects the response to be compliant to a particular schema, then the
schema is provided using the schema editor as shown in Figure 5. The schema is set
as schema of the input port RESPONSE.

 Bytes

Bytes portion of the JMS Message will be read and put in the response stream. This
option can be chosen when the client expects the response message in the form raw
bytes.

Refer to section Input and Output for details about the effects of these configurations
on input and output structures.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 966

4.13.3.1.3.4 Error Details

Click the ellipsis button to launch an editor for providing these configurations.

Figure 6: Error Details

If the client expects the error to be compliant to a particular schema, then the schema is
provided using the schema editor as shown in Figure 6. The schema is set as schema of the
input port FAILURE.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 967

4.13.3.2 Input and output

4.13.3.2.1 Input

The input schema for the component is defined based on the configuration of Response
Details property.

When Response is set to XML Text, then the schema provided is set as schema on input port
RESPONSE. Else, if response is either set to Simple Text or Bytes, then no schema is set on
the RESPONSE port.

4.13.3.2.2 Output

The output schema for the component is based on the configuration details provided for
Request Details.

 When parameters are added (param1) and Post Data is set to -------- or when Post
Data is set to Bytes, then schema set on port REQUEST is defined as shown in Figure 7
and a sample XML in Figure 8.

Figure 7: Output Schema with parameters and no post data

Figure 8: Output XML with parameters and no post data.

 When Post Data is set to Simple Text, then schema set on port REQUEST is defined as
shown in Figure 9 and a sample XML in Figure 10.

Figure 9: Output Schema with Post Data set to Simple Text.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 968

Figure 10: Output XML with Post Data set to Simple Text.

 When Post Data is set to XML Text, schema provided in Request details is set under
XMLData element in output schema on port REQUEST. The schema set on port
REQUEST is defined as shown in Figure 11 and a sample XML in Figure 12.

Figure 11: Output Schema with Post Data set to XML.

Figure 12: Output XML with Post Data set to XML.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 969

4.13.3.3 Functional Demonstration

4.13.3.3.1 Scenario 1

Configure the component with Response Details set to Simple Text and parameters are
configured in request details as shown in Figure 13.

Figure 13: Sample Configuration of parameters.

Figure 14 shows a sample event process with HTTPStub

Figure 14: Demonstrating Scenario 1.

When the flow is launched, HTTP context is deployed based on the configuration provided.
Right-click the component and use the option View HTTP Context to view the deployed
context. A HTTPAdapters component can be used to send in the request to the service. When
a request is sent, a sample output message that is sent to output port REQUEST is shown
below.

OutputMessage

<ns1:HTTPRequest
xmlns:ns1="http://www.fiorano.com/httpGateway"><Params><REQUEST>OPA_CHANNEL</
REQUEST></Params></ns1:HTTPRequest>

http://www.fiorano.com/httpGateway

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 970

4.13.3.3.2 Scenario 2

Figure 15 demonstrates how HTTPStub can be used to deploy a mailing service as a context in
HTTP Gateway.

Figure 15: Deploying SMTP service using HttpStub

In the flow, HTTPStub is configured to take the Request as XML and the schema is set as same
as that of input port of SMTP component. The XMLData element is mapped to the input
schema of the SMTP component child to child recursively using Xslt Component. The Response
is also chosen as XML and schema is set to be that of the output port of the HttpStub
component. The error schema is set that of *ON_EXCEPTION port of SMTP component.

When the Event Process is launched, the context becomes active on the web server hosted on
the peer on which the HTTPStub component is deployed. A HTTPAdapter can be configured to
send in the request to this service.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 971

4.13.3.4 Use Case Scenario

In Order Entry sample, a user is provided a web based interface to send a purchase order to a
company. In case the order is accepted, HTTPAdapters is used to POST the order delivery
request to a third party vendor. In an order entry scenario, the HTTPStub can be used for
receiving orders as HTTP requests.

Figure 16: Order Entry

The Event Process demonstrating this scenario is bundled with the installer. The Http Stub is
used instead of the HTTP Receive.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Fiorano Studio.

4.13.3.5 Useful Tips
 When HttpStub component is configured to launch on HA (High Availability) Peer

Server

If both Primary and Secondary servers are on the same machine

Initially, if HttpStub is launched on the Primary Server and the generated HTTP
Context contains Primary server’s jetty port number. In case of failover, Primary
Server shuts down and the secondary server becomes Active and relaunches the
component. If the Secondary Server uses a different jetty port then the generated
context URL will be changed since the jetty port is different. The clients have to be
reconfigured to use new URL in this case.

To avoid this situation, it is recommended to use same jetty ports for both primary
and Secondary Peer Servers.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 972

Jetty service will be started only after the server started successfully. In case of HA,
only one server will be active at a given time and the Jetty Server will be running only
in the active server and there will be no bind exceptions even if both the servers use
same port number for Jetty.

If both Primary and Secondary servers are on different machines

In this case if the failover happens the hostname/IP address in the context URL will be
changed. So the clients have to be reconfigured accordingly.

 HTTP headers are received from the gateway as message properties with the header
name prefixed with http_. Example: http_Content-Type.

• Right-click the component and use the option View HTTP Context to view the
deployed context.

4.13.4 SimpleHTTP

The SimpleHTTP component enables the user to get content from an external HTTP Server
(Web Server). The component directly accepts the certificates. If the Content element is
present in the input message, then Post method is used else Get method is used.

4.13.4.1 Configuration and Testing

4.13.4.1.1 Interaction Configurations

Figure 4.483: Sample SimpleHTTP configuration

4.13.4.1.1.1 Accept Server Certificate

When accessing https URLs, this property determines whether the server certificates should be
accepted or not

• yes - Use this option if the server certificate should be accepted without any validation.

• no - Use this option if server certificate should not be accepted. An exception is sent to
ON_EXCEPTION port.

4.13.4.1.1.2 Ignore Hostname Mismatch

• yes - Use this option to accept the certificate even if hostname in the certificate does
not match with the hostname in the request URL.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 973

• no - If hostname in the certificate does not match with the hostname in the request
URL, exception is thrown.

4.13.4.1.1.3 Cleanup resources after each document

• yes - Use this option if the connection created for the request should be discarded
after executing the request without storing it in the cache.

• no - Use this option to store the connection in a cache for further use without creating
a new connection every time for the same URL. If this option is selected, 'Connection
Cache Threshold' will be visible.

Note: If no is selected, there will be an attribute 'CacheConnection' added to the element
'URL' in the input schema. If this 'CacheConnection' value is 'false' in input XML, the
connection will not be stored in the cache.

4.13.4.1.1.4 Connection Cache Threshold

This option specifies the threshold limit; that is the maximum number of connections that can
be stored in the cache. '-1' is the default value, which means connections are not removed
from the cache. Any other positive integer can be specified to limit the number of connections
stored. In this case, Connection Removal Criteria option will be visible.

4.13.4.1.1.5 Connection Removal Criteria:

Figure: Connection Removal Criteria

This option specifies the criteria to remove connections from the cache if the threshold limit
exceeds.

• Least recently added - The oldest entry in the cache is removed.

• Least recently accessed - The entry that has been in the cache for the longest time
without being accessed.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 974

Configuration shown in the Figure 4.483 can be tested within the CPS by clicking on Test
button.

Figure 4.484: Sample SimpleHTTP input message

Figure 4.485: Sample SimpleHTTP output message

Figure: Input Port Schema Structure

Input Schema

Schema Element Description

<URL> URL from which content has to be fetched. If we set "Cleanup
resources after each document" property to "no", then the
attribute "CacheConnection" appears in this element (as shown
in Figure Input Port Schema Structure). This attribute
accepts two values "true" and "false". If "true" is set to
"CacheConnection" attribute, then the connections created are
cached and these cached connections will be used when
required. If we set "CacheConnection" attribute to "false", then
the component clears the connection after each request.

<Content> Content to be posted (optional)

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 975

4.13.4.2 Functional Demonstration

4.13.4.2.1 Scenario 1

This scenario demonstrates a sending simple HTTP request to a server.

Configure the SimpleHTTP as described in Configuration and Testing section and use Feeder
and Display component to send sample input and check the response respectively.

Figure 4.486: Demonstrating Scenario 1 with sample input and output

Sample Input

<ns1:HTTPRequest xmlns:ns1="http://www.fiorano.com/fesb/activity/SimpleHTTP1">

 <URL>http://www.google.co.in/advanced_search?hl=en</URL>

</ns1:HTTPRequest>

Sample Output

Figure 4.487: HTML display of Output in Display Component.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 976

4.13.4.2.2 Scenario 2

The scenario demonstrates how a SimpleHTTP component can be used to post some data onto
a Web Server hosted by a HTTPReceive component. The HTTPReceive component is hosting on
port 9999 on the localhost machine and is configured to receive post data as simple text and
send it back to the client as simple text.

Figure 4.489: Demonstrates using SimpleHTTP component to post data

Configure the SimpleHTTP as described in Configuration and Testing section and use Feeder
and Display component to send sample input given below.

Sample Input

<ns1:HTTPRequest xmlns:ns1="http://www.fiorano.com/fesb/activity/SimpleHTTP1">

 <URL>http://localhost:9999/index.html</URL>

 <Content>Sample Content</Content>

</ns1:HTTPRequest>

Sample Output

Sample Content

4.13.4.3 Useful Tips
• For providing header properties like Content-Type or Content-Length, set the required

properties in the input message with a prefix http_. For example, http_Content-Type.

• For providing parameters, set the required properties in the input message as
properties with a prefix param_. For example, param_myproperty.

• To Post data we need to provide the header property Content-Type by setting property
http_Content-Type to appropriate value on the input message. For example if we need
to post simple text content then set the property http_Content-Type to text/plain.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 977

• When connecting to secured sites, the component accesses truststore from different
locations in different launch modes -

o Separate Process - %JAVA_HOME%\jre\lib\security\cacerts

o In-memory - %FIORANO_HOME%\esb\server\profiles\certs\jssecacerts

'jssecacerts' in %FIORANO_HOME% does not have trusted certificates required by
most of the secured sites. Hence, to connect to secured sites when component is
launched in-memory, either the trusted certificates should be added to 'jssecacerts' or
the property 'javax.net.ssl.trustStore' (in
%FIORANO_HOME%\esb\server\bin\server.conf, if FPS is launched using
server.bat/server.sh and %FIORANO_HOME%\esb\fps\bin\fps.conf, if FPS is launched
using fps.bat/fps.sh) should be set to %JAVA_HOME%\jre\lib\security\cacerts.

4.14 WebService
The WebService category consists of components like Stub and WebServiceConsumer. The
following section describes each component.

4.14.1 WSStub

This component is used to expose an Event Process or a part of Event Process as a Web
Service deployed in the Peer Server. WSDL for the service deployed can be fetched when this
component is running and the URL of the WSDL can be used by Web Service clients to access
the Web Service. Each instance of the component hosts a single web service. The component
can be configured in two ways:

• Manually defining the operations and related details in the UI

• Loading a predefined WSDL and editing the populated web service details if required

The WSDL generated for the component will differ from the WSDL provided in following
aspects:

• End point address

• If the provided WSDL contains multiple services, only the selected service will be
present

The component generates request, response and error ports for each operation present in the
selected web service.

During the component launch, it checks if a web service with the same web service name is
already deployed. If no other service with same name exits, the web service is deployed to the
Jetty Server running in Peer Server that hosts the component.

The web service deployed in the Jetty accepts requests from web service clients and sends the
SOAP XML using internal JMS client to the request port of the operation there by injecting the
request into the Fiorano Event Process for processing the request. On processing the request,
the response SOAP XML should be generated and sent to the corresponding response / error
ports. The web service receives the response from the internal JMS client and in turn sends
the response as SOAP response to the client that made the request.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 978

4.14.1.1 Configuration

The component can be configured using the custom property sheet as shown in the following
sections.

4.14.1.1.1 WS Definition

Figure 4.490: Configuration Property Sheet

This page is used to define the web service using a user interface for WSDL User can create a
WSDL by manually defining different aspects of the service or can load an existing WSDL and
edit the configurations.

4.14.1.1.1.1 Loading Existing WSDL

Existing WSDL file can be used to define the web service as shown in Figure 4.491. To load
an existing WSDL file, the checkbox Load from file must be selected which shows the option
below.

Figure 4.491: Loading Existing WSDL

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 979

Location of WSDL File

The WSDL file can loaded using the file dialog that opens up when the ellipsis is selected.
The parent directory of the selected file is set as the base URI for this definition. It can be
changed by clicking on the definitions node in Basic/Advanced view of the definition and
changing the Base URI field. If the loaded WSDL file has more than one service defined, then
the user is prompted to select one service for configuration as shown in Figure 4.492.

Figure 4.492: Service selection

Store Imports

This option can be selected if the WSDL files imported in the loaded WSDL have to be stored
on the Jetty server. The imported files will be stored at
FIORANO_HOME\esb\server\jetty\fps\webapps\bcwsgateway\wsdls\<ServiceName>\imports
and their paths in the WSDL are updated when the component starts and deleted when the
component stops.

Using this option allows the web service clients to access the import WSDLs as well relative to
the actual WSDL. However, for this option to work the imported files should be present in the
location specified in Base URI field and that location should be accessible from the Peer
Server on which the component will be launched.

If this option is not specified, the web service clients should be provided with a copy of all
imported WSDLs, if required.

WSDL dependencies Tree

WSDL dependency tree shows the WSDL and all the imported WSDL referenced directly or
indirectly from the main WSDL. Each node in the tree represents a WSDL and the WSDLs that
are imported in the WSDL represented by the node are represented by its child nodes.
Selecting a node in this tree will show the corresponding WSDL definition in the panel below.

Editing or defining an imported WSDL is not currently. When a node representing an imported
WSDL is selected the panel will be in read only mode.

4.14.1.1.1.2 WS Definition Views

Details of the selected WSDL are shown in 3 different views – Basic, Advanced and WSDL.
However, web service can be configured using Basic and Advanced views only based on the
expertise of the user.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 980

4.14.1.1.2 Basic

This view is recommended for users who do not have a good knowledge of WSDL. In this view,
web service definition can be created with the knowledge of input, output and fault type (if
any). The SOAP bindings and other necessary elements for WSDL are created automatically
when an operation is added in this view.

The web service definition can be configured by selecting the nodes in the tree on the left side.
When a node is selected in the tree the panel corresponding to its configuration is shown in
the right side pane.

4.14.1.1.2.1 Definition

Figure 4.493: Definition Configuration

Service name

This field is used to specify the name of the service.

Target namespace

This field is used to specify the target namespace of the WSDL that is generated. Note when
target namespace is changed an entry corresponding to its prefix must be added in the
namespace prefix table.

Base URI

This field is used to provide the location from which the relative paths of imported WSDLs used
in the selected WSDL will be resolved. By default it is populated with the location where the
WSDL is present. It should be edited to the correct location if required.

If Save Imports is selected, this location should be accessible from the Peer Server on which
the component will be launched.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 981

Namespace prefix table

This table is used to assign prefixes to all namespaces that are used in the WSDL.

4.14.1.1.2.2 Types

The schemas which are necessary for defining the web services can be added in the view
corresponding to the Types node as shown in Figure 4.494.

Figure 4.494: Types Configuration

The schema content can be loaded either from a file or manually by clicking the button
and then saving the content.

The schemas that are added will be shown in the table as shown in the Figure 4.494. When a
schema is added its target namespace and imported namespaces will be added to the WSDL
with an auto generated prefix. Imported/included schemas if any have to be added to the
schema repository.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 982

4.14.1.1.2.3 Operations

In basic view, an operation can be added by selecting the option Add Operation from the
context menu of the Operations node as shown in Figure 4.495.

Figure 4.495: Basic Operation configuration

When an operation is added in basic view, the port type, binding, binding operation, Input and
Output messages will be automatically created with prefix Auto_Created_. On deleting the
operation from the basic view all corresponding elements which are no longer referenced will
be deleted based on the input from the user.

The input and output and fault type/element must be specified using the dialog which gets

opened when the ellipsis corresponding to input is clicked.

Figure 4.496: Type/Element Selection

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 983

The tree shows the types and elements present in the schemas and their imports as shown in
Figure 4.496. The types are shown as children of Types node and any elements present will
be shown under Elements node. The table cell corresponding to the types dialog is editable
and is populated as follows.

When a type or element is selected, the cell will be populated with QName of the element/type
prefixed by Type : or Element : respectively.

The QName can be given as {namespace}localpart manually. If there is no prefix attached
then the QName will be assumed to be that of an element.

4.14.1.1.3 Advanced

This view is recommended for users who have fair understanding of creation of WSDL. In this
view it is possible to configure all the elements of the WSDL. The tree in the advanced view
shows much detailed view of the elements of the WSDL. The configuration of a particular
element can be done by selecting the node which shows corresponding panel in the right side
pane. For detailed information about elements of a WSDL please refer
http://www.w3.org/TR/wsdl.

4.14.1.1.3.1 Definitions

This is same as the one shown in the Basic view.

4.14.1.1.3.2 Types

This is same as the one shown in the Basic view.

4.14.1.1.3.3 Messages

The messages for the web service can be added by selecting the option Add Message from
the context menu which appears on right clicking on the Messages node. This will add a
message node as a child node of the messages node. On selecting the added node, the panel
as shown in Figure 4.497 is displayed in the right side pane.

Figure 4.497: Message Configuration

http://www.w3.org/TR/wsdl

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 984

Name

The name attribute of the message can be specified here. It provides a unique name among
all messages defined within the enclosing WSDL document.

Parts

Messages consist of one or more logical parts. Each part is associated with a type from some
type system using a message-typing attribute. Parts for the message can be added by using
the add button in the table. The type/element for the part can be selected using the types
dialog shown in the Figure 4.496.

4.14.1.1.3.4 Port Types

The port types for the web service can be added by selecting the option Add Port type from
the context menu which appears on right clicking on the Port Types node. This will add a port
type node as a child node of the Port Types node. On selecting the added node, the panel as
shown in figure 9 is displayed in the right side pane.

Figure 4.498: Port Type configuration

Name

The name attribute of the port type can be specified here. It provides a unique name among
all port types defined within the enclosing WSDL document.

Operations

Operations can be added to a port by selecting the option Add Operation from the context
menu which appears on right clicking on the added port type node as shown in Figure 4.499

Figure 4.499: Adding Operation

This will add an operation node as a child node of the added port type node. On selecting the
added node, the panel as shown in Figure 4.500 is displayed in the right side pane.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 985

Figure 4.500: Advanced Operation Configuration

Name

The name attribute of the operation can be specified here. This need not be unique among the
operations defined.

Parameter order

For RPC bindings, the parameter order can be specified using this field.

The value is a list of message part names separated by a single space. It MUST follow the
following rules:

• The part name order reflects the order of the parameters in the RPC signature

• The return value part is not present in the list

o If a part name appears in both the input and output message, it is
an in/out parameter

o If a part name appears in only the input message, it is an in parameter

o If a part name appears in only the output message, it is an out parameter

Input tab

Name

The name of the input can be specified using this field. This name along with operation name
and operation’s output name uniquely identifies an operation within the enclosing port type..

Message

Input message can be selected from the combo box. It is recommended that the messages are
added prior to configuring the operation.

Output tab

Name

The name of the output can be specified using this field. This name along with operation name
and operation’s input name uniquely identifies an operation within the enclosing port type.

Message

Output message can be selected from the combo box. It is recommended that the messages
are added prior to configuring the operation.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 986

Faults tab

Figure 4.501: Adding faults to operation

Multiple faults can be added by using the table shown in Figure 4.501. The message
corresponding to the fault can be selected from the drop down.

4.14.1.1.3.5 Bindings

The bindings for the web service can be added by selecting the option Add Binding from the
context menu which appears on right clicking on the Bindings node. This will add a binding
node as a child node of the Bindings node. On selecting the added node, the panel as shown
in Figure 4.502 is displayed in the right side pane.

Note : Port Types must be present in the definition or imported WSDLs before defining
bindings

Figure 4.502: Binding configuration

Name

The name attribute of the binding can be specified here. It provides a unique name among all
bindings defined within the enclosing WSDL document.

Port Type

The port type corresponding to this binding can be selected from the drop down list.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 987

SOAP Binding

Figure 4.503: SOAP Binding configuration for binding

The SOAP binding information of the binding can be specified by selecting the tab SOAP
binding as shown in the Figure 4.503.

Transport

The value of the required transport attribute indicates which transport of SOAP this binding
corresponds to.

Style

The value of the style attribute is the default for the style attribute for each contained
operation.

Binding Operations

Binding operations can be added to a port by selecting the option Add Binding Operation
from the context menu which appears on right clicking on the added binding node as shown in
Figure 4.504.

Figure 4.504: Adding binding operation

This will add binding operation node as a child node of the added binding node. On selecting
the added node, the panel as shown in Figure 4.505 is displayed in the right side pane

Note: Port Type corresponding to this binding must have operations defined for defining
binding operation.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 988

Figure 4.505: Binding operation configuration

The various details of binding operation can be specified by selecting the tabs as explained
below.

Operation tab

Name

The name of the operation to which this binding operation corresponds can be selected from
the drop down.

SOAP Binding

This information corresponds to the attributes for the soap:operation element that will be
added to the binding operation element.

SOAP Action

The soapAction attribute specifies the value of the SOAPAction header for this operation.

Style

The style attribute indicates whether the operation is RPC-oriented (messages containing
parameters and return values) or document-oriented (message containing document(s))

Input tab

The input tab can be used to specify the binding input information as shown in Figure 4.506.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 989

Figure 4.506: Binding input Configuration

Input name

The name of the input for the binding operation can be specified here. This along with
operation name and the output name uniquely identifies the operation to which the binding
operation corresponds to.

SOAP Binding

The binding (body and headers) information can be configured here.

Body tab

This tab can be used to configure the attributes of the soap:body element.

Namespace

This can be used to specify the namespace corresponding to the SOAP body. This namespace
should not be present in the namespaces defined in the definitions panel.

Parts

The optional parts attribute indicates which parts appear somewhere within the SOAP Body
portion of the message. If the parts attribute is omitted, then all parts defined by the message
are assumed to be included in the SOAP Body portion.

Use

The use attribute indicates whether the message parts are encoded using some encoding
rules, or whether the parts define the concrete schema of the message.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 990

Encoding Styles

The value of the encodingStyle attribute is a list of URIs. The URIs can be added using the
table as shown in Figure 4.506. The URI represents encodings used within the message, in
order from most restrictive to least restrictive.

Headers Tab

SOAP header corresponding to the input/output can be specified by adding them to the table
as shown in the Figure 4.507.

Figure 4.507: Adding SOAP Headers

The SOAP Headers can be configured by clicking on the ellipsis which opens the panel as
shown in Figure 4.508.

Figure 4.508: SOAP Header configuration

Namespace

This can be used to specify the namespace corresponding to the SOAP body. This namespace
should not be present in the namespaces defined in the definitions panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 991

Message

The message and the part reference the message part that defines the header type. The
referenced message need not be the same as the message that defines the SOAP Body.

Part

The message and the part reference the message part that defines the header type. The
schema referenced by the part MAY include definitions for the soap:actor and
soap:mustUnderstand attributes if use="literal", but MUST NOT if use="encoded".

Use

The use attribute indicates whether the message part is encoded using some encoding rules,
or whether the part defines the concrete schema of the message.

Encoding Styles

The value of the encodingStyle attribute is a list of URIs. The URIs can be added using the
table as shown in Figure 4.508. The URI represents encodings used within the message, in
order from most restrictive to least restrictive

Header Faults

The Header faults corresponding to a header can be defined by selecting the tab header Fault
and adding an entry in the table SOAP Header Faults table. The SOAP Header fault can be

configured by clicking on the ellipsis as shown in Figure 4.509.

Figure 4.509: SOAP Header fault configuration

The header fault elements allows specification of the header type(s) that are used to transmit
error information pertaining to the header defined by the soap:header. The attributes
namespace, message, part, use and encoding styles are similar to those defined for SOAP
Header.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 992

Output tab

The output tab can be used to specify the binding output information as shown in Figure
4.510.

Figure 4.510: Binding Output configuration

Output name

The name of the output for the binding operation can be specified here. This along with
operation name and the input name uniquely identifies the operation to which the binding
operation corresponds to.

SOAP Binding

The SOAP binding information for the binding output can be configured similar to Binding input
explained in the previous sections.

Faults tab

The binding information for faults can be defined by adding entry in the table and clicking on

the ellipsis which opens dialog as shown in Figure 4.511.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 993

Figure 4.511: Binding Faults configuration

Fault Name

The name attribute of the fault element can be specified here.

SOAP Binding

Fault Name

The name attribute for soap:fault element. This is not editable and is same as the fault name.

Namespace

This can be used to specify the namespace corresponding to the SOAP body. This namespace
should not be present in the namespaces defined in the definitions panel.

Use

The use attribute indicates whether the message parts are encoded using some encoding
rules, or whether the parts define the concrete schema of the message.

Encoding Styles

The value of the encodingStyle attribute is a list of URIs. The URIs can be added using the
table as shown in Figure 4.511. The URI represents encodings used within the message, in
order from most restrictive to least restrictive

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 994

4.14.1.1.3.6 Services

The service for the web service can be added by selecting the option Add Service from the
context menu which appears on right clicking on the Services node. This will add a service
node as a child node of the services node. On selecting the added node, the panel as shown in
Figure 4.512 is displayed in the right side pane. Only one service per instance is
supported now.

Figure 4.512: Service and ports configuration

Name

The name of the service can be specified here. The service name must be unique for WSStub
instances configured on same peer server.

Ports

A port defines an individual endpoint by specifying a single address for a binding.

Name

The name attribute of the port can be specified here. It provides a unique name among all
ports defined within the enclosing WSDL document.

Binding

The binding corresponding to port can be specified from the combo box.

SOAP Address

The SOAP address binding is used to give a port an address (a URI). The URI scheme specified
for the address must correspond to the transport specified by the soap:binding.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 995

4.14.1.1.4 WSDL

This is a read only view of the WSDL that is generated from the configuration done using
basic/advanced views.

Figure 4.513: WSDL view

4.14.1.1.5 Common Panels

4.14.1.1.5.1 Errors

Figure 4.514: Errors Panel

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 996

The errors pane is present at the bottom of all the panels. When a node is selected and
configured. The validations are done when switching to other node/view. In this case any
validation errors are shown in the error pane. User can navigate to other node only if the
configuration is valid. In any case if the configuration is not possible without switching, thee
node that is being configured has to be deleted.

4.14.1.1.5.2 Documentation

All elements of WSDL can define context specific documentation. This can be defined by

clicking on the ellipsis against the property Documentation which opens the editor shown in
Figure 4.515.

Figure 4.515: Documentation Panel

The input must be a well formed XML element.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 997

4.14.1.1.6 WS Standards

This page is used to define WS Standards like WS-Addressing, WS-Reliable Messaging and
WS-Security.

4.14.1.1.6.1 WS Security

Request Security

Figure 4.516: WS Request Security

Order of actions

The order of a security function determines when this function will be applied when multiple
security functions are being used. The order of the actions can be increased and decreased by

using the and respectively. To enable an action/security function the check box
against it must be selected. In Figure 4.516 Username Token and Timestamp functions are
enabled and the Username Token action will be applied followed by Timestamp action.

The different actions and the properties to be set for using them are explained below.

Username Token

Determines whether the server should perform Username token identification or not.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 998

Password Callback Class

This is needed by the security functions to get the password and to verify the
username/password pair. The password callback class should implement
org.apache.ws.security.WSPasswordCallback class. This Password Callback class should be the
fully qualified name of the class. The jar which contains the password callback class must be
placed in '%FIORANO_HOME%\esb\server\jetty\fps\webapps\bcwsgateway\WEB-INF\lib'.

Timestamp

Determines whether the soap request has timestamp in security header or not. In this case,
the message is valid up to 5 minutes or 300 seconds after the creation of the message.

Timestamp Precision in MilliSeconds

If this is set, timestamps will have precision in milliseconds. Otherwise it will be seconds.

Encrypt

Determines whether the soap request (or some parts of it) is encrypted or not.

Encryption Properties File Name

The name of the crypto property file to use for decryption of the soap request. If this
parameter is not specified and if both the "Signature Properties filename" and "Signature" are
set to yes, then the decryption function uses signature property file. Otherwise the handler
throws an AxisFault. The properties file must be placed in
'%FIORANO_HOME%\esb\server\jetty\fps\webapps\bcwsgateway\WEB-INF\classes'

An example of a properties file content:

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.file=C:\\Documents and
Settings\\Fiorano\\Desktop\\fiorano.ks
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=fioranopass
org.apache.ws.security.crypto.merlin.keystore.alias=fiorano
org.apache.ws.security.crypto.merlin.alias.password=fioranopass

The properties descriptions:

• org.apache.ws.security.crypto.provider: Implementation class for security
provider. Fiorano internally uses bouncycastle, to use the same this property must be
set to "org.apache.ws.security.components.crypto.Merlin". To use other providers, the
provider jar must be placed in
'%FIORANO_HOME%\esb\server\jetty\fps\webapps\bcwsgateway\WEB-INF\lib' and
fully qualified name of appropriate provider class has to be set for this property.

• org.apache.ws.security.crypto.merlin.file: The path to the keystore file.

• org.apache.ws.security.crypto.merlin.keystore.type: The keystore type, for
example JKS for the Java key store. Other keystore type, such as pkcs12 are also
possible but depend on the actual Crypto implementation.

• org.apache.ws.security.crypto.merlin.keystore.password: The password to read
the keystore. If this property is not set, then the pwcallbackproperty must be defined.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 999

• org.apache.ws.security.crypto.merlin.keystore.alias: The alias name under
which the private key/certificate stored in keystore

• org.apache.ws.security.crypto.merlin.alias.password: Password for private
key/certificate inside keystore stored under given alias (not used for encryption)

Signature

Determines whether the soap request (or some parts of it) is signed or not.

Signature Properties File Name

The name of the crypto property file to use for SOAP Signature. Please see the description of
"Encryption Properties filename" for the details of the properties file.

SAML

Determines whether the server should perform SAML Token identification or not.

Signed SAML

If Signed SAML is used at client side for request, then the client performs two actions inserting
a SAML Token (unsigned) and an associated Signature. So define both the actions SAML
Unsigned and Signature here to resolve these security headers.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1000

Response Security

Figure 4.517: WS Response security

Order of actions

The order of a security function determines when this function will be applied when multiple
security functions are being used. The order of the actions can be increased and decreased by

using the and respectively. To enable an action/security function the check box
against it must be selected. In the Figure 4.517 Username Token, Timestamp and encrypt
functions are enabled and they will be applied in the same order.

The different actions and the properties to be set for using them are explained below.

Username Token

Determines whether the server should perform Username Token Identification on response or
not. If this property is set, the response from server contains Username and Password security
headers.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1001

User

This property is used as username for the UsernameToken security function. It is also used as
the alias name in the keystore to get user's certificate or private key to perform signing for the
Signature security function. It is also used as the fallback for the encryption security function
in case of "Encryption User" is not specified and "Encryption" in response is enabled.

Password Callback Class

This is needed by the security functions to get the password and to verify the
username/password pair. The password callback class should implement
org.apache.ws.security.WSPasswordCallback class. This Password Callback class should be the
fully qualified name of the class. The jar which contains the password callback class must be
placed in '%FIORANO_HOME%\esb\server\jetty\fps\webapps\bcwsgateway\WEB-INF\lib'.

Password Type

Password type: The Password type can be either PasswordText or PasswordDigest

PasswordText

Password is sent in raw text format with in the security header of the soap response.

PasswordDigest

Password is sent in digest format with in the security header of the soap response.

Nonce Security Element

Specifies whether to use nonce element in the security header or not. When UsernameToken
security function is used, then nonce security element can be employed to prevent message
replay attacks. A nonce is a random value that the client creates to include in each
UsernameToken that it sends. Although using a nonce is an effective countermeasure against
replay attacks, it requires server to maintain a cache of used nonce’s, consuming server
resources.

Created Security Element

Specifies whether to use Created element in the security header or not. This element denotes
the time of creation of a nonce. Combining a nonce with a creation timestamp has the
advantage of allowing a server to limit the cache of nonce’s to a "freshness" time period,
establishing an upper bound on resource requirements.

Timestamp

Specifies whether the soap response from server should contain timestamp header or not.

Timestamp Precision in MilliSeconds

If this is set, timestamps will have precision in milliseconds. Otherwise it will be seconds.

Encrypt

Determines whether the server should encrypt the soap response (or some parts of it) or not.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1002

Encryption User

Username for the encryption function. The encryption function uses the public key of this
user's certificate. If this parameter is not set, then the encryption function falls back to the
"User" parameter to get the certificate. The encrypt function will not authenticate user. So
there is no need to set any password call back class for encrypt.

Encryption Properties File

The name of the crypto property file to use for SOAP Encryption in response. If this parameter
is not specified and if both "Signature Properties filename" and "Signature" in response are
set, then the encryption function uses signature property file. Otherwise the handler throws an
AxisFault. The properties file must be placed in
'%FIORANO_HOME%\esb\server\jetty\fps\webapps\bcwsgateway\WEB-INF\classes'. Please
see the description of "Encryption Properties filename" in request security for the details of the
crypto properties file.

Encryption Parts

Parameter specifies which parts of the response shall be encrypted. The value of this
parameter is a list of semi-colon separated element names that identify the elements to
encrypt. An encryption mode specifies and a namespace identification, each inside a pair of
curly brackets, may precede each element name. The encryption mode is either {Content} or
{Element}. 'Element' encryption mode will encrypt the entire element including start and end
tags. 'Content' encrypt mode will encrypt only the content of the specified element. The
default encryption mode is 'Content'.

For example if we set
"{Element}{http://example.org/paymentv2}CreditCard;{}{}UserName" list to this property,
then the first entry of the list identifies the element CreditCard in the namespace
http://example.org/paymentv2, and will encrypt the entire element. In the second entry the
encryption modifier and the namespace identifier are omitted. In this case the encryption
mode defaults to Content and the namespace is set to the SOAP namespace.

The element name, the namespace identifier, and the encryption modifier are case sensitive.
To specify an element without a namespace use the string Null as the namespace name (this
is a case sensitive string). If no list is specified, the handler encrypts the SOAP Body in
Content mode by default.

Encryption Key Identifier

Select the key identifier type to use.

DirectReference

The security function takes the signing certificate, converts it to a BinarySecurityToken, puts it
in the security header. Thus the whole signing certificate is transferred.

X509KeyIdentifier

The encryption method uses the public key associated with this certificate to encrypt the
symmetric key used to encrypt data. The certificate is converted into a KeyIdentifier token and
sent to the server. Thus the complete certificate data is transferred.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1003

SKIKeyIdentifier

The security function uses SKIKeyIdentifier.

IssuerSerial

The encryption method uses the public key associated with this certificate to encrypt the
symmetric key used to encrypt data. The issuer name and the serial number of the signing
certificate are sent to the server.

Signature

Determines whether the soap response (or some parts of it) should be signed or not.

Signature Properties File

The name of the crypto property file to use for SOAP Signature. Please see the description of
"Encryption Properties filename" for the details of the properties file.

Signature Parts

Parameter specifies which parts of the request shall be signed. Please see the description of
"Encryption Parts" for the syntax.

Signature Key Identifier

Select the key identifier type to use. Please see the description of "Encryption Key Identifier"
for the descriptions of key identifiers.

SAML

Determines whether the server should perform SAML Token Identification or not.

Signed SAML

Specifies whether to use signed SAML or unsigned SAML. If Signed SAML is used, then server
performs two actions inserting a SAML Token (unsigned) and an associated Signature. So
define both the actions SAML Unsigned and Signature at client side to resolve these security
headers. If Signed SAML is used, the signature properties should be specified in this panel
with out selecting the property "Signature WS-Security".

SAML Properties File

The name of the SAML properties file. This file must be placed in
'%FIORANO_HOME%\esb\server\jetty\fps\webapps\bcwsgateway\WEB-INF\lib'.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1004

An example of properties file content:

org.apache.ws.security.saml.issuerClass=org.apache.ws.security.saml.SAMLIssuerImpl
org.apache.ws.security.saml.issuer.cryptoProp.file=crypto_wsc.properties
org.apache.ws.security.saml.issuer.key.name=fiorano
org.apache.ws.security.saml.issuer.key.password=fioranopass
org.apache.ws.security.saml.issuer=fiorano
org.apache.ws.security.saml.subjectNameId.name=uid=mule,ou=people,ou=saml-
demo,o=example.com
org.apache.ws.security.saml.subjectNameId.qualifier=www.example.com
org.apache.ws.security.saml.authenticationMethod=password
#org.apache.ws.security.saml.confirmationMethod=senderVouches
org.apache.ws.security.saml.confirmationMethod=keyHolder

4.14.1.1.7 Transport Security

4.14.1.1.7.1 SSL Configuration

Figure 4.518: SSL Configuration

Use SSL

Select this option to enable SSL Settings. Rest of the properties in this editor are enabled and
configurable only when this property is checked.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1005

Accept Server Certificate

When accessing https URLs, this property determines whether the server certificates should be
accepted or not. If selected, the certificate will be accepted without any validation, otherwise
exception is sent to ON_EXCEPTION port.

Ignore Hostname Mismatch

If this option is selected the certificate will be accepted even if hostname in the certificate
does not match with the hostname in the request URL. If its not selected exception is thrown.

Protocol Handler Packages

Determines protocol handler packages property.

Security Protocol

Determines Security protocol

Security Provider Class

Determines Security provider class.

Key Manager Factory Type

Algorithm for the Key Manager Factory.

Key Store Type

Type of the Key Store whose location is specified by Key Store Location should be specified
in the fileld.

Key Store Location

Location of the key store file can be provided using the file dialog that opens up on clicking the

ellipsis . The KeyStore is used by the component for client authentication.

Key Store Password

Password of the specified key store can be specified in the field.

Key Store Client Key

Determines Key Store Client Key

Trust Manager Factory Type

Algorithm for the Trust Manager Factory.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1006

Trust Store Location

Location of the trust store file should be specified. TrustStore is a file where digital certificates
of trusted sites are stored and retrieved for authentication during an SSL connection.
TrustStore is used to authenticate a server in SSL authentication.

Trust Store Type

Type of Trust Store whose location is specified by property Trust Store Location.

Trust Store Password

Password of the specified trust store should be specified in the field.

4.14.1.1.7.2 HTTP Authentication

Figure 4.519: HTTP Authentication

Use HTTP Authentication

HTTP authentication support for the Web Services can be provided by selecting this property.

Type

The type of HTTP Authentication can be selected for the drop down. At present only BASIC
authentication is supported.

Username

Username to be used by the WSStub component while deploying the Web Service. The entry
for this user name has to be present in Realm.properties file. If this user name is not present,
the component will not launch.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1007

Password

Password to be used by the WSStub component while deploying the Web Service. If this
password is not present in Realm.properties file the component will not launch.

Using Basic Authentication

Before enabling this property in WSStub, basic authentication has to be enabled in FPS Jetty
Server and in bcwsgateway web application
(FIORANO_HOME/esb/server/jetty/fps/webapps/bcwsgateway). Procedure to enable basic
authentication in Jetty Server and in the web app is explained below.

1. Enabling Basic Authentication in Jetty Server

2. Stop the FPS Server if it is running.

3. Open FPS profile in Fiorano Studio and navigate to FPS Fiorano Esb Jetty.

4. Select the Jetty mbean. In the properties window, set the property Basic
Authentication to yes and give the fully qualified path of Realm.properties file against
the property Realm Properties. More information on Realms and Realm.properties file
content is discussed in the next section.

5. Save the profile.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1008

Figure 4.520: Enabling Basic Authentication in FPS Jetty server

Enabling Basic Authentication in webapp

1. Open Web.xml file located at
FIORANO_HOME/esb/server/jetty/fps/webapps/bcwsgateway/WEB-INF.

2. Uncomment the security-constraint and login-config elements and save the file.

3. Delete the Peer Server cached profile from FES runtime by deleting the folder
FIORANO_HOME/runtimedata/EnterpriseServers/<Profile Name>/FES/peers/<peer
profile>.

4. Start the FPS server.

The basic authentication is enabled in FPS Jetty Server and in the webapp. Now the
authentication can be enabled in WSStub by setting the value of Enable authentication
property to yes. Provide a set of username and password which is present in Realm.properties
file.

Note: To confirm the authentication, when the WSStub component is launched right-click the
component and select View WDSL option. Web browser prompts the user to enter the
username and password to display the WSDL.

When the authentication is enabled in WSStub, client can access the Web Service only if it
uses the basic authentication with correct credentials.

UserName

Username to be used by the WSStub component while deploying the Web Service. The entry
for this user name has to be present in Realm.properties file. If this user name is not present,
the component will not launch.

Password

Password to be used by the WSStub component while deploying the Web Service. If this
password is not present in Realm.properties file the component will not launch.

Realms

Security realms allow securing the web applications against unauthorized access. Protection is
based on authentication (identifying who is requesting access to the webapp) and access
control (restricting what can be accessed and how it is accessed within the webapp).

A webapp statically declares its security requirements in the web.xml file. Authentication is
controlled by the <login-config> element. Access controls are specified by <security-
constraint> and <security-role-ref> elements. When a request is received, the web container
checks if the user performing the request is authenticated and if the user has a role
assignment that permits access to the requested resource. Access to the resource is allowed
only when the user is authorized and has the required permissions.

A realm has a unique name, and is composed of a set of users. Each user has authentication
information (Example: a password) and a set of roles associated.

More than one realm can be configured depending on the needs.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1009

Fiorano uses a simple realm whose authentication and authorization information is stored in a
properties file. Each line in the file contains a username, a password, and 0 (zero) or more
role assignments. The format is:

username: password[,rolename ...]

where:

• username is the user's unique identity

• password is the user's password

• rolename is the user's role

Sample content of Realm.properties file is shown below:

• admin: admin,admin

• user: password,user

• guest: guest,read-only

4.14.1.1.8 Miscellaneous Configuration

4.14.1.1.8.1 FES Connection Configuration

Figure 4.521: FES Connection Configuration

FES URL

The URL of Enterprise Server to which the Peer Server on which the component is running is
connected.

Username

User name that should be used to connect to the enterprise server.

Password

Password that should be used to connect to the enterprise server.

FES Backup URL

The alternate URL that should be tried for connecting to the Enterprise Server if the Enterprise
Server cannot be connected to using the URL mentioned against property FES URL.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1010

Note: In case of Enterprise Servers in HA mode, this should point to Secondary Server URL if
the primary is set against Server URL property and vice-versa.

4.14.1.1.8.2 Execution Configuration

Figure 4.522: Execution Configuration

Execution Timeout

WSStub component receives client request on its output port and sends the request message
to the connected components. After the processing is completed by the connected components
response message is sent to WSStub input port and from there it will be sent to the client.

WSStub component accepts the response if it reaches before the timeout period. If no
response is received, on timeout Error message will be sent to the client saying No message
received till the timeout period.

Note: Request will be processed by the connected components in the Event Process even after
the timeout but the response is not sent back to the client by WSStub.

Execution Timeout of 0 indicates infinite timeout.

Request Timeout

This value is set as Time to live property on the request message. The request message will be
discarded after the timeout.

0 indicates infinite time.

4.14.1.1.9 Port Generation

The ports will be generated based on the configuration of WSDefinition as follows

For each operation which has SOAP binding defined request, response and error ports will be
generated.

The name of the ports will be prefixed by the type of SOAP binding i.e., SOAP11 or SOAP12.

The prefix is followed by _<operation name>_ and the type of port.

Example:

For an operation with name operationName and SOAP11 binding, ports with following names
will be generated

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1011

Output port with name SOAP11_operationName_REQUEST

Input port with name SOAP11_operationName_RESPONSE

Input port with name SOAP11_operationName_FAILURE

4.14.1.2 Functional Demonstration

Figure 4.522: Scenario demonstration

Figure 4.522 demonstrates how WSStub can be used to deploy the Event Process as Web
Service.

In the flow, WSStub is connected to an SMTP component. WSStub component sends the client
requests to SMTP and gets the SMTP response which is sent back to the client. An operation is
added in basic view and its input part type is set as root element of SMTP component’s input
port schema, output part type is set as root element of SMTP component’s output port schema
and a fault part is added and its part type is set as root element of error port schema of SMTP
component.

When the Event Process is launched, it gets deployed as Web Service with service name and
added operation name specified in the CPS. On right-clicking and selecting view wsdl, the user
can view the wsdl for this WSStub in a web browser.

A WebserviceConsumer component can be configured to invoke this Web Service by providing
the URL of this wsdl (in the Managed Connection Factory panel of WS consumer's CPS) and by
selecting the Web Service Operation (In Interaction Configuration Panel).

Sample request and response to WebserviceConsumer component which accesses the
deployed Web Service is shown below.

Figure 4.524: Sample Request

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1012

Figure 4.525: Sample Response

4.14.1.3 Useful Tips
• For SSL to work properly the JDK version used should be greater than 1.5.0_08 and

the jars present in JDK_HOME/jre/lib/ext should be copied to
$FIORANO_HOME/esb/lib/ext.

• When WSStub component is configured to launch on HA (High Availability) Peer
Servers

o If both Primary and Secondary Servers are on the same machine

Initially, if WSStub is launched on the Primary Server, the generated WSDL
URL contains Primary Server’s jetty port number. In case of Primary Server
failover, the Secondary Server becomes Active and relaunches the component.
WSDL will be regenerated and if the Secondary Server uses a different jetty
port then the WSDL URL is changed. The clients have to be reconfigured to use
new URL in this case.

To avoid this situation, it is recommended to use same jetty ports for both
Primary and Secondary Peer Servers.

Jetty service will be started only after the server is started successfully. In
case of HA, only one server will be active at a given time and the Jetty Server
will be running only in the active server and there will be no bind exceptions
even if both the servers use same port number for Jetty.

o If both Primary and Secondary servers are on different machines

In this case if the failover happens the hostname/IP address in the WSDL URL
will be changed. So the clients have to be reconfigured accordingly.

HTTP headers are received from the gateway as message properties with the
header name prefixed with http_. For example, http_Content-Type.

The service name must be unique for WSStub instances configured on same
peer server.

• WSStub instances that are configured previously can be used as they were without
opening the CPS. However, if the WSStub instance is reconfigured then there will be
following changes

o Port names are changed

This would result in the routes leading to and from the component to
disappear on closing the CPS.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1013

o Schemas on ports are changed

This would mean that the already defined transformations are no longer valid
and will have to be redefined.

So it is recommended to save the transformations defined on the route externally and
redefine the transformations after the component is configured.

• Web Service name changed

o The webservice name will be the context name appended with suffix "Service"
for the old WSStub components. If we deploy the same WSStub with out any
configuration changes, then the web service name will be context name itself.
No suffix will be appended. This will result to reconfigure the Web service
consumer components configured to use this service should be reconfigured to
fetch the service name.

4.14.2 Web Service Consumer (4.0)

This component invokes a web service (usually externally hosted on a third-party system)
based on the configured WSDL.

Unlike most static web service client options (like Axis wsdl2java) which generates client stub
code to invoke a given WSDL, this component employs a dynamic invocation mechanism to
ensure that no code needs be written or deployed for invoking a component.

The incoming request parameters are automatically wrapped in a SOAP request packet
(handling different types of SOAP headers for handling web service security, transactions and
so on.) and sent to underlying transport (usually the response is sent back to the client

Points to note

• If the web service is secured using basic authentication, then the details of the basic
authentication should be provided in the Call Properties property during execution
time.

• When using WS-Security, the Password Callback class should be the fully qualified
name of the class.

• The order in which the WS-Security tokens are specified are important and should be
the order in which they are specified at the web service.

• This component supports only WSDL files which are compliant to WS-I Basic Profile
1.0.

• To pass http headers to the web service, the input message should contain properties
with the header name prefixed with http_. Example: http_Content-Type.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1014

4.14.2.1 Configuration and Testing

The web service connection details can be configured in the Connection Properties panel of
CPS.

Figure 4.526: Sample web service connection configuration

If the property "Use Operation Details From Input" is set to true, then the properties Use
Connection Details From Input, WSDL, HTTP Basic Authentication, HTTP Username,
HTTPPassword will be disabled in Managed Connection Factory Panel, and the properties WSDL
Service, WSDL Port, End Point Address, WSDL Operation, Input Parameter, Output Parameter,
SOAPBody Namespace will be disabled in Interaction Configurations panel. The required
properties need to be provided in the input request. The sample input and output messages
are shown in Scenario 2 of Functional Demonstration section.

Server connection can be tested from within the CPS by clicking on Test in the connection
properties panel.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1015

Figure 4.527: Sample connection test result showing the WSDL loaded

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1016

The service operation can be chosen in the Interaction panel

Figure 4.528: The web service operation to invoke and other ws-* standards to use
along with the request

Security - Request Properties

UsernameToken WS-Security (Request): If the web service performs UsernameToken
identification for the request, then this property should be enabled. Username and password
values are added to the message headers.

Order of UsernameToken (Request): Determines the order of the UsernameToken security
function. The order of a security function determines when this function will be applied when
multiple security functions are being used.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1017

User: This property is used as username for the UsernameToken security function. It is also
used as the alias name in the keystore to get user's certificate or private key to perform
signing for the Signature security function. It is also used as the fallback for the encryption
security function in case of "Encryption User" is null and "Encryption WS-Security (Request)" is
set to yes.

Password Callback class (Request): This is needed by the security functions to get the
password and to verify the username/password pair. The password callback class should
implement org.apache.ws.security.WSPasswordCallback class. This Password Callback class
should be the fully qualified name of the class. The jar which contains the password callback
class should be added as a resource to the component.

Password type: The Password type can be either PasswordText or PasswordDigest.

• PasswordText: Password is sent in raw text format with in the security header of
the soap request.

• PasswordDigest: Password is sent in digest format with in the security header of
the soap request.

Nonce Security element: Specifies whether to use nonce element in the security header or
not. When UsernameToken security function is used, then nonce security element can be
employed to prevent message replay attacks. A nonce is a random value that the client
creates to include in each UsernameToken that it sends. Although using a nonce is an effective
countermeasure against replay attacks, it requires server to maintain a cache of used nonces,
consuming server resources.

Created Security element: Specifies whether to use Created element in the security header
or not. This element denotes the time of creation of a nonce. Combining a nonce with a
creation timestamp has the advantage of allowing a server to limit the cache of nonces to a
"freshness" time period, establishing an upper bound on resource requirements.

Timestamp WS-Security (Request): If this property is set, timestamp will be added as
security header in the soap request. In this case, the message is valid up to 5 minutes or 300
seconds after the creation of the message.

Precision in Milliseconds (Request): If this is set, timestamps will have precision in
milliseconds. Otherwise it will be seconds.

Order of Timestamp (Request): Specifies the order of the Timestamp security function. The
order of a security function determines when this function will be applied when multiple
security functions are being used.

Encryption WS-Security (Request): This property can be set to perform encryption on the
entire soap message or some parts of the soap message.

Order of Encrypt (Request): Specifies the order of the Encrypt security function. The order
of a security function determines when this function will be applied when multiple security
functions are being used.

Encryption User: Username for the encryption function. The encryption function uses the
public key of this user's certificate. If this parameter is not set, then the encryption function
falls back to the "User" parameter to get the certificate. The encrypt function will not
authenticate user. So there is no need to set any password call back class for encrypt.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1018

Encryption Properties filename (Request): The name of the crypto property file to use for
SOAP Encryption. If this parameter is not specified and if both "Signature Properties filename
(Request)" and "Signature WS-Security (Request)" are set, then the encryption function uses
signature property file. Otherwise the handler throws an AxisFault.

The sample properties file content:

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.file=C:\\Documents and
Settings\\Fiorano\\Desktop\\fiorano.ks
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=fioranopass
org.apache.ws.security.crypto.merlin.keystore.alias=fiorano
org.apache.ws.security.crypto.merlin.alias.password=fioranopass

The properties descriptions :

org.apache.ws.security.crypto.provider : implementation class for security provider. Fiorano
internally uses bouncycastle, to use the same this property must be set to
"org.apache.ws.security.components.crypto.Merlin". To use other providers, the provider jar
has to be added as a resource for this component and fully qualified name of appropriate
provider class has to be set for this property. org.apache.ws.security.crypto.merlin.file : The
path to the keystore file. org.apache.ws.security.crypto.merlin.keystore.type : The keystore
type, for example JKS for the Java key store. Other keystore type, such as pkcs12 are also
possible but depend on the actual Crypto implementation.
org.apache.ws.security.crypto.merlin.keystore.password : The password to read the keystore.
If this property is not set, then the pwcallbackproperty must be defined.
org.apache.ws.security.crypto.merlin.keystore.alias : The alias name under which the private
key/certificate stored in keystore org.apache.ws.security.crypto.merlin.alias.password :
Password for private key/certificate inside keystore stored under given alias (not used for
encryption)

Encryption Parts: Parameter specifies which parts of the request shall be encrypted. The
value of this parameter is a list of semi-colon separated element names that identify the
elements to encrypt. An encryption mode specifier and a namespace identification, each inside
a pair of curly brackets, may preceed each element name. The encryption mode specifier is
either {Content} or {Element}. 'Element' encryption mode will encrypt the entire element
including start and end tags. 'Content' encrypt mode will encrypt only the content of the
specifioed element. The default encryption mode is 'Content'.
For example if we set
"{Element}{http://example.org/paymentv2}CreditCard;{}{}UserName" list to this property,
then the first entry of the list identifies the element CreditCard in the namespace
http://example.org/paymentv2, and will encrypt the entire element. In the second entry the
encryption modifier and the namespace identifier are omitted. In this case the encryption
mode defaults to Content and the namespace is set to the SOAP namespace.
The element name, the namespace identifier, and the encryption modifier are case sensitive.
To specify an element without a namespace use the string Null as the namespace name (this
is a case sensitive string) If no list is specified, the handler encrypts the SOAP Body in Content
mode by default.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1019

Encryption Key Identifier: Select the key identifier type to use.

• DirectReference: The security function takes the signing certificate, converts it to a
BinarySecurityToken, and then place it in the security header. Thus the whole signing
certificate is transfered.

• X509KeyIdentifier: The encryption method uses the public key associated with this
certificate to encrypt the symmetric key used to encrypt data. The certificate is
converted into a KeyIdentfier token and sent to the server. Thus the complete
certificate data is transfered.

• SKIKeyIdentifier: The security function uses SKIKeyIdentifier.

• IssuerSerial: The encryption method uses the public key associated with this
certificate to encrypt the symmetric key used to encrypt data. The issuer name and
the serial number of the signing certificate are sent to the server.

Signature WS-Security (Request): If this security function is selected the digest of the
message is created and encrypted before sending. The property "User" must be specified to
get the private key/certificate of respective user from the keystore for signing.

Order of Signature (Request): Specifies the order of the Signature security function. The
order of a security function determines when this function will be applied when multiple
security functions are being used.

Signature Properties filename (Request): The name of the crypto property file to use for
SOAP Signature. Please see the description of "Encryption Properties filename" for the details
of the properties file.

Signature Parts: Parameter specifies which parts of the request shall be signed. Please see
the description of "Encryption Parts" for the syntax.

Signature Key Identifier: Select the key identifier type to use. Please see the description of
"Encryption Key Identifier" for the descriptions of key identifiers.

SAML WS-Security (Request): Select this property to perform SAML Token Identification.

Order of SAML (Request): Specifies the order of the SAML security function. The order of a
security function determines when this function will be applied when multiple security
functions are being used.

Signed SAML (Request): Specifies whether to use signed SAML or unsigned SAML. If Signed
SAML is used, then client performs two actions inserting a SAML Token (unsigned) and an
associated Signature. So define both the actions SAML Unsigned and Signature at server to
resolve these security headers. If Signed SAML is used, the signature properties should be
specified with out selecting the property "Signature WS-Security (Request)".

SAML Properties filename (Request): The name of the SAML properties file. This file
should be added as resource to the component.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1020

The example properties file content:

org.apache.ws.security.saml.issuerClass=org.apache.ws.security.saml.SAMLIssuerImpl
org.apache.ws.security.saml.issuer.cryptoProp.file=crypto_wsc.properties
org.apache.ws.security.saml.issuer.key.name=fiorano
org.apache.ws.security.saml.issuer.key.password=fioranopass
org.apache.ws.security.saml.issuer=fiorano
org.apache.ws.security.saml.subjectNameId.name=uid=mule,ou=people,ou=saml-
demo,o=example.com
org.apache.ws.security.saml.subjectNameId.qualifier=www.example.com
org.apache.ws.security.saml.authenticationMethod=password
#org.apache.ws.security.saml.confirmationMethod=senderVouches
org.apache.ws.security.saml.confirmationMethod=keyHolder

Security - response Properties

UsernameToken WS-Security (response): Determines whether the response from the
server contains Username token headers or not.

Order of UsernameToken (response): Determines the order of the Username Token
security function. The order of a security function determines when this function will be
applied when multiple security functions are being used.

Password Callback class (response): This is needed by the security functions to get the
password and to verify the username/password pair. The password callback class should
implement org.apache.ws.security.WSPasswordCallback class. This Password Callback class
should be the fully qualified name of the class. The jar which contains the password callback
class must be added as a resource to the component.

Timestamp WS-Security (response): Specifies whether the soap response contains
timestamp headers or not.

Precision in Milliseconds (response): If this is set, timestamps will have precision in
milliseconds. Otherwise it will be seconds.

Order of Timestamp (response): Specifies the order of the Timestamp security function.
The order of a security function determines when this function will be applied when multiple
security functions are being used.

Encryption WS-Security (response): Specifies whether the soap response or some parts of
the soap response are encrypted or not. If this property is set then the client validates the
user, so password callback class should be specified.

Order of Encrypt (response): Specifies the order of the encrypt security function. The order
of a security function determines when this function will be applied when multiple security
functions are being used.

Encryption Properties filename (response): The name of the crypto property file to use
for decryption of the soap response. If this parameter is not specified and if both the
"Signature Properties filename (response)" and "Signature WS-Security (response)" are set to
yes, then the decryption function uses signature property file. Otherwise the handler throws
an AxisFault. Please see the description of "Encryption Properties filename (Request)" for the
details of the crypto properties file.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1021

Signature WS-Security (response): Specifies whether the soap response or some parts of
the soap response are signed or not.

Order of Signature (response): Specifies the order of the Signature security function. The
order of a security function determines when this function will be applied when multiple
security functions are being used.

Signature Properties filename (response): The name of the crypto property file to use for
SOAP Signature. Please see the description of "Encryption Properties filename (Request)" for
the details of the properties file.

SAML WS-Security (response): Specifies whether the soap response uses SAML Token
Identification or not.

Order of SAML (response): Specifies the order of the SAML security function. The order of a
security function determines when this function will be applied when multiple security
functions are being used.

Signed SAML (response): If Signed SAML is used at server side for response, then the
server performs two actions inserting a SAML Token (unsigned) and an associated Signature.
So define both the actions SAML Unsigned and Signature here to resolve these security
headers.

The configuration can be tested when you click on the Test option in the interaction properties
panel.

Figure 4.529: Sample input

Figure 4.530: Sample output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1022

4.14.2.2 Input and Output

4.14.2.2.1 Input Schema

The input schema is auto generated based on the configuration provided. For the configuration
shown above, the schema would be

Figure 4.531: Input Schema Content

When the property "Use Operation Details From Input" is set to true, we should provide the
WSDL service, operation details in the input. If this property set to true, the input schema
would be:

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1023

Figure: Input schema with Operationproperties

When the property "Use Connection Details From Input" is chosen, an additional element
ConnectionProperties is added to the input schema, as shown in the figure. We can provide
End Point Address under this element.

Figure: Input schema with Connectionproperties

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1024

4.14.2.2.2 Output Schema

The output schema is auto generated based on the configuration provided. For the
configuration shown above, the schema would be

Figure 4.532: Output Schema Content

4.14.2.3 Accessing Share Point Web Services

Sample configuration to access Share Point Web Services Using Web Service Consumer is
explained below:

1. Used wsdl is present at http://www.wssdemo.com/_vti_bin/lists.asmx?wsdl.

2. To access sharepoint webservices, you need the authentication details of the share point
webserver.In the MCF Panel, HTTP Basic Authentication should be set to Yes and
HTTPUsername and HTTPPassword should be provided.Sample username “demouser” and
password “Templates” is used in the below configuration.

Figure 4.533: web service connection configuration to access share point web
services

http://www.wssdemo.com/_vti_bin/lists.asmx?wsdl

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1025

3. In Interaction Configurations panel, click on the ellipsis button against “WebService
Operation” property to select the WebService operation as shown below:

Figure 4.534: selecting the WebService operation

4. After selecting the operation, click on ellipsis button against the CALL Properties
property to launch the Advanced Properties dialog to add the username and password
properties.

5. To add the Username, click on add button, select javax.xml.rpc.security.auth.username
and give value as demouser. To add a password, click on Add button, select
javax.xml.rpc.security.auth.password and give value as Templates. The properties
provided here is set on the SOAP Invocation Call.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1026

Figure 4.535: WebServiceConsumer – Call Properties

6. To test the configuration, click test -> execute button. The test returns output as shown
in Figure 4.536.

Figure 4.536: Output Message

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1027

4.14.2.4 Functional Demonstration

4.14.2.4.1 Scenario 1

Invoking a web service operation using a WSDL from the following URL

http://www.webservicex.net/CurrencyConvertor.asmx?WSDL

Configure the Web Service Consumer component as described in Configuration and Testing
section and use feeder and display component to send sample input and check the response
respectively.

Figure 4.537: Feeder And Display Component

Figure 4.538: Demonstrating Scenario 1 with sample input

Sample Input

Sample Output

Figure 4.539: Demonstrating Scenario 1 with sample input and output

4.14.2.4.2 Scenario 2

Invoking a web service operation from the following URL, by setting the property "Use
Operation Details From Input" to true.

http://www.webservicex.net/CurrencyConvertor.asmx?WSDL

Configure the Web Service Consumer component as described in Chapter 2 and use feeder
and display component to send sample input and check the response respectively.

http://www.webservicex.net/CurrencyConvertor.asmx?WSDL
http://www.webservicex.net/CurrencyConvertor.asmx?WSDL

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1028

Sample Input

Sample Output

Figure 540: Demonstrating Scenario 2 with sample input and output

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1029

4.14.2.5 Use Case Scenario

In a Salesforce Integration scenario, Salesforce updates are performed based on the details in
the database.

Figure 4.541: Salesforce Integration Scenario

The event process demonstrating this scenario is bundled with the installer.

Documentation of the scenario and instructions to run the flow can be found in the Help tab of
flow when open in Studio.

4.14.2.6 Useful Tips
• If the web service is secured using basic authentication, then the details of the basic

authentication should be provided in the Call Properties property during execution
time.

• When using WS-Security, the Password Callback class should be the fully qualified
name of the class.

• The orders in which the WS-Security tokens are specified are important and should be
the order in which they are specified at the web service.

• This component supports only WSDL files which are compliant to WS-I Basic Profile
1.0.

• To pass http headers to the web service, the input message should contain properties
with the header name prefixed with http_. For example, http_Content-Type.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1030

4.14.3 Web Service Consumer (5.0)

This component invokes a web service (usually externally hosted on a third-party system)
based on the configured WSDL. This component uses axis2 API to invoke the web services.

Unlike most static web service client options (like Axis wsdl2java) which generates client stub
code for invocation of a given WSDL, this component employs a dynamic invocation
mechanism to ensure that no code needs be written or deployed for invoking a component.

The incoming request parameters are automatically wrapped in a SOAP request packet
(handling different types of SOAP headers for handling web service security, transactions, and
so on) and sent to underlying transport (usually the response is sent back to the client).

4.14.3.1 Configuration and Testing

The following properties can be configured in the Custom Property Sheet of the component.

Figure 4.542: Custom Property Sheet

4.14.3.1.1 General

Use Operation Details from Input

If this property is set to true, component will use the webservice operation details from the
input request. If this property is set to true the properties Use Connection Details From Input,
Load WSDL From, WSDL URL,WSDL File, WebService Operation, WSDL Service, WSDL Port,
Endpoint Address, Action, SOAPBody Namespace, Input parameter, Output Parameter will be
disabled.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1031

Use Connection Details from Input

If this property is set to true, then the property "End Point Address" can be provided
dynamically in the input request. If this property is selected and the "End Point Address" is not
given in the input request, then the value given in this panel for that property will be used.

Error Handling Configuration

Click on the ellipsis button against Error Handling Configuration property to configure Error
Handling properties.

Figure 4.543: Error Handling Configuration

The remedial actions to be taken when a particular error occurs can be configured here.

The default actions configured are:

• Log to Error logs

• Send to error port

Load WSDL From

Source for WSDL can be configured here. It can be a File or a valid WSDL URL.

When File is selected, the WSDL file location can be configured.

Figure 4.544: Specifying WSDL File

When URL is selected, the WSDL URL can be configured.

Figure 4.545: Specifying WSDL URL

WebService Operation

The web service operation to be invoked can be configured here.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1032

Click on the ellipsis button against this property to select the operation from the available list
of operations.

Figure 4.546: WSDL operations

Note: When the operation is selected, the parameters WSDL service, WSDL Port, Endpoint
Address, Action, Soap Body NameSpace, Input Parameter and Output Parameter is populated
automatically.

The Operation can also be typed manually in offline mode but all the other properties have to
be populated manually.

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1033

Figure 4.547: CPS after selecting WSDL operation

WSDLService: The service element defines the ports supported by the Web service. For each
of the supported protocols, there is one port element. The service element is a collection of
ports.

WSDL Port: Name of a single endpoint defined as a combination of a binding and a network
address.

Endpoint Address: Provides a unique network address that a client uses to communicate
with a service endpoint.

Soap Action: The SOAP Action field can be used to indicate the intent of the SOAP HTTP
request. The value is a URI identifying the intent.

Timeout: The client’s execute call will time out after waiting this amount of time.

SOAP Body Namespace: Namespace attribute of soap:body element. This is usually
specified in case of RPC encoded web services.

Input Parameter: Input parameter name of the selected Operation. This is used to identify
correct operation in the case of overloaded operations in the WSDL.

Output Parameter: Output parameter name of the selected Operation. This is used to
identify correct operation in the case of overloaded operations in the WSDL.

4.14.3.1.2 Authentication Type

The type of Authentication to be used to connect to the web server. “None” specifies no
authentication is required.

Other supported authentications include Basic, Digest and NTLM.

When Authentication Type is Basic, the following fields have to be specified.

Figure 4.548: Basic Authentication Type

• HTTP User Name: User Name to connect to the web server.

• Password: Password for the username mentioned.

Note: To access a share point web service, basic authentication is required.

When Authentication Type is NTLM, the following fields have to be populated

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1034

Figure 4.549: NTLM Authentication Type

• HTTP User Name: User Name to connect to the web server.

• Password: Password for the username mentioned.

• Host Name: Host that needed to be authenticated with.

• Host Port: Port of the host that needed to be authenticated with.

• Realm for Authentication: Realm for authentication scope.

When Authentication Type is Digest, the following fields have to be specified.

Figure 4.550: Digest Authentication Type

• HTTP User Name: User Name to connect to the webserver.

• Password: Password for the username mentioned.

• Host Name: Host that needed to be authenticated with.

• Host Port: Port of the host that needed to be authenticated with.

• Host Domain Name: Domain name needed by NTCredentials for NT Domain.

4.14.3.2 Input and Output

4.14.3.2.1 Input Schema

The input schema is auto generated based on the configuration provided. For the configuration
shown above, the schema would be

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1035

Figure 4.551: Input Schema

When the property Use Connection details from input is chosen, an additional element
ConnectionFactorySettings is added to the input schema, as shown in the figure. Properties
that are used to create the connection are present under this element.

Figure: Input schema with ConnectionProperties

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1036

When the property "Use Operation Details From Input" is chosen, the wsdl operation details
are added to the input schema, as shown in the following figure.

Figure: Input schema with Operation Details

4.14.3.2.2 Output Schema

The output schema is auto generated based on the configuration provided. For the
configuration shown above, the schema would be

Figure 4.552: Output Schema

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1037

4.14.3.3 Functional Demonstration

4.14.3.3.1 Scenario 1

Invoking a web service operation using a WSDL from the following URL

http://www.webservicex.net/CurrencyConvertor.asmx?WSDL

Configure the Web Service Consumer component as described and use Feeder and Display
components to send sample input and check the response respectively.

Figure 4.553: Feeder and Display Components

Sample Input

Figure 4.554: Demonstrating scenario with sample input

Sample Output

Figure 4.555: Demonstrating scenario with sample input and output

http://www.webservicex.net/CurrencyConvertor.asmx?WSDL

Fiorano SOA Platform User Guide

Chapter 4: Pre-built Components Page 1038

4.14.3.3.2 Scenario 2

Invoking a web service operation using a WSDL from the following URL, by setting the
property "Use Operation Details From Input" to true

http://www.webservicex.net/CurrencyConvertor.asmx?WSDL

Configure the Web Service Consumer component as described and use Feeder and Display
components to send sample input and check the response respectively.

Sample Input

Sample Output

Figure 4.556: Demonstrating scenario with sample input and output

http://www.webservicex.net/CurrencyConvertor.asmx?WSDL

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1039

Chapter 5: Event Processes

This chapter discuss about Event Processes. Event processes are composite applications
created as event-driven assemblies of service components. They represent the orchestration
of data flow across customized service-components distributed across the ESB network.

5.1 What are Event Processes?

Event processes in Fiorano are designed to connect disparate applications in a heterogeneous
distributed SOA environment.

Event processes are designed using the Fiorano Studio. Fiorano Studio enables intuitive visual
configuration of all the elements of an event process including the components of the process,
the data flow or routes between components, deployment and profile information and the
layout. The event-process meta-data contains all required information in XML format and is
stored in the service repository managed by the Fiorano Enterprise Server.

5.2 Creating Event Processes

Fiorano’s unique model for composition of event processes allows the logical process design to
be mapped directly to physical service components distributed across the ESB network.

Event processes are designed by ‘drag-drop-connect’ of service components. The components
are customized by configuration rather than custom code. The routes between components
are drawn by visually connecting the component ports. Every component instance in the flow
can be configured to be deployed on different nodes of the ESB network.

Figure 5.2.1: Drag-drop service component

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1040

Figure 5.2.2: Orchestrating service components

The composition model of event processes is rooted on intuitive understanding and high levels
of abstraction. The composition model along with the complementing service component
architecture allows business users to design, deploy, and manage event driven business
processes in a single view with no separation between the development (composition) and
deployment steps as is customary in most SOA platform products.

5.2.1 Creating a New Event Process
1. Launch the Studio, and login to the Enterprise Server.

2. Browse the Event Process Repository as illustrated in Figure 5.2.3.

3. Right-click on User Processes and choose Add Event Process from the pop-up
menu.

Figure 5.2.3: Creatind an Event Process

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1041

Using External Components

The Fiorano Studio allows users to compose an event process with service component
references from external event processes. This enables inter process communication when
designing modularized, interdependent event processes.

Figure 5.2.4 illustrates steps to use an external service component in the event process.

Figure 5.2.4: Add Remote Service Component in an Event Process

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1042

5.3 Configure Event Processes

Configuring an event process involves configuring the component instances, routes, and other
deployment parameters of the process.

5.3.1 Configuring Components through Custom Property Sheet

Components instances can be customized using the associated custom property sheets for
each component. To review the custom property sheet associated with any component, simply
double click the component in the application easel.

5.3.2 Configuring Common Component Properties

Apart from the component specific properties that can be configured using the CPS, there are
a set of common properties associated with the every component, Figure 5.3.1 illustrates the
component properties detail.

Figure 5.3.1: Component Properties

The description of individual properties is shown at the bottom of the panel.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1043

5.3.3 Adding Additional Jars/Libraries to Components

Service Components can be upgraded to use new libraries during configuration and at
runtime.

5.3.4 Setting up Component Port Properties

Component port properties can be configured by choosing the port and configuring the
appropriate property in the Properties panel.

To configure the output port of a service component, simply click the output port in the
application easel and then set the appropriate properties in the RHS properties pane, as shown
in Figure 5.3.2.

Figure 5.3.2: Configuring Output Ports

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1044

Similarly, to configure an input port of a service component instance, select the port in the
application easel and set the property as illustrated in Figure 5.3.3.

Figure 5.3.3: Configuring Input Port of a Service Component

5.3.5 Defining Data Transformation

XML to XML or native transformations can be achieved using Fiorano’s transformation service
component. This includes an associated transformation tool that allows users to configure
complex data transformations visually without writing custom code.

5.3.6 Defining Exception Flows

Handling exceptions in a uniform way is one of the critical aspects of designing business
processes on the Fiorano platform. This can be achieved using the following methods.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1045

5.3.6.1 Using the Exception Listener Service Component:

This component serves as a global exception listener that subscribes to exception messages
occurring in any service component of any running event process and handles them
appropriately in the error handling event process.

Figures 5.11 and 5.12 illustrate how the exception listener is configured and used in a global
exception handler event process.

Figure 5.3.4: Configuring the Exception Listener

Figure 5.3.5: Designing a Global Exception Handler Event Process

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1046

5.3.7 Using the Error Ports View

The error ports view in any event process allows you to see the error ports associated with the
service components. Event-process specific or component-instance specific error handling can
be configured by connecting the error ports of components to the appropriate error handling
component or event process.

Figure 5.3.6 illustrates the use of error ports to send email notifications on error.

Figure 5.3.6: Using the Error Ports

The SendMail component instance of Figure 5.3.6 may be replaced by a general error handler,
as illustrated in Figure 5.3.7.

Figure 5.3.7: Sending Error Message

5.3.8 Document Tracking

Tracked document flows are defined by assigning multiple workflow items and one workflow
end at the corresponding component ports. All the documents that pass through the workflow
items till the workflow end are logically grouped together as a single workflow and stored into
the DB. Therefore each message send across a defined workflow is treated as a single
workflow entry. A workflow entry can have multiple documents (one for each workflow
item/end). The document contains the actual message that reaches the port (or a part of it,
depending on the configuration).

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1047

5.3.8.1 Configuring Document Tracking

Figure 5.3.8 illustrates how to configure Document tracking in the component ports.

Figure 5.3.8: Component Port Document Tracking

Document tracking works as follows: whenever data traverses a port marked Workflow Item
(up to and including the Workflow End), it is captured and stored in a database on the Fiorano
Enterprise Server. Document tracking thus enables users to keep a log of all messages flowing
on the network. The tracked documents can be viewed on a per-application basis using the
Fiorano Event Manager tool. For more details, see section 5.7 Monitoring Event Processes.

5.3.8.2 Configuring Specific Database

The document tracking feature is configured as part of FES to track SBW events into H2
database running within Enterprise Server. This can be changed by customizing the sbwdb.cfg
file present in FIORANO_INSTALL_DIR\esb\server\profiles\<profilename>\FES\conf. This file
contains all the DB specific configurations used for document tracking. Depending on the type
of database used, you might have to modify <dbtype>_jdbc.cfg file, and this is set in the
JDBC_PROPERTIES property of sbwdb.cfg file. The file <dbtype>_jdbc.cfg contains more
database specific configurations, for example, error code used by the database to indicate if a
table is present in the database or not. In addition, this file also contains names of the data
types that will be used by the database. These datatype names are mentioned against unique
numbers. These numbers are the constants that are used to identify generic SQL types, called
JDBC types (Please see javadoc for java.sql.Types).

The default configuration shipped with the installer uses the apache derby database.

Note:

17. After configuring a profile to use some database, other than default database, jdbc
driver for that database needs to be added under <java.classpath> tag in server
startup configuration file (either $FIORANO_HOME/esb/server/bin/server.conf or
$FIORANO_HOME/esb/fes/bin/fes.conf, whichever is applicable) before starting
Enterprise server.

18. You would have to use the same settings to connect to the DB when using a thirdparty
tool. All the database queries used for retrieving workflow related data is kept in
sbwdml.sql file.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1048

19. When using MS SQL for document tracking, mssql_jdbc.cfg may need to be configured
according to the database driver being used. MSSql 2000 driver follows SQL 99
conventions which quote the SQLState string for table not found exception as 42S02.
On the other hand, MSSQL 2005 driver follows XOPEN SQLState conventions which
quote the same SQLState string as S0002. By default, all fes profiles are configured
according to the standards followed by MSSql 2000 driver. If someone uses MSSql
2005 database, or uses MSSql 2005 driver for MSSql 2000 (2005 driver is backward
compatible with 2000 driver, so it can be used), then the file has to be recofigured
accordingly.

Important: It is strongly recommended that the user employ a commercial grade DB in a
production system.

For file-based databases like apache and HSQL, the default location is in the ESB_USER_DIR
(which is set in fiorano_vars script). The user has to give the complete path with these
variables resolved when using the JDBC URL in a thirdparty tool.

Example

The default derby db JDBC URL is configured as
ESB_DEFAULT_DB_DIR/doctracking_db;create=true which resolves to
ESB_USER_DIR/EnterpriseServers/<profilename>/FES/doctracking_db and further into
something like C:\Documents and Settings\All
Users\runtimedata\esb\<BUILD_NUMBER>\EnterpriseServers\FES\doctracking_db depending
on the actual settings.

Starting SOA 9.0.0, tracked documents are stored into the database using only one table
named WF_INST_EVENT_HISTORY as against earlier versions of the product where 2
tables namely WF_INST_EVENT_HISTORY and DOCUMENT_ARCHIVE were used. These 2
tables have now been merged so that al the data is contained in one table only.

5.3.8.3 Database Table Structure

The exact schema of the tables varies from database to database according to the
configurations provided in <dbtype>_jdbc.cfg file. An explanation of the tables and the
various fields for the older and newer schema are given below:

Table name: WF_INST_EVENT_HISTORY

Column Name Type (Before SOA
9.0.0)

Type (From SOA
9.0.0)

Description

EVENT_ID INTEGER INTEGER Auto Generated

WORKFLOW_INSTANCE_ID VARCHAR(255) VARCHAR(255) Auto Generated

WORKFLOW_ID VARCHAR(255) VARCHAR(255) GUID of the
corresponding
Application

USER_DEFINED_DOC_ID VARCHAR(255) VARCHAR(255) Can be set by the
user

SERVICE_INST_ID VARCHAR(255) VARCHAR(255) Service instance

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1049

Column Name Type (Before SOA
9.0.0)

Type (From SOA
9.0.0)

Description

name

STATE_ID VARCHAR(255) VARCHAR(255) Port name

STATE_COMMENT VARCHAR(255) VARCHAR(255) Description of the
workflow item

STATE_EVENT_DATE VARCHAR(255) VARCHAR(255) Date at which
message reached
the port

DOCUMENT_ID VARCHAR(255) VARCHAR(255) Auto Generated

WORKFLOW_STATUS VARCHAR(255) VARCHAR(255) EXECUTED or
EXECUTING

IN_TIME TIMESTAMP TIMESTAMP Set if its inport

OUT_TIME TIMESTAMP TIMESTAMP Set if its outport

TOTAL_TIME VARCHAR(255) VARCHAR(255) Time spend
between inport
and outport

DOCUMENT NA IMAGE
BLOB of actual
message data

Table: DOCUMENT_ARCHIVE (This table is not present in current version of the
product)

Column Name Type Description

WORKFLOW_ID VARCHAR(255) GUID of the corresponding
Application

WORKFLOW_INSTANCE_ID VARCHAR(255) Refers to the corresponding parent
entry

USER_DEFINED_DOC_ID VARCHAR(255) Can be set by the user

DOCUMENT_ID VARCHAR(255) Refers to the corresponding parent
entry

DOCUMENT IMAGE BLOB of actual message data

In case, an earlier version of the product (version before SOA 9.0.0) was using a database
that is being used by the latest version, sbw database tables will be automatically modified to
accommodate these changes while the Enterprise server starts up. It is important to note that
once a database is converted to newer version; it cannot be used by older version of the
product.

The views presented in EVST and dashboard uses the above schema in logical groupings.

EVST View

Application view: Lists all workflows for a given application.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1050

Workflow: All entries in event history table for a given workflow ID are grouped together as a
workflow. The status of the workflow is the status of the entry with the latest time stamp. The
cycle time is the sum of all total times.

Document view: Lists all the documents for a given workflow. This contains one item per
entry in the event history table. The details have one-to-one correspondence.

Document: Shows the actual message content. This provides a view of the BLOB data
present in archive table.

5.3.8.4 Structure of IMAGE/BLOB field

The IMAGE/BLOB field is a serialized form of an object of class
fiorano.jms.services.msg.def.FioranoMessage (packaged in
$FIORANO_HOME/fmq/lib/common/fmq-common-msg-impl.jar). To de-serialize the field, a
user may use an API available in Enterprise Server’s SBW module. Please refer to the sample
named ‘SBWDataReader.java’ located under $FIORANO_HOME/esb/samples/DocTracking
which provides sample usage of this API.

Following information is available in a BLOB field.

• Document Information: All the other fields of the document tracking table as
explained above in section 5.3.8.3. For example, Source Peer Name, Event Process
Name, Service Instance Name, Port Name, In Time, Out Time, Document ID,
Workflow Instance ID etc.

• Header Information: Other message header properties represented by a
java.util.HashMap object of property name vs. property value.

• Carry Forward Context: This information is present as an object of type
fiorano.esb.util.CarryForwardContext. This object contains the following
information:

o Application Context (if defined)

o Carry Forward Properties (The message properties carried forwarded from the
message received at last doc tracked port)

o An Enumeration of fiorano.esb.util.SourceContext containing information about
the output port of the components from where the message has traveled so
far.

• Attachment(s): This information is present as an object of type
java.util.Hashtable<String, byte[]>. The String part represents the attachment
name and byte[] represents the contents of the file in byte[] form.

• Message Text: Message Text can be retrieved using the API named
MesageUtil.getTextData(message) which returns a String containing the message
text.

5.3.9 Message Selector on Route

Message selectors can be defined on the event routes to allow/disallow the messages based on
the specified condition. User can define following types of message selectors on the route:

• Sender Selector

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1051

• JMS Selector

• Message Body XPath Selector

• Application Context XPath Selector

Sender Selector: Filters the messages based on the source/traversed components. Allows
messages sent or forwarded by the components specified in the condition. Condition can be
specified by selecting single or multiple components.

JMS Selector: Filters the messages based on the JMS headers. Allows messages that contain
the headers matching the specified the condition. Conditions should be specified using SQL-92
syntax.

Message Body XPath Selector: Filters the messages based on the message body. Allows
messages whose message body content matches the specified XPath condition. Conditions
should be specified using valid XPath expression. If the source port of the route is associated
with the schema then user can use the XPath Editor to specify the condition else need to
specify the condition manually.

Application Context XPath Selector: Filters the messages based on the application context.
Allows messages whose application context content matches the specified XPath condition.
Conditions should be specified using valid XPath expression. If the source port of the route is
associated with the schema then user can use the XPath Editor to specify the condition else
need to specify the condition manually.

Note: Incase there are multiple selectors defined on a routes then the message that matches
all the condition will only be allowed.

5.3.9.1 Defining Message Selector on Route

Following are the steps to define various types of message selectors on route using Fiorano
Studio:

1. Right-click on route and select Selectors, as shown in the Figure 5.3.9.

Figure 5.3.9: Message selector from route

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1052

2. Click Add and choose Selector type which needs to be added from the drop-down list
as shown in Figure 5.3.10.

3. Specify the selector condition as described in the section 5.3.9 Message Selector on
Route.

Figure 5.3.10: Adding New JMS Selector

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1053

5.3.10 Setting Alerts and Notification

Fiorano SOA provides you the facility to set mail alerts and notification, you can set SMTP
Alert, JMS Alet, and SMS Alert. To set alerts, perform the following steps:

Note: Alerts can be sent to mail servers which do not require user authentication for sending
mails.

 Open Studio and open FES profile.

 Now navigate to, FES>Fiorano>Esb>Controller>SystemEvent.

 Expand the SystemEvent and select one of the component instances from the list, for
example, right-click SECURITY_VIOLATION and select Add, now click on SMTPAlert,
or JMSAlert, or SMSAlert from the pop-up menu. You can also add all the three alert
types.

Figure 5.3.11: Adding new SMTPAlert

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1054

 Now you can set the properties of the selected alert from the Properties Pane.

Figure 5.3.12: Setting the Properties

 Save the profile to apply the changes.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1055

5.3.11 Configuring the Application Context

While simple data transformation from source Event Port to target ports is a necessity, there
are times when a target Event Port needs information which was produced by a Business
component that occurred before in the workflow. Consider a Fiorano SOA Platform event
process representing a ten-step business process. Each step is implemented using a Business
component. By using application context you can enable a Business component, representing
the tenth step to use information generated by the second Business component.

To configure the Application Context, perform the following steps:

1. Login to Enterprise Server and open an Event Process you want to configure.

2. Now in the Structure pane, right-click the open Event Process and click Add
Application Context from the pop-up menu as shown in the Figure 5.3.13. The
Application Context is now added under the Event Process tree in the Structure
pane.

Figure 5.3.13: Adding Application Context

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1056

3. In the Application Context property, select the appropriate xml schema type (DTD
or XSD) and give a valid schema in the content as shown in the Figure 5.3.14.

Figure 5.3.14: Application Context property panel

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1057

4. When this is done, the application context is available through out the event process.
Default value can be provided by giving the xml in the ‘value’ of the ‘application
context’ properties. If no default value is provided, empty xml is present all through
the application, unless it is configured at any of the out ports. Once Application
Context is configured at one of the out ports, the value is propagated in the message
flow. To configure ‘Application Context’ at any of the outports, right-click on the port
and select Application Context as shown in the Figure 5.3.15. The Fiorano Mapper
tool window appears.

Figure 5.3.15: Fiorano Mapper tool dialog box

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1058

5. The Mapper window shows the output port structure and the application context
structure. The data that is to be propagated from this port and is to be available all
through the event process can now be configured as shown in the Figure 5.3.16.

Figure 5.3.16: Event Process Configuration

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1059

6. The application context can be used any where in the event process via xslt
component. The Figure 5.3.17 demonstrates the transformation that uses the
application context values.

Figure 5.3.17: Demonstrates the Transformation

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1060

5.4 Using External Event Processes

5.4.1 Importing Remote Service Instance

User can import the service instances from other Application. The following image shows how
to import a remote service instance.

Figure 5.4.1: Adding Remote Service Instances

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1061

Figure 5.4.2: Selecting Service Instance

Figure 5.4.3: Using a Remote Service Component in an Event Process

The imported service instance is the reference to the service instance in parent application.
Any changes made to the imported service instance in parent application are reflected in the
current application. Current application is launchable when only application of remote service
instance is running.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1062

5.4.2 Using External Event Processes

The Fiorano Studio can import and orchestrate external event processes using its grouping
capabilities.

Figure 5.4.5 and Figure 5.4.6 illustrates how you can import an external event process.

Figure 5.4.5: Adding Event Processes

Figure 5.4.6: Importing an Event Process

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1063

Figure 5.4.7 illustrates how to use an imported event process in the Studio.

Figure 5.4.7: Using an Imported Event Process

5.5 Debugging Event Processes

Fiorano’s unique Event Process orchestration model enables the debugging of live Event
Processes in real time. The debugging model gives a view of the current state of executing
business components within Event Processes and also provides a mechanism to setup event
interceptors to capture, view, modify and discard messages flowing between business
components on the same or different machines across the network.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1064

5.5.1 Viewing Component Logs

Executing components typically write out debug logs on the peers to which they are
connected. The current state of execution of a component can be captured from its logs. The
component logs can be configured at different levels of detail by configuring the log module
available in the properties window, as follows.

1. Select the component and view its properties panel. In the Log Modules property
section, set the level for logging details, as illustrated in Figure 5.5.1.

Figure 5.5.1: Configuring Log Module

2. To view component logs for a particular component at runtime either select the
component and right-click to select View Logs as shown in Figure 5.5.2, or

Figure 5.5.2: View Business Components Log

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1065

3. Click anywhere on the easel to select the Application and right-click to select View
Logs, as shown in Figure 5.5.3.

Figure 5.5.3: Viewing Business Component Logs from the Application Easel

In either case the log viewer pops up with the Out logs and Error logs, as shown in Figure
5.5.4. In the former case, the logs for the particular component under consideration are
shown; while in the latter the view for the first component in the Application is shown. In both
cases, the viewer can switch between different components within the application to view
multiple component logs from a single dialog.

Figure 5.5.4: Error Log Screen

The out logs contain the execution steps for the component and the error logs contain the
warning or errors thrown by the component while executing a request.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1066

To choose between components within the application use the Service Instance drop box as
shown in Figure 5.5.5.

Figure 5.5.5: Select Service Instance

The Number of Records drop-down box on the top right hand side shows the logs for the
last ‘selected’ records. A record in Fiorano parlance maps to a message executed by a
component.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1067

5.5.2 Setting Event Interceptors

Event Interceptors are break points that can be placed on routes in an Event Process. When
an Event Interceptor is set on a route, it captures all messages flowing through the route. The
messages thus intercepted can then be inspected, modified or discarded. Event interceptors
are particularly powerful in that they allow data flowing between components on different
machines to be inspected while completely shielding the user from the details of the
underlying middleware.

An interceptor can be placed on a route at both at flow composition time and in a running
Event Process.

5.5.2.1 Setting an Event Interceptor on a Route

1. Select the route and right-click on it. From the drop-down box, choose Interceptor
Add Breakpoint, as illustrated in Figure 5.5.6.

Figure 5.5.6: Add Breakpoint

2. Once the breakpoint is added the route changes its color to red indicating it is ready to
intercept messages as shown in Figure 5.5.7.

Figure 5.5.7: Route Color

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1068

3. When messages flow from the first component to the second, the route isgins to blink
and a number appears on the route indicating the number of messages intercepted as
shown in the Figure 5.5.8.

Figure 5.5.8: Route Color

5.5.2.2 Viewing Intercepted Messages

1. Double-click on the route to bring up the interceptor viewer, or

2. From the menu list, choose Interceptor View Interceptor, as illustrated in Figure
5.5.9.

Figure 5.5.9: View Interceptor

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1069

This brings up the Message Interceptor View at the bottom of Studio as shown in Figure 5.5.9

Figure 5.5.10: Message Interceptor View

The Event Process Name, the route on which the messages are intercepted and the messages
can be viewed in the Message Interceptor View.

5.5.2.3 Viewing Content of an Intercepted Message

1. Select the appropriate route, and

2. Select the message and view its content as shown in Figure 5.5.11.

Figure 5.5.11: Message Interceptor View Screen

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1070

The intercepted message is fully editable and can have properties added/ removed and its
contents modified; the message can be forwarded or discarded by right-clicking over the
message icon and selecting the appropriate command from the drop-down list, as shown in
Figure 5.5.12.

Figure 5.5.12: Sending Message from Message Interceptor View

Message Interception is a very powerful feature for debugging distributed event processes at
run-time. It helps in enabling breakpoints across machines and geographical boundaries,
giving the user a live representation for data flow inspection and modification.

5.5.2.4 Viewing Component Launch and Kill Time

The Fiorano Event Manager provides a view to monitor events occurring within the Fiorano
Network. For instance, to view current status, version, and deployment node and launch time
of a component in a running event process, log into the Fiorano Event Manager Tool, choose
the appropriate event process from the list of event processes and select Business
Components, as shown in Figure 5.5.13. Component information, including the Version,
Status, Node Name, Launch Time and Kill time appears in the right-hand pane.

Figure 5.5.13: Fiorano Event Manager Business Component

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1071

5.5.2.5 Viewing Component Pending (Queued) Messages

To view pending messages to a component in studio, right-click on the input port of a
component and select browse messages, which shows a list of messages pending on that
queue.

Figure 5.5.14: List of Messages Pending

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1072

5.6 Modifying Event Processes

Event processes can be modified at runtime, without stopping the event process, by dropping
new components into the application easel and connecting routes to them.

5.6.1 Replacing a Component at Runtime

To dynamically replace an instance of a component within a flow with another component

1. Drag the second component from the palette and drop it over the component to be
replaced, as illustrated in Figure 5.6.1.

Figure 5.6.1: Modifying Event process

2. Right-click on the component, a pop-up menu appears with the choices Add and
Replace, as illustrated in Figure 5.6.2.

Figure 5.6.2: Add and Replace Menu

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1073

3. If you choose Replace, the component on the easel is replaced by the new
component. Else an instance of the new component is added to the flow without
replacing the first component.

Figure 5.6.3: Synchronize Routes

Note: If the change is made in a running event process the Event Process will have to be
synchronized by clicking the Synchronize button, as shown in Figure 5.6.3.

5.6.2 Adding a New Component Instance at Runtime

New components and routes can be added to a running event process in the manner described
in the previous section. For instance, Figure 5.6.4 illustrates a new component instance,
chat2, being added between the chat1 and display1 component instances. After the new
instance is dropped on the easel, it is first configured and then routes are typically set to make
the new instance part of the flow. The final step is to synchronize the application.

Figure 5.6.4: Synchronize Routes

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1074

5.7 Monitoring Event Processes

In a deployed Fiorano Network any event essentially becomes part of an event-flow, more
generally referred to as a workflow. A workflow can span multiple Event Processes. Fiorano
provides a one-click solution to define workflows and track events occurring within each flow.

5.7.1 Tracking Events within Processes

The Fiorano Event Manager provides a single view for events (also referred to as documents in
the context of workflows) occurring in user-defined workflows in a deployed Fiorano Network
and allows users to view component workflow logs.

The Document Tracking feature tracks events in a workflow by capturing workflow items and
storing them in a database. The database used by default is the Derby Flat file database
bundled with the platform, but any JDBC compliant database can be configured to capture
Events as discussed below. The Document/Event tracking feature works on the ports of the
business components in a given business process. Documents can be tracked both before and
after they have been processed by a business component.

5.7.2 Defining a Workflow

A workflow in Fiorano terminology consists of an entry point, intermediary points and an exit
point. The entry and intermediary points are defined as Workflow Items and the exit point is
defined as a Workflow End.

5.7.2.1 Starting a Workflow

1. Select the entry point (that is, a port of a business component) from which documents
need to be tracked. Mark this as a Workflow Item by setting the Workflow Property as
illustrated in Figure 5.7.1.

2. Select intermediary points, ports of the other business components and mark them as
Workflow Items as needed.

All Workflow Items are colored green as shown in Figure 5.7.1.

Figure 5.7.1: Workflow Items

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1075

3. To complete a workflow select the port of the last business component on which the
documents are to be tracked and mark it as a Workflow End. The Workflow End is
marked as red as shown in Figure 5.7.2.

Figure 5.7.2: Workflow End

Note: The Workflow can be extended across multiple Event Processes. However, it is normally
best to define process-specific workflows i.e. a message in the system will ideally pass through
only one workflow.

5.7.2.2 Viewing Tracked Documents of a Workflow

To view the tracked documents, log into the Fiorano Event manager and select the running
event process on which the tracked documents are to be viewed, as illustrated in Figure 5.7.3.
All tracked documents for the Event Process are displayed on the right-hand pane of the Event
Manager window.

Figure 5.7.3: Fiorano Event Manager Tracked Document

5.7.2.3 Tracking Documents across Workflows

Sometimes it may be possible that Workflows intersect. To indentify the messages for a
particular event-process/workflow, a unique property
“ESBX__SYSTEM__USER_DEFINED_DOC_ID” can be set as a JMS property at the start point
of the workflow to mark a message as belonging to that particular workflow. This JMS property
is persisted for the message as it traverses through the workflow.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1076

To define parameter for ESBX__SYSTEM__USER_DEFINED_DOC_ID, mention the parameter
"value" which expects string values. In case you are using a string value more than 800
characters, the appropriate jdbc config file needs to be modified. For example, in case of
MSSQL database, the file "FioranoSOA_Home\esb\server\profiles\<profile-
name>\FES\conf\mssql_jdbc.cfg needs to be modified (DB_COLUMN_SIZE property).

5.7.2.3.1 Adding the JMS Property to a message

JMS property can be added to an existing message using the Mapper tool. In the funclets
choose JMS Message functions, using the setString property function, set the name and value
for the property and simply map it onto any element of the message structure on the right
hand side. This property will then be set.

5.7.3 Setting up Database to store Tracked Documents

Fiorano uses an inbuilt H2 Flat File Database to track documents. However, the Document
Tracking feature can be plugged into any external JDBC-compliant database.

The configuration files for Document Tracking is available under the conf directory of the
profile of the Enterprise server for which this setting is to be enabled i.e.

%FIORANO_HOME%/esb/server/profiles/<Profile_Name>/FES/conf. For more information on
how to use external database for document tracking, refer to section 5.3.8.2.

5.7.4 Re-Injecting Tracked Documents

A document tracked at a particular port can be re-injected into that port using ESB dashboard.
At all pages (Application Documents Page, Document Search Page, Latest Events Page) where
dashboard shows a tracked document, it provides options to re-inject that document to the
port on which it was originally tracked. Users are provided the facility to edit the tracked
document before re-injection.

5.7.4.1 Re-Injection Document Structure

A document to be re-injected contains the following information. Each of the below sections of
the information can be edited by the user before re-injection.

1. Message Properties

This section is filled with carry forward properties of the tracked message by default.
Users can choose to add/remove specific properties from this property set. At the time
of re-injection, 2 additional properties are added to the list of carry forward properties
of the tracked document. These properties are as explained below:

A. ESBX__SYSTEM__REINJECTED

This value of this property is set to ‘true’. On a tracked document, this property can be
used to identify whether the document under observation is a re-injected document or
a normal document.

B. ESBX__SYSTEM__REINJECTION_POINT

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1077

The value of this property specifies the application name, service instance name and
port name where the re-injection is being done. On a tracked document, if the above
property is set to ‘true’, then this property can be used to identify the point at which
re-injection was done.

2 Message Body

This section is filled with text contents of the tracked message by default. Users can
edit the text contents before re-injection. However, while editing the message, user
has to ensure that the new text message conforms to the schema specified on the port
to which document is being re-injected.

3 Application Context

This section is filled with application context of the tracked message by default. Users
can edit the application context before re-injection. However, while editing the
application context, user has to ensure that the new value conforms to the schema
specified for the application context.

4 Source Contexts

Source Contexts are the list of output ports (along with application and service
instance name) through which the message has traversed till now. This section of the
re-injection message is filled with source contexts of the tracked message by default.
Users are not allowed to add more source contexts to the message being re-injected.
However, users can delete all the source contexts from the message before re-
injection so that the re-injected message looks like a fresh message.

5.7.4.2 Re-Injection of Tracked Documents

Each search result showing a tracked document in dashboard has a column named ‘Re-Inject’
on pressing which a menu pops up. The menu shows 2 options.

1 Re-Inject This Document

When user chooses this option, the document corresponding to the chosen search
result will be made ready for re-injection.

2 Re-Inject Other Document From Same Workflow

When user chooses this option, he will be shown all the documents that belong to the
workflow to which the chosen document belongs. User can then choose one of these
documents and the selected document is made ready for re-injection. Note that re-
injection is always done to the port on which the document was originally tracked.

After choosing the option above, the re-injection consists of 2 steps.

1. Message Composition

2. Message Re-Injection (Publishing the composed message)

An explanation for the actions performed in these 2 steps is provided in the following sections.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1078

5.7.4.2.1 Message Composition

In this step, user can compose the message to be re-injected as per the Re-Injection
document structure specified in section 5.7.4.1. After this step, user can press the Re-Inject
button at the bottom of the Message Composition Window, which takes the user to next step.

Refer to screenshots below (taken from dashboard) showing a document being re-injected.
The screenshot shows the Message Composition Window with 4 sections of Re-Injection
Document Structure in different tabs. The Message Properties tab is in active state.

5.7.4.2.2 Message Re-Injection

In this step, user has to specify the following properties for the message being re-injected
(See the screenshot below). After specifying these properties, the message can be re-injected
using the Publish button as shown in the image. An explanation for the parameters shown is
provided below.

1. JMS User Name

2. JMS Password

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1079

These 2 parameters will be used to create JMS connection to the Peer Server to which
the message is being re-injected.

3. Connection Factory Name

This parameter specifies the connection factory to be used to create JMS connection to
the Peer Server.

4. Delivery Mode

This parameter specifies whether the message being published is a Persistent or a
Non-Persistent message.

5. Message Priority

This parameter specifies the priority of the message being published. A higher priority
message is processed before other lower priority messages residing in the
destination’s queue.

6. Time To Live

This property specifies the maximum time interval for which the message will be
stored in the destination before it gets picked up by the subscriber/receiver.

After filling these details, the message can be finally re-injected.

5.7.4.3 Re-Injected Workflow

When a document is re-injected, it may give rise to another workflow (set of documents)
being tracked, as per the document tracking points set in the Event Process. By default, the
newly generated workflow is merged with the old workflow. Thus, the new documents tracked
because of re-injection become part of the old workflow. If users wish, they may choose to
create a new workflow from the re-injected message. For this purpose, the user should
perform the following steps while re-injection.

1. Remove the property named ‘ESBX__SYSTEM__WORK_FLOW_INST_ID’ from the
properties panel while composing the Re-Injection message.

2. Remove source contexts from the Re-Injection Message by navigating to Source
Contexts tab in the Message Composition Window. Although this step is not
mandatory, it is recommended to do so to maintain consistency in tracked document
data.

5.8 Import and Export Event Processes

Fiorano event processes are saved in the repository as XML files. An Event process can be
exported out of the Fiorano System (typically to the desktop) and/or imported. The Fiorano
Studio enables single-step import and export as discussed below.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1080

5.8.1 Importing Event Processes
1. Select one or more event process in the Server Explorer window and right-click to

select the Import Event Process tab from the pop-up menu, as shown in Figure 5.8.1.

Figure 5.8.1: Import Event Processes

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1081

2. The Import Event Processes dialog box appears to select one or more Event
Processes. Select the appropriate Event Process(s) and click Open, as shown in Figure
5.8.2.

Figure 5.8.2: Browse Event Process to Import

3. The names and categories of the event process(s) can now be customized as shown in
figure 5.8.3 and the processes saved into the repository, thus completing the Import
process.

Figure 5.8.3: Customize Event Process

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1082

5.8.2 Exporting an Event Process

If the Event Process is already opened for editing, right-click on the Event Process and select
Export from the pop-up menu, as shown in Figure 5.8.4. Specify the target location (typically
a directory on the network) to export the Event Process. The Event Process is exported.

Figure 5.8.4: Export Event Process

The application.xml for the event process can be saved.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1083

5.8.3 Exporting Multiple Applications

Select one or more Event Process from the Server Explorer window and right-click to select
the Export from the pop-up menu. Specify the target location to export the Event process(s).
The Event Process(s) is exported, as illustrated in Figure 5.8.5.

Figure 5.8.5: Export Multiple Applications

This process of import and export can also be done through the Event Process Command Line
Interface as described in section 5.11 The Event Process Command Line Interface.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1084

5.9 Deploying Event Processes

The typical life cycle of an event process in includes the creation of flows using components,
component configuration, linking components with routes, the creationof transformations for
mapping inputs from one linked component to another if required, checking the resources of
the application and, finally, launching the event process.

Since an Event Process is simply a collection of Service Components linked via routes, it can
be deployed at any point during the composition process. A set of components configured and
connected via routes in the Studio easel is considered ready for deployment.

The toolbar at the top of the Studio orchestration easel provides tools to operate on
developing event processes.

Figure 5.9.1: Toolbar menu

The following table explains the buttons on the toolbar:

Button Description

Open event process for editing

View application.xml for an event process

Enter notes for an event process

Bird’s eye view for an event process

Print an event process

Zoom in/out

Refresh event process

View the port names of the component

View the error ports of the component

Select a service instance in the current event process

Select a service instance from another event process to current
event process

Select another event process from the current list of event
processes

Select multiple components to group them

Ungroup a selected a group of components

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1085

Button Description

Perform the connectivity and resource check for an event
process

Launch the event process

Synchronize the event process

Stop a running event process or component

5.9.1 Connectivity and Resource Check

Fiorano enables the deployment of an event processes over a distributed peer to peer grid of
infrastructure servers (known as “peer servers”) at the click of a button. A developed event
process contains a set of configured components connected via routes. The configuration for
these components also includes the names and/or IP addresses of the grid-nodes (Fiorano
Peers) on which the components are to be deployed.

Figure 5.9.2 illustrates the initiation of the Connectivity and Resource Check on an Event
Process:

Figure 5.9.2: Check Resources and Connectivity

The Connectivity and Resource Check process involves the following:

• For each Component instance in the flow, checking if at least one of the peers in the
deployment-node-list of the component instance is is live and available within the
Fiorano Network.

• Dynamically deploying the components and the external dependencies for the
components used in the flow into the local repository of the peer on which the
components runs.

• Checking to ensure that any two components with different schemas have an
appropriate transformation defined if they are connected via a route.

• After the first three steps are successfully completed, Registration of the Event Process
as “launchable” from the Fiorano Enterprise Server.

Figure 5.9.3 illustrates availability of peers on the network: If the peer on which a component
instance is to run is available, the component instance has a green border.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1086

Peer configured but unavailable on network

Peer configured and available on the network
(green border)

Figure 5.9.3: Peer availability

Thus at the click of a button and from a single point of control, services can be deployed on
different peers across the enterprise network.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1087

5.9.2 Enabling/Disabling the Component Cache

During the process of development, some components might have external resources added.
Also, for custom built components the source files might be updated from time to time.

To reflect the changes for such components across the peers at runtime, the Fiorano Studio
has in its properties panel a “Component-Cache Disabled” deployment configuration at both
the Application (Event Process) as well Component levels, that optionally forces the resources
of the component to be re-fetched each time the component is launched, as illustrated in
Figure 5.9.4.

Figure 5.9.4: Fiorano Studio Properties Panel

The properties panel is activated when a component or an Event Process is selected. An Event
Process can be selected by clicking anywhere on the orchestration easel.

The available settings for the Component-Cache Disabled parameter are:

No — This setting forces the resources of the components to be fetched from the enterprise
server each time the application is launched even if they are present in the local repository.
This is the default setting.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1088

Yes — Picks up a component’s resources from the peer’s local repository without refetching
the resources from the enterprise-server repository, even if the resources might have changed
in the latter.

Note: If the Application level setting for “Component-Cache Disabled” is set to Yes then this
setting applies to all components in the application. If the application-level setting is No then
the Component level settings is considered separately for each component.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1089

5.10 Launching Components and Event Processes from Studio

Under normal circumstances, a component is only be launched as part of an application. A
component within an Event Process can be configured to be automatically launched in two
ways:

• In an independent JVM on any machine across the network (including the machine
running the peer server to which the Component is connected); this is the default
option, or

• Within the same JVM as the peer server to which it is connected. Such a launch is
called an “In-Memory” launch, since the component runs “in the memory” of the Peer-
server JVM.

In addition to the two automatic-launch options above, it is possible to configure components
for manual launch; that is, the launch is initiated from an external source, either manual or
programmatic. Figure 5.10.1 illustrates how to configure the Launch Type of a component in
the properties panel.

Figure 5.10.1: Fiorano Studio Properties Panel

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1090

Figure 5.10.2 illustrates how components launched differently are visually distinguished from
one another:

Separate Process

In Memory

Manual Launch

Figure 5.10.2: Launching Component in Various Method

5.10.1 Launching an Event Process
1. Click anywhere on the easel to select the Event Process.

2. Click the Run button on the tool bar, as shown in Figure 5.10.3.

Note: If a single component is selected in place of the entire Event Process, that
single Component is started when the Launch icon is clicked.

Figure 5.10.3: Launching an Event Process

When an Event Process is launched, the names of the components present in the orchestration
easel turn green to indicate that they are now executing.

Stopping an Event Process

When an Event Process is up and running it can be stopped as a whole or individual
component within it can be stopped and re-started as needed.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1091

5.10.2 Stopping an Event Process
1. Click anywhere on the easel to select the Event Process.

2. Click the Stop button on the toolbar; all running component instances in the
Event Process are stopped and the Event Process is stopped.

Figure 5.10.4: Stopping an Event Process

Note: When a component is killed its name turns red in the orchestration easel.

5.10.3 Synchronizing Event Processes

Fiorano has the capability to modify existing running applications on the fly. To do this, add
another component-instance to the flow from the component palette, configure the
component, and place and configure the appropriate routes. The application then needs to be
synchronized to reflect the changes.

Figure 5.10.5 illustrates the toolbar button synchronizes changes made to a running event
process.

Figure 5.10.5: Event Process Synchronization

Synchronization occurs across the whole application. The effect of synchronization is to save
the new application as updated with new components, new routes and any new configurations.

5.10.4 Launching and Stopping Individual Components

It is also possible to stop and then launch individual components within a running Application.

To stop an individual component, right-click the Component and select Stop from the drop-
down menu. Alternatively, you can select the component and click the Stop button:

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1092

To restart a stopped component service in a running application, select the component and

then click the Run button as shown in Figure 5.10.6.

Figure 5.10.6: Restart and Stop Running Application

Alternatively, you can right-click the component and select the Run from the menu list as
illustrated in Figure 5.10.7.

Figure 5.10.7: Launch Application

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1093

5.11 The Event Process Command Line Interface

In addition to the visual interface of the orchestrator, Fiorano provides a command line
interface to launch and perform other operations on an entire Event Process and/or particular
components within an Event Process (those configured with a manual launch type).

The command line interface for launching Event Processes is based on Ant tasks and is
available in the installation directory at

Windows

1. Naviate to %FIORANO_HOME% /esb/tools/cli

2. Run cli.bat file

3. Type command ant <targetname>

Linux

1. Naviate to $FIORANO_HOME/esb/tools/cli

2. Run cli.sh file (this wil run the default target in the build file, that is, launchApps)

3. The user can also specify the target by using ./cli.sh <targetname>

Figure 5.11.1 displays the tree listing in typical windows installation of the platform

Figure 5.11.1: Tree Type Listing

• Depending on the operating system you are using, the cli.bat or cli.sh file sets up the
environment to interact with the exposed Fiorano API. Ant commands can be executed
from the cli.bat (or cli.sh, as appropriate) files to issue requests to the Fiorano
Enterprise Server.

• The build file for ant tasks is build.xml. This contains the list of ant tasks provided by
Fiorano by default to interact with the exposed API.

• The build.properties file is the properties file for the build.xml file containing the ant
tasks.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1094

5.11.1 List of Ant Tasks provided by command Line Interface

Following are the list of ant tasks available in Command Line Interface tool

1. importApps - imports the list of applications that are specified for property
IMPORT_APPLICATION_LIST in build.properties file. The directory from which the
applications to be imported can be specified with APPLICATION_IMPORT_DIR. if the
property OVERWRITE is true, it will overwrite the existing application.

2. importwithlibs - by using this target one can import the application with services
that are required by application. The application Zip file name can be specified with
APPLICATION_ZIP in build.properties file.

3. exportApps - exports the list of applications that are apecified for property
EXPORT_APPLICATION_LIST in build.properties, provided the application exists in
Fiorano Application repository. The directory to which the applications to be exported
can be specified with APPLICATION_EXPORT_DIR.

4. exportAppsWithLibs - by using this target one can export the list of applications
specified for property EXPORT_APPLICATION_LIST in properties file along with
services that are used in application. The property APPLICATION_EXPORT_DIR_LIB
can be used to give the path of Export directory.

5. importServices - Import Business Components from IMPORT_SERVICES_LIST

If the property OVERWRITE_IMPORT_SERVICE is true while importing the service, it
will overwrite the existing service.

6. exportServices - Export Business Components from EXPORT_SERVICES_LIST.

7. launchApps - Launch all the applications specified in LAUNCH_APPLICATION_LIST

8. stopApps - Stop all the applications specified in STOP_APPLICATION_LIST

9. replace - Replaces properties in Event process, the properties file to be specified as
value of PROPERTIES_FILE in build.properties file.

10. stopServices - Stops the list of services that are specified for property
STOP_SERVICES_LIST in build.properties file . The services to be stopped belong to
the Application specified by the property STOP_SERVICES_OF_APPLICATION. Only one
application name can be specified with the property
STOP_SERVICES_OF_APPLICATION.

11. stopAllServices - Stops all Services of the list of applications that are specified by the
property STOP_ALLSERVICES_OFAPPLICATION_LIST in build.properties file.

12. startServices - Starts the list of services that are specified for property
START_SERVICES_LIST. The services to be started belong to the Application specified
by the property START_SERVICES_OF_APPLICATION. Only one application name can
be specified with the property START_SERVICES_OF_APPLICATION. The application
whose services are to be started should be running.

13. startAllServices - Start all Services of the list of applications that are specified by the
property START_ALLSERVICES_OFAPPLICATION_LIST in build.properties file. All the
applications whose services are to be started should be running.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1095

5.11.2 Launching an Event Process from Command Line

To launch an event process, navigate the build.properties file to edit the value of properties
required by the target launchApps.

LAUNCH_APPLICATION_LIST=<Comma Separated Event Processes>

For example: LAUNCH_APPLICATION_LIST=SimpleChat, SimpleDemo

Figure 5.11.2 illustrates a snippet from a build.xml file.

Figure 5.11.2: Build.xml Snippet

Now from the command prompt, the command: ant launchApps launchs all the event
processes specified in LAUNCH_APPLICATION_LIST.

All the properties accessed in this command is available in the build.properties file.

• In build.properties, change the value of LAUNCH_APPLICATION_LIST to the name of
the event process to be started. All other values are provided for a default connection
to an enterprise server on the local machine and can be changed as required. Then
simply call the ant task on the command line as shown below.

Figure 5.11.3: Build Properties

• If the build is successful that means the command has been issued to the Enterprise
Server successfully and the Application is launched.

• It is also possible to loop over these basic ant tasks provided by Fiorano.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1096

5.11.3 Launching Components from Command Line

Components whose Launch type is set to Manual may be launched from the command line.
The interface for launching such components is available in the installation directory at

%FIORANO_HOME% /esb/tools/scriptgen

The following screen displays the tree listing in a typical windows installation.

Figure 5.11.3: Launching Components from Command Line

1. Depending on the Operating system you are using, the cli.bat or cli.sh file sets up the
environment to interact with the exposed Fiorano API. Ant commands can be executed
from the cli.bat (or cli.sh, as appropriate) files to issue requests to the Fiorano
Enterprise Server.

2. The build file for ant tasks is build.xml. It contains the list of ant tasks provided by
Fiorano by default to initiate the manual launch of particular components.

3. The properties file for the build.xml is build.properties.

4. The component_properties folder includes the manual launch scripts, although they
can be stored anywhere.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1097

5.11.4 Executing Components Manually

To launch a component from an external source, a script defining the properties for that
component is required. To get a manual launch script for a component configured to be
executed in manual mode

1. Select the component and right-click on it. A menu list appears.

2. Select Execution and choose the Save Manual Launch Script option.

Figure 5.11.4: Save Manual Launch Script

Note: A prompt for saving the script in the default component_properties directory is
shown and you can choose to save the script in a directory of your choice.

3. Invoke the command line interface using scriptgen.bat and build the scriptgen by
calling ant which has the default ant target launch

Figure 5.11.5: The Command Line Interface

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1098

4. This launches the GUI shown in Figure 5.11.6. Click on the ellipsis to point to the
manual launch script which was saved and then click the Load button.

.

Figure 5.11.6: Component Configuration Screen

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1099

5. The properties from the launch script are loaded. Enter the username and password in
the Username and Password fields and click the Ok button.

Figure 5.11.7: Launch Configuration Dialog box

This issues the command to the Enterprise Server to launch the component configured
manually and the component is launched.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1100

5.12 Best Practices in Deployment

A typical business problem is solved using a set of business processes, each of which is
implemented of a group of flows. Each flow should represent a unit of business operation. A
series of flows communicating with each other and performing units of business operations
enable complex business problems to be solved in a modular fashion.

Fiorano Event Process Orchestrations capture the essence of Service-Oriented development
where each Service/Component performs its own function. In this case a group of self-
contained Fiorano components connected via routes for information exchange perform units of
business operations, achieving modularity by segregation of tasks while at the same time
providing an entirely visual composition.

Best practices for Event process development include:

• Model each Event Process to perform one or a small number of business operation(s).

• To speed development, use separate teams of developers to develop different Event
Processes.

• Event Processes communicate with each other using port bindings, as explained in the
next section

• Ensure that all the components have appropriate names mapping their business or
technical functions.

All external dependencies for components must be noted and added to the resources for the
relevant components using the Fiorano Services and Security Manager tool.

• To avoid cluttering in the easel, visual shortcuts for a configured component should be
placed to ensure clarity.

• It is recommended to keep the event-process files created and or modified in version
and/or source control systems. The files typically include the following:

o Enterprise Server and Peer Server profiles

o Event Processes

o Custom service components

o Custom mapping functions

• Choosing proper Destination names (Queues/Topics) in cases where components
communicate via explicit JMS destinations.

 Process to Process Communication - Using Port Bindings

The ports of a component are simple JMS destinations. To send a message from one business
component to another within the same Event Process routes are explicitly created; each route
creates on-the-fly destinations without programmer intervention to get messages from
senders to receivers. To send messages across Event Processes the ports of components must
be bound to a particular JMS destination.

For an outport of a component, this implies that messages processed by the component are
sent to a particular bound destination.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1101

For an inport of a component this implies that the component has a subscriber on a
destination and receives its messages from that particular bound destination only.

5.12.1 Creating Port Bindings Between Components in Different Event Processes
1. Select the end flow business component’s OUT_PORT to view its properties. Under

JMS Destination select Use Specified Destination to yes and choose a
Destination Name, as shown in Figure 5.12.1.

Figure 5.12.1: Properties of OUT_PORT

2. At the entry point of the other flow, select the IN_PORT for first business component.

Figure 5.12.2: Properties of IN_PORT

Note: The Destination Type is changed to type Topic (the exit point for Flow one),
“Use Specified Destination” is set to ‘yes’ and the “Destination Name” is set to the
destination from which the message is to be received.

Figure 5.12.3 illustrates how a port bound queue or topic appears visually

Figure 5.12.3: Port Bound Queue

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1102

5.13 Testing Event Processes

If event processes are modeled as Services performing a unit of business operation then the
entry point for a flow can be defined. A feeder (comprising the appropriate XSD and a sample
xml message) can be placed at the entry point to sanity test the execution task for the
required flow.

This feeder component can then later be removed.

To test scenarios on which the execution of a component depends upon the content of the
input received, a route interceptor can be placed and values changed on the fly to check the
validity of each execution.

5.14 Sample Event Processes

All the files required to run these sample event processes are available in applications
directory as per the following path:
%FIORANO_HOME%\esb\fes\repository\applications.

Fiorano SOA Platform includes a rich set of Sample Event Processes that demonstrate its use
in real environments. Based on real use-case scenarios these easy-to-run event processes
illustrate how the various components of Fiorano SOA Platform integrate and enable you to
solve problems at various verticals.

Before running these sample event processes, please ensure that the following components
are running on your Fiorano SOA Platform network.

 Fiorano ESB Server

 Fiorano ESB Peer Server

 Studio

5.14.1 Bond Trading

Scenario

This demo demonstrates a typical Bond Trading scenario wherein messages are exchanged at
a very fast rate between various parties.

The prices of the bonds change at a fast rate. Buyers keep track of the price and based on the
current price can request for a quote from a trading centre. Based on the availability of the
Bond at the requested price, the centre can send an appropriate response to the buyer.

In this demo, there are three financial centers viz. London, Singapore, and Boston. They
publish their Bonds identified by unique ISINs.The Bond details appear on GUIs for users to
keep track of the changing prices. The GUI allows user to buy a bond, by specifying the
quantity and asking price. Based on the ISIN, the request is routed to the appropriate centre.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1103

Event Process Diagram

Figure 5.14.1: Bond Trading Event Process Diagram

Components Used

• FileReader

• Text2XML

• XMLSplitter

• CBR (Content Based Routing)

• Prices - Custom Component

• TradeBus - Custom Component

• MarketPricesGui - Custom Component

• RfqManager - Custom Component

Running the Event Process

8. Please ensure that all the Fiorano Servers are running.

9. Invoke the Studio by selecting Start > Programs > Fiorano > Fiorano SOA > Fiorano
Tools > Studio.

10. Double-click the event process in the Event Process Explorer pane.

11. Perform connectivity and resource check. Launch the event process.

Two screens appear displaying the Bond details. One is the BOND PRICES-
MAINTENANCE SCREEN, the other one is the Bond Pricing screen.

12. Double-click on any ISIN in the Bond Pricing screen. It opens up a pop-up asking for
the number of bonds you want to request for. Specify the size and click on Request.

The response is sent back from the appropriate centre asking the buyer to fill the
price.

13. After filling the price, click on Send Quote.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1104

5.14.2 Database Replication

Scenario

The Database Replication Demo demonstrates the usage of DBAdapter for database
replication.

The event process consists of a CRM service instance, using which PO is generated. This PO is
fed into the OracleIn instance of the DBAdapter. The OracleOut writes the PO into the
PurchaseOrders table in the Oracle Database.

The OracleOut instance of the DBAdapter, which is monitoring table "PurchaseOrders" for
insert operations, gets these records, converts it into XML and passes it on to the SqlServerIn
instance of the DBAdapter. The SqlServerIn inserts into the "PurchaseOrders" table in the
connected SQL Server database.

Event Process Diagram

Figure 5.14.2: Database Replication Event Process Diagram

Component Used

• CRM

• DB

• Display

Preliminary Steps

20. If you have not run the batch file orcl.bat Located in %FIORANO_HOME%\ esb\
samples\ EventProcesses\ DatabaseReplication\ resources. This batch file creates a
schema named tifositest and a table named purchaseorders in the Oracle Database
that you can use to run this event process. In case you have already run this batch file
and created the schema and table on the database, you can skip this step.

21. If you have not run the batch file mssql.bat Located in %FIORANO_HOME%\ esb\
samples\ EventProcesses\ DatabaseReplication\ resources. This batch file creates a
schema named TifosiTest and a table named purchaseorders in the MSSQL Database
that you will use to run this event process. In case you have already run this batch file
and created the schema and table on the database, you can skip this step.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1105

22. Double click on OracleIn Service. This opens its CPS. Edit the JDBC URL to
jdbc:oracle:thin:@<your database location>:<your database port>:<your
database name>. For example, a typical JDBC URL would look like:
jdbc:oracle:thin:@164.164.128.115:1521:orcl. Leave rest of the settings as is. Press
the Finish button to save your settings.

23. Do the same for OracleOut Service.

24. Double click on SQLServerIn Service. This opens its CPS. Edit the JDBC URL to
jdbc:odbc:Driver={SQL Server};Server=<your database
location>;Database=<your database name>;Uid=TifosiTest;Pwd=TifosiTest;. For
example a typical JDBC URL would look like: jdbc:odbc:Driver={SQL
Server};Server=164.164.128.115;Database=master;Uid=sa;Pwd=;. Leave rest of the
settings as is. Press the Finish button to save your settings.

Running the Event Process

1. Please ensure that all the Fiorano Servers are running.

2. Invoke the Studio by selecting Start > Programs > Fiorano > Fiorano SOA > Fiorano
Tools > Studio.

3. Double-click the event process in the Event Process Explorer pane.

4. Perform connectivity and resource check. Launch the event process.

5. Send a PO from the CRM Service.

This adds a record in the database configured in OracleIn service. In addition, a similar
record is entered in the database configured in SQLServerIn Service.

5.14.3 EAI Demo

Scenario

The EAI Demo event process is used to show a typical integration scenario, where a Purchase
Order (PO) comes from a CRM Service to an ERP Service. The ERP Service sends out an Email
to the concerned person if the Order is accepted, or sends out a rejection notice in case the PO
is rejected.

Event Process Diagram

Figure 5.14.3: EAI Demo Event Process Diagram

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1106

Component Used

• CRM

• ERP

• XSLT

• SMTPBridge

• Display

Running the Event Process

1. Please ensure that all the Fiorano Servers are running.

2. Invoke the Studio by selecting Start > Programs > Fiorano > Fiorano SOA > Fiorano
Tools > Studio.

3. Double-click the event process in the Event Process Explorer pane.

4. Perform connectivity and resource check. Launch the event process.

5. Send a purchase order from the CRM Service.

6. The purchase order is received by the ERP Service. When the PO arrives, a pop-up
window appears showing that a PO has been received.

7. Close the pop-up window. On closing the pop-up window, another window pops up
displaying details of the PO. In that pop-up dialog, either accept or reject the PO.

8. On accepting the order, an acceptance mail is sent to the person who sent the PO via
the CRM Service. The default user for this is Ayrton (ayrton@fiorano.com).

9. On rejection, the details of the PO are shown on the Rejected Orders Display Service.

5.14.4 Order Entry

Scenario

This demo is a scaled down version of an implementation of a real life project done by Fiorano
at a client site. The application shows how Fiorano SOA Platform can be used to integrate front
end applications with varied backend databases and legacy systems utilizing different kinds of
communication protocols. The application also shows how a business scenario can be built
using the Fiorano SOA Platform Event Process Orchestrator, by simply dragging and dropping
various coarse grained components (or Fiorano Services) and orchestrate a business process
out of them based on the current business needs.

In this application, a user is provided a web based interface to send a purchase order to a
company. The purchase order is received by HTTPReceive component, which has an embedded
web server inside it. The purchase order request is inserted in a database table and forwarded
to a legacy system. Here we are using the ERP Service as a manual intervention legacy
system, which provides facility for the business manager to view details of the order received,
and accept or reject them. Based on whether the order is accepted or rejected, corresponding
actions are taken. In case the order is accepted, an email is sent to the customer regarding
the acceptance. At the same time an HTTP component is used to POST the order delivery
request to a third party vendor. If the order is rejected, a rejection mail is sent to the
customer.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1107

Note: The message format sent out by the Manual Intervention Service is different from the
message format that is expected by the SMTP Service. To provide a seemless and real time
transformation of the business documents flowing through the Fiorano Network, Fiorano SOA
Platform provides the XSLT component. This component converts the incoming business
document format to an outgoing format as per the configurations done in it. It uses the
Fiorano Mapper Tool to configure mapping details between the input and the output structures
and utilizes the standard XSLT Engine to do the transformation.

Event Process Diagram

Figure 5.14.4: EAI Demo Event Process Diagram

Components Used

• HTTPReceive

• DB

• ERP

• XSLT

• SMTP

• HTTP (Post)

Running the Event Process

1. Please ensure that all the Fiorano Servers are running.

2. Invoke the Studio by selecting Start > Programs > Fiorano > Firoano SOA >
Fiorano Tools > Studio.

3. Double-click the event process in the Event Process Explorer pane.

4. Start the HSQL database server by executing this batch file: starthsql.bat located in
%FIORANO_HOME%\esb\samples\hsql.

5. Also run the batch file init.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\OrderEntry\resources.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1108

6. Perform connectivity and resource check. Launch the event process.

7. Wait for some time so that all the services become green.

8. Use your web-browser to open the file: Send_PO_Request.html

9. Fill up the form and press the submit button.

10. Wait for some time and the order is placed. You will get a default response back.
Reach to the UI window of the ManualIntervention Service. It would be showing a PO
received dialog box. Close that dialog box.

11. You will see the PO details. Either accept or reject the order.

12. A corresponding email would be sent based on this to the email address which you
filled in the form.

13. Once you are done with the demo, run the batch file cleanup.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\OrderEntry\resources.

14. Also, shut down the HSQL server by pressing Ctrl+C in the window in which it is
running.

5.14.5 Portal Integration

Scenario

This event process shows how an HTTP Client can communicate with a back-end database
using Fiorano SOA Platform. An HTTP request from a client like your default web-browser is
sent to HTTPReceive service, which generates a "Get_PO_Details_Event" out of it. The event is
read by the DB adapter and details of the PO provided in the event, are send as
PO_Details_Event to XSLT. HttpReceive reads the Final_PO_Details_Event and sends the PO
Details back to the client based on the configurations done in it.

Event Process Diagram

Figure 5.14.5: Portal Integration Event Process

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1109

 Component Used

• HTTPReceive
• DB
• XSLT

Running the Event Processes

 Start the HSQL database server by executing this batch file: starthsql.bat located in
%FIORANO_HOME%\esb\samples\hsql.

 Also run the batch file init.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\PortalIntegration\resources.

 Perform connectivity and resource check. Launch the event process.

 Use your web browser to open the GetPODetails.html page.

 Click the Submit button.

 Wait for some time while the details are fetched from the DB and displayed on your
web browser

 Once you are done with the demo, run the batch file cleanup.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\PortalIntegration\resources.

 Also shut down the HSQL server by pressing Ctrl+C in the window in which it is
running.

FAQ

Why does my html page not respond for long time on pressing submit?

When the HttpReceive Service starts, it takes some time to start the embedded HTTP Server.
It might happen that the HTTP Server didn't start and you pressed the submit button. Try
resending the request. Alternatively, restart the event process, and wait for a few moments
after every service becomes green and then send the request.

5.14.6 Purchasing System

Scenario

This demo illustrates how Fiorano SOA Platform can be used to integrate front end applications
with backend databases and web based systems with different kinds of communication
protocols. The application also shows how a business scenario can be built using the Studio,
by simply dragging and dropping various coarse grained components (or Fiorano Services) and
orchestrates a business process out of them based on the current business needs.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1110

This application involves the following steps.

1. A purchase request is sent by the user to a company through a web based interface.

2. The purchase order is received by HttpReceive Adapter, which has an embedded web
server inside it. The purchase order consists of three inputs namely REQUEST,
CREDENTIALS and SYNC_PO_002. REQUEST is an identifier string for the request.
CREDENTIALS is an xml string containing the login and password details of the user.
SYNC_PO_002 is an xml string containing the actual details about the requested
purchase.

3. The purchase details xml is verified to be conforming to a predefined schema by the
XMLVerification component.

4. The login and password details are verified by a custom LdapAuthenticator component
which connects to an underlying LDAP server and the flow continues only if this
authentication is successful.

5. The request identifier is verified by a CBR (Content Based Router) component to be
the correct one for which this system is expected to service the request.

6. The purchase details are then entered into a database and the purchase order is sent
for processing to a downstream web based application.

7. Once the processing is complete in the downstream web based application, a
confirmation is displayed in the Display component.

8. To provide a seamless and real time transformation of the business documents flowing
through the Fiorano Network, Fiorano SOA Platform provides the XSLT Service. This
service converts the incoming business document format to an outgoing format as per
the configurations done in it. It uses the Fiorano Mapper Tool to configure mapping
details between the input and the output structures and utilizes the standard XSLT
Engine to do the transformation. Also for checking the validity of an xml document,
Fiorano SOA Platform provides the XMLVerification service. And for XPath based
content based routing facility, it provides the CBR service.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1111

Event Process Diagram

Figure 5.14.6: Purchasing System Event Process Diagram

Components Used

• HttpReceive

• DB

• XMLVerification

• XSLT

• CBR

• HTTPAdapters

• LdapAuthenticator

• Display

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1112

Running the Event Processes

1. Ensure that the Fiorano ESB Server and the Fiorano Peer Server are running.

2. Invoke the Studio by selecting Start > Programs > Fiorano > Fiorano SOA Platform >
Fiorano Tools > Studio.

3. Double-click the event process in the Event Process Explorer pane.

4. Start the HSQL database server by executing this batch file starthsql.bat located in
%FIORANO_HOME%\esb\samples\hsql.

5. Also run the batch file init.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\PurchasingSystem\resources.

6. Perform connectivity and resource check. Launch the event process.

7. Wait for some time so that all the services become green.

Run PurchasingSystem_Install.bat (on Windows) or
PurchasingSystem_Install.sh (on Linux) located in
%FIORANO_HOME%\esb\samples\EventProcesses\PurchasingSystem\resources

8. Start the Fiorano ESB Web Container.

9. If you are using Windows, start the pre-configured Open LDAP server by running
slapd.exe -d 1 from %FIORANO_HOME%\esb\samples\openldap. If you are using
Linux, please read the file LdapSetup_Linux.txt located in
%FIORANO_HOME%\esb\samples\PurchasingSystem\docs for instructions on how to
set up the Open LDAP server for Linux.

10. Use your web-browser to open the file PurchasingSystem_Input.html located in
%FIORANO_HOME%\esb\samples\EventProcesses\PurchasingSystem\resources.

11. The sample data given in the file PurchasingSystem_SampleInput.txt located in
%FIORANO_HOME%\esb\samples\EventProcesses\PurchasingSystem\resources can
be used to fill the input form. For conveneince, the form has already been filled.

12. Fill up the form and press the Submit button.

13. Wait for some time and the request is sent.

14. Look at the Display window that opens automatically. Once the processing is complete,
an appropriate message appears in it.

15. Once you are done with the demo, run the batch file cleanup.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\PurchasingSystem\resources.

16. Shut down the HSQL server by pressing Ctrl+C in the window in which it is running.

17. Also, shut down the ESB web container and the standalone LDAP server.

FAQ

Why does my html page not respond for long time on pressing submit?

When the HttpReceive Service starts, it takes some time to start the embedded HTTP Server.
It might happen that the HTTP Server didn't start and you pressed the submit button. Try
resending the request. Alternatively, restart the event process, and wait for a few moments
after every service becomes green and then send the request.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1113

5.14.7 Retail Television

Scenario

This demo is a scaled down version of a real life implementation for a leading television
network in retail. The application also shows how a business scenario can be built using the
Studio, by simply dragging and dropping various coarse grained components (or Fiorano
Components) and orchestrating an event process based on the current business needs. In this
application, a media production request arrives in a specific directory. The directory is polled
using Fiorano’s File Reader. The request is written to a database table using Fiorano’s DB
adapter. This table is monitored for insertion events by another instance of Fiorano’s DB
adapter. The request is transformed and further processed by a web service in order to create
a preview for the request.

Event Process Diagram

Figure 5.14.7: Retail Television Event Process Diagram

Component Used

• FileReader

• Text2XML

• XSLT

• Web Service Consumer

• CBR

• SMTP

• DB Adapter

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1114

Running the Event Processes

4. Please ensure that all the Fiorano Servers are running.

5. Invoke the Studio by selecting Start > Programs > Fiorano > Fiorano SOA >
Fiorano Tools > Studio.

6. Double-click the event process in the Event Process Explorer pane.

7. Start the ESB Web Container from Start > Programs > Fiorano > Fiorano SOA >
Fiorano Servers > ESB Web Container.

8. Start a console window from Start > Programs > Fiorano > Fiorano SOA >
Fiorano ESB Console > EDBC Sample. Change directory to
EventProcesses\RetailTelevision\resources and deploy the web service by executing
ant on the console.

9. Start the HSQL database server by executing this batch file: starthsql.bat located in
%FIORANO_HOME%\esb\samples\hsql.

10. Also run the batch file init.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\RetailTelevision\resources.

11. Perform connectivity and resource check. Launch the event process.

12. Wait for some time so that all the services become green.

13. Create a directory called production_requests under
%FIORANO_HOME%\esb\samples\EventProcesses\ RetailTelevision.

14. Go to the directory %FIORANO_HOME%\esb\samples\EventProcesses\
RetailTelevision\resources. Copy the file media_production_request_1.txt into the
directory called production_requests.

15. The last date field in the file determines whether a warning email is sent or the create
preview service is called. You can change the day in the date to be greater than 10 so
that an email is sent.

16. Once you are done with the demo, run the batch file cleanup.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\RetailTelevision\resources.

17. Also, shut down the HSQL server by pressing Ctrl+C in the window in which it is
running.

5.14.8 Revenue Control Packet

Scenario

This demo is a scaled down version of a real life implementation at a customer site. It
represents a very typical situation in a production support environment where the data in
different systems needs to be synchronized. The data modification communication between
the systems involved is in the form of proprietary flat files. The application also shows how a
business scenario can be built using the Studio, by simply dragging and dropping various
coarse grained components (or Fiorano Components) and orchestrating an event process
based on the current business needs.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1115

Orchestrating this application / event process involves the following steps.

1. A particular directory is being monitored for files of type *.LDF.

2. The contents of these files are in proprietary format. So a custom component is used
to

a. Extract the content of these files,

b. Convert the extracted flat- file data into its corresponding XML,

c. Then, use the same to update a back-end database.

3. Errors occurring in any of the intermediate steps are

a. Displayed

b. Written to a file

c. Communicated via e-mail to a particular user

To provide a seamless real-time transformation of the business documents flowing through the
composed Fiorano Network, Fiorano SOA Platform provides the XSLT component. This Fiorano
component converts the incoming business documents to an outgoing format as per its
configurations done at the time the event process was composed. It uses the Fiorano Mapper
Tool to configure mapping details between the input and the output structures and utilizes the
standard Xslt Engine to perform the required transformations.

Event Process Diagram

Figure 5.14.8: Revenue Control Packet Event Process Diagram

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1116

Component Used

• FileReader

• BinaryFileReader

• DB

• XSLT

• FileWriter

• SMTP

• Display

Running the Event Processes

1. Ensure that the Fiorano Enterprise Server and the Fiorano ESB Peer are running.

2. Invoke the Studio by selecting Start > Programs > Fiorano > Fiorano SOA
Platform > Fiorano Tools > Studio.

3. Double-click the event process in the Event Process Explorer pane.

4. Start the HSQL database server by executing this batch file starthsql.bat located in
%FIORANO_HOME%\esb\samples\hsql.

5. Also run the batch file init.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\RevenueControlPacket\resources.

6. Perform the Connectivity and Resource Check. Launch the event process.

7. Wait for some time so that all the services become green.

8. Run the batch file RevenueControlPacket_Install.bat located in
%FIORANO_HOME%\esb\samples\EventProcesses\RevenueControlPacket\resources.

9. View the Display windows that opens automatically. Once the processing is complete,
an appropriate message appears in at least one of the Display windows.

10. Once you are done with the demo, run the batch file cleanup.bat from
%FIORANO_HOME%\esb\samples\EventProcesses\RevenueControlPacket\resources.

11. Also, shut down the HSQL server by pressing Ctrl+C in the window in which it is
running.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1117

5.14.9 Simple Chat

Scenario

The SimpleChat event process initiates a chat session on two or more nodes of a Fiorano SOA
network. This event process also demonstrates how messages flow from one service to the
other in a Fiorano SOA network

Event Process Diagram

Figure 5.14.9: Simple Chat Event Process Diagram

Component Used

• Chat

Running the Event Processes

1. Please ensure that all the Fiorano Servers are running.

2. Invoke the Studio by selecting Start > Programs > Fiorano > Fiorano SOA > Fiorano
Tools > Studio.

3. Double-click the event process in the Event Process Explorer pane.

4. Perform connectivity and resource check. Launch the event process.

5. Send some messages from Chat1. You will receive them on Chat2.

6. Alternatively you can send messages from Chat2 and they is received at Chat1.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1118

5.14.10 WorkList Sample

Scenario

This demo represents a real life scenario which allows Enterprises to define 'Manual
intervention' based business processes quickly as well as define rules to perform time based or
role-based escalation of specific tasks. The WorkList business service is used for managing
XML documents by introducing a pause in the path of a document in a workflow event process.
It uses RDBMS to store the XML documents arriving from various event processes running on
the Fiorano Network. The business service stores the content until it receives an external
signal triggering a release of its content. The WorkList Service can be found in the 'Flow'
category of the Studio.

Event Process Diagram

Figure 5.14.10: WorkList Sample Event Process Diagram

Component Used

• WorkList

• Feeder

• Display

Running the Event Processes

1. Please ensure that all the Fiorano Servers are running and you have followed the
PRELIMINARY STEPS.

2. Invoke the Studio by selecting Start > Programs > Fiorano > Fiorano SOA >
Fiorano Tools > Studio.

3. Double-click the event process named WorkListExample in the Event Process Explorer
pane.

4. Perform connectivity and resource check. Launch the event process.

Fiorano SOA Platform User Guide

Chapter 5: Event Processes Page 1119

5. Wait for some time so that all the services become green.

6. In the feeder check the replace $index option.

7. Send some messages by clicking the Send N times button.

8. In the web browser login using login: ayrton, password: senna.

9. FES admin and password details should be provided in a properties file as shown
below:

FES_ADMIN_USER=admin

FES_ADMIN_PASSWD=password

10. A system property FES_URL_PROPERTIES whose value is the path of file mentioned
above should be added in fes.conf. Entry should be made as:

FES_URL_PROPERTIES=C:/fioranodev/svn/head/installer/esb/fes/bin/fesurl.properties

11. Wait for some time and you would see the messages listed as work items in the
worklist.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1120

Chapter 6: High Availability

The importance of 24X7 service availability and the growing importance of conducting
real-time business are driving the demand for High Availability Enterprise Systems. The goal is
to maximize system availability and eliminate any single point of failure. This chapter
discusses the High Availability (HA) features provided by the Fiorano SOA Platform.

The Fiorano SOA Platform provides multiple tiers of High Availability:

1. Message Level HA

2. Enterprise Server HA

3. Peer Server HA

These multiple levels of High Availability eliminate the requirement for expensive RAID, OS
clustering software, or third-party HA frameworks in the messaging layer. No matter how
complex in-process transactions continue to completion without any expensive rollback or
recovery time.

Fiorano provides complete flexibility to administrators giving them an option to either use a
shared database (between active and passive server) or use database replication (from active
to passive server). So in scenarios where it is not possible to share the database,
administrators can still use Fiorano's High Availability Enterprise Systems using the in-built
replication support.

6.1 ESB Server High Availability

This section describes how Failover can be configured on the Fiorano Enterprise Server (FES).
This feature allows you to specify a backup Enterprise Server as a contingency measure
against the failure of the primary Enterprise Server in the Fiorano Network. If the default FES
fails, the Event Processes running on the Fiorano network connect to the backup FES and
continue to run. The tools do not automatically reconnect to the backup Server; the user has
to manually connect them. The Fiorano Enterprise Server HA is implemented in both shared
and replication mode. If there is a failure in the Active Server while it was launching an
application, the Secondary Server assumes the Active role and starts launching the Event
Processes again.

Figure below illustrates the failover connection on the FES.

Figure 1: Failover connection on the FES

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1121

6.2 Peer Server High Availability

This section describes how Failover can be configured on the Fiorano Peer Server (FPS) in
conjunction with FES High Availability. You can specify a Backup Peer Server as a contingency
measure against the failure of the Primary Peer Server in the Fiorano network. If the default
FPS fails, all components running on the peer connect to the backup FPS and continue to send
and receive messages. This reconnection is completely transparent to the components. The
state of the application is restored after each failover. The Fiorano Peer Server High
Availability is implemented in both shared & replication mode. If there is a failure in the Active
Server while it was processing the messages from the components, the Secondary Server
assumes the Active role and continues to process the messages.

Figure 2: Configuration of Failover on the FPS

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1122

6.3 Fiorano Replicated High Availability Working

Figure 3: Replication of servers

The central concept of backchannel replication is that the Active Server (the server which is in
the Active State) replicates its data store and state to the Passive Server, thus keeping both
servers in sync. This replication channel is supported on a private network dedicated to the
synchronization of the broker state and messaging data.

The secondary server accepts no client connection while in its hot-standby (passive) role, but
is prepared to immediately transition to the Active role as soon as it detects that the Active
Server is unavailable. If the primary fails, all Fiorano applications fail over from the primary
and reconnect to the designated secondary backup broker.

The primary and secondary broker-pair use the replication channel to routinely seek the
heartbeat of the other and watch for any interruption in the data flow or connection to switch
states. A locking mechanism (explained below) is also employed to determine the state of the
servers.

This Hot-failover process is immediate and is completely transparent to all client applications.
The Secondary Server in the active role is sensitive to re-establishment of the replication
channel. This reconnection may come from a recovery of the Primary Server or from a
replacement Primary Server. Once the primary comes up again, it assumes the role of the
Secondary Server (since the original Secondary Server is now the Primary Server).

Important: If servers are running in Replicated HA mode, it becomes essential to have a
reliable network for database synchronization calls.

6.3.1 HA Locking Mechanism

HA locking mechanism is employed by the servers in replicated mode to determine the server
state in case, a server of the pair is unavailable or if the network fails. A read and write
permissions file is shared on a machine this file is referred as the LockFile. The machine
hosting the LockFile is referred to as the gateway machine. A server can switch to Active only
if it holds a lock over the LockFile.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1123

In HA implementation prior to the locking mechanism, a network link failure between the
servers could have led to both servers switching to Standalone state. Since the lock can be
held by only one server at a time, it prevents both servers from switching to
Active/Standalone state.

The locking mechanism makes the state switching of a HA server more deterministic.

6.3.2 Server States

A server at any point of time can be in the following states:

• Active

• Passive

• Standalone - Same as active. Indicates that the backup server is down/not present in
network.

• Dead - Indicates that the server is down/not present in network.

• Active - Sync/Active Transition

• Passive - Sync/Passive Transition

• Waiting - Same as passive. Indicates that the databases of the Active and Passive
Servers need to be synchronized.

The following diagram explains the transition to various states:

Figure 4: Transition to various states

Note:

• failure detected – refers to the link between the servers being broken

• sync-complete – database synchronization complete

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1124

• Lock Lost – lock over the LockFile is lost

• Lock Obtained – lock obtained over the LockFile

• Resolve to Active/Passive – based on which server obtains the lock

1. On startup, the Server enters into WAITING state. In this state, the server is waiting for
its backup server to connect to it. This is the initial synchronization state, which is required
to sync up the primary server with the secondary to avoid any message loss. This server
will change state if one of the following occurs.

• Switch to PASSIVE SYNC state: If the HA channel is established and the other
server is in STANDALONE state.

• Switch to PASSIVE(STANDBY) SYNC or ACTIVE SYNC state: If the HA channel is
established and the other server is also in WAITING state, then the servers assumes
themselves as being in Active or Passive roles depending on the Repository
Timestamps (whichever server has the latest timestamp is assumed to be the
primary).

If the repository does not have Timestamps (the server-store is cleaned up), then the
server which is configured as primary turns to ACTIVE SYNC.

2. When the Server is actively serving clients and its backup server is not running or if the
HA transport channel is broken and it has the lock over the lockfile, the state of the server
is STANDALONE. If the server in STANDALONE state establishes the HA channel and the
other server is in WAITING state, then the STANDALONE server shifts to ACTIVE SYNC
state. A passive (standby) server can switch to STANDALONE if the other server is not
running or if the transport channel is broken and it acquires the lock over the LockFile.

3. When the Server is in ACTIVE SYNC state, the server starts synchronizing its data with
the backup server which is in PASSIVE SYNC. The Server in ACTIVE SYNC continues to
serve its clients. Completion of the Runtime Synchronization Protocol causes a transition of
the backup server to the ACTIVE state and the server in PASSIVE SYNC state moves to
PASSIVE state.

4. Once the Primary Server completes the synchronization, it enters into the ACTIVE state
and begins actively transmitting state information and Call Replications onto the PASSIVE
Server. At this point, if there is a failure of the ACTIVE server, the Hot Standby PASSIVE
Server is ready to move into the STANDLONE state and starts accepting requests from
the clients.

5. An active server can switch to WAITING if the transport channel is broken and it loses
the lock over the LockFile. A STANDALONE server can switch to WAITING if it loses the
lock over the lock file.

6. Whenever there is a change in the server state, it broadcasts the present and previous
state to the Backup Server. The Servers transition is a function of its own state, the
present and previous state of the Backup Server and whether or not it holds the lock over
the LockFile.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1125

6.3.3 Configuring Fiorano SOA High Availability Servers

The FioranoSOA installer comes with prebuilt profiles for replicated mode which are
preconfigured and ready to run on a single machine.

Table 1: The default profiles to be used for Primary and Secondary Servers

Server Location

Fiorano Enterprise Server HA
Primary

$Fiorano_home/esb/server/profiles/haprofile1/primary/FES

Fiorano Enterprise Server HA
Secondary

$Fiorano_home/esb/server/profiles/haprofile1/secondary/FES

Fiorano Peer Server HA Primary $Fiorano_home/esb/server/profiles/haprofile1/primary/FPS

Fiorano Peer Server HA
Secondary

$Fiorano_home/esb/server/profiles/haprofile1/secondary/FPS

Fiorano Peer Server1 HA
Primary

$Fiorano_home/esb/server/profiles/haprofile2/ primary/FPS

Fiorano Peer Server1 HA
Secondary

$Fiorano_home/esb/server/profiles/haprofile2/secondary/FPS

To launch the server on one of these profiles, the user can use the script server.bat/sh in
$Fiorano_home/esb/server/bin.

Examples:

• server.bat -mode fes -profile haprofile1/primary - to launch the primary server of
Fiorano Enterprise HA-profile1

• server.bat -mode fps -profile haprofile1/secondary - to launch the secondary server of
Fiorano Peer HA -profile1

• server.bat -mode fps -profile haprofile2/primary - to launch the primary server of
Fiorano Peer HA -profile2

6.3.4 Configuration Steps
• Setting up the lockfile

• Configuring the profile

6.3.4.1 Setting up the LockFile

A file is created and the directory containing it is shared with read/write permissions.

The lock file, if present on a machine having UNIX/Solaris operating system should be shared
by using the NFS protocol - version 4. If the lock file is present on Windows it should be
shared using the Samba Protocol. (The lock file can be shared on Windows using NFS –
version 4, if it supports it.)

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1126

The table below gives some of the possible combinations of operating systems in the HA
Setup:

OS hosting the Lock File & Protocol Used OS hosting the servers

Windows - Samba Windows / Linux

Linux - NFSv4 Linux / Solaris 8,9,10

Solaris - NFSv4 Linux / Solaris 8,9,10

Note:

The user has to make sure that, the operating system hosting the server supports the protocol
used for sharing the lock file. The LockFile and the directory containing the LockFile should
have read/write permissions set. On Operating Systems other than Windows, one can verify
the permissions using the ls -l command.

On Windows Operating System, the directory on the gateway machine containing the LockFile
should be mapped to a network drive.

Example:

If the directory containing the lock file on Windows, is shared using the samba protocol, this
directory should be mapped to a network drive on the Windows machine hosting the server.
Let us say the shared directory is mapped to a drive letter ‘Z:/’ and the lock file is lock.lck ,
the lock file path now becomes ‘Z:/lock.lck’.

This path should be used to set the LockFile parameter while configuring the profile via Fiorano
Studio.

On non Windows Operating System, the directory on the gateway machine containing the
LockFile should be mounted on the machine hosting the server.

Examples:

If the lock file is present in a windows samba share & is mounted at /home/user/db on the
machine hosting the server then the lock file path on the machine hosting the server would be
/home/user/db/lock.lck. This absolute path should be used to set the LockFile parameter while
configuring the profile via Fiorano Studio.

Example Mount Command:

'mount -t cifs –o rw //<gatewayIP>/<sharename> <path on local machine where the
directory has to be mounted.>'

If the lock file ‘lock.lck’ is shared using NFS v4 and the directory db is mounted at
/home/user/db on the machine hosting the server then the lock file path on the machine
hosting the server would be /home/user/db/lock.lck. This absolute path should be used to set
the LockFile parameter while configuring the profile via Fiorano Studio.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1127

Example Mount Command:

'mount -t nfs4 -o rw <gatewayIP>:/ <path on local machine where the directory has to be
mounted.>'

Note: The newly added mount point will disappear after system reboot. The user has to make
sure that the mount is automated on system reboot. One can refer to the URL
‘http://www.brennan.id.au/19-Network_File_System.html#nfs4’ on how to share a directory
using NFS v4.

http://www.brennan.id.au/19-Network_File_System.html%23nfs4

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1128

6.3.4.2 Configuring the FES HA Profile

Fiorano SOA gives the ability to configure the HA through Fiorano Studio to simplify your
configuration in offline mode.

To configure FES HA, perform the following steps:

1. Open the HA profile (replicated)

2. Right-click the profile and select FES Replicated HA from pop-up menu.

Figure 5: Selection of FES Replicated HA

The FES Replicated HA… dialog box appears as shown in Figure 6.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1129

Figure 6: FES Replicated HA… dialog box

Description of Properties (refer to Figure 6)

• BackupServerIp - Specifies the Backup Server IP. This IP is configured in backup
URL for default connection factories.

• BackUpServerPort - Specifies the Backup Server port. This port is configured in
backup URL for default connection factories.

This can be changed by modifying the Backup Server profile.

o Open the Backup Server profile in the Fiorano Studio Profile Manager.

o Navigate to <ProfileName>=>Fiorano=>socketAcceptors=>port-
1=>ConnectionManager =>Properties of ConnectionManager and change the port
parameter.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1130

The Figure 7 illustrates the configuration of the Fiorano ConnectionManager.

Figure 7: Configuration of the Fiorano ConnectionManager

• BackupHAIPAddress - IP Address of backup server in HA mode. This parameter is
mandatory to run HA.

• BackupHAPort - Port of the Backup server on which peer is listening for status
requests send by another server.[This parameter is same as the 'Port' parameter but it
specifies the port used by the backup server]

• Port - This is the port on which the HA Manager is going to listen for connections from
its backup server. Once the connection is established, it starts serving as the back
channel for broadcasting the state of the servers to the backup server whenever there
is a state transition.

• BackupRMIServerPort - Port used by backup server to bind the Mx4J RMI
Connector.

• RMIServerPort – Port used by the server to bind the Mx4j Rmi Connector.

• LockFile - Full path of the file which will be used for determining the HA states. This
file should be present in the third machine and always available to the HA servers with
all permissions. This parameter is mandatory to run HA. [Also, See
‘GatewayServerIPAddress’ parameter while configuring.]

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1131

• GatewayServerIPAddress -IP address of Gateway machine. This is used to detect
network failures. It is recommended that the IP specified should be of a machine that
is always available on the network. It is mandatory to specify this parameter. This
parameter should always be the IP Address of the machine hosting the LockFile.

• GatewayServerPort - In Replication HA mode, network failure is detected by using
the gateway server machine. Specifies the port on which gateWay machine is listening
for incoming requests

• PingInterval - Time interval (in ms) after which the remote server is pinged in
Replication HA mode.

• ActiveLockReAcquistionInterval - This parameter indicates the wait Interval
between each attempt to acquire the lock for active server. This value should be in
multiples of pingInterval/2 otherwise server may try to acquire the lock on the next
multiple of pingInterval/2.

• PassiveLockAcquistionInterval - This parameter indicates the wait Interval for the
passive server to acquire the lock when the link between active and passive server is
down. This value should be greater than '2*ActiveLockReacquisitionInterval', otherwise
an exception will be thrown. Server won't start if this value is not set properly.

• AppRepositoryPath - Path of the enterprise server application repository. FES stores
event process information in this directory. Bydefault its value is
$FIORANO_SOA_INSTALL_DIR/server/repository/applications.

• Component RepositoryPath - Specifies the Component Repository Path. FES stores
services' information in this directory. By default its value is
$FIORANO_SOA_INSTALL_DIR/server/repository/components

• FPSRepositoryPath - Path of the Fiorano Peer server Configurations repository. FES
stores peer server configurations in this directory.By default its value is
$FIORANO_SOA_INSTALL_DIR/runtimedata/EnterpriseServers/<ProfileName>/FES/pe
ers.

• ApplicationSyncType - Sync Type for Application Repository 0 - FULL SYNC - The
Active Application Repository is replaced on the Passive Application Repository 1 -
PARTIAL_SYNC - Only the new Applications in the Active Application Repository is
updated on the Passive Application Repository 2 - NO_SYNC - No Synchronization will
happen between the Active and Passive Repository. Assumes that there is no
Application Edited/Removed/Added.

• ComponentSyncType - Sync Type for Component Repository 0 - FULL SYNC - The
Active Component Repository is replaced on the Passive Component Repository 1 -
PARTIAL_SYNC - Only the new Components in the Active Component Repository is
updated on the Passive Component Repository 2 - NO_SYNC - No Synchronization will
happen between the Active and Passive Repository. Assumes that there is no
Component Edited/Removed/Added.The user can configure both Primary and
Secondary FES from a single screen.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1132

3. You can also configure both Primary and Secondary FES from a single screen. For this
first open both the profiles and select both of them and from popup select [FES
Replicated HA...] as shown in the Figure below:

Figure 8: FES Replicated HA... option

The dialog opened contains column for both FES HA Primary and FES HA Secondary as shown
in Figure 9

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1133

Figure 9: FES Replicated HA.. dialog box

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1134

4. Save the profile and we are ready to start the server.

To configure FPS HA, perform the following steps:

1. Open the HA profile (replicated)

2. Right-click the profile and select FPS Replicated HA.. from the pop-up menu. The
FPS Replicated HA.. dialog appears as shown in figure 10.

Figure 10: FPS Replicated HA dialog box

Description of Properties (refer to Figure 10)

• BackupServerIp - Specifies the backup server ip. This IP is configured in backup-url
for default connection factories.

• BackUpServerPort - Specifies the backup server port. This port is configured in
backup-url for default connection factories.This can be changed by modifying the
backup server profile.

Open the Backup Server profile in the Fiorano Studio Profile Manager. Navigate to
<ProfileName>=>Fiorano=>socketAcceptors=>port-1=>ConnectionManager
=>Properties of ConnectionManager and change the port parameter.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1135

• BackupHAIPAddress - IP Address of backup peer server in HA .

• BackupHAPort - Port of the Backup Peer server on which peer is listening for status
requests send by another server.[This parameter is same as the 'Port' parameter but it
specifies the port used by the backup server]

• Port - This is the port on which the HA Manager is going to listen for connections from
its backup server. Once the connection is established, it starts serving as the back
channel for broadcasting the state of the servers to the backup server whenever there
is a state transition.

• BackupRMIServerPort - Port used by backup server to bind the Mx4J RMI
Connector.

• RMIServerPort – Port used by the server to bind the Mx4j Rmi Connector.

• LockFile - Full path of the file which will be used for determining the HA states. This
file should be present in the third machine and always available to the HA servers with
all permissions. This parameter is mandatory to run HA. [Also, See
GatewayServerIPAddress parameter while configuring.]

• GatewayServerIPAddress - IP address of Gateway machine. This is used to detect
network failures. It is recommended that the IP specified should be of a machine that
is always available on the network. It is mandatory to specify this parameter. This
parameter should always be the IP Address of the machine hosting the LockFile.

• GatewayServerPort - In Replication HA mode, network failure is detected by using
the gateway server machine. Specifies the port on which gateWay machine is listening
for incoming requests

• ActiveLockReAcquistionInterval - This parameter indicates the wait Interval
between each attempt to acquire the lock for active server. This value should be in
multiples of pingInterval/2 otherwise server may try to acquire the lock on the next
multiple of pingInterval/2.

• PassiveLockAcquistionInterval - This parameter indicates the wait Interval for the
passive server to acquire the lock when the link between active and passive server is
down. This value should be greater than '2*ActiveLockReacquisitionInterval', otherwise
an exception will be thrown. Server won't start if this value is not set properly.

• PingInterval - Time interval (in ms) after which the remote server is pinged in
Replication HA mode.

• PrimaryURL – The primary URL of MQ server [i.e the FES] from which configuration
should be loaded

• BackupURL(s) – The backup URL(s) of MQ server [i.e the FES] from which
configuration should be loaded.

Note: You can also configure both Primary and Secondary FPS from a single screen .This is
similar to the procedure adopted while configuring HA FES.Save the profile and we are ready
to start the server.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1136

3. Save the profile and we are ready to start the server

6.3.5 Verifying HA Setup

On starting the Fiorano SOA Server that is part of an HA pair, the server prints debug
information about its own state (ACTIVE, PASSIVE, and WAITING). It also prints information
about its backup server's state whenever it detects a change.

Example Statements on console:

[Sat Feb 07 14:03:50 IST 2009] Old status of remote server = DEAD

[Sat Feb 07 14:03:50 IST 2009] New status of remote server = WAITING

[Sat Feb 07 14:03:50 IST 2009] Old status of remote server = DEAD

[Sat Feb 07 14:03:50 IST 2009] New status of remote server = WAITING

[Sat Feb 07 14:03:50 IST 2009] Old status of remote server = WAITING

[Sat Feb 07 14:03:50 IST 2009] New status of remote server = PASSIVE TRANSITION STATE

The Console includes statements as shown below:

'Primary Server switched to ACTIVE' or 'Secondary Server switched to PASSIVE', which
indicate that the pair has successfully connected. Also, a statement gets printed when the lock
is successfully acquired over the lockfile on the active servers console.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1137

Example: Successfully acquired lock on:Z:\lock.txt.

The figure below illustrates a successfully started Fiorano HA Peer Server:

Figure 11: Fiorano HA Peer Server

6.3.6 Shutting down the HA Server

For details on how to shutdown the servers, please refer to sections 2.3.3.2 and 2.4.3.2.

6.3.7 Troubleshooting Steps
1. SocketBindException saying that the HA Port is already bound.

This exception means that some other program running on the HA port or the last instance
of the server is not properly killed. You can choose to stop or kill the application which is
holding up the port and start the server again or choose a different HA port. But changing
this means that there needs to be a change in the Backup Servers’ configuration for its
Backup Server port.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1138

2. None of the servers starting up. Both the servers are in WAITING state and the Primary
Server is trying to connect to its Backup Server.

This exception means that the Backup Server IP and port numbers are wrong for both the
server configurations.

Example: Server console when it cannot connect to the Backup Server.

Figure 12 illustrates a situation where the server is not able to connect to the Backup
Server. If it is already connected, then there is a problem with the configuration. The
message prints the IP address and the port to which it is trying to connect to establish the
HA channel. You can check if the Backup Server is running in the printed IP address and
port.

Figure 12: Server unable to connect to the Backup Server

3. One of the HA Servers switched into Active or Passive Sync and it hangs there, but the
other seems to be in WAITING state for a long time trying to connect to the Backup
Server.

This exception means that your configuration for the Backup Servers does not match at
the end where the server is still in WAITING state, but the Backup Server is still able to
connect. This will cause the Backup Server to hand indefinitely as it expects a
Synchronization Complete Notification which is never going to be delivered.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1139

Figure 13: The server hanging in one of the synchronization states

4. Both servers go to Standalone/Active state in replicated/shared mode respectively if the
network link between them is broken. This can happen if the servers do not refer to the
same LockFile.

5. The server in replicated mode shuts down on boot up.

This can happen if the LockFile specified is not valid or the machine hosting the LockFile
is not allowing the server to acquire a lock.

Figure 14 illustrates the server shutting down on boot up.

Figure 14: The server shutting down on boot up

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1140

6.4 Fiorano High Availability Working In Shared Mode

In this mode of High availability, the primary-secondary broker pair shares a common
database and do not replicate data over the network. If the primary fails, all Fiorano
applications fail over from the primary and reconnect to the designated secondary backup
broker. The primary and secondary broker-pair use the network channel between them to
routinely seek the heartbeat of the other and watch for any break in connection to switch
states. A locking mechanism (as explained in section 6.3.1) is also employed to determine the
state of the servers. The database which is common to both the servers is referred to as the
shared database.

6.4.1 Shared HA Precondition

The shared database is critical for the servers to function, as the servers store all data in it. It
is mandatory for the Shared Database to be always accessible to the servers. Unavailability
of the shared database could lead to data loss and data corruption.

6.4.2 Server States

A server at any point of time can be in the following states:

• Active

• Passive

• Activating – The server switches to this state as soon as it acquires the lock. Once all
its services are activated, it switches to Active State.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1141

The following diagram explains the transition to various states:

Note:

• failure detected – refers to the link between the servers being broken

• Lock Lost – lock over the LockFile is lost

• Lock Obtained – lock obtained over the LockFile

When the server starts up, the server tries to acquire a lock on the lock file. If it acquires the
lock successfully, it switches to the ACTIVATING state. It then switches to ACTIVE state once
all its services have been activated. Unlike in replicated HA, where the servers wait for each
other to come up (that is, in WAITING state), a server in shared mode does not need to wait
for its backup server to come up because they share a common database and no database
synchronization is required which is the case for servers working in replicated mode.

After switching to ACTIVE state, the server keeps trying to connect to its backup server. If the
backup server starts up, the backup server switches to PASSIVE state.

At this point, if there is a failure of the ACTIVE server, the Hot Standby PASSIVE Server is
ready to move into the ACTIVE state and starts accepting requests from the clients.

6.4.3 Configuring Fiorano SOA High Availability Servers

The Fiorano SOA installer comes with a prebuilt profile for shared mode which is preconfigured
and ready to run on a single machine.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1142

Table 1: The default profile to be used for Primary and Secondary Servers

Server Location of Profile

Fiorano Enterprise Server HA Primary $Fiorano_home/esb/server/profiles

/haprofile_shared/primary/FES

Fiorano Enterprise Server HA Secondary $Fiorano_home/esb/server/profiles

/haprofile_shared/secondary/FES

Fiorano Peer Server HA Primary $Fiorano_home/esb/server/profiles

/haprofile_shared/primary/FPS

Fiorano Peer Server HA Secondary $Fiorano_home/esb/server/profiles

/haprofile_shared/secondary/FPS

To launch the server on one of these profiles, the user can use the script server.bat/sh in
$Fiorano_home/esb/server/bin.

Since the shared HA pair use a common database, the location of the database has to
specified while starting up each server.

The -dbPath command line option is used for specifying the location of the shared database.

Examples:

• to launch the primary server of Fiorano Enterprise shared -HA-profile

server.bat -mode fes -profile haprofile_shared/primary -dbPath D:/sharedDb

• to launch the secondary server of Fiorano Peer shared-HA –profile

server.bat -mode fps -profile haprofile_shared/secondary -dbPath E:/sharedDb

Note: While running the servers on the same machine, both the HA servers should have their
databases pointing to the same physical directory.

6.4.4 Configuration Steps
• Setting up the lock file

• Setting up the shared database

• Configuring the profile

• Changing the location of log files.

6.4.4.1 Setting up the Lock File

For more information, refer to section 6.3.4.1 Setting up the LockFile.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1143

6.4.4.2 Setting up the shared database

A directory is shared on a third machine with read/write permissions using the NFS protocol. If
the operating system supports NFS - version 4, then we recommend that the shared database
be shared using NFS version 4 else it should be shared using NFS –version 3.

Note: The user has to make sure that, the operating system hosting the server supports the
protocol used for sharing the shared database.

For more information on how to share a directory using NFS v4, refer to
http://www.brennan.id.au/19-Network_File_System.html#nfs4.

For sharing a directory on Windows OS using NFS, the user has to download and install
Windows Services for Unix / Subsystem for UNIX-based Applications provided by
Microsoft on the machine. The Client for NFS and Server for NFS packages must be
installed. Some Microsoft Operating Systems have these packages by default like Windows
Server 2003 R2 and Windows Vista Enterprise and Ultimate Editions.

Following are the steps to share the directory using NFS v3 on Windows OS:

1. Create a Group of hosts that can access the share:

Open Services for Unix Administration. Click on Server For NFS node. The Client
Groups tab appears. Click on it and you get options to add/remove/rename groups.
Add a group and add clients (IP Addresses) to the group. Click Apply. The screen shot
below shows a group sharedHA having two hosts in it.

http://www.brennan.id.au/19-Network_File_System.html%23nfs4

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1144

2. Create a user – mapping:

Let us assume that the name of the windows user to be John S. To modify a nfs
share, the uid(s) of the user sharing the directory and the uid of the user accessing
the share need to be the same. Now, say that the server is running on a UNIX OS,
since Windows users have no uid, we need to create a mapping between the Unix user
and Windows User, that is, the user John S has to be mapped to the Unix user.

Following are the steps to create the mapping:

o Open Services for Unix Administration. Click on User Mapping node and
then click on the Configuration node

o The user can configure the service either using NIS or by using the password/
group files.

o If the user chooses to create a mapping by using the password and group files,
the files /etc/group and /etc/passwd on the Unix Machine should be
copied to the windows machine and their paths should be given in the
corresponding boxes and the changes should be applied.

The figure below illustrates the Configuration Window.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1145

o Now click on the Maps Node. A user can choose to create simple or advanced
maps. In an advanced mapping, the user can list the Windows and UNIX users
and create a mapping. The figure below illustrates the User Mapping Window
having an advanced map between the Windows user John S and a UNIX user
having uid 510 and name ‘hatest’. By doing so, users having uid equal to 510
on machines which belong to the access group of a share will be given
read/write access to the share.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1146

3. Share the directory using the ‘nfsshare’ command:

Open a command prompt and type the following command

nfsshare sharedDB=C:/shared/db -o rw=sharedHA

Note:

sharedDB refers to the share name.

C: /shared/db refers to the path of the shared directory

rw=sharedHA specifies that read & write permissions should be given to the group
sharedHA

Type the command nfshare /? for help on how to use the nfsshare command

4. Mounting the shared database on the Machine hosting the server:

The nfs share can be accessed on UNIX/Solaris OS by mounting it. The mount
command is used for this purpose. On Windows, the nfs share can be accessed by
adding it as a network drive.

Examples:

• If the shared database is on Windows & the HA server is on UNIX:

mount –t nfs –o rw 192.168.1.213:sharedDB /home/testUser/sharedDB

Note:

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1147

The IP Address ‘192.168.1.213’ refers to IP address of the Windows Machine hosting
the shared database. ‘sharedDB’ is the sharename of the directory being shared on the
Windows Machine & ‘/home/testUser/sharedDB’ is the path on the local machine
where the share will be mounted.

The path on the local machine where the shared database is mounted should given as
the value for the ‘-dbPath’ command line option while starting the server.

To start up the FES shared HA Primary profile, we now type the command

server.sh –mode fes –profile haprofile_shared/primary –dbPath
/home/testUser/sharedDB

o If the shared database is on UNIX & the HA server is on UNIX:

mount –t nfs4 –o rw 192.168.1.213:/ /home/testUser/sharedDB

Note:

The IP Address 192.168.1.213 refers to IP address of the UNIX Machine hosting the
shared database which is being shared using NFSv4 and
/home/testUser/sharedDB is the path on the local machine where the share will be
mounted.

The path on the local machine where the shared database is mounted should given as
the value for the -dbPath command line option while starting the server.

To start up the FPS shared HA Primary profile, we now type the command

server.sh –mode fps –profile haprofile_shared/primary –dbPath /home/testUser/sharedDB

• If the shared database is on UNIX/Windows and the HA server is on Windows:

Suppose the uid of the user sharing the database is 510, a mapping should be created
between the windows user & the UNIX user using the Services for Windows
Administration software. Once, the mapping is created the user should map the
shared directory to a network drive. On adding a network drive, a Confirmation dialog
box appears as shown in the figure below to display the mapping used for accessing
the nfs share.

The added network drive path should given as the value for the -dbPath command
line option while starting the server.

If the shared database is mapped to a network drive letter say Z:, and we want to
start up FES shared HA Primary profile, we now type the command

server.bat –mode fes –profile haprofile_shared/primary –dbPath Z:/

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1148

6.4.4.3 Configuring the FES/FPS HA Profile

Fiorano SOA gives the ability to configure the HA through Fiorano Studio to simplify your
configuration in offline mode.

To configure FES/FPS HA, perform the following steps:

1. Open the HA profile (shared)

2. Right-click the profile and select FES/FPS Shared HA from pop-up menu.

The FES/FPS Shared HA dialog box appears. You can now configure the various
parameters that appear in the dialog box. These parameters are same as the
parameters specified for a profile in replicated mode. The user can also configure both
profiles in a single dialog. Please refer to section 6.3.4.2 Configuring the FES HA
Profile for the description of each parameter and how to configure both profiles in a
single dialog box.

3. Save the profile.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1149

6.4.4.4 Changing the location of log files

The log files for the servers running in replicated mode are created in their respective
databases. Since, the servers running in shared mode share a common database, the log files
by default are also shared by both servers. This configuration has to be changed for the
primary & secondary server before startup.

This can be done by modifying the file ‘Configs.xml’ which is located under the ‘conf’ directory
of the profile location. i.e.
$Fiorano_Home/esb/server/profiles/<profile_name>/<profile_type>/<server_type>/conf

Where

• <profile_name> is the name of the profile.

• <profile_type> is the type of the profile, that is, primary or secondary.

• <server_type> is the type of the server, that is, FES or FPS.

Given below is a screen shot of the file Configs.xml. The value of the attribute FileName of
the child nodes Appender in the file (which have been circled in the below screenshot)
decides the location of the log file.

We recommend that the server should have its log files on the same machine as the server.
Set the value of the attribute FileName to the path of the log file on the local machine.

The screenshot below shows the modified Configs.xml where the log files are located at
/home/sharedHA.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1150

Save the file and we are ready to start the server.

6.4.5 Verifying HA Setup

On starting the Fiorano SOA Server that is part of an HA pair, the server prints debug
information about its own state (ACTIVE, PASSIVE, and ACTIVATING). It also prints
information about its backup server's state whenever it detects a change.

Example Statements on console:

[Tue Apr 28 16:57:50 IST 2009] New status of remote server = PASSIVE

[Tue Apr 28 16:58:07 IST 2009] New status of remote server = ACTIVATING

[Tue Apr 28 16:58:23 IST 2009] New status of remote server = ACTIVE

[Tue Apr 28 16:57:52 IST 2009] Primary Server switched to ACTIVATING

The Console includes statements as shown below:

Primary Server switched to ACTIVE or Secondary Server switched to PASSIVE, which
indicate that the pair has successfully connected. Also, a statement gets printed when the lock
is successfully acquired over the lockfile on the active server’s console.

Example: Successfully acquired lock on: Z:\lock.txt.

The figure below illustrates a successfully started Fiorano HA Peer Server in shared mode:

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1151

6.4.6 Shutting down the HA Server

For more information on how to shutdown the servers, refer to sections 2.3.3.2 and 2.4.3.2.

6.4.7 Troubleshooting Steps

SocketBindException saying that the HA Port is already bound:

This exception means that some other program running on the HA port or the last instance of
the server is not properly killed. You can choose to stop or kill the application which is holding
up the port and start the server again or choose a different HA port. But changing this means
that there needs to be a change in the Backup Servers’ configuration for its Backup Server
port.

Both servers go to Active state in shared mode respectively if the network link between them
is broken. This can happen if the servers do not refer to the same LockFile

The server throws ‘log4j: ERROR Failed to flush writer, java.io.IOException: Stale NFS file
handle’. This can occur if the log files are present on machine hosting the shared database and
they have rolled over. Rolling over of log files sometimes results in having stale file handles
(invalid file handles). To avoid this, refer to section 6.4.4.4 Changing the location of log files.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1152

6.5 Limitations of Fiorano SOA High Availability

Following are the limitations of Fiorano SOA High Availability:

1. The current High Availability implementation does not support the PrimaryPreffered
Flag. If one wants the Primary Server to be active on its reboot, the Secondary Server has
to be manually shutdown.

2. Profiles of Servers prior to Fiorano SOA 9.0.0 release will not work as they do not have the
LockFile property in them. One has to copy the profile to
$Fiorano_home/esb/server/profiles and open the profile using Studio. The LockFile
parameter has to be set and profile has to be saved for the profile to work.

Also, the LockFile has to be set up on the gateway machine. If the PrimaryPreffered flag
has been set in the older profile, the flag will not be respected.

3. The Fiorano SOA High Availability servers can not be run on Mac OS as java does not
support locking of files on samba shares on Mac OS.

4. The hot standby Fiorano HA passive server takes approximately 17-20 minutes to become
ACTIVE / STANDALONE in the following scenario.

• Active server on UNIX OS and Lock file on UNIX OS shared using Samba.

• Network cable of active server pulled out / problem with the network card of
machine hosting the active server

Note: This time interval is a characteristic of Samba server on UNIX OS.

The ActivatePrimaryIfBothStandalone flag will no longer be respected, as the lock
mechanism makes sure that both servers of the HA pair do not be Active/Standalone at any
point. This flag has been deprecated from the Fiorano SOA 9.0.0 release onwards.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1153

6.6 Reference Matrix – HA Profile

By default following are the ports that are configured in the given X pattern profiles:

Profiles

Port

FES FPS FPS1 FES
HA
Prim
ary
(Rpl)

FES
HA
Seco
ndar
y
(Rpl)

FPS
HA
Prim
ary(R
pl)

FPS
HA
Seco
ndar
y(Rpl
)

FPS1
HA
Primar
y(Rpl)

FPS1
HA
Second
ary(Rpl
)

FES
HA
Primar
y(Sh)

FES
HA
Seco
ndar
y(Sh
)

FPS
HA
Prim
ary(S
h)

FPS
HA
Seco
ndar
y(Sh
)

RMI Port 2047 2067 2077 2047 2048 2067 2068 2077 2078 2047 2048 2087 2088
External
Port

1947 NA NA 1947 1948 NA NA NA NA
1947 1948 Na Na

Internal
Port

1847 1867 1877 1847 1848 1867 1868 1877 1878
1847 1848 1887 1888

Backup
Server
Port

NA NA NA 1848 1847 1868 1867 1878 1877

1848 1847 1888 1887
HA Port NA NA NA 1747 1748 1767 1768 1777 1778 1747 1748 1787 1788
Backup
HA Port

NA NA NA 1748 1747 1768 1767 1778 1777

1748 1747 1788 1787
Primary
FES Port

NA 1847 1847 NA NA 1847 1847 1847 1847
Na Na 1847 1847

Backup
FES Port

NA 1848 1848 NA NA 1848 1848 1848 1848
Na Na 1848 1848

Jetty Port 1980 1880 1890 1980 1980 1880 1880 1890 1890 1980 1980 1900 1900

Where:

• FES: Fiorano Enterprise Server

• FPS: Fiorano Peer Server

• Rpl: Replicated Mode

Note:

• Clients only need to be aware of following ports; details of all other ports are only for
informational purpose

• 1947 to connect to Fiorano Server primary from external tools.

• 1948 to connect to Fiorano Server secondary from external tools.

• RMI Ports are used to edit server parameters in online mode.

Fiorano SOA Platform User Guide

Chapter 6: High Availability Page 1154

6.7 Determining Server State

The states of the primary and secondary servers can be determined by running the sample
present in $FIORANO_HOME/esb/samples/HAStatus.

The sample needs two parameters to run:

• IP Address of either Primary or the Secondary Server.

• RMI Port of the server whose IP Address is provided.

If the sample fails to connect to a server, it could mean that the server is either Dead or not
reachable. In such a case, try giving the IP Address of the other server. If this fails too, this
could mean that both servers are Dead or unreachable in the network.

The value of the RMI Port can be found in the profile of the server. It is referred to as the
RmiServerPort parameter. For more information on configuring profile, please refer to section
6.3.4.2

Note: This sample can be used to determine the states of the servers running in replicated
mode only.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1155

Chapter 7: Scalability, Load
Balancing and Memory Optimization

This chapter discusses how Fiorano Composite Applications and Event Processes can be scaled
up to increase the overall throughput and to better utilize distributed system resources across
the Enterprise Service Grid.

Fiorano's unique peer-to-peer grid-enabled architecture allows hardware resources scattered
across the network to be effectively utilized in order to balance the load resulting in scaling the
number of processes running concurrently.

7.1 Server-Level Load Balancing

Load balancing is supported at the service level as well as the server levels.

7.1.1 Scaling by adding more peers to the network

At the server level, the Fiorano peer-to-peer architecture enables increasing loads to be
seamlessly distributed across the network through the dynamic addition of peer servers. Since
data flows between distributed processes are not routed through a central hub, the Fiorano
architecture avoids load-related faults that plague most existing integration infrastructure
solutions. The Peer-to-Peer architecture also allows dynamic load-balancing to be added to
running applications that are already in process.

To scale an Event Process across multiple peers, one needs to add more peers to the network
and then re-deploy some existing running components onto these new peers.

This is done easily as follows:

1. Add the new peers to the network using the Administration tools.

2. Stop one or more of the components in the flow, right-click the component and select
Kill from the drop-down menu; this stops the components’ execution on its current
peer. Now change the Peer-Server name on which the component is to be redeployed
by selecting the appropriate new Fiorano Peer Server target from the available list of
peers in the Properties panel for the Component Instance.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1156

7.1.2 Scaling by distributing load across multiple service instances

At the service level, the Load-Balancing Business Service may be used to distribute the
messages to multiple business services for processing.

To enable service-level load balancing on a service, one normally runs multiple instances of
the service on the different ESB Peers and routes incoming data to the multiple running
instances via a Distribution Service, as illustrated in Figure 7.1.1. The Distribution Service
routes data to its output ports depending upon the relative weights associated with the ports.
Load-balancing of Services across different nodes as defined earlier can be set up directly by
the End-User or Administrator within the application-flow and does not require any
programmatic approach. Alternatively, this load balancing can be achieved programmatically
as well, since all operations on the Fiorano platform are supported via intuitive APIs.

The load-balancing method described above increases the overall message throughout, since
incoming messages are now processed by multiple instances of a service, typically running on
different machines (or being processed by separate threads on a single machine). A good
example is the fast insertion of data into a database via the Database Business Service. This
technique is particularly very useful when a particular business service encounters a
bottleneck in the entire business flow. However, the drawback is that in general the messages
may not be processed in the order in which they arrive, and this lack of ordering is the trade-
off for performance using this load-balancing technique. It is possible to use an event-
sequencing flow to ensure message ordering, however, this is not as optimal for increased
performance as the general-purpose method outlined above.

7.1.3 An example of Load Balancing

Consider a case of Purchase Order (PO) processing, where a PO generation is very fast
compared to the PO processing time which typically requires, among other things, some form
of XSLT transformation. In such a process, the PO manipulation becomes the bottleneck in a
large PO Processing Business flow.

Since the PO processing step (which typically uses an XSLT transformation) is slower than the
PO generation and there is no way to increase its performance, it makes sense to have
multiple instances of the PO processing step with each instance sharing the load between
them.

Figure 7.1.1: Load distribution across service instances

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1157

By the way of example, load distribution across multiple instances of an XSLT service is
displayed in Figure 7.1.1.This figure includes three separate services:

1. Feeder1 (Feeder Service) — A Feeder Service sends a large number of PO
documents. This step is comparatively fast in comparison to the XSLT Service which
forms part of the PO processing step.

2. DistributionService1 (Distribution Service) — A Distribution Service evenly
distributes the load between three XSLT Services. The Distribution Service can also be
configured to distribute load according to the relative weight assigned to each output
port. As such, the load can be proportionately distributed between slower and faster
machines.

3. Xslt3 (XSLT Service) — The example illustrates three instances of the XSLT Service
running on same or different peers.

7.2 Thread Count of Components

By default, a service component is single threaded, that is, there is only one document being
processed by a service component at any given time. If the CPU is not being fully utilized
during a load test, then the performance and throughput can be increased by increasing the #
of sessions (that is, threads) for a component. This linearly increases the number of data-
elements being processed by the component concurrently. The number of threads per
component can be set within the Properties window of the InPort of each component in the
Studio.

Always start off with the bottleneck component when optimizing threads this way since there
will typically be only one bottleneck component in a given process at a time. Once the first
bottleneck component is fixed, the bottleneck typically moves to another component in the
flow. This technique helps optimizing the number of sessions/threads for each component
based on the ability of the hardware to process data flowing through the Event Process.

Figure 7.2.1: INPORT Properties Screen

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1158

7.3 Scalability

The Distributed Process model implemented by the Fiorano SOA Platform automatically
ensures that as many operations as possible are run in parallel. The data flows between
applications are represented by graphs, and all independent trees within the application graph
represent concurrent computations. Within a single tree, operations are implicitly serialized
based on in-built data-flow dependencies.

Scalability is critical to ensure that the platform scales both with current projects (likely in
themselves to be highly distributed, probably across company boundaries) and with future
growth. The Fiorano platform addresses scalability issues as follows:

7.3.1 Transparent Resource Addition

Fiorano SOA Platform promotes a linear ‘build as you grow’ model, which allows an enterprise
to add software resources in the form of Fiorano Peers at network end-points to absorb
additional load on the platform. For instance, if the load on a given set of Peers processing
data is determined to be too high, new Peers can be added incrementally to the network at
runtime without disrupting existing services and distributed processes. Since Fiorano platform
Peers reuse existing enterprise hardware, resource addition typically does not involve
additional hardware deployments, unless explicitly required.

7.3.2 Dynamic Change Support

Distributed processes and applications deployed on the Fiorano platform can be extended and
modified dynamically at runtime by adding or removing the new services and data routes
without stopping or disrupting existing processes in any way. Existing services within an
application can be individually controlled via the start/stop/upgrade/modify semantics,
allowing incremental, dynamic, and runtime changes to distributed processes.

7.3.3 Parallel Data Flow

With dispersed computation and parallel data flow between nodes, Fiorano Peers scale
naturally and seamlessly with the addition of new Peer nodes and Enterprise Services across
the network. Information and data flowing between distributed services does not have to pass
through a central hub because each Fiorano Peer incorporates a JMS-compliant messaging
server, allowing direct Peer-to-Peer connections to be set up on-the-fly between any set of
Peers across the network. This on-demand creation of Peer-to-Peer data-flow connections is
unique to the Fiorano platform and enables linear scalability and performance as new peers
are added to the system. Furthermore, since peers can be hosted on existing (already
reasonably powerful) hardware at the end-point of the network, enterprises do not have to
purchase expensive hardware each time if there is an increase in performance requirements.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1159

7.4 Memory Optimization

Although Fiorano ESB architecture scales very well in a distributed environment, Fiorano Users
and Developers are encouraged to adopt the following strategies:

7.4.1 JVM Parameters

Tune the JVM Parameters according to memory consumption within your environment. The
most important parameters are:

• Xmx: Denotes the maximum java heap size. You may see the amount of memory you
use exceeds the amount specified for the Xmx parameter. While Xmx limits the java
heap size, java will allocate memory for other things, including a stack for each
thread. It is not unusual for the total memory consumption of the VM to exceed the
value of –Xmx.

• Xms: Initial java heap size.

• Xss: Each thread in the JVM is allocated a stack. The stack size limits the number of
threads per JVM. If the stack size it too large, it will result in memory running out as
each thread is allocated more memory than required. If the stack space is too small,
there will eventually be an exception StackOverflow error. If the stack space is too
large, there will eventually be an exception similar to “Unable to create native thread”,
if the server tries to create more threads.

The default maximum JVM heap size is 64 MB. The Fiorano tools leave the JVM parameters as
the default parameter, that is, 64 MB heap memory for each of the components. This JVM
parameter can be fine tuned to reduce the memory footprint of individual service component
instances. The amount of memory allocated per JVM can and should be reduced for smaller
components (such as, flow-control components) or increased for memory-heavy components
(such as, XSLT, Database Adapter, and so on).

The default heap size for server (Enterprise and Peer) can be set in the following files (that is,
the file applicable based on the script being used to run the server):

• $FIORANO_HOME/esb/server/bin/server.conf

• $FIORANO_HOME/esb/fes/bin/fes.conf

• $FIORANO_HOME/esb/fps/bin/fps.conf

For information on other recommended JVM parameters, please refer to sections 7.6.6 and
7.6.7.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1160

Individual Components have 64 MB max heap size. This can be changed for each component
by setting the JVM_PARAMS property in the Studio as shown in Figure 7.4.1.

Figure 7.4.1: JVM_PARAMS Properties Screen

7.4.2 Separate Machines for Servers

Run the Enterprise Server and Peer Servers on different machines. This helps in getting
additional available memory for components.

7.4.3 Distribute Components

Distribute the flows across all the peers. Group the components inside flows logically so that a
single unit of work is done using just one peer.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1161

7.4.4 Inter-Connect Flows

Use port bindings to interconnect multiple flows running on a single Peer (if required) in place
of External Business components. For example, if the Business Process definition requires data
to flow from EventProcess1 (EP1) to EventProcess2 (EP2), then the OUT_PORT of the last
component in the EP1 is bound to a specific destination (for example, MY_DESTINATION). The
IN_PORT of the first component of the EP2 Event Process is then bound to the same
destination (MY_DESTINATION), as illustrated in Figure 7.4.2.

Figure 7.4.2: OutPort Properties Screen

7.4.5 Size of Event Flows

Avoid using large number of component instances per event flow. Keep the flows modular and
distribute functionality across multiple flows.

7.4.6 Size of Messages

Keep the sizes of each message flowing through the Fiorano workflow small and not greater
than 1 MB. If a given message is too large, then split up the message into smaller messages
using the xml-splitter component, or in case of the Database adapter, limit the response size
to an appropriate value.

Do not keep large xml’s in the Application Context. The Application Context should be used as
storage for context and temporary results related to each message. Instead of carrying a
binary attachment (for example, PDF, XML, Images, and so on) with Tifosi Document/JMS
Message or ESBRecord across the flow, make use of a SAN/NAS to store the attachment and
carry forward only references. Please note that the above technique works even when the
flow executes across distributed machines. The technique is to store large binary attachments
in one location (essentially a file somewhere on the network), pass just a reference around the
flow and then on the appropriate step to access the (large) binary as needed. Also, the binary
attachment in most cases is not parsed at every step of the event process. As such, it is not
needed at each step of the process and a simple reference will do.

Keep in mind that not all messages can be split. Splitting works only when each of the final
messages become a standalone document after the split. For this reason the XML Splitter
cannot be used for all large messages.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1162

7.4.7 DB Adapter Tuning

Use a larger number of SQL queries per DB Adapter instead of using a separate DB adapter
per SQL query. Additionally, use the DBQuery/DBProc components wherever possible instead
of DB Adapter as the latter is a much heavier component.

7.5 Component Memory Tuning

In the Fiorano Environment, each component is launched (by default, unless specifically
configured otherwise) in a separate JVM Process. It is very important to tune the heap
memory allocated to each service component and the Fiorano servers to achieve stable, high
throughput, and highly optimized memory usage of the Fiorano Environment.

7.5.1 Tuning Memory for Service Components

Each service component has to be tuned to achieve high performance and stability. There
cannot be strict recommendations on the heap memory usage for components, as the memory
usage of a component is highly dependent on the “context” in which it is used. The Context
could be the physical hardware like the number of processors/physical memory size, the
configuration with which the component is running, the size of the incoming message, the
frequency of service invocation, JVM specific parameters like the version, type of JVM (32
bit/64 bit), the JVM garbage collection algorithm and other memory competing software(s)
running on the system and, finally, in some cases the internal implementation of the
component itself.

This document makes some recommendations for components running under preset contexts.
These recommendations should be considered as guidelines and ideally the tuning process has
to be done based on the general guidelines outlined herein along with the specific instructions
for each service component instance.

7.5.1.1 Know about Heap sizes

The heap is a section of memory used by the JVM to store the Java objects. You can set
constraints on the size of the heap with two parameters passed to the JVM at startup: -Xms
sets the initial size of the heap and -Xmx sets the maximum size of the heap. If you set those
two parameters to different values, say 32 MB and 256 MB, then it is vital to instruct the JVM
to start with a heap size of 32 MB and increase the size up to 256 MB "as necessary". In this
case, the JVM has to balance two conflicting constraints: not request too much memory from
the operating system (getting to 256 MB too quickly), and not request too little memory as
that increases the amount of time the JVM spends on garbage collection which reduces the
performance of the application.

Asking the JVM to balance memory usage and performance by setting different values for -
Xms and -Xmx is critical in a situation where multiple components are being run on the same
hardware system and the components are actively competing for resources - in particular,
memory resources.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1163

7.5.1.2 Default Heap size

By default, all components are launched without any JVM Memory settings. The following rules
govern the size of the heap allocated by default by JVM if no memory settings were specified
explicitly.

From J2SE 5.0, a machine is classified as a server-class machine if it has:

• 2 or more physical processors

• 2 or more GB of physical memory

Java version Default Garbage
Collection
Algorithm

Machine
class

Initial Heap
Size

Maximum
Heap Size

1.4 and before Serial Garbage
Collector

Client/Server 4 MB 64 MB

J2SE 5.0 and
above

Throughput garbage
Collector

Client 4 MB 64 MB

J2SE 5.0 and
above

Throughput garbage
Collector

Server 1/64 of
physical
memory up to
1 GB

¼ of physical
memory up to
1 GB

The definition of a server-class machine applies to all platforms with the exception of 32 bit
platforms running the Microsoft Windows operating system. On all other platforms, the default
values are the same as the default values for JDK version 1.4. The following table illustrates
the choice of the machine class for common platforms and Operating system combinations.

Platform Operating System Default Default class

Sparc (32-bit) Solaris Client Server

I586 Solaris Client Server

 Linux Client Server

 Windows Client Client

Sparc(64-bit) Solaris Server Server

AMD(64-bit) Linux Server Server

 Windows Server Server

IA-64 Linux Server Server

 Windows Server Server

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1164

7.5.1.3 Setting Heap sizes

The -Xmx and –Xms settings can be set for a particular Fiorano component as part of the
JVM_PARAMS runtime parameters attributes as illustrated in Figure 1. Multiple JVM runtime
parameters can be added and separated with a space as a delimiter. The Heap Size setting
should be set in the following format: –Xmx[value][[optional]mem_char]. By default, all
specified values are measured in bytes. You can append the letter `k' or `K' to the value to
indicate kilobytes, `m' or `M' to indicate megabytes, and `g' or `G' to indicate gigabytes. This
attribute is a common attribute for all service components.

Figure 1: Setting the JVM _PARAMS attributes of a Component Instance

7.5.1.4 Garbage Collection

Garbage collection is a process of releasing the memory currently allocated by unused java
objects in the Heap Space. The Heap Space contains all the objects created in the Java
program. When an object is no longer used by any of the pointers, the object is garbage and it
can be released. The recommended values for -Xmx and -Xms largely depend on the load/size
of the messages processed by the component and other component implementation specific
parameters. The JVM heap size specified for the component determines how often the VM
collects garbage and how much time it spends on each garbage collection sweep. An
acceptable rate for garbage collection is application-specific. It is generally recommended that
the JVM spends significantly less than 30% of its time on garbage collection; this time should
be adjusted after analyzing the actual time and frequency of garbage collections. The goal of
tuning the heap size is to minimize the time that it spends doing garbage collection while
maximizing the number of messages that the component can handle at a given time. It is
recommended that the following factors are analyzed for the optimum setting of the Xmx and
Xms parameters:

1. Frequency of garbage collection? If the garbage collection is occurring too frequently,
then increasing the maximum heap setting is recommended.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1165

2. How long is garbage collection taking? As a recommendation, full garbage collection
should take no longer than 3 to 5 seconds. If it takes more time, then reducing the
maximum heap size is recommended.

3. What is the average memory footprint? In other words, what does the heap settle
back down to after each full garbage collection? If the heap always settles to 85%
free, reducing the maximum heap size is recommended.

4. Typically the -Xmx parameter settings for all the components and the Peer Server
should account for 80% of the available physical memory.

5. Typically the -Xms parameter settings for all the components should be much less
than 50% of the available physical memory.

7.5.1.5 Monitoring Component JVM Statistics

There are several JVM profilers available for monitoring the heap size, the garbage collection
statistics, the thread-count and the count of the number of classes loaded for the component
JVM. Java has an inbuilt tool to profile the JVM using JConsole as part of the Java SDK
distribution. Fiorano recommends the free Netbeans profiler for monitoring the component
JVM statistics. The exact set of steps depending on the version of Netbeans used and can be
found at www.Netbeans.org.

1. Run the Netbeans Profiler Calibration

2. Configure the Netbeans profiler

a. The Profiler task should be to analyzing memory usage

b. It is recommended that the Profiler is setup on a different machine than
the machine on which the Fiorano Peer Server is installed, because
profiling in itself is a CPU-intensive, memory consuming task.

c. Netbeans provides the runtime arguments to be added to the external
application on launch. Copy the parameters as specified and as required
into a text editor.

3. Configure the Fiorano component runtime parameters. Add the copied runtime
arguments from step 2 (c) above to the service component JVM_PARAMS runtime
argument as shown in figure 2.

http://www.netbeans.org/

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1166

Figure 2: Adding the profiler settings to the JVM_PARAMS

4. Launch the component / application. Note: the component will not start until the
Profiler is attached to the Java process.

5. Attach the Netbeans Profiler. The profiler should start collecting the statistics on
heap memory usage together with the garbage collection statistics. Switching to
VM telemetry view is needed.

7.5.1.6 Tuning the memory settings

It is recommended that the production environment be simulated to determine how the
component / application is typically used before one starts tuning memory settings. Once the
component is running and the profiler is attached an analysis can be performed to determine
whether a component is stable, suffocated, dangerous or well tuned, as described in the
sections that follow.

Stable Component

The graph of figure 3 below suggests that the memory utilization of a component after the
initialization of a very minimum heap size, shoots up to a specified level and remains at that
level even after you have requested a Full System Garbage Collection (Using Netbeans).
(Note: Java does not guarantee that Garbage collection will happen if the command is
executed, but there is a good change it does for the most part). Such a level is a good
recommendation for the Xms setting of the service component. The service component
memory usage is stable under the tested scenario and it is recommended that the Xmx and
Xms settings be set to values on the upper bound and lower bound of the graph respectively.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1167

Figure 3: Stable component memory utilization

Suffocated Component

Figure 4 graph suggests that the actual used heap memory reaches the allocated heap
memory too often and when the allocated heap memory is below the Maximum memory
setting, a partial garbage collection is done on the Eden space (younger generation) of the
heap space; this is fine as long as the Eden space is kept at low number (default not
modified), but if the allocated heap memory in the above case is set to the Maximum memory,
a full System garbage collection is issued, which ideally should not occur too often. When the
graph shows steep peaks too often as illustrated in figure 4 and if the allocated heap size is
close to the maximum memory utilization of the component JVM, then it is recommended that
the allocated heap space should be increased.

Figure 4: Suffocated component memory utilization

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1168

Typically for “suffocated” components, the garbage collection statistics are also very important
to observe. If the component is spending more than 30% of the time on Garbage collection,
then there is a good chance that the component is underperforming significantly. It is
therefore recommended that the maximum memory heap space should be increased in such
cases. The GC static graph in figure 5 below definitely suggests that the component needs
more heap space.

Figure 5: Memory utilization of a Component instance that needs more heap space

Dangerous Component

It is typically the case that most users tune a component with a very high heap Memory
setting for the best performance since the frequency with which garbage collection happens
will then be very low and most processor time for the JVM is dedicated to the component. This
is a good option when it is possible to calculated or known for certain the component does not
reach the maximum memory limit or, if it does reach the maximum memory limit, that the
time then taken for garbage collection is acceptable. Because the heap memory limit is very
high, the Garbage Collection process takes proportionately longer. So a downside of setting a
high upper limit on the heap space for a component instance is that the Garbage Collection
Process can sometime take an inordinate amount of time. This can have some repercussions
as discussed below:

The distinct plateaus in the garbage collection statistics of figure 5 above suggest that for the
length of each plateau a full GC has been running which is generally a “Stop the World”
process, making the component unresponsive for that length of time. A long garbage
collection process can lead to several complications as there can be a random/ considerable
amount of delay in the processing time of the component. More importantly, the JMS
connection made by the component to the Fiorano Peer Server to which it is connected could
be invalidated depending on the ping timeout set on the connection parameter which might
cause the component to stop execution or kill itself.

In such cases, it is recommended that the Minimum memory or the maximum memory
settings are reduced as appropriate:

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1169

• If the time taken on the GC done over the Eden space of the component JVM Heap
when the used heap space reaches the minimum memory setting is unacceptable
(which is less likely), then it is recommended to reduce the minimum heap setting.

• If the time taken on the Full System GC over the entire Heap space including perm
gen of the component JVM Heap when the used heap space reaches the maximum
memory setting is unacceptable (which is more likely), then it is recommended to
reduce the maximum heap setting and perform the tuning again.

Well-tuned component

A well-tuned component, as illustrated in figure 6, neither performs garbage collection very
frequently nor does it take an unacceptable amount of time performing garbage collection. The
heap memory size does not shoot up or come down drastically at any point. It is generally
quite stable increasing from the minimum heap size to the maximum heap size and then back
to the minimum heap size, which should be the amount of memory needed by the component.

Figure 6: A well tuned component

As shown in figure 7, the garbage collection graph displays uniform behavior below the 30 %
mark and there are no high peaks for an extended period of time. This balance is very
important to strike for every Fiorano service component instance.

Figure 7: Garbage collection graph for a well-tuned component

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1170

7.5.2 Recommendations

7.5.2.1 Component Overloading

During the application design/architecture phase, the following factors are to be considered
regarding the number of components to be launched on a Fiorano Peer Server.

1. Component Maximum Heap Size and the Minimum Heap sizes after performing the
tuning for heap size memory as discussed in the previous sections.

2. List of memory and CPU intensive programs running on the same system and the
Maximum memory required for these programs.

3. Fiorano Peer Server Heap setting after it is tuned with all the in-memory components
in a simulated production scenario.

Fiorano recommends the following:

1. The Fiorano Peer Server and Fiorano components should be the only memory and CPU
intensive applications running on the production system.

2. Fiorano Peer Server Xms and Xmx parameters are set to the same value or to values
that are close to each other. This sort of setting is generally recommended for servers
to achieve optimal performance. The value which needs to be set for the Xmx and Xms
parameters should be deduced by performing the tuning operations with simulated
production runs.

3. For maximum performance, Fiorano recommends that the server system should have
“enough” RAM so that there is never a shortage and that page faults essentially never
happen.

4. The Maximum heap size for the Fiorano Peer Server and all the components should not
exceed 75% of the virtual memory space. It is recommended to have the total of the
maximum heap sizes equal to 85% of the available physical memory. Virtual memory
is the sum of the Physical Memory and the Page File Memory.

So if your computer has 4 GB RAM, and 2 GB RAM is being set as the page file size,
then available Virtual memory is 6 GB RAM and 75% of this value is 4.5 GB. If the
Fiorano Peer Server and Fiorano components total of the maximum heap sizes is close
to 4.5 GB, then this indicates that the “Architectural Limit” has been reached. Loading
memory over this limit does not guarantee a stable Fiorano environment.

7.5.3 Components

The following sections provide some guidelines on how different contextual parameters affect
the heap memory utilized by some of the most commonly used Fiorano components. These
parameters can sometimes be categorized into buckets of common usage; some parameters
cannot be categorized as each distinct value leads to a non-extrapolative distinct behavior. For
such parameters, the values are fixed based on the most common usage and these values are
specified in the recommendations. For all other parameters, based on different
categorizations, some memory setting recommendations are made. These numbers are only
indicative and should not be used as very strict guideline; they only indicate a rough estimate
of the memory settings under the specified mode of usage and can be considered a good
starting point for specific tuning based on your own environment and parameter settings.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1171

If the component is launched within the same JVM as the Fiorano Peer Server, the libraries
and classes loaded by the peer servers and other components launched in-memory are
shared. Since there is no separate process, the JVM does not need to create a separate stack
space as the memory spaces are shared between the component and the Fiorano Peer Server.
In this case there will only be an increase in the heap space of the Fiorano peer server. The
Peer Server JVM has to be re-tuned each time a new component is launched in-memory. For
Fiorano Peer Server, use the same procedure to tune the memory settings as discussed in the
previous sections for components.

7.5.3.1 File Reader

The File Reader component reads files from the file system and sends their contents to the
output port, typically as XML documents. The source file can either be text or binary
depending on the value of the “Is File binary” attribute. The following factors determine the
setting of an optimum Heap Space for the component.

1. If the file reader is configured to read text files, the Size of the text file, as one single
FioranoTextMessage is constructed from the contents of the entire text file.The entire
size of the file characters is allocated at the same time.

2. The frequency of reading the files and publishing the message. If Scheduling is
enabled, the interval at which the files are being read or the number of files in the
working directory (depending on POST_PROCESS_ACTION) or the frequency of
messages in the input port of the File reader.

Recommendation 1

Initialization Context:

• Is Input File Binary – no

• Frequency of operation – > 1 sec

• In-memory – no

• Hardware - Dual core 2.1 GHz, 4 GB Ram

• OS - Windows XP Professional 32 Bit

• JVM - version 1.5.0_18, 32 bit

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Minimu
m

Maximu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 5 4 32 4 5 0

5KB 500KB 15 10 32 4 15 10

500KB 1MB 20 10 64 4 20 15

1MB 5MB 45 28 128 32 15 5

5MB 10 MB 75 50 128 64 20 10

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1172

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

10 MB 256 128

Recommendation 2

Initialization Context:

• Is Input File Binary – no

• Frequency of operation – ~ 100 milliseconds

• In-memory – no

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Minimu
m

Maximu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 6 4 32 4 5 0

5KB 500KB 25 10 32 16 15 10

500KB 1MB 30 15 64 32 20 15

1MB 5MB 45 30 128 64 15 5

5MB 10 MB 75 50 128 64 20 10

10 MB 256 128

Recommendation 3

Initialization Context:

• Is Input File Binary – yes

• Chunk size – 1024 KB

• Frequency of operation – ~ 100 milliseconds

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1173

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Minimu
m

Maxi
mum

Maximu
m (MB)

Minimu
m (MB)

Maximu
m (MB)

Minimu
m (MB)

Maximu
m (%)

Minimum
(%)

0 30 15 64 16 20 15

Note:

• Frequent text file reading (100 ms or less) of 500 KB messages (or more) results in
the JVM spending almost 60% of time performing garbage collection. Under conditions
such as these, the component under-performs drastically and if the component has a
Graphical User Interface, then the interface will be very sluggish or even non-
responsive for the period till the garbage collection is being done.

• If the file reader is configured for binary files, then the file size is not a factor
anymore; only the chunk size is.

7.5.3.2 File Writer

The File Writer component writes the received data from its input port to the specified output
File. The received data can either be plain text or binary data. The following factors determine
the setting of an optimum Heap Space for the component:

• The Size of the input message.

• The frequency of the requested operation. If Scheduling is enabled, then the interval
at which the files are being read or the number of files in the working directory
(depending on POST_PROCESS_ACTION) or the frequency of messages arriving at the
input port and written to the output port of the File reader.

Recommendation 1

Initialization Context:

• Frequency of operation – > 1 second

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 4 3 32 4 5 0

5KB 500KB 14 10 32 4 20 10

500KB 1MB 20 15 64 4 20 15

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1174

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

1MB 5MB 60 40 128 64 25 20

5MB 10 MB 110 65 128 64 15 10

10 MB 256 128

Recommendation 2

Initialization Context:

• Frequency of operation – ~ 100 milliseconds

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 10 8 32 4 5 0

5KB 500KB 35 25 64 32 10 10

500KB 1MB 40 30 64 32 20 15

1MB 5MB 65 55 128 64 15 5

5MB 10 MB 130 95 256 64 20 10

10 MB 256 128

7.5.3.3 XSLT

XSLT is a component that executes a XSL and converts XML from one format to another. The
memory utilization of this component depends on:

• Transformation Complexity

• Message Size

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1175

7.5.3.4 CBR

The Content based router is used to route messages to different routes based on the XML
content of the message. The routing logic is based on applying an XPath selector over the
incoming message. The following factors determine the setting of an optimum Heap space for
the CBR component:

• Complexity of the XPath evaluations

• Number of XPath evaluations and the number of output ports configured

• Size of the input message on which the XPaths are evaluated

• Frequency of input messages

Recommendation 1

Initialization Context:

• Frequency of operation – > 1 Second

• No of Output Ports – ~ 3

• Complexity level of XPaths – Simple (Simple function and operator)

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Initial component size: 3 MB

Threads loaded: 8 and are constant throughout the execution

Approximate number of classes loaded: 2500

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 7 4 32 4 0 0

5KB 500KB 12 8 32 4 20 15

500KB 1MB 30 15 64 32 15 10

1MB 5MB 90 55 128 64 10 5

5MB 10 MB 120 100 128 64 10 5

10 MB 256 128

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1176

Recommendation 2

Initialization Context:

• Frequency of operation – ~ 100 Milliseconds

• No of Output Ports – ~ 3

• Complexity level of XPaths – Simple (Simple function and operator)

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Initial component size: 3 MB

Threads loaded: 8 and are constant throughout the execution

Approximate number of classes loaded: 2500

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 6 4 32 4 10
0

5KB 500KB 30 10 64 32 20
15

500KB 1MB 40 20 64 48 10
5

1MB 5MB 100 60 128 64 10
5

5MB 10 MB 120 70 128 64 10
5

10 MB 256 128

Recommendation 3

Initialization Context:

• Frequency of operation – > 1 Second

• No of Output Ports – ~ 8

• Complexity level of XPaths – Simple (Simple function and operator)

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Initial component size: 3 MB

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1177

Threads loaded: 8 and are constant throughout the execution

Approximate number of classes loaded: 2500

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 8 6 32 4 0 0

5KB 500KB 12 8 32 4 15 10

500KB 1MB 45 30 64 32 25 10

1MB 5MB 120 80 128 64 15 10

5MB 10 MB 120 100 256 128 10 5

10 MB 256 128

Recommendation 4

Initialization Context:

• Frequency of operation – ~ 100 Milliseconds

• No of Output Ports – ~ 8

• Complexity level of XPaths – Simple (Simple function and operator)

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Initial component size: 3 MB

Threads loaded: 8 and are constant throughout the execution

Approximate number of classes loaded: 2500

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 6 4 32 4 10 0

5KB 500KB 35 20 64 32 20 15

500KB 1MB 50 30 64 48 25 5

1MB 5MB 100 80 128 64 15 10

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1178

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

5MB 10 MB 125 100 256 64 10 10

10 MB 256 128

7.5.3.5 Aggregator

This component collects and aggregates messages received on its IN_PORT based on a
specified Completeness Condition. The collected messages are then forwarded as an
aggregated bundle of messages to a component connected to its OUT_PORT. The Aggregator
is a special message filter that receives a stream of messages and identifies messages that are
correlated. When a complete set of messages has been received, the Aggregator collects
information from each of these messages and publishes a single, aggregated message to the
output port for further processing.

The Aggregator is not a stateless component unlike other simple routing components (like
Content Based Router (CBR)) that are generally stateless. Stateless components process
incoming messages one by one and are not required to maintain any information between
messages. The Aggregator component also has an option to persist the aggregated message
into an RDBMS.

The memory usage of the Aggregator component is heavily dependent on the Aggregation
size. The Aggregation size is defined as the total size of all messages to be aggregated. This
depends on the completeness condition.

Fiorano does not recommend turning the persistence off if the aggregation size is going to be
more than 5 MB. The Aggregator uses DOM based data structures for internal processing of
XMLs, and these structures typically utilize memory approximately 3-10 times the size of the
input file. The memory required by the component in case of message persistence is set to no,
thus directly proportional to the Aggregation size. The following factors determine the amount
of heap memory taken up by an Aggregator Component:

18. Aggregation Size

19. Frequency of Aggregation happening

20. Number of messages in the aggregation.

Recommendation 1

Initialization Context:

• Frequency of aggregation – ~ 5 Seconds

• Number of messages aggregated – 5 Messages

• Message Persistence – off

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Initial component size: 5 MB

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1179

Threads loaded: 9 and are constant throughout the execution

Approximate number of classes loaded: ~ 2750

Aggregation Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 10KB 7 3 32 4 0 0

10KB 1MB 25 20 64 16 15 10

1 MB 3MB 45 35 64 32 20 15

3MB 5MB 120 60 128 64 25 20

5MB - - - - - -

Recommendation 2

Initialization Context:

• Frequency of aggregation – ~ 500 Milliseconds

• Number of messages aggregated – 5 Messages

• Message Persistence – off

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Initial component size: 5 MB

Threads loaded: 9 and are constant throughout the execution

Approximate number of classes loaded: ~ 2750

Aggregation Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 10KB 7 3 32 4 0 0

10KB 1MB 25 20 64 16 15 10

1 MB 3MB 60 35 128 32 15 10

3MB 5MB 180 130 256 128 15 10

5MB - - - - - -

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1180

Recommendation 3

Initialization Context:

• Frequency of aggregation – ~ 5 Seconds

• Number of messages aggregated – 5 Messages

• Message Persistence – on

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Initial component size: 5 MB

Threads loaded: 10 and are constant throughout the execution

Approximate number of classes loaded: ~ 3300

Aggregation Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 10KB 8 6 32 4 0 0

10KB 1MB 30 20 64 16 15 10

1 MB 3MB 45 35 64 32 25 20

3MB 5MB - - - - - -

5MB - - - - - -

7.5.3.6 Distribution

This component is used for distributing a workload of N Jobs amongst M flow processors.
Typically this component is used before multiple instances of the same component and the
load balancing mechanism in the component is used to distribute the messages received by
this component. The component uses a weighted round robin mechanism. The following
factors determine the heap memory used up by the Distribution component:

• Incoming message size

• Message Frequency

Recommendation 1

Initialization Context:

• Frequency of operation – > 1 seconds

• Hardware – Dual core 2.1 GHz, 4 GB Ram

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1181

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Initial component size: 3 MB

Threads loaded: 8 and are constant throughout the execution

Approximate number of classes loaded: 2400

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 3 3 16 4 10 0

5KB 500KB 10 9 32 4 20 15

500KB 1MB 20 10 32 4 20 15

1MB 5MB 80 60 128 32 15 10

5MB 10 MB 90 70 128 64 15 10

10 MB 256 128

Recommendation 2

Initialization Context:

• Frequency of operation – ~ 100 Milliseconds

• Hardware – Dual core 2.1 GHz, 4 GB Ram

• OS – Windows XP Professional 32 Bit

• JVM – version 1.5.0_18, 32 bit

Initial component size: 4 MB

Threads loaded: 8 and are constant throughout the execution

Approximate number of classes loaded: 2400

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

Maximu
m

Minimu
m

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (MB)

Minimu
m
(MB)

Maximu
m (%)

Minimu
m (%)

0 5KB 6 4 16 4 5 0

5KB 500KB 15 10 32 4 15 10

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1182

Message Size Operating Range Recommended
Memory Setting

Time spent in GC

500KB 1MB 35 25 64 16 10 5

1MB 5MB 80 60 128 32 25 15

5MB 10 MB 100 70 128 64 25 20

10 MB 256 128

7.5.4 Walkthrough

In this section, we consider a sample application walk-through the process for tuning the
memory that is allocated to all the component instances.

7.5.4.1Application

The above application performs the following actions:

1. Pick up a CSV (Comma Separate Variable, text file) Insurance Request file from a
Directory location and send the file contents to a Text2XML Converter.

2. The Text2XML Converter converts the incoming file into XML and then sends the XML
packet to an aggregator component.

3. The aggregator component aggregates 100 messages (which represent invoices) and
then the Mapping component stores some context data (invoice numbers and
customer ID) in the Application context, along with the request for the Web service
invoker component is framed and forwarded.

4. The Web Service component invokes a web service to get some customer details and
looks up to a database to make some decision based on a Content Based Router
component.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1183

5. Results are then written as a webpage and also stored into a database.

7.5.4.2 Tuning Process

Step 1:

Estimate the configurations which will be used in the production scenario for the components
and also the hardware on which the application will be hosted for production. Determine the
production system load (with reference to the applications which may be already running in
the system and available CPU cycles and Physical memory).

The following servers run on the test system:

1. Fiorano Peer Server

2. MY SQL Community Edition

3. Tomcat Container with Axis hosting Web services for use by the application.

Hardware Configuration:

Windows XP Professional x86

JRE 1.5.0_18 with HOTSPOT off

Core2Duo processor 210GHz

Total Physical Memory - 4GB

Available physical memory - 2 GB

Virtual Memory - 2GB

CPU Usage - LOW below 15%

 Step 2:

Estimate the following metrics for each of the service components used in the Event Process.
Define a logical time period to collect the metrics, so that the standard deviation is not too
high for the averages computed. It could per hour, per minute or per day depending on the
customer usage pattern. Let us refer to this time period as MC_TIME_INTERVAL in the notes
below.

1. Average number of messages [ANM] per MC_TIME_INTERVAL during peak usage
hours.

2. Maximum number of messages [MNM] per MC_TIME_INTERVAL during peak usage
hours.

3. Average size of the messages. [AVG]

4. Maximum message size. [MAX]

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1184

When flow components like Aggregator, XMLSplitter, and Content Based Router are used,
metrics such as the Average number of messages and maximum number of messages vary
from component to component depending on the position they are in the application flow.
When using other components that expect Input in one format and send output in another
format, metrics like average message size and maximum message size tend to vary.

The number of messages for a particular service component can be found by applying the
debugger (message interceptor) on the incoming routes on all the incoming ports. The
debugger shows the count of messages coming into the component. The message size has to
be determined by applying the debugger and copying the XML content (or binary content) into
a temp file.

It is ideal to tune the application for the average settings, provided the standard deviation is
not too high. The maximum memory settings should be high enough to accommodate stressful
uses of the application.

For this particular sample walk-through, let us define these parameters as:

MC_TIME_INTERVAL = 1 minute

Parameter FilePoller XMLConve
rter

AggregateInvoices TranformWC
Request

Custom
er
Service
Lookup

ANM 10 10 10 3 3

MNM 30 30 30 10 10

AVG 1KB 1KB 5KB 500KB 30KB

MAX 2KB 2KB 10KB 1MB 100KB

Parameter Insurance
Rules Engine

ContentBasedRouter StoreResults CreateWebPage

ANM 3 3 2 1

MNM 10 10 7 3

AVG 300KB 100KB 100KB 500KB

MAX 500KB 500KB 500KB 500KB

With the above metrics, you can calculate the operation Frequency from the number of
messages given in the MC_TIME_INTERVAL.

Step 3:

Once you have the above metrics, if any of the recommendations on the specific component
provided by Fiorano fits the scenario under which the component is being used, it is possible
to use these recommendations; for others, you can manually tune the memory settings for the
component as described earlier in the documentation, observing the GC behavior and the
Memory allocation graph.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1185

Component Name Type Max
Recommended
Heap size

Min Recommended
Heap size

FilePoller File Reader 32 4

XMLConvertor Text2XML 32 4

AggregateInvoices Aggregator 64 16

TransformWCRequest XSLT 128 32

Customer ServiceLookup WS Invoker 64 16

InsuranceRulesEngine DB 128 32

ContentBasedRouter CBR 64 16

StoreResults DB 128 32

CreateWebPage FileWriter 64 32

 704 MB 184 MB

Recommended Load on the test system:

85% of the physical available memory which is 1740 MB.

7.6 Memory Management of Fiorano Peer Server

Memory management is a process of observing the Server behavior and tuning the JVM
hotspot parameters so that the Fiorano Peer Server is be able to perform at its highest
throughput with the lowest risk of running into Memory related problems. This is not an
optional step to just improve performance; memory tuning and management has to be done
at the server to avoid a class of serious problems that could occur because of improper
configurations of the Virtual Machine (VM) on which the Server is running. Problems of this
nature are very hard to reproduce and can create a lot of confusion with regards to the server
behavior.

For example, if one of the “Stop the world garbage collection” calls stops or pauses the Peer
VM for more than the time the Enterprise Server waits for a response to an action command,
the request times out and there will be an error thrown in Fiorano Studio. If the Primary Peer
VM is paused for an interval greater than the ping interval, the backup HA Server might think
the primary server is down which can lead to problems.

Tuning the memory is also very important for achieving throughput goals. A badly tuned
server may spend almost all of its time doing garbage collection sparing only a few CPU cycles
for the server execution.

The following sections describe the factors considered when the Peer Server VM is tuned.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1186

7.6.1 Physical Machine Configuration

One of the most important factors in tuning the Peer VM is the actual machine hardware
configuration. The amount of physical memory, the number of CPUs or cores, the Operating
System, type of the system (32-bit or 64-bit), and so on, all have a bearing on performance.
The server can afford an efficient concurrent garbage collection if it has more Processor cycles
to spare. A few GC algorithms run best on a single core and while others have to be run only
on multi-core machines. The native process stack size can be reduced for some hardware and
OS combinations while for others it is not safe to do so. If the heap space allocated to the peer
is much larger than the actual physical memory, a lot of swap occurs between the cache and
memory, severely degrading the server performance. A larger memory allocated for the server
would also mean a larger pause time for the garbage collector to do a full system cleanup.

7.6.2 Java Virtual Machine

The version of JVM used and the type of JVM (32-bit or 64-bit) is probably the next most
important factor in the tuning of parameters for the server VM. A newer version of the JVM
may have new Garbage collection algorithms implemented and the existing algorithms can be
better tuned or may behave differently in certain cases. A server running with a 64-bit JVM
can take more heap space than one running with a 32-bit JVM. More heap memory can be
allocated to the server with 64-bit JVM than one with a 32-bit JVM which has a physical limit of
4 GB on the Process Address Space.

7.6.3 Machine Setup

Although it is preferable to have a dedicated server setup for each Fiorano Peer Server, but
due to hardware limitations, this often is not possible. Other programs may have to run
simultaneously with the Peer Server which competes for available CPU cycles and available
memory. The Peer Server has to be tuned differently depending on the number of other
programs running on the deployment machine.

7.6.4 Processing Message Size

This is one of the most important factors deciding the amount of memory required by the Peer
VM. The Peer VM is a JMS broker which transfers messages from the components to other
components. The memory required by the Peer Server VM depends on JMS context settings
like persistence, in-memory buffer size, number of connections/sessions/ created and more
importantly the message sizes handled. The components running in-memory can require
additional memory typically equivalent to four or five times the size of the message to parse
the XML and process it.

7.6.5 Peer Server Load

The Peer Server load is the number of components which are launched by it. Components can
be launched in-memory - which means the component runs in the same VM as the Peer
Server. For each component, a set of JMS resources are created which consume Heap Memory
and a certain number of threads are created per JMS session spawned. For components
launched in-memory, the classes loaded for the components to be launched affect the VM
perm gen space as well as the memory required by the component to run.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1187

7.6.6 Recommendations

The following tree gives you a guideline of the JVM hotspot settings for a set of combinations
for the above factors. These recommendations are only guidelines and not stead-fast rules. It
is recommended to tune the server starting with one of the recommended settings which
match closely with the setup. These recommendations have consistent system behavior as
their top priority, followed by performance.

These recommendations do not incorporate the dimension associated with processing
messages of a certain size. These recommendations assume that the message sizes are below
1 MB and will not actually affect the memory required by the Peer Server to process the
messages.

Note: The JVM hotspot setting is recommended below especially for those which starts with '-
XX' keyword, are non-standard hotspot options and are not guaranteed to be supported by all
JAVA VM implementations. For example, IBM JRE does not support many of the these options.
The recommendations below have been made assuming that Sun JRE is being used to run the
servers. In case some other JAVA VM is used, users are advised to find out corresponding
options as provided by VM vendor.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1188

Each leaf in the path of the tree represents a recommended setting and the color of the node
indicates the risk level associated with the particular set up.

Green represents Low Risk and falls into recommended methods

Yellow represents Medium Risk and has to be used under caution

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1189

Red represents High Risk and the system is highly unstable.

Grey represents Low Risk with other factors assumed. The corresponding
recommendations list the assumptions on which this represents Low Risk.

7.6.7 Interpreting and Applying Recommendations

Each recommendation is identified by a unique number written over the leaf circle in the
above tree. The recommended settings are listed below along with their description and a
rationale as to why the setting is recommended. To apply these recommendations, find the
tuning section in the server.conf (or fes.conf / fps.conf) and just add the texts found in the
property names in that section.

{FIORANO_HOME}/esb/server/bin/server.conf
{FIORANO_HOME}/esb/fes/bin/fes.conf
{FIORANO_HOME}/esb/fps/bin/fps.conf

Table 1

Property Name Description Rationale

-Xms512m Minimum Heap size

-Xmx512m Maximum Heap size

Dedicated servers can have
the minimum and maximum
Heap size to save the JVM
from allocating and
reallocating memory thereby
increasing throughput.

-XX:+UseParallelOldGC Garbage Collection
Algorithm

Parallel GC reduces pause
time and works well on small
heap spaces with not many
processors to spare.

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

Table 2

Property Name Description Rationale

-Xms128m Minimum Heap size

-Xmx512m Maximum Heap size

Competing servers must have
the lowest Xms which is safe
for the server to execute. The
VM is responsible for allocating
more memory upto the
maximum memory as and
when required and shrink back
when needed.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1190

-XX:+UseParellelOldGC Garbage Collection
Algorithm

Parallel GC reduces pause time
and works well on small heap
spaces with not many
processors to spare

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause the
VM to be lower than the ESB
call timeout (def: 120
seconds).

Table 3

Property Name Description Rationale

-Xms1024m Minimum Heap size

-Xmx1024m Maximum Heap size

Dedicated servers can have
the minimum and maximum
Heap size to save the JVM
from allocating and
reallocating memory,
thereby increasing
throughput.

-XX:+UseConcMarkSweepGC Garbage Collection
Algorithm

Works well for long running
servers with a large heap
memory that can afford to
share CPU cycles with the
garbage collector. Would
result in the lowest pause
times.

-XX:MaxGCPauseMillis=100000 JVM Pause limit during GC Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

-XX:+CMSIncrementalMode Optimization option This optimizes the algorithm
when it is run with 2 or less
cores.

-XX:MaxPermSize=128 Perm Gen size When the number of
components launched in-
memory increases, so do the
number of classes loaded.
Perm Gen space stores the
meta data of the JVM and is
not part of the Heap space.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1191

Table 4

Property Name Description Rationale

-Xms512m Minimum Heap size

-Xmx1024m Maximum Heap size

Competing servers must
have the lowest Xms which
is safe for the server to
execute. The VM is
responsible for allocating
more memory upto the max
memory limit and shrink
back when needed.

-XX:+UseParellelOldGC Garbage Collection
Algorithm

Works with constrained
amounts of CPU cycles and
limits the pauses under the
specified limit by a parallel
collection.

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

-XX:MaxPermSize=128 Perm Gen size When the number of
components launched in-
memory increases, so do the
number of classes loaded.
Perm Gen space stores the
meta data of the JVM and is
not part of the Heap space.

Table 5

Property Name Description Rationale

-Xms1024m Minimum Heap size

-Xmx1280m Maximum Heap size

Maximum heap space of
1280 is recommended. More
memory allocated to the
heap would suffocate other
process memory regions and
the number of threads that
can be created would be
dangerously low if this limit
is exceeded.

-XX:+UseParellelOldGC Garbage Collection
Algorithm

Works with constrained
amounts of CPU cycles and
limits the pauses under the
specified limit by a parallel
collection.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1192

Property Name Description Rationale

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

-XX:MaxPermSize=128 Perm Gen size When the number of
components launched in-
memory increases, so do the
number of classes loaded.
Perm Gen space stores the
meta data of the JVM and is
not part of the Heap space.

Table 6

Property Name Description Rationale

-Xms1280m Minimum Heap size

-Xmx1280m Maximum Heap size

Maximum Heap space of
1280 is recommended. More
memory allocated to the
heap would suffocate other
process memory regions and
the number of threads that
can be created would be
dangerously low if this limit
is exceeded.

-XX:+UseConcMarkSweepGC Garbage Collection
Algorithm

Works well for long running
servers with a large heap
memory that can afford to
share CPU cycles with the
garbage collector. Would
result in the lowest pause
times.

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

-XX:MaxPermSize=256 Perm Gen Space When the number of
components launched in-
memory increases, so do the
number of classes loaded.
Perm Gen space stores the
meta data of the JVM and is
not part of the Heap space.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1193

Table 7

Property Name Description Rationale

-Xms1536m Minimum Heap size

-Xmx1536m Maximum Heap size

With 64-bit JVMs, the limit of
4GB Address space per
process is removed and
hence a large Heap memory
can be allocated to a process
without any side-effects.

-XX:+UseConcMarkSweepGC Garbage Collection
Algorithm

Works well for long running
servers with a large heap
memory that can afford to
share CPU cycles with the
garbage collector. Would
result in the lowest pause
times.

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

-XX:MaxPermSize=256 Perm Gen Space When the number of
components launched in-
memory increases, so do the
number of classes loaded.
Perm Gen space stores the
metadata of the JVM and is
not part of the Heap space.

Table 8

Property Name Description Rationale

-Xms512m Minimum Heap size

-Xmx1536m Maximum Heap size

With 64-bit JVMs, the limit
of 4GB Address space per
process is removed and
hence a large heap memory
can be allocated to a process
without any side-effects.

-XX:+UseConcMarkSweepGC Garbage Collection
Algorithm

Works well for long running
servers with a large heap
memory that can afford to
share CPU cycles with the
garbage collector. Would
result in the lowest pause
times.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1194

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

-XX:MaxPermSize=256 Perm Gen Space When the number of
components launched in-
memory increases, so do the
number of classes loaded.
Perm Gen space stores the
metadata of the JVM and is
not part of the Heap space.

-

XX:ParallelGCThreads=<no_of_cpu

/ no_of_competing_servers>

Option to limit
monopolizing CPU
resources

If no single application is to
monopolize the CPU for a
long period of time, it is
recommended to limit the
number of parallel threads
which can be spawned.

Table 9

Property Name Description Rationale

-Xms1024m Minimum Heap size

-Xmx2048m Maximum Heap size

With 64-bit JVMs, the limit
of 4GB Address space per
process is removed and
hence a large heap memory
can be allocated to a process
without any side-effects.

-XX:+UseConcMarkSweepGC Garbage Collection
Algorithm

Works well for long running
servers with a large heap
memory that can afford to
share CPU cycles with the
garbage collector. Would
result in the lowest pause
times.

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

-XX:MaxPermSize=256 Perm Gen Space When the number of
components launched in-
memory increases, so do the
number of classes loaded.
Perm Gen space stores the
metadata of the JVM and is
not part of the Heap space.

-

XX:ParallelGCThreads=<no_of_cpu

/ no_of_competing_servers>

Option to limit
monopolizing CPU
resources

If no single application is to
monopolize the CPU for a
long period of time, it is

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1195

recommended to limit the
number of parallel threads
which can be spawned.

Table 10

Property Name Description Rationale

-Xms1536m Minimum Heap size

-Xmx3072m Maximum Heap size

With 64-bit JVMs, the limit
of 4GB Address space per
process is removed and
hence a large Heap memory
can be allocated to a process
without any side-effects.

-XX:+UseConcMarkSweepGC Garbage Collection
Algorithm

Works well for long running
servers with a large Heap
memory that can afford to
share CPU cycles with the
garbage collector. Would
result in the lowest pause
times.

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

-XX:MaxPermSize=512 Perm Gen Space When the number of
components launched in-
memory increases, so do the
number of classes loaded.
Perm Gen space stores the
meta data of the JVM and is
not part of the Heap space.

-XX:DisableExplicitGC Diabling explicit GC
requests

It is dangerous for a
misbehaving in-memory
component to continuously
issue System.GC calls when
the Heap memory allocated
is large. This option will
disable actions against
explicit calls. The memory of
the server is best managed
by the VM. Garbage
collection calls from within
software code can be
extremely dangerous.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1196

-

XX:ParallelGCThreads=<no_of_cpu

/ no_of_competing_servers>

Option to limit
monopolizing CPU
resources

If no single application is to
monopolize the CPU for a
long period of time, it is
recommended to limit the
number of parallel threads
which can be spawned.

Assumption: The Physical RAM is at least 8 GB. However 16 GB is recommended.

Table 11

Property Name Description Rationale

-Xms2048m Minimum Heap size

-Xmx3072m Maximum Heap size

With 64-bit JVMs, the limit
of 4GB Address space per
process is removed and
hence a large Heap memory
can be allocated to a process
without any side-effects.

-XX:+UseConcMarkSweepGC Garbage Collection
Algorithm

Works well for long running
servers with a large Heap
memory that can afford to
share CPU cycles with the
garbage collector. Would
result in the lowest pause
times.

-XX:MaxGCPauseMillis=100000 JVM Pause limit during
GC

Limit the amount of time the
garbage collector can pause
the VM to be lower than the
ESB call timeout (def: 120
seconds).

-XX:MaxPermSize=512 Perm Gen Space When the number of
components launched in-
memory increases, so do the
number of classes loaded.
Perm Gen space stores the
metadata of the JVM and is
not part of the Heap space.

-XX:DisableExplicitGC Disabling explicit GC
requests

It is dangerous for a
misbehaving in-memory
component to continuously
issue System GC calls when
the Heap memory allocated
is large. This option will
disable actions against
explicit calls. The memory of
the server is best managed
by the VM. Garbage
collection calls from within
software code can be

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1197

extremely dangerous.

-

XX:ParallelGCThreads=<no_of_cpu

/ no_of_competing_servers>

Option to limit
monopolizing CPU
resources

If no single application is to
monopolize the CPU for a
long period of time, it is
recommended to limit the
number of parallel threads
which can be spawned.

7.6.8 Handling Memory Problems

One common issue that Users face is the server JVM exiting with a
java.lang.OutOfMemoryError exception. This error is thrown when there is insufficient space to
allocate an object. That is, garbage collection cannot make any further space available to
accommodate the new object, and the heap cannot be expanded further. An
OutOfMemoryError does not necessarily imply a memory leak; the issue might simply be a
case of allocating more memory for the server to perform its operations.

The first step in diagnosing an OutOfMemoryError is to examine the full error message.
Generally, in the exception message, additional information is supplied which hints at a reason
as to why the JVM ran out of Memory. The following contains a list of some common examples
of what that additional information may be, what it may mean, and what to do about it.

7.6.7 Java Heap Space

This indicates that an object could not be allocated on the heap. This issue may just be a
configuration problem related to assigning more Heap space to the server. This can be done so
using the –Xmx option in the server.conf file. Following the recommendations above, if enough
memory has been assigned to the server and the server still runs out of Java Heap space, then
there could be a memory leak at the server end given that the possibility of an in-memory
running component causing the damage is ruled out. Custom components should be checked
for any memory leak with profiling tools available before they are run in-memory.

7.6.7.1 Debugging

In this case, a Reproducible set of steps can be provided to the Fiorano tech support and if its
not reproducible every time, the GC Logging can be enabled and the logs can be sent for
analysis. This can also indicate that a profiling tool analysis is required at the server. Profiling
tools help in monitoring the number of objects pending finalization and to view all reachable
objects while understing which references are keeping each one alive.

7.6.8 Permgen Space

This indicates that the permanent generation is full. This is the area where the JVM stores its
meta-data, data about classes loaded and threads running. If the Peer Server runs a lot of
components in-memory then the perm gen space needs to be increased. Please follow the
recommendations to find a suitable value for the permgen space.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1198

7.6.8.1 Debugging

Increasing the perm gen space generally solves this problem since there cannot be any
memory leak in this region as it is not available to the programs. However, if the server
misbehaves in loading a huge number of classes when it launches components in-memory,
there could be a problem. Using a Java profiling tool to determine the number of classes
loaded by the Peer Server and the components running in-memory should solve this situation.

7.6.9 Requested Array size exceeds VM Limit

This indicates that the application attempted to allocate a continuous array whose size is
larger than the available contiguous memory in the heap. In most cases the problem is likely
to be either that the heap size is too small or set incorrectly or that a bug results in the server
attempting to create an array whose size is incorrectly calculated. If the Xmx is set to more
than 256 MB and if this error occurs repeatedly, steps to solve the problem should be reported
to the Fiorano team.

7.6.10 Swap Space

Another possibility is that the server might run out of Swap Space even though the Heap
space may not be near to the specified Xmx value. There is a restriction on 32 bit machines
where a process can only have up to 4 GB of addressable memory. Each java process have
several segments of memory for the java memory and the native memory (memory used the
operating system to run the process). Native code competes with the JVM to use the 4GB of
addressable space in the application. Such problems generally occur when the heap sizes are
specified to more than 1.6 GB on a 32 bit machine not allowing enough memory for the native
code to run. A simple solution to this may be to reduce the Xmx setting to a lower value.
Please follow the recommendations above for maximum memory guidelines. This problem can
also be solved using a 64 bit JVM on a 64 bit server which has practically no restrictions on the
reference-able address spaces for a Process.

7.6.11 Unable to Create New Native Thread

This means that there is not enough memory to create a new thread. This could be due to JVM
heap, other native memory or Perm Gen memory sections taking up all the memory and
leaving nothing for Stack Memory. It could also mean that the server has already spawned the
maximum number of threads allowed by the Operating System, though this is rare. If the
former is the reason, it is generally solved by reducing the heap size and/or PermGen space. If
this solution does not solve the problem, a last option to solve the problem is to try to
optimize the stack size of a thread.

The stack size can be set using –Xss. If the threads complain that the stack size is too small
then this number needs to be increased and the operation retried. Setting the stack size to
half of the original would allow twice the number of threads to be created and this may solve
the problem. If the above suggestions do not solve the problem, then the thread count, the no
of components running in-memory, no of JMS clients connected and the frequency of
messages should be observed and reported.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1199

7.6.12 Enabling GC logging

One of the easiest ways to get initial information about garbage collections is to specify the
options –XX:PrintGCDetails, -XX:PrintGCTimeStamps. For every collection, this option will
result in the output of the information such as the size of live objects, before and after
garbage collection for various generations, the total available space for each generation and
the length of time the collection took. This also outputs a timestamp at the start of each
collection which helps in correlating GC logs with the Server logs.

The verbose logging will be present in the server logs and in the output console of the server.
This console can be sent to the Fiorano team for further analysis.

7.7 In-Memory Execution and Load Balancing of Components Across Peer
Servers

This section provides guidelines on the load balancing of components across Peer Servers
together with recommendations on in-memory execution. The number of components running
on a Peer Server must be optimized to optimize the load on that Peer Server and to utilize
machine resources effectively. Both the Separate Process and In-memory Launch options are
discussed below.

7.7.1 Separate Process

The number of components that can be launched on a Peer Server depends on the RAM
availability. Users can launch more components on a machine with greater RAM than on one
with less RAM.

However, there is a practical limit on the number of components that can be safely launched
on a Peer Server since all the components are launched as child processes of the Peer Server
process. As the number of components on a particular Peer Server increases, it becomes
difficult for the Peer Server to launch and stop the components. This can result in Request
Timeout exceptions.

To avoid these timeout exceptions there is a need to distribute components across different
Peer Servers.

The default timeout for application launch/stop in the Fiorano Studio is 100 seconds. Any
server call is timed out after this duration. This value is configurable and can be increased to
avoid frequent timeouts.

Fiorano recommends launching 60-75 components per Peer Server on a machine with 8 GB of
RAM. The limit can be slightly greater on a machine with more RAM.

Fiorano SOA Platform User Guide

Chapter 7: Scalability, Load Balancing and Memory Optimization Page 1200

7.7.2 In-memory

In case of In-memory Launch, components is launched with the JVM of the Peer Server of the
local machine. The default Heap memory allocated for servers in the Fiorano environment is
512 MB. Server heap memory can be increased by changing the –Xmx parameter value by
editing the server.conf file located at FIORANO_HOME\esb\server\bin. For In-memory Launch,
it is recommended that the server Heap memory should be increase to the maximum limit,
though this has the affect of allowing less threads within the overall Peer Server process.

In case of 32-bit machines, a java process can span a maximum of 1.6 GB of memory.
Assuming that the heap-size is set to this 1.6 GB limit, the number of In-memory components
can be increased until the Peer server's memory usage reaches this point (or within safe limits
of this point, say approximately 70% of 1.6 GB).

In case of 64-bit machines, the java heap memory is relatively high (approximately 4 GB) and
a larger number off components can be launched in In-memory. However, one needs to be
careful in assigning more memory to the Peer Server process since more Heap memory has an
impact on the number of threads that can be created by the JVM. As the heap memory of a
process increase, the number of threads that can be created is less; this can have an adverse
affect on Peer Server performance. As such, the precise heap-memory allocated to the Peer
Server JVM has to be determined by testing that particular configuration being run (that is, by
running the full application to ensure there are no adverse affects on the system).

Note:

• Components that are launched In-memory should preferably have a lower memory
footprint and lower CPU utilization. Components that have a large memory footprint or
which take up greater amounts of CPU usage should not be launched In-memory as
they will have a negative impact on the Peer Server functionality. For instance, if a
component launched in a separate process continuously consumes, say, 70% of CPU
then it cannot be launched In-memory.

• Fiorano suggests keeping the components as Separate Processes unless there's an
absolute need to change the launch mode to In-memory. Running components In-
memory dramatically decreases the overall memory utilization of an application since
the number of JVM’s launched is decreased. Precise recommendations about which
components from the palette can be safely run In-memory are discussed in a separate
document.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1201

Chapter 8: Security

This chapter discusses the security policies and service-governance features supported by the
Fiorano SOA Platform.

The Fiorano SOA Platform security policy interface gives you the necessary control to
administer and manage groups and users on the entire Fiorano Network as well as the ability
to control process deployment to QA, Staging and Production environments.

8.1 Authentication

The Fiorano SOA Platform users and groups can operate from all available nodes in the Fiorano
Network. The FSSM can be used to configure and manage user authentication.

A group is identified by a unique name and contains a list of users who inherit all rights
assigned to a group. Each user is assigned a unique user name, password, and a group
membership. Information pertaining to users and groups are utilized while authenticating and
enables to determine the resources of a user or a group that is allowed to access.

The FSSM allows you to manage all users in a Fiorano Network. To manage users, you need to
view the list of users in the right pane of FSSM. To view the list of users, click the Users node
in the left pane. Figure 8.1.1 illustrates the user list.

Figure 8.1.1: Users List

You can perform the following management tasks:

 Creating user accounts

 Deleting user accounts

 Changing the password of a user

Similarly the Groups node allows the administrator to club users into specific groups and
provide appropriate levels of authorization.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1202

8.2 Authorization

The FSSM allows you to assign rights to users and groups, rights may be understood as rules
associated with the Fiorano Network granted to users and groups. Rules allow users and
groups to perform specific tasks on a Fiorano Network. The Fiorano SOA Platform has a well-
defined security policy to protect your network against data loss or corruption due to malicious
or accidental access. This policy is implemented by assigning the appropriate permissions to
groups as well as their users.

When you select Access Rights Assignment shown in the left panel, a list of all available
permissions are displayed in the right panel as shown in the Figure 8.2.1.

Figure 8.2.1: Access Right Assignment

To set access rights for any user and group, select a specific access right entry and right click
to configure. Figure 8.2.2 illustrates the Permission to Create an ACL is restricted to
Administrators. Other users and groups can be authorized to perform this operation by adding
to the Assigned To list.

Figure8.2.2: Permission to Create an ACL

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1203

8.3. Password Rules

For security purpose, Fiorano Enterprise Server provides feature to define the password
validity and strength check rules for accepting password while adding a new user or changing
the password of existing user.

8.3.1 Password Strength

Strength of a password is defined on a logical scale and suggests the user that how secure is
the password provided by him. Password Strength can be categorized into one of the
following categories:

• VERY WEAK

• WEAK

• AVERAGE

• ABOVE AVERAGE

• STRONG

• VERY STRONG

8.3.2 Password Validation

Whereas Password Strength Check defines guidelines for choosing a good password, Password
Validation checks put restrictions on which passwords are valid and which ones are invalid.
Invalid passwords will not be accepted by the system and the user will be prompted to provide
a new password.

Password strength and validation rules are defined per profile basis, that is, the rules can be
changed per Enterprise Server profile.

Note: To know more about how password validation and strength check rules can be added or
deleted refer to section 2.5.1.2 Security.

8.3.3 Custom Password Rule Implementation

Fiorano Enterprise Server provides the user the flexibility to override the default
implementation of password rules and write his own custom implementation, that is, the user
can write his own Java Class for checking both password strength and validity.

Steps to define custom implementation for checking password strength and validity

Users who wish to override the default implementation and provide their own custom
implementation should implement the following interface:

• “IStrengthChecker.java” for password strength check

• “IValidationChecker.java” for password validation check

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1204

Both of these interfaces are defined in package “fiorano.tifosi.dmi.rule.passwd.api”. For more
information please refer to the javadoc of these APIs in
$FioranoHome/javadoc/esb/dmi/fiorano/tifosi/dmi/rule/passwd/api/

After defining your own custom implementation for one or both of password strength and
validation check, please follow the below mentioned steps to configure Enterprise Server for
overriding the default implementation with your custom implementation:

1. Compile the custom class/classes and create a jar of them. Refer link
http://java.sun.com/docs/books/tutorial/deployment/jar/build.html to see how jar files
are created.

2. Include the jar in classpath of Enterprise Server by adding the full path of jar in
server.conf or fes.conf (depending on you are using server.bat/server.sh or
fes.bat/fes.sh for starting Enterprise Server) under the tag <java.classpath> in conf
file.

3. Start nStudio, and open FES profile by navigating to Profile Management -> Fiorano
SOA -> <EnterpriseServerProfile> -> fes. In FES Profile, navigate to Fiorano->ESB-
>Security->User->UserSecurityManager as shown in figure below:

Figure: UserSecurityManager option

4. Click on the ellipsis of “PasswdStrengthImpl” in the Properties of
UserSecurityManager panel on the right hand side of Studio as shown in figure
below, provide the fully qualified classname (<package_name>.<class_name>) of the
custom password strength check class. Similarly for password validity check, click on
the ellipsis of “PasswdValidityImpl” and provide the fully qualified classname of the
custom password validity check class.

http://java.sun.com/docs/books/tutorial/deployment/jar/build.html

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1205

Figure: PasswdValidityImpl

5. Save the profile as shown in the figure below:

Figure: Saving the profile

Now, the enterprise server will use your custom classes for checking password strength and
validity

Note: All the information described above regarding the password rules is valid only if the
user is added through Dashboard. If Studio is used for adding new user, the password rules
will not imply as the Studio by default sets the password for the new user same as the
username.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1206

8.4 Deployment Manager

The Management and Governance of the distributed applications is a challenging task. The On-
demand business requirements mean that new services have to be frequently added to
existing business processes. The administrator needs to ensure that the service components
being added are tested thoroughly and do not compromise the stability and performance of
the system. To satisfy this requirement, the administrator needs to implement reliable
configuration management and governance policies to prevent unstable components from
being added to the system.

Deployment Manager is a powerful rule engine that simplifies configuration management and
governance in the Fiorano network. The Deployment Manager uses the concept of Labels and
Rules to achieve the above mentioned goals.

8.5 Labels

The Fiorano SOA Platform enables users to label the various components of their distributed
architecture. All the Service Components, Event Processes, and nodes (peer servers) can be
labeled.

The labels currently supported by the tool are:

• Development

• QA

• Staging

• Production

You can use a combination of labels and other identifiers (GUIDs, version numbers, and node
names) to create comprehensive and powerful rules to control the deployment of processes.
For example, when a new process has been developed, then it can be marked with a
Development label. After appropriate levels of testing, it can then be upgraded to Staging.
The labeling support at the service component level provides similar functionality at a much
more fine grained level.

8.6 Rules

A rule in the Fiorano SOA Platform context is a conditional statement that controls the launch
of Business Components. The rules have two important aspects; identifiers and precedence.

The identifiers are values assigned to the various configurable elements of the Fiorano
Network. The configurable elements are the fixed elements of the Fiorano Network, such as
Event Processes, Business Components, and Peer Servers. The rules are constructed by
combining identifiers of the various Fiorano SOA Platform elements. The Deployment Manager
has been configured with the following identifiers:

• GUID

• Version

• Label

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1207

The identifiers allow you to control the ambit and complexity of a rule. The fewer the
identifiers, the simpler the rule and the greater its ambit. For example, a simple rule can be
created to disallow all instances of a particular Business Component from being launched. This
rule will typically contain one identifier, the GUID of the Business Component. Despite being a
simple rule, it applies to all Business Components in the Fiorano Network. A complex rule, on
the other hand, can be created to prevent a particular Business Component from being
launched on a Peer Server when it is part of a particular Event Process. This rule will contain
at least three identifiers, the GUIDs of the Event Process, the Business Component, and the
label of the Peer Server. The Version identifier is present only for components and event
processes and not for the Peer Server.

Precedence: All rules are processed in the order in which they are stored by the Deployment
Manager. By default, rules are stored in the order in which they were created. As a result, you
will have to ensure that one rule does not interfere with the other. You can alter the
precedence of the rules by using the controls provided in the tool.

The syntax of a rule is illustrates in the Figure 8.5.1.

Figure 8.5.1: Rule syntax

Figure 8.5.2 illustrates a sample rule that disallows deployment of any non-production event
process on a peer with the Production Label.

Figure 8.5.2: Sample Rule

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1208

The complex business rules can be tested and verified before implementing them in your
environment. The Deployment Manager provides the ability to test the rules at design time as
shown in Figure 8.5.3

Figure 8.5.3: Verifying Rule

8.7 Changing Security Database Implementation

Security related information (user, groups and ACLs) is by default stored in file based data
store inside runtimedata directory of the server. Using Fiorano Studio Profile Manager, the
implementation can be changed before starting the server to LDAP, RDBMS or XML type
storage. This section explains the configuration steps required to change the implementation.

8.7.1 Security Related MBeans

Security related components are found in default ESB profiles in Fiorano->Security domain.
Object Names for these components are:

• Fiorano.security:ServiceType=RealmManager,Name=SecuritySubSystem

• Fiorano.security.AclManager:ServiceType=AclManager,Impl=FILE,Name=NativeFileBas
edAclManager

• Fiorano.security.PrincipalManager:ServiceType=PrincipalManager,Impl=FILE,Name=N
ativeFilePrincipalManager

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1209

The figure above shows the position of these components in the component tree as seen from
an off-line configuration tool (the Profile Manager).

8.7.2 Modifying ACLManager Implementation
1. Open the profile for off-line editing through the Profile Manager

2. Browse the tree to reach the node Fiorano -> security -> AclManager. Click on the
current ACL Manager MBean.

3. In the properties panel, click on the value of the Implementation property and choose
the desired value from the drop-down menu.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1210

4. Right-click on the FES node and select Save from the pop-up menu.

8.7.3 Modifying Principal Manager Implementation
1. Open the desired profile for off-line editing through the Profile Manager.

2. Browse the tree to reach Fiorano -> security -> PrincipalManager and click on the
current Principal Manager Mbean as shown in the figure below.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1211

3. In the property panel click on the value of the Implementation property and choose a
desired value from the drop down list.

4. Right-click on the FES node and select Save from the pop-up menu

8.7.4 Editing Destination Level Security Through ACL’s

The administrator can grant users access permissions to work on different destinations (Topics
and queues). Permissions to users and groups can be edited by executing the following steps:

1. Launch Studio and click on the Server Explorer pane. Right-click on the desired
server and select Login from the pop-up menu.

2. Navigate to the required destination through Destinations > Topics/Queues.

3. Right-click the required topic/queue and select the EditACL option from the pop-up
menu. The EditACL dialog box is displayed as shown in the figure:

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1212

4. You can add permissions for a new principal by clicking on the Add button.

5. An existing entry for a principal can be removed by clicking on the Remove button.

6. Select the ACL Entry (for any principal) in this dialog box and click the Edit button.
The Edit Permissions dialog box as shown below is displayed.

7. Modify the permissions for the various actions like Publish, Subscribe, Unsubscribe,
and Durable Subscribe as desired and click on the OK button.

8.7.5 RDBMS Realm

8.7.5.1 Setting up

1. Open the profile for off-line editing through the Profile Manager

2. Modify Principal Manager [see section 7.4 Modifying Principal Manager
Implementation of FioranoMQ Handbook] and ACL Manager implementation [see
section 7.5 Modifying ACLManager Implementation of FioranoMQ Handbook] to
RDBMS

3. Configure these components as per the desired database. Sample configuration for
some common databases is provided in later sections.

4. RDMS based ACL manager depends on Timer Service. Specify the instance of
TimerService as specified in figure below:

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1213

5. Right-click on the FES/FPS node and select Save from the pop-up menu.

8.7.5.2 Additional Configuration

The database driver has to be added to the Container classpath.

To force the Fiorano FES/FPS servers to create default destinations and users again over the
newly configured RDBMS Server even if the server has already been started using any other
configuration option, clear the existing database (run folder of profile) and then restart the
server.

8.7.5.3 Sample Configurations

The list below provides sample configuration for various databases. These parameters can be
specified for both ACLManager as well as PrincipalManager.

Oracle

URL: jdbc:oracle:thin:@164.164.128.113:1521:orcl

Database Driver: oracle.jdbc.driver.OracleDriver

Username: scott

Password: tiger

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1214

MySQL

URL: jdbc:mysql://localhost/mysql

DatabaseDriver: com.mysql.jdbc.Driver

Username: <user name>

Password: <password>

HSQL

URL: jdbc:hsqldb:d:\FMQDB

DatabaseDriver: org.hsqldb.jdbcDriver

Username: sa

Password: <password>

MSSQL

URL: jdbc:microsoft:sqlserver://qalab01:1433

DatabaseDriver: com.microsoft.jdbc.sqlserver.SQLServerDriver

Username: sa

Password: <password>

Note: The MS-SQL driver has to be added to the Container
classpath(msutil.jar,mssqlserver.jar,msbase.jar)

DB2

URL: jdbc:db2://localhost:7777/sample

DatabaseDriver: COM.ibm.db7.6.jdbc.net.DB2Driver

Username: user

Password: passwd

The parameter named PropertiesFile should point to principalsqlstatements properties when
configuring PrincipalManager and aclsqlstatements properties when configuring ACLManager.
These files can be found in the conf folder of the desired profile.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1215

8.7.5.4 Verifying

Use any Query tool provided by your database vendor, such as SQLWorksheet for Oracle, and
verify the creation of the following tables with default values:

Principal Manager

TableName - users (stores all users related information)

TableName - groupmembers (stores all Group related information)

ACL Manager

TableName - aclentries (stores ACL Entries for all users)

The following is a sample SQL query executed on SQLWorksheet:

• SQLWKS> select * from users;

• SQLWKS> select * from aclentries;

8.7.6 LDAP Security Realm
1. Open the profile for off-line editing through the Profile Manager using Studio by

clicking on the Profile Manager pane.

2. Modify the Implementation property of ACL Manager and Principal Manager and to
LDAP. For more information on how to modify ACL Manager and Principal Manager
refer section 7.4 Modifying ACL Manager Implementation and refer to section 7.5
Modifying Principal Manager Implementation of FioranoMQ Handbook.

3. Configure the Principal Manager as per the desired Directory Server. Sample
configuration for Netscape Directory Server is as shown in the figure below in section
LDAP Provider DN.

4. LDAP based ACL manager depends on Timer Service. Specify the instance of
TimerService as specified in figure below:

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1216

5. Right-click on the FES/FPS node and select Save from the pop-up menu.

8.7.6.1 Sample Configuration – Netscape Directory Server

Setting the Name

This name has to be the admin of the LDAP server, as you have to start the Initial Context
with the Admin.

PRINCIPAL = uid=admin, ou=Administrators, ou=TopologyManagement, o=NetscapeRoot

Setting the password

Enter the password of the Admin of the LDAP Server to whom you want to connect as shown
in the Figure below

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1217

Figure: iPlanet Console Login Dialog Box

LDAP Initial Context Factory

The Initial Context Factory to be used, corresponding to the directory server.

LdapInitialCtxFactory = com.sun.jndi.ldap.LdapCtxFactory

LDAP Provider URL

This can be set according to the directory server being used.

LdapProviderUrl = ldap://ldapserver:389

LDAP Provider DN

This variable needs to be set to the suffix variable that you have set up while installing the
LDAP Server as shown in the figure:

LdapProviderDn = dc=modena, dc=stpn, dc=soft, dc=net

Figure: Directory Server Settings

LDAP security authentication

Set this variable to:

LdapSecurityAuthentication = Simple

LDAP User and Group Object classes

8.7.6.2 Sample Configuration – ApacheDS1.5.4

Note : The steps mentioned here require the installation of Apache Directory Studio.

Setting up the Directory Service

1. Stop any running instance of apacheds.

2. Take backup of server.xml

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1218

/var/lib/apacheds-1.5.4/default/conf/server.xml (DEFAULT PATH. If the DS instances
were installed in a different location then server.xml will be available inside that
directory.)

3. Modify server.xml as follows, add the following line within the tag </partitions> ...
</partitions>

 <jdbmPartition id="fiorano" cacheSize="100" suffix="o=fiorano,c=US"
optimizerEnabled="true" syncOnWrite="true"/>

4. Run apacheds.

/etc/init.d/apacheds start

5. Login through Apache Directory Studio.

 User : uid=admin,ou=system. (Default)

 Password : secret. (Default)

6. Import the following LDIF content using Apache Directory Studio. (Menu: LDAP ->
New LDIF File)

dn: o=fiorano,c=us

objectclass: top

objectClass: organization

o: fiorano

dn: cn=FMQServerConfigFiles,o=fiorano,c=us

objectclass: top

objectClass: organizationalRole

cn: FMQServerConfigFiles

dn: cn=FioranoMQUsers,o=fiorano,c=us

objectClass: top

objectClass: organizationalRole

cn: FioranoMQUsers

dn: cn=FioranoMQGroups,o=fiorano,c=us

objectClass: top

objectClass: organizationalRole

cn: FioranoMQGroups

dn: cn=ACL,o=fiorano,c=US

objectclass: top

objectClass: organizationalRole

cn: ACL

dn: cn=FMQRoot,o=fiorano,c=us

objectClass: inetOrgPerson

objectClass: organizationalPerson

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1219

objectClass: person

objectClass: top

cn: FMQRoot

cn: system administrator

sn: administrator

displayname: Directory Superuser

userpassword:: c2VjcmV0

7. Relogin through Apache Directory Studio to see the added children.

Setting up the profile for use with ApacheDS1.5.4

Note : Make sure that the steps mentioned in section 8.7.6.2 have been completed before
moving on to these steps.

1. Open the profile for off-line editing through the Profile Manager using Studio by
clicking on the Profile Manager pane

2. Make sure that all the properties except the LdapProviderUrl are reset to their original
value.

3. In the LDAP Provider URL, the port number has to be 10389 and the ip address has to
be that of the server that is running ApacheDS.

8.7.7 XML Security Realm
1. Open the desired profile for off-line editing through the Profile Manager using Studio

2. Modify the Implementation property of Principal Manager and ACL Manager to XML.
For more information on how to modify ACL Manager and Principal Manager refer to
section 7.4 Modifying ACL Manager Implementation and section 7.5 Modifying
Principal Manager Implementation of FioranoMQ Handbook.

3. Configure Principal Manager and ACL Manager.

4. Right-click on the FES/FPS node and select Save from the pop-up menu.

8.7.7.1 Configuring Principal Manager

UserFileName

The name and path of the xml file containing user information. Default is user.xml.

GroupFileName

The name and path of the xml file containing group information. Default is group.xml.

Path

The absolute or relative path where user and group files are stored. On specifying a absolute
path, user and group files are saved to that location, while specifying a relative path saves
user and group files to [FIORANO_DB_PATH]\[relative path entered], which in default cases
for FES are %FIORANO_HOME%\runtimedata\%selectedProfile%\FES\run\realm\principal.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1220

8.7.7.2 Configuring ACL Manager

FileName

The name and path of the xml file containing user information. Default is acl.xml.

MaxAcePerACL

Maximum number of entries that an ACL can store. Default is 100.

Path

The absolute or relative path where the xml files are stored. On specifying an absolute path,
user and group files are saved to that location, while specifying a relative path saves user and
group files to [FIORANO_DB_PATH]\[relative path entered], which in default cases are
%FIORANO_HOME%\runtimedata\%selectedProfile%\FES\run\realm\principal.

8.7.7.3 Sample xml files

User.xml

<?xml version="1.0"?>

<UserManager>

<User>

 <Name>ADMIN</Name>

 <Password></Password>

 </User>

 <User>

 <Name>Anonymous</Name>

 <Password></Password>

 </User>

 </UserManager>

Where:

<UserManager> Root element of the UserManager.

<User> The UserManager may consist of one or more users.

<Name> The name of the user. This is used to identify the user entry and is used in the ACLS
and Groups.

<Password> The password of the user. This is stored in encrypted form. Hence, it cannot be
specified from outside the system(?).

8.7.7.4 Group.xml

<?xml version="1.0"/>

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1221

<GroupManager>

<Group>

 <Name>EVERYONE</Name>

 </Group>

 </GroupManager>

Where:

<GroupManager> Root element of the GroupManager.

<Group> The GroupManager may consist of one or more groups.

<Name> The name of the group. This is used to identify the group entry and is used in the
ACL table.

<Member> A group can consist of one or more members. These members must exist in the
user table.

8.7.7.5 acl.xml

</AclManager>

 <ACL>

 </Name>LOOKUP</Name>

 <AclEntry Type="POS">

 <Principal>EVERYONE</Principal>

 <Permission>LOOKUP</Permission>

 </AclEntry>

 </ACL>

 </AclManager>

Where:

<AclManager> Root element of the ACL dtd.

<ACL> The AclManager consists of one or more ACLs, which consists of all the information
about ACL.

<Name> It specifies the name of the ACL.

<AclEntry> An ACL consists of one or more AclEntry, which can be negative (NEG) or
positive (POS).

<Principal> An AclEntry consists of a Principal, which can be a user or a group.

<Permission> An AclEntry consists of 0 or 1 permission to perform certain tasks

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1222

8.8 Event Process Security

This feature enables administrator to define the permissions created for the destinations used
by the Event Process. This allows administrators to control the set of users allowed to access
destinations created/used by the components within an Event Process, ensuring that
unauthorized users do not get access to these destinations.

8.8.1 How ACLs Work

All major actions taken by the users on an Event Process are mapped with one or more
permission which determines whether the user has the permission to take that particular
action or not. If the user is not allowed to take the action, the server throws a Security
Exception. For an Event Process, the following ACLs control user-actions on the process.

• Application Level Permission

• Global/System Level Permission(s)

8.8.1.1 Application Level Permission

Each Event Process can be assigned an ACL that determines the set of users and actions
allowed for that Event Process. These permissions, if set, over-ride the permission set at the
system level.

Note: With default installation, none of the Event Process has any application level ACL set.
All behavior is governed by ACLs set at System/Global level, refer to section 8.7.1.2
Global/System Level Permission(s) for more information. The following permissions are
available at the Event Process Level.

PERMISSION TO COMPOSE AN APPLICATION

This permission controls whether a user is allowed to compose/update/delete an Event Process
from the Server repository.

PERMISSION TO CHANGE PROPERTIES OF AN APPLICATION

This permission controls whether a user is allowed to change the following properties of a
running Event Process:

• Logging properties of a service instance

• Document Tracking property at ports of service instances

• Route Transformation at routes connecting service instances

This permission thus controls run-time changes in the above properties.

Note: For a user to successfully modify the above properties of an Event Process, the user
should also have the permission to compose that Event Process (Permission described
above).

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1223

PERMISSION TO LAUNCH AN APPLICATION

This permission controls whether a user is allowed to launch and/or synchronize the Event
Process.

PERMISSION TO KILL AN APPLICATION

This permission controls whether a user is allowed to kill the Event Process.

PERMISSION TO VIEW RUNNING AND SAVED APPLICATIONS

This permission controls whether a user is allowed to view the application from the server
repository. If a user tries to view an application without the appropriate permission, a Security
Exception is thrown and the user is denied access to the information.

PERMISSION TO REMOTELY ADMINISTRATE AN APPLICATION

This permission controls the set of users who can use service instances from this Event
Process as a remote service instance in their own Event Processes. By default, all users are
allowed to remotely access the service instances of all Event Processes. This behavior can be
controlled by the same permission when set at system level (as described in the
Global/System Level Permission(s) section).

8.8.1.2 Global/System Level Permission(s)

The permissions set at system level control the overall behavior of the system. For
permissions related to an Event Process, if Event Process Level permissions are not set,
Global/System Level permissions govern the set of actions allowed for a user. As explained
earlier, the default behavior of the Event Processes is governed by Global/System Level
permissions only. The following permissions are available at this level.

ALL PERMISSIONS

This permission over-rides all other permissions set at system level. If this particular
permission is granted the user/grout will be allowed to perform all actions unless the
Application Level Permission specifically denies the action.

PERMISSION TO COMPOSE AN APPLICATION

This permission serves the same purpose as at the Application Level (see previous section)
except that it applies to all Event Processes.

PERMISSION TO CHANGE PROPERTIES OF AN APPLICATION

This permission serves the same purpose as at the Application Level (see previous section)
except that it applies to all Event Processes.

PERMISSION TO LAUNCH AN APPLICATION

This permission serves the same purpose as at the Application Level (see previous section)
except that it applies to all Event Processes.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1224

PERMISSION TO KILL AN APPLICATION

This permission serves the same purpose as at the Application Level (see previous section)
except that it applies to all Event Processes.

PERMISSION TO VIEW RUNNING AND SAVED APPLICATIONS

This permission serves the same purpose as at the Application Level (see previous section)
except that it applies to all Event Processes.

PERMISSION TO CREATE OR EDIT AND REMOVE SERVICE ACL

This permission has been deprecated as it is no longer used within the system.

PERMISSION TO CREATE OR UPDATE AND DELETE A SERVICE

This permission controls whether a user is allowed to make modifications in a particular
service e.g. adding/removing a resource to/from a service, changing icon, adding/removing
service dependencies, etc.

PERMISSION TO CREATE AN ACL

This permission controls whether a user is allowed to create/change a System Level or
Application Level permission.

PERMISSION TO CREATE OR EDIT AND DELETE A PRINCIPAL

This permission controls whether a user is allowed to create/delete a user/group on the
system. The permission also determines whether a user is allowed to change the password for
an existing user.

PERMISSION TO CONFIGURE A FPS

This permission has been deprecated as it is no longer used within the system.

PERMISSION TO REMOTELY ADMINISTRATE AN APPLICATION

This permission serves the same purpose as at the Application Level (see previous section)
except it applies to all Event Processes.

PERMISSION TO DELETE MESSAGES IN QUEUE

This permission has been deprecated as it is no longer used within the system.

PERMISSION TO CLEAR USER EVENTS

This permission has been deprecated as it is no longer used within the system.

PERMISSION TO PUSH MESSAGES IN QUEUE

This permission has been deprecated as it is no longer used within the system.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1225

PERMISSION TO ADMINISTRATE A GROUP

This permission controls whether a user is allowed to add/remove members from an existing
group.

8.8.3 Default Allowed Set Of Users

When an Event Process is launched, ACLs will be created for all the default (i.e. system-
created) destinations such that the following users can publish/subscribe/send/receive the
information on these destinations.

1. User launching the Application

2. The set of users allowed by the permission named PERMISSION TO REMOTELY
ADMINISTRATE AN APPLICATION.

All components launched as a result of an Event Process launch/synchronize action will use the
credentials of the user performing the launch/synchronize operation to create all connections
with the Peer Server. Similarly, all connection(s) created by routes within the Event Process to
remote Peer Server(s) will be created using the credentials of the user
launching/synchronizing the Event Process.

Note: No specific permissions will be created for user-defined destinations. If a user-defined
destination does not exist while launching the Event Process, it will be created by the Peer
Server but the ACL settings on these destinations depend upon other Peer Server profile
parameters. These parameters can be configured by opening the profile in Studio and
navigating to Fiorano->etc->FMQConfigLoader as illustrated in the figure below. These
parameters are as described below:

• CreateDefaultACL – This parameter decides whether a default ACL should be created
for a newly created destination or not. The default ACL is to allow or disallow
Everyone (based on the value of All Permissions parameter defined below) from
accessing the destination.

• AllPermissions – This parameter determines whether the default permission created
should be positive or negative.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1226

8.8.4 Changing Default Permissions

Default permissions at Application Level and System Level can be changed such that only a
chosen set of users are allowed to perform the desired actions on desired set of Event
Processes. These changes can be made via the Fiorano Web dashboard interface which
provides an interactive UI to change these ACLs.

8.8.4.1 Changing Global Permissions

All available global permissions are listed under the Security->Global Permissions
component of the Web interface. Each of these permissions when expanded displays a list of
principals that are allowed to perform the action specified by that permission (as shown in
figure below).

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1227

This list of allowed principals can be modified by selecting the appropriate checkbox and
clicking the View/Edit Allowed Principals button. This pops-up another window showing the
list of allowed users. You can also remove selected users from the permission by clicking the
Remove Principal(s) button or add new users to the permission by clicking the Add
Principal(s) button as shown in the figure below.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1228

8.8.4.2 Changing Application Level Permissions

Application Level Permissions can be viewed and modified by navigating to the Security-
>Application Permissions panel of the Web interface. Selecting a principal and Event
Process name in this view displays the set of positive and negative permissions assigned to
that principal for the selected Event Process. The figure below shows that the user BOB has 3
positive and 3 negative permissions for the Event Process named BOND_TRADING.

The set of positive and negative permissions can be modified by clicking on the Edit
Permissions button. For example, to change the type of one or more negative permissions
shown in figure above to positive permissions, first select the desired negative permissions
from the set of Available Permissions; then choose GRANT option and click the Modify
button. The selected principal would then be granted the permission to perform the actions
represented by those permissions as shown in the figure below.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1229

8.8.5 Principal Store Synchronization

Event Processes are entities that reside in the Enterprise Server repository while destinations
used by the components are created on the Peer Server(s). To ensure that a user who has
permission to launch an Event Process from the Enterprise Server also has the permission to
publish/subscribe/send/receive messages onto destinations on the Peer Server, the username
must be present in security data store of both the Enterprise Server and the Peer Server. This
is achieved by ensuring that the User & Group Store (collectively called as Principal Store)
of both the Enterprise Server and all connected Peer Servers are always in sync with each
other. Any change in Principal Store of Enterprise Server is propagated to all connected Peer
Servers . Whenever a new Peer Server becomes available on the Fiorano network, a complete
one-way synchronization of the Principal Store of that Peer Server and the Enterprise Server
will happen, where the Principal Store of Enterprise Server replaces the Principal Store of the
Peer Server. The Enterprise Server is responsible for maintaining the status of synchronization
with each connected Peer Server. The status of synchronization with each Peer Server can be
viewed by navigating to the Security->Principal Store Sync component of Web interface as
illustrated in the figure below.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1230

Important:

An Event Process launch/synchronize actions will be disallowed if the Principal Stores of
Enterprise Server and all running Peer servers used within the Event Process are not in sync
with each other. An exception will be thrown specifying the reason due to which the stores
were found to be out-of-sync. In such cases, the user will have to take corrective actions in
order to launch that Event Process on problematic Peer Server(s). The Web interface provides
an option to force a re-sync of Principal Store of Enterprise Server with any particular Peer
Server. This is achieved by clicking on the image under the Synchronize column as shown in
the figure above. The result of this operation will be displayed to the user as shown in figure
below.

Fiorano SOA Platform User Guide

Chapter 8: Security Page 1231

Modifying the Principal Store of Peer Server by directly creating a connection with Peer Server
is disabled. An exception will be thrown whenever a user tries to perform such an operation.
Any modifications in the Principal Store of Peer Server can only be performed via the
Enterprise Server connection. The figure below shows the result of an operation when a user
tries to modify Principal Store of Peer Server by logging into Peer Server via Studio.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1232

Chapter 9: Fiorano Mapper

The Fiorano Mapper is a high-end graphical tool that presents you with both source document
structure and target document structure side-by-side and lets you define semantic
transformation of data by simply drawing lines between nodes, elements, and functions.

The Fiorano Mapper uses standards based XSLT (Extensible Stylesheet Language for
Transformations), which is a language for transforming documents from one XML structure to
another.

Additionally, Fiorano Mapper ensures that the source and target document structures conform
to the DTD (Document Type Definition) standards.

9.1 Key Features of Fiorano Mapper

The Fiorano Mapper performs a variety of operations including:

 Transforming one or more XML, XSD, DTD, or CSV files.

 Generating XML, XSD, DTD, or RDBMS queries for inserting, deleting, or updating
records as output of the transformation.

 Using Funclets to define complex mapping expressions.

 Validate the transformation.

 Define the transformation (mapping) with simple drag-and-drop actions.

9.2 Fiorano Mapper Environment

The Fiorano Mapper tool has an easy to use graphical interface that consists of two views:

14. MapView: Displays a graphical representation of the mappings between the Input and
Output Structures and other details.

15. MetaData: Displays the XSL Transformation that is created by defining the mappings
between the loaded Input and Output Structures.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1233

The interface of the Fiorano Mapper tool is displayed in Figure 9.2.1.

Figure 9.2.1: Fiorano Mapper’s Main Window

The Fiorano Mapper tool consists of the following interface elements:

 Menu Bar

 Toolbar

 MapView Panel

− Input Structure Panel

− Lines Panel

− Output Structure Panel

− Details Panel

1. Comments tab

2. NodeInfo tab

3. Mappings tab

4. Funclet tab

5. User XSL

6. Messages tab

 Metadata Panel

− Transformation Code

− Error Messages

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1234

9.2.1 Menu Bar

The Fiorano Mapper’s menu bar organizes the commands that you can execute by using them.
The Bar is divided into seven categories of menu, as shown in Figure 9.2.2.

Figure 9.2.2: Menu Bar of the Fiorano Mapper

The description of the options, in the menu bar, as shown in Figure 9.2.2, is as follow:

9.2.1.1 File

• New: Creates a new project

• Open: Opens an existing project

• Save: Saves a project

• Save As: Saves a project with a given name

• Maximize: Maximize the selected project page

• Page Setup: Sets the dimensions and settings for the selected page

• Print: Prints the selected page or project

• Exit: Exits Fiorano Mapper tool

9.2.1.2 Edit

• Undo: Undo the last action performed

• Redo: Redo the last action performed

9.2.1.3 Structure

• Load Input Structure: Loads the input structure

• Import Input Structure: Imports input structure from Fiorano Mapper project file

• Load Output Structure: Loads the output structure

• Import Output Structure: Imports output structure from Fiorano Mapper project file

• Clear Input Structures: Clears the existing input structures, if any

• Clear Output Structures: Clears the output structures, if any

• Clear Structures: Clears all input and output structures

• Clear Mappings: Clears the existing mappings

9.2.1.4 View

• Show All Mappings: Views all existing mappings

• XSLT Properties: Modifies the properties of the generated XSL

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1235

9.2.1.5 AutoMap

• Child to Child: Creates mappings from child to child automatically

• Child to Child Recursively: Creates mappings between descendants of the selected
nodes

• Default and Fixed Values: Creates mappings for nodes with default and fixed values

• Empty Values: Creates mappings for empty elements (elements with no content)

• Delete Unused Duplicate Node: Deletes the unused duplicate nodes

9.2.1.6 Tools

• Validate Mappings: Validates existing mappings

• Generate MetaData: Generates metadata based on existing mappings

• Test: Tests the generated XSLT

• Create/Edit User Defined Function(s): Creates or modifies a user-defined
functions

• Import User Defined Function(s): Imports user-defined functions from Fiorano
Mapper project file

• Schema Repository: Adds and removes the Schema Repository

• Options: Configures the Fiorano Mapper options

9.2.1.7 Help

• Help Topics: Displays online help

• About: Displays product information

9.2.2 Toolbar

Most of the common tasks can be directly performed using the toolbar as shown in Figure
9.2.3.

Figure 9.2.3: Toolbar of the Fiorano Mapper

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1236

The descriptions of the buttons in the toolbar, shown in Figure 9.2.3, starting from left is given
in table 9.1:

Icon Description

Creates a new project

Opens an existing project

Saves the changes made in the project

Saves the project with the given name

Maximize the selected project page

Undoes the last action performed

Redoes the last action performed

Loads input structure

Imports input structure

Loads output structure

Imports output structure

Clears input and output structure

Clears the existing mappings

Shows all existing mappings

Creates mappings from child to child automatically

Creates mappings between descendants of the selected
nodes

Validates existing mappings

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1237

Icon Description

Generates metadata based on existing mappings

Tests the generated XSLT

Configures Fiorano Mapper Options

Displays online help

Table 9.1 Toolbar buttons of Fiorano Mapper

9.2.3 MapView

The MapView shows the Input and Output Structures and the mappings defined in the pane.
This view allows users to load the input and output structures.

This view consists of the following panels:

• Input Structure Panel

• Line Panel

• Output Structure Panel

• Details Panel

Figure 9.2.4: MapView

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1238

9.2.3.1 Input Structure Panel

This panel shows the input specification structure in a tree format.

9.2.3.2 Lines Panel

The middle panel in MapView is the line panel. It shows the mappings defined by lines (called
Mapping lines). A Mapping can be selected by selecting one of the mapping lines in the line
panel.

A Function icon at the end of a mapping line indicates that mapping uses function(s) as shown
in Figure 9.2.5.

Figure 9.2.5: Mappings

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1239

9.2.3.3 Output Structure Panel

This panel shows the output document structure in a tree format.

Figure 9.2.6: MapView: Target Structure Panel

9.2.3.4 Details Pane

The Details section of the Mapper tool has six tabs which are as follows:

1. Comments Tab

2. NodeInfo Tab

3. Mappings Tab

4. Funclet Tab

5. User XSL Tab

6. Messages Tab

Comments Tab

The Comments tab is used to add comments to the project. Figure 9.2.7 shows the Comments
tab.

Figure 9.2.7: Comments Panel

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1240

NodeInfo Tab

The NodeInfo tab provides the data type and cardinality information about the selected input
and output structure node/element.

For example, in case of a DTD element, it gives the element name, its datatype and cardinality
as shown in Figure 9.2.8.

Figure 9.2.8: NodeInfo tab

Mappings Tab

The Mappings view shows the mappings between the input and output nodes/elements, as
shown in Figure 9.2.9. The mappings are displayed based on the selected input node. When
the user selects an input node, all the mappings originating from it are shown in this tab.

Figure 9.2.9: Mappings View

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1241

Funclet Tab

The Funclet tab contains the Visual Expression Builder that provides a graphical view for the
mappings defined in the MapView, as shown in Figure 9.2.10. It also shows the functions and
their linkage with the input and target nodes/elements.

Note: The Funclet tab is explained in detail in the Visual Expression Builder section later in
this chapter.

Figure 9.2.10: Funclet View

Messages Tab

The Messages view is used to display the various error and warning messages generated by
the tool, as shown in Figure 9.2.11.

Figure 9.2.11: Messages View

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1242

9.2.4 MetaData View

The MetaData view pane shows the transformation XSL generated from the mappings defined
in the MapView.

9.2.4.1 Error Messages Panel

Error Messages (if any) are displayed in the Error Message pane of the MetaData view. The
MetaData view appears, as shown in Figure 9.2.12.

Figure 9.2.12: Viewing the transformation code in the MetaData view

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1243

9.3 Working with Input and Output Structures

9.3.1 Loading the Input Structure

Input structure can be loaded in one of the following ways:

1. Click the Load Input Structure icon in the Fiorano Mapper Tools toolbar.

Or, click the Load input structure icon in the Input Structure panel title bar.

2. The Select Input Structure Type dialog box is displayed as shown in Figure 9.3.1.

Figure 9.3.1: Selecting the Input Structure format

3. Select Input Structure Type dialog box has the following options:

• XML: For loading an XML document as input

• DTD: For loading an DTD document as input

• XSD: For loading an XSD document as input

• EDI: For loading an EDI format document as input

9.3.1.1 Loading an Existing XML Input Structure

1. Select XML in the Select Input Structure Type dialog box and click OK. The Load
Input XML Structure dialog box would appear as shown in Figure 9.3.2.

Figure 9.3.2: Loading an Input XML from File

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1244

2. Click Load from file to select an existing XML file. The Select XML Structure File
dialog box is displayed, as shown in Figure 9.3.3.

Figure 9.3.3: Selecting the Input XML File

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1245

3. Select the required file and click Open. The selected XML file is loaded in the Input
Structure panel as shown in Figure 9.3.4.

Figure 9.3.4: An Input Structure is loaded

4. To load a new XSD file, click the New button in the Load Input XML Structure
dialog box as shown in Figure 9.3.5. The Fiorano Mapper XSD Editor is displayed as
shown in Figure 9.3.5.

Figure 9.3.5: Loading New XSD File

5. Enter the XSD in the Fiorano Mapper XSD Editor dialog box.

To load an imported XSD from this XSD file, you need to modify the XSD to include
the absolute path of the imported and included XSDs. For example, if abc.xsd is stored
at c:\hsbc\xsd then, modify the import statement in abc-include.xsd to specify schema
location of abc.xsd as file:///C:/hsbc/xsd/abc.xsd, that is,

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1246

<xs:import namespace="http://www.ftisoft.com/LookupAndResolveService.wsdl"

schemaLocation="file:///C:/hsbc/xsd/abc.xsd"/>

6. Click the OK button. The XSD is loaded into Fiorano Mapper.

9.3.1.2 Loading a New Input XML Structure

While loading a single or multiple XML Input Structure, you can also create your own XML
document and use that an Input Structure. This can be accomplished by performing the
following steps:

1. Click Load Input Structure icon from the tool bar, and select XML from the Select
Input Structure dialog box, click OK, the Load Input XML Structure dialog box
appears

2. From the Load Input Structure dialog box, click New.

3. The Fiorano Mapper XMLEditor dialog box is displayed. Select the type of XML
document that you are creating, by selecting the appropriate option from the Files of
type drop-down list.

4. You can either enter the new XML structure or load or modify an existing XML
structure. To load an existing XML structure, click Load from file. The Select XML
Structure File dialog box is displayed.

5. Select the required file and click Open. The contents of the XML file you selected are
displayed.

6. You can make changes to this structure as required or as stated earlier, create a
completely new structure. After you have entered the new XML structure, you can
validate its syntax. To validate the syntax, click Validate in the Fiorano Mapper
Editor.

7. If the XML is not valid, an error message in red is displayed below the input area.
Make the necessary corrections, and validate the structure again.

8. Click OK to complete the procedure. The defined XML structure is displayed in the
Input Structure panel.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1247

9.3.2 Viewing Source of Input Structure

You can replace the source of the Input Structure by performing the following steps:

1. In the Input Structure panel’s title bar, click the View Source icon.

2. The Source Viewer is displayed with the source code of the XML structure, or
structures, as shown in Figure 9.3.6.

Figure 9.3.6: The Source Viewer window displays the Input/Output Structure source code

3. Click Close to close the Source Viewer.

9.3.3 Clearing the Input Structure

1. In the Input Structure panel’s title bar, click the Clear input structure icon.

Figure 9.3.7: Confirming the Clear Structures command

2. A warning message asks you to confirm if you want to remove the Input Structure and
clear all mappings, as shown in Figure 9.3.8. Click Yes to clear the mappings and
remove the input structures.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1248

9.3.4 Loading the Output Structure

Loading the output structure is similar to loading the input structure. However, the types of
output structures that you can define are more in number and are more complex. Besides the
XML, XSD, and DTD structures, you can also define RDBMS queries as an output structure.

The different types of Output Structures that can be defined are as follows:

 XML

 XSD

 DTD

 CSV

 EDI

These options are displayed when you start the procedure to load an Output Structure:

1. Click the Load Output Structure icon in the Fiorano Mapper Tool toolbar.

Or, click the Load output structure icon in the Output Structure panel.

Figure 9.3.8: Selecting the Output Structure

3. The Select Output Structure Type dialog box is displayed, as shown in Figure 9.3.8.

The subsequent steps differ depending on which output structure you select in the Select
Output Structure Type dialog box. The steps for loading and defining an Output structure
can be separated into two categories:

• Loading and defining an XML Output Structure: XML, XSD, or DTD Output Structures

• Loading a CSV Output Structure: It is a commonly used Output Structure for many
event processes.

These have been explained separately below:

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1249

9.3.4.1 Loading an XML Output Structure

You can load any of the three different types of XML formats: XML, XSD, and DTD by
performing the following steps:

1. The Select Output Structure Type dialog box displays five types of XML formats.
Select the appropriate type and click OK.

2. The Load Output XML Structure dialog box is displayed, as shown in Figure 9.3.9.
Click Load from file to select an existing XML file

Figure 9.3.9: Loading an existing XML File

3. The Select XML Structure File dialog box is displayed, as shown in Figure 9.3.9. You
can select the required file, and click Open to load it as an Output Structure

Figure 9.3.10: Selecting an Output XML File

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1250

4. The selected XML document is displayed in the Output Structure panel, as shown in
Figure 9.3.11.

Figure 9.3.11: The specified XML File is displayed in the Output Structure panel

9.3.4.2 Loading a CSV Output Structure

A comma separated values or CSV file is a text file which is separated by delimiter, usually a
comma. It is a commonly used Output Structure for many event processes.

To load a CSV Output Structure, perform the following steps:

1. Click the Load Output Structure icon from the tool bar, and select CSV from the
Select Output Structure Type dialog box, click OK. A Load Output CSV Structure
dialog box is displayed as shown in Figure 9.3.12.

Figure 9.3.12: Entering the CSV fields

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1251

2. The Load Target CSV Structure dialog box is displayed, as shown in Figure 9.3.13.
You can specify the delimiter to be used in the output structure in the Delimiter text
box at the bottom of this dialog. The Column Identifier table lists the column names
for the Output CSV Structure. Type the name of a column in this table and press
ENTER.

Figure 9.3.13: Entering the CSV Column Identifiers

3. A blank row is added to the Column Identifier, as shown in Figure 9.3.14. Enter the
required Column Identifier names to define the CSV structure.

Figure 9.3.14: Defining the Output CSV Structure

4. Once you have defined the Output CSV Structure, click OK.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1252

The CSV structure is loaded in the Output Structure Panel, as shown in Figure 9.3.15.

Figure 9.3.15: A CSV Output Structure is loaded

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1253

9.3.5 Viewing the Output Structure Source

You can view the source of Output Structure that you have defined by:

1. Selecting the View Source icon in the Output Structure panel.

2. This displays the Source Viewer window as shown in Figure 9.3.16. Click on Close to
close the Source Viewer.

Figure 9.3.16: Viewing the source of the Output Structure

9.3.6 Clearing the Output Structure

To clear the Output Structure, select the Clear output structure icon in the Output
Structure panel.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1254

9.4 Working with the Visual Expression Builder

Fiorano Mapper provides an easy to use graphical user interface – the Visual Expression
Builder, for building simple or complex expressions using several predefined functions. All this
can be done by performing simple drag-n-drop of required functions, input nodes and
connecting them visually.

To switch to the Visual Expression Builder:

1. Right-click any node of the output structure.

2. Select the Funclet Wizard option.

Alternatively,

1. Select any node of the output structure.

2. Click the Funclet tab.

The Visual Expression Builder consists of two areas:

• Function palette

• Funclet easel

9.4.1 Function Palette

The Function palette contains all the functions logically grouped into different categories:

21. Arithmetic Functions

22. String Functions

23. Boolean Functions

24. Control Functions

25. Advanced Functions

26. JMS Message Functions

27. Date-Time Functions

28. NodeSet Functions

29. Math Functions

30. Conversion Functions

31. Look-up Functons

32. User defined functions

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1255

9.4.1.1 Arithmetic Functions

Fiorano Mapper provides several Arithmetic functions to ++work with numbers and nodes.
This section describes these functions.

Addition

Visual representation

Description: This function calculates and returns the sum of two nodes or numbers.

Input: Two number constants or input structure nodes.

Output: Number

Subtraction

Visual representation

Description: This function subtracts the values of two numbers or nodes.

Input: Two number constants or input structure nodes.

Output: Number

Division

Visual representation

Description: This function obtains and returns the quotient after dividing the values
of two nodes or numbers.

Input: Two number constants or input structure nodes.

Output: Number

Modulo

Visual representation

Description: This function returns the remainder after dividing the values of the two
nodes or numbers.

Input: Two number constants or input structure nodes.

Output: Number

Multiplication

Visual representation

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1256

Description: This function multiplies the values of two nodes or numbers.

Input: Two number constants or input structure nodes.

Output: Number

Floor

Visual representation

Description: This function rounds off the value of the node or number to the nearest
lower integer.

Input: A number constant or an input structure node.

Output: Number

Example: The number 3.3 is floored to 3.

Ceiling

Visual representation

Description: This function rounds off the value of the node or number to the nearest
higher integer.

Input: A number constant or an input structure node.

Output: Number

Example: The number 25.6 is ceilinged to 26.

Round

Visual representation

Description: This function rounds off the value of the preceding node or a number to
the nearest integer.

Input: A number constant or an input structure node.

Output: Number

Example: The number 4.8 is rounded off to 5 and 4.2 is rounded off to 4.

Number Function

Visual representation

Description: This function converts the input to a number according to the XPath
specifications.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1257

Input: A number constant or an input structure node.

Output: Number based on the following rules:

• Boolean true is converted to 1, and false is converted to 0.

• A node-set is first converted to a string and then converted in the same way
as a string argument.

• A string that consists of optional whitespace followed by an optional minus
sign followed by a number followed by whitespace is converted to the IEEE
754 number that is nearest to the mathematical value represented by the
string; any other string is converted to NaN.

• An object of a type other than the four basic types is converted to a number in
a way that is dependent on that type.

9.4.1.2 Math Functions

Absolute

Visual representation

Description: This function returns the absolute (non-negative) value of a number.

Input: Number

Output: The absolute value of the input

Sin

Visual representation

Description: This function returns the Sine value of the input. The input is in radians.

Input: A number in radians.

Output: The Sine value of the input.

Cos

Visual representation

Description: This function returns the Cosine value of the input. The input is in
radians.

Input: A number in radians

Output: The Cosine value of the input

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1258

Tan

Visual representation

Description: This function returns the Tan value of the input. The input is in radians.

Input: A number in radians.

Output: The Tan value of the input.

Arc sine

Visual representation

Description: This function returns the Arc Sine value or the Sine Inverse value of the
input. The output is in radians.

Input: Number

Output: The Sine Inverse value of the input in radians.

Arc cos

Visual representation

Description: This function returns the Arc Cosine value or the Cosine Inverse value of
the input. The output is in radians.

Input: Number

Output: The Cosine Inverse value of the input in radians.

Arc tan

Visual representation

Description: This function returns the Arc Tan value or the Tan Inverse value of the
input. The output is in radians.

Input: Number

Output: The Tan Inverse value of the input in radians.

Exponential

Visual representation

Description: This function returns the exponential value of the input.

Input: Any number

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1259

Output: The exponential value the input.

Power

Visual representation

Description: This function returns the value of a first input raised to the power of a
second number.

Input: Two numbers: the first number is the base, and the second number is the
power.

Output: A number that is the result of the above described calculation or NaN in case
the value could not be calculated.

Random

Visual representation

Description: This function returns a random number between 0 and 1.

Input: No input

Output: A number between 0 and 1.

Sqrt

Visual representation

Description: This function returns the square root of the input value

Input: A number

Output: A number that is the square root of the input value.

Log

Visual representation

Description: This function returns the natural logarithm (base e) of a numerical
(double) value.

Input: A positive numerical value.

Output: The natural logarithm (base e) of the input - a numerical (double) value.

Special cases:

If the argument is NaN or less than zero, the result is NaN.

If the argument is positive infinity, the result is positive infinity.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1260

If the argument is positive zero or negative zero, the result is negative infinity.

9.4.1.3 String Functions

Fiorano Mapper has several string functions. All the functions accept Unicode strings and are
case-sensitive. This section covers the string functions.

XPath

Visual representation

Description: This function evaluates the specified XPath expression and returns the
result.

Input: For elements within the first structure of the document, specify the XPath as:

/<root element>/<child element>

Example/school/student

For elements within the second structure onwards, specify the XPath as:

document('<structure name>')/<root element>/<child element>

Example:document('input2')/school/student

Output: Result of the XPath expression.

Concat

Visual representation

Description: This function accepts two or more string arguments and joins them in a
specified sequence to a form a single concatenated string.

Input: Two or more string constants or input structure nodes.

Output: A concatenated string.

Example:Concat ("abc", "xyz") returns "abcxyz".

Constant

Visual representation

Description; This function creates a constant building block with a string literal.

Input: String

Output: String

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1261

Length

Visual representation

Description: This function returns the length of a string.

Input: A string constant or an input structure node.

Output: Number

Example: Length ("abcd") returns 4

Normalize_Space

Visual representation

Description: This function accepts a string as an argument and removes leading,
trailing, and enclosed spaces in the specified string. The unnecessary white spaces
within the string are replaced by a single white space character.

Input: A string or an input structure node.

Output: String with no whitespace before, after, or within it.

Example: Normalize_Space(" MapperTool ") returns "Mapper Tool".

White spaces before and after the string is removed and the white spaces between
"Mapper" and "Tool" are replaced by a single blank space.

SubString-After

Visual representation

Description This function accepts two strings as arguments. The first string is the
source and the second input string is the string pattern. It returns that part of the first
input string that follows the string pattern.

Input: Two string constants or input structure nodes.

Output: String

Example: SubString-After(‘abcde’,‘bc’) returns "de"

SubString-Before

Visual representation

Description: This function accepts two strings as arguments. The first string is the
source and the second is the string pattern. The function returns that part of the first
input string that precedes the string pattern specified as the second argument to the
function.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1262

Input: Two string constants or input structure nodes.

Output: String

Example: SubString-Before(‘abcde’, ‘cd’) returns ‘ab’

SubString-Offset

Visual representation

Description: This function accepts two string constants as argument. The first string
is the source and the second string is a numerical value that specifies the offset. The
output is that part of the source string which starts from the offset specified as the
second argument to the function.

Input: Two string constants or input structure nodes.

Output: String

Example: SubString-Offset(‘abcde’, 3) returns "cde"

SubString-Offset-Length

Visual representation

Description: This function accepts three arguments. The first argument is the source
string, the second and third arguments are numerical that specify the offset and the
size of the output substring respectively. The output is a substring which starts from
the offset specified as the second argument to the function. The number of characters
that need to be obtained is specified as the third argument.

Input: Two string constants or input structure nodes and a number.

Output: String

Example: SubString-Offset-Length(‘abcde’, 2, 3) returns "bcd"

9.4.1.4 Control Function

The following Control functions are available in Fiorano Mapper:

If-Then-Else

Visual representation

Description: This function accepts an input value. The first input is a Boolean value
and the second and third are string constants. Based on the Boolean value, the
function returns the output. If the Boolean value specified in the first input is TRUE,
then the function returns the second input string else it returns the third input string.

Input: Boolean value and a string, an optional string in the same sequence.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1263

Output: The second input string or third input string (if present) depending on the
first input Boolean value.

Sort Function

Visual representation

Description: This function accepts two inputs. The first input is a set of nodes and the
second input is the value of the nodes. The function sorts the nodes in its first input
based on the second input.

Input: Sort (nodes, value)

Output: Sorted nodes as Loop Source

Filter Function

Visual representation

Description: This function accepts two arguments. The first argument is a set of node
and the second argument is a Boolean value. It filters out and returns the nodes for
which the second input value is TRUE.

Input: Filter (node set, bool)

Output: Nodes for which the second input value is true as Loop Source.

9.4.1.5 Conversion Functions

Fiorano Mapper consists of several Conversion functions to convert numerical from one format
to the other. These functions are covered in this section.

Decimal

Visual representation

Description: Converts the first input value having a base that is specified by the
second input value to a decimal number.

Input: Two numbers: The first input value is the number to be converted to decimal,
and the second input value specifies the base of the first input value.

Output: Number in base 10.

Hex

Visual representation

Description: Converts a decimal number to a hexadecimal (base 16) number.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1264

Input: Decimal number

Output: Hexadecimal (base 16) number

Octal

Visual representation

Description: Converts a decimal number to an octal (base 8) number.

Input: Decimal number

Output: Octal (base 8) number

Binary

Visual representation

Description: Converts a decimal number to a binary (base 2) number.

Input: Decimal number

Output: Binary (base 2) number

Radians

Visual representation

Description: Converts a value in Degrees to a value in Radians.

Input: Number

Output: Number

Degrees

Visual representation

Description: Converts a value in Radians to a value in Degrees.

Input: Number

Output: Number

ChangeBase

Visual representation

Description: The ChangeBase function is used to change a number from one base to
another. This function accepts three arguments.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1265

1. num- the number to be changed

2. fromBase- base of the given number

3. toBase- base to which number should be converted

Input: Number

Output: Number

9.4.1.6 Advanced Functions

Fiorano Mapper provides a number of advanced functions. This section explains all these
functions.

CDATA Function

Visual representation

Description: This function accepts a string as an argument and specifies the
character data within the string.

Input: String argument or input structure node.

Output: Input string or node text enclosed within the CDATA tag.

Example: CDATA ("string") returns <![CDATA[string]]>

Position

Visual representation

Description: This function is available for the RDBMS-Update or RDBMS-Delete Output
structures only and returns the current looping position.

Input: None

Output: The position of the element in the parent tree.

Example: In an XML tree that has three elements, Position() returns

0 for the first element

1 for the second, and

2 for the third.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1266

Format-Number

Visual representation

Description: This function converts the first argument to a string, in the format
specified by the second argument. The first argument can be a real number or an
integer, and can be positive or negative.

Input: Two values: The first input is a number, and the second, a string of special
characters that specifies the format. These special characters are listed in the
following table:

Representation Signifies Example

a digit [0-9] ###

. the decimal point ###.##

, digit separator ###, ###.##

0 leading and trailing zeros 000.0000

% inserts a percentage sign at the end ###.00%

; a pattern separator ##.00;##.00

The format string is created by using these characters in any order.

Output: String with the number in the specified format.

Node-Name

Visual representation

Description: This function accepts an element or attribute and returns the name of
the particular element or attribute.

Input: A single element or attribute of any type

Output: A string

Count

Visual representation

Description: This function accepts an element or attribute and returns the number of
instances of a particular element or attribute.

Input: A single element or attribute of any type

Output: A number

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1267

Deep-Copy

Visual representation

Description: Copies the current node completely including the attributes and sub-
elements.

Input: An Input structure node

Output: All the contents of the Input structure node – including its attributes and sub-
elements.

Param

Visual representation

Description: This function is used to access the runtime parameters by its name.
Various properties of Tifosi Document (such as header, message, and attachments)
are available as runtime parameters at runtime. The names of these parameters follow
the convention given below:

Header Properties
_TIF_HEADER_<HEADERNAME>

Message (text)
_TIF_BODY_TEXT_

Message (byte)
_TIF_BODY_BYTE_

Attachment
_TIF_ATTACH_<NAME>

Input: Name of the parameter

Output: Value of the parameter specified

9.4.1.7 Date-Time Functions

Date-Time functions include:

Date

Visual representation

Description: The Date function returns the date part in the input date-time string or
the current date if no input is given. The date returned format is: CCYY-MM-DD

If no argument is given or the argument date/time specifies a time zone, then the
date string format must include a time zone, either a Z to indicate Coordinated
Universal Time or a + or - followed by the difference between the difference from UTC
represented as hh:mm. If an argument is specified and it does not specify a time
zone, then the date string format must not include a time zone.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1268

Input: Optionally, a string that can be converted to a date (the string should have the
date specified in the following format: CCYY-MM-DD)

Output: A date in the format: CCYY-MM-DD

DateTime

Visual representation

Description: This function returns the current date and time as a date/time string in
the following format:

CCYY-MM-DDThh:mm:ss

Where,

CC is the century

YY is the year of the century

MM is the month in two digits

DD is the day of the month in two digits

T is the separator between the Date and Time part of the string

hh is the hour of the day in 24-hour format

mm is the minutes of the hour

ss is the seconds of the minute

The output format includes a time zone, either a Z to indicate Coordinated Universal
Time or a + or - followed by the difference between the localtime from UTC
represented as hh:mm.

Input: This function has no input.

Output: The current date-time in the following format: CCYY-MM-DDThh:mm:ss as
described above.

DayAbbreviation

Visual representation

Description: This function returns the abbreviated day of the week from the input
date string. If no argument is given, then the current local date/time is used as the
default argument.

Input: Optionally, a date-time string

Output: The English day of the week as a three-letter abbreviation: 'Sun', 'Mon',
"Tue', 'Wed', 'Thu', 'Fri', or 'Sat'.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1269

DayInMonth

Visual representation

Description: This function returns the day of a date as a number. If no argument is
given, then the current local date/time is used as the default argument.

Input: A date-time string in any of the following formats:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

--MM-DD

---DD

If no input is given, then the current local date/time is used.

Output: A number which is the day of the month in the input string.

DayInWeek

Visual representation

Description: This function returns the day of the week given in a date as a number. If
no argument is given, then the current local date/time is used the default argument.

Input: A date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

Output: The day of the week as a number - starting with 1 for Sunday, 2 for Monday
and so on up to 7 for Saturday. If the date/time input string is not in a valid format,
then NaN is returned.

DayInYear

Visual representation

Description: This function returns the day of a date as a day number in a year
starting from 1.

If no argument is given, then the current local date/time, as returned by date-time is
used the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

Output: A number representing the day in a year.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1270

Example: The DayInYear for 2003-01-01 returns 1, where as for 2003-02-01 it returns
32.

DayName

Visual representation

Description: This function returns the full day of the week for a date. If no argument
is given, then the current local date/time is used the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

Output: An English day name: 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday'
or 'Friday'.

DayOfWeekInMonth

Visual representation

Description: This function returns the occurrence of that day of the week in a month
for a given date as a number. If no argument is given, then the current local date/time
is used as the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

Output: A number that represents the occurrence of that day-of-the-week in a month.

Example: DayOfWeekInMonth returns 3 for the 3rd Tuesday in May.

HourInDay

Visual representation

Description: This function returns the hour of the day as a number. If no argument is
given, then the current local date/time is used as the default argument.

Input: A date string in any one of the following formats:

CCYY-MM-DDThh:mm:ss

hh:mm:ss

If the date/time string is not in one of these formats, then NaN is returned.

Output: The hour of the day or NaN if the argument is not valid.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1271

LeapYear

Visual representation

Description: This function returns TRUE if the year given in a date is a leap year. If
no argument is given, then the current local date/time is used as the default
argument.

Input: Date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

CCYY-MM

CCYY

If the date/time string is not in one of these formats, then NaN is returned.

Output: Boolean value (TRUE/FALSE)

MinuteInHour

Visual representation

Description: This function returns the minute of the hour as a number. If no
argument is given, then the current local date/time is used as the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

hh:mm:ss

Output: The minute of the hour or NaN if the argument is not valid.

MonthAbbreviation

Visual representation

Description: This function returns the abbreviation of the month of a date. If no
argument is given, then the current local date/time is used as the default argument.

Input: Date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

CCYY-MM

--MM--

OutputThree-letter English month abbreviation: 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov' or 'Dec'.If the date/time string argument is not in
valid, then an empty string ('') is returned.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1272

MonthInYear

Visual representation

Description: This function returns the month of a date as a number. The counting of
the month starts from 0. If no argument is given, the current local date/time is used
as the default argument.

Input: Date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

CCYY-MM

--MM--

--MM-DD

If the date/time string is not valid, then NaN is returned.

Output: A number representing the month in a year.

Example: 0 for January, 1 for February, 2 for March and so on.

MonthName

Visual representation

Description: This function returns the full name of the month of a date. If no
argument is given, then the current local date/time is used as the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

CCYY-MM

--MM--

OutputThe English month name: 'January', 'February', 'March', 'April', 'May',
'June', 'July', 'August', 'September', 'October', 'November' or 'December'.If the
date/time string is not valid, then an empty string ('') is returned.

SecondInMinute

Visual representation

Description: This function returns the second of the minute as a number. If no
argument is given, then the current local date/time is used as the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss

hh:mm:ss

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1273

Output: The second in a minute as a number. If the date/time string is not valid, then
NaN is returned.

Time

Visual representation

Description: This function returns the time specified in the date/time string that is
passed as an argument. If no argument is given, the current local date/time is used as
the default argument. The date/time format is basically CCYY-MM-DDThh:mm:ss.

If no argument is given or the argument date/time specifies a time zone, then the
time string format must include a time zone, either a Z to indicate Coordinated
Universal Time or a + or - followed by the difference between the difference from UTC
represented as hh:mm. If an argument is specified and it does not specify a time zone,
then the time string format must not include a time zone.

Input: Optionally, a date/time string in the following format:

CCYY-MM-DDThh:mm:ss

Output: The time from the given date/time string in the following format:

hh:mm:ss

If the argument string is not in this format, this function returns an empty string ('').

WeekInYear

Visual representation

Description: This function returns the week of the year as a number. If no argument
is given, then the current local date/time is used as the default argument. Counting
follows ISO 8601 standards for numbering: week 1 in a year is the week containing
the first Thursday of the year, with new weeks beginning on a Monday.

Input: Optionally, a date/time string in any of the following format:

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

Output: The week of the year as a number. If the date/time string is not in one of
these formats, then NaN is returned.

Year

Visual representation

Description: This function returns the year of a date as a number. If no argument is
given, then the current local date/time is used as a default argument.

Input: Optionally, a date/time string in any of the following format:

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1274

CCYY-MM-DDThh:mm:ss

CCYY-MM-DD

CCYY-MM

CCYY

Output If the date/time string is not in one of these formats, then NaN is returned.

9.4.1.8 SQL Functions

The following are the SQL functions available for defining mappings to RDBMS-Update or an
RDBMS-Delete query:

Number-Constant

Visual representation

Description: This function inserts a number constant into a SQL query.

Input: None

Output: A numeric value

String-Constant

Visual representation

Description: This function inserts a string constant into a SQL query.

Input: None

Output: A string value

AND

Visual representation

Description: This function combines two conditions in the where clause of a SQL
statement. It takes two conditions as input and performs a logical AND on them. The
Boolean value returned is true only if both the conditions are true.

Input: Two nodes or sub-expressions created with the Visual Expression Builder

Output: A Boolean value (TRUE/FALSE)

OR

Visual representation

Description: This function is used for combining two conditions in the where clause of
an RDBMS Update or RDBMS Delete output structure.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1275

Input: Two nodes or sub-expressions created with the Visual Expression Builder.

Output: A Boolean value (TRUE/FALSE)

LIKE

Visual representation

Description: Compares the first expression to the pattern specified by the second
expression.

Input: Two nodes or sub-expressions created with the Visual Expression Builder.

Output: A Boolean value (TRUE/FALSE)

PLUS

Visual representation

Description: Adds/ concatenates two expressions or nodes.

Input: Two nodes or sub-expressions created with the Visual Expression Builder.

Output: A string or number generated by concatenating/ adding the two input
expressions.

MINUS

Visual representation

Description: Subtracts the second input from the first input.

Input: Two nodes or sub-expressions created with the Visual Expression Builder.

Output: A number generated by subtracting the second input from the first.

BETWEEN

Visual representation

Description: Checks whether the given column value lies between the specified two
arguments.

Input: Three inputs:

1. A table column

2. A node or sub-expression

3. A node or sub-expression

Output: A Boolean value (TRUE/FALSE)

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1276

IS NULL

Visual representation

Description: Used in the Where clause to verify whether a column is null.

Input: A Table column

Output: A Boolean value (True/False)

IS NOT NULL

Visual representation

Description: Used in the Where clause to verify whether a column is not null.

Input: A Table column

Output: A Boolean value (TRUE/FALSE)

Null

Visual representation

Description: The NULL function represents the null values in SQL. This function can
be used to set a column value to null.

Input: None

Output: Null value

=

Visual representation

Description: This function compares two input values in the where clause of a SQL
statement. The Boolean value returned is true only if both the input values are equal.

Input: Two table columns

Output: A Boolean value (TRUE/FALSE)

NOT LIKE

Visual representation

Description: This function compares the first expression to the pattern specified by
the second expression.

Input; Two nodes or sub-expressions created with the Visual Expression Builder.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1277

Output: A Boolean value (TRUE/FALSE)

<>

Visual representation

Description: This function compares two input values in the where clause of a SQL
statement. The Boolean value returned is TRUE only if both the input values are not
equal.

Input: Two table columns

Output: A Boolean value (TRUE/FALSE)

>

Visual representation

Description This function compares two input values in the where clause of a SQL
statement. The Boolean value returned is TRUE only if the first input value is greater
than the second input value.

Input: Two table columns

Output: A Boolean value (TRUE/FALSE)

<

Visual representation

Description: This function compares two input values in the where clause of a SQL
statement. The Boolean value returned is TRUE only if the first input value is lesser
than the second input value.

Input: Two table columns

Output: A Boolean value (TRUE/FALSE)

>=

Visual representation

Description: This function compares two input values in the where clause of a SQL
statement. The Boolean value returned is TRUE only if the first input value is greater
than or equal to the second input value.

Input: Two table columns

Output: A Boolean value (TRUE/FALSE)

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1278

<=

Visual representation

Description: This function compares two input values in the where clause of a SQL
statement. The Boolean value returned is TRUE only if the first input value is lesser
than or equal to the second input value.

Input: Two table columns

Output: A Boolean value (TRUE/FALSE)

IN

Visual representation

Description: The In function is used in the where clause of a SQL statement. This
function accepts two expressions as inputs and checks if the first expression is
contained within the second expression.

Input: This function accepts two inputs

25. First input is table column name

26. Second input is a list of comma-separated values

Output: A Boolean value (TRUE/FALSE)

9.4.1.9 NodeSet Functions

SUM

Visual representation

Description: The Sum function sums all numbers in selected nodes.

Input: A nodes that has numerical values only.

Output: The sum of all the nodes. If any of the input nodes is not valid, a NaN value is
returned.

DIFFERENCE

Visual representation

Description: The difference function returns the difference between the two node sets
that are, in the node set passed as the first argument and the node that are not in the
node set passed as the second argument.

Input: Two node sets

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1279

Output: Node set

DISTINCT

Visual representation

Description: The distinct function returns a subset of the nodes contained in the
node-set passed as the first argument. Specifically, it selects a node N if there is no
node in a given node-set that has the same string value as N, and that precedes N in
the document order.

Input: A node set

Output: A node

HAS SAME NODE

Visual representation

Description: The has-same-node function returns TRUE if the node set passed as the
first argument shares any nodes with the node set passed as the second argument. If
there are no nodes that are in both node sets, then it returns FALSE.

Input: Two node sets

Output: Boolean value (TRUE or FALSE)

INTERSECTION

Visual representation

Description The intersection function returns a node set containing the nodes that
are within both the node sets passed as arguments to it.

Input: Two node sets

Output: Node set

LEADING

Visual representation

Description: The leading function returns the nodes in the node set passed as the
first argument that precede, in document order, the first node in the node set passed
as the second argument. If the first node in the second node set is not contained in
the first node set, then an empty node set is returned. If the second node set is
empty, then the first node set is returned.

Input: Two node sets

Output: Node Set

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1280

TRAILING

Visual representation

Description: The trailing function returns the nodes in the node set passed as the
first argument that follow, in document order, the first node in the node set passed as
the second argument. If the first node in the second node set is not contained in the
first node set, then an empty node set is returned. If the second node set is empty,
then the first node set is returned.

Input: Two node sets

Output: Node set

HIGHEST

Visual representation

Description: The highest function returns the nodes in the node set whose value is
the maximum (numerical) value for the node set.

• A node has this maximum value if the result of converting its string value to a
number as if by the number function is equal to the maximum value, where
the equality comparison is defined as a numerical comparison using the =
operator.

• If any of the nodes in the node set has a non-numeric value, this function
returns an empty node set.

Input: A node set

Output: A node set

LOWEST

Visual representation

Description: The lowest function returns the nodes in the node set whose value is the
minimum (numerical) value for the node set.

• A node has this minimum value if the result of converting its string value to a
number as if by the number function is equal to the minimum value, where the
equality comparison is defined as a numerical comparison using the =
operator.

• If any of the nodes in the node set has a non-numeric value, this function
returns an empty node set.

Input: A node set

Output: A node set

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1281

MINIMUM

Visual representation

Description: The minimum function returns the node with the minimum numerical
value within the given node-set. If the node set is empty, or if any of the nodes in the
node set has non-numeric value, then NaN is returned.

Input: A node set

Output: A numerical value

MAXIMUM

Visual representation

Description: The maximum function returns the node with the maximum numerical
value within the given node set. If the node set is empty, or if any of the nodes in the
node set has non-numeric value, then NaN is returned.

Input: A node set

Output: A numerical value

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1282

9.4.1.10 Boolean functions

The following boolean (logical) functions are available in Mapper Tool:

Symbol Function Description

= Equal True if both inputs are equal.

!= Not Equal True if both inputs are not equal

> Greater than True if the first input is greater than the second input.

< Less than True if the first input is less than the second input.

>= Greater than or
Equal

True if the first input is greater than or equal to the second
input.

<= Less than or
Equal

True if the first input is less than or equal to the second
input.

AND AND Logical AND of the two inputs (the inputs must be outputs of
logical building blocks only).

OR OR Logical OR of the two inputs (the inputs must be outputs of
logical building blocks only).

NOT NOT Logical inverse of the input (the input must be the output of
logical building block only).

BOOL boolean(object) Converts its argument to a boolean according to the XPath
specifications, as follows:

− a number is true if and only if it is neither positive or
negative zero nor NaN.

− a node-set is true if and only if it
is non-empty

− a string is true if and only if its
length is non-zero an object of a type other than the four
basic types is converted to a boolean in a way that is
dependent on that type.

− − IsNumber-IsNumber()-Returns
a boolean (true/ false) indicating if the input value is a
number

AND function

Symbol: AND

Description: This function accepts two boolean expressions as arguments and performs a
logical conjunction on them. If both expressions evaluate to TRUE, the function returns TRUE.
If either or both expressions evaluate to FALSE, the function returns FALSE.

Input: AND (boolean AND boolean)

Output: Boolean value (TRUE/FALSE)

Example:

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1283

Consider example of Chat.dtd as Input Structure and Valid.dtd as Output Structure. Suppose
we want to filter out mails that do not have message body and the email address is not equal
to admin@nobody.com. That is, we want that the isValid node of the Output Structure takes
the value true if the length of the Message node of the Input Structure is not equal to zero
and the value of the Email node is equal to admin@nobody.com. Therefore,

1. Load Input Structure and Output Structure.

2. Map the Message node and Email node of Input Structure to the isValid node of the
Output Structure.

3. Invoke the Function Wizard by right clicking on the isValid node.

4. The Function Easel opens with the existing mappings.

5. Place the BOOL node on the Function Easel.

Link the output of the Message node to the input of the BOOL node, as shown in
Figure 9.4.1.

Figure 9.4.1: Linking Message and BOOL nodes

6. Place a Constant node on the Function Easel, and set its value equal to
admin@nobody.com.

7. Place a = node on the Function Easel.

Link the outputs of the Email node and Constant node to the inputs of the = node, as
shown in Figure 9.4.2.

Figure 9.4.2: Linking the Email and Constant node outputs

8. Place an AND node on the Function Easel.

9. Link the outputs of the BOOL node and = node to the inputs of the AND node.

Also, link the output of the AND node to the input of the isValid node, as shown in
Figure 9.4.3.

Figure 9.4.3: Linking the AND and = node outputs

10. This completes the desired mappings.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1284

BOOL

Symbol: BOOL

Description:

This function converts its argument to a boolean according to the XPath specifications which
are as follows:

- A number is TRUEif and only if it is neither positive or negative zero nor NaN.

- A node-set is TRUE if and only if it is non-empty.

- A string is TRUE if and only if its length is non-zero.

- An object of a type other than the four basic types is converted to a boolean in a way that is
dependent on that type.

Input: BOOL (Object)

Output: Boolean value (TRUE/FALSE)

Example:

Consider example of Chat.dtd as Input Structure and Valid.dtd as Output Structure. Suppose
we want to filter out mails that do not have message body. That is, we want that the
isMessageExist node of the Output Structure takes the value true if the length of the
Message node of the Input Structure is not equal to zero. The BOOL function returns true for
a string of length non-zero. Therefore,

1. Load Input Structure and Output Structure.

2. Map the Message node of Input Structure to the isMessageExist node of the Output
Structure.

3. Invoke the Function Wizard by right clicking on the isMessageExist node.

4. The Function Easel opens with the existing mappings.

5. Place the BOOL node on the Function Easel.

Link the output of the Message node to the input of the BOOL node, as shown in
Figure 9.4.4.

Figure 9.4.4: Linking Message and BOOl nodes

Link the output of the BOOL node to the input of the isMessageExist node, as shown
in Figure 9.4.5.

Figure 9.4.5: Linking BOOL and IsMessageExist nodes

6. This completes the desired mappings.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1285

Equal

Symbol: =

Description: This function returns TRUE if both the inputs are equal.

Input: = (Object = Object)

Output: Boolean value (TRUE/FALSE)

Example:

Consider example of Chat.dtd as Input Structure and Valid.dtd as Output Structure. Suppose
we want to filter mails coming from a particular email address. That is, we want that the
isFromAdmin node of the Output Structure takes the value true if the Email node of the
Input Structure has the email address as admin@nobody.com. Then,

1. Load Input Structure and Output Structure.

2. Map the Email node of Input Structure to the isFromAdmin node of the Output
Structure.

3. Invoke the Function Wizard by right clicking on the isFromAdmin node.

4. The Function Easel opens with the existing mappings.

Now place a Constant building block on the Function Easel and set its value equal to
admin@nobody.com, as shown in Figure 9.4.6.

Figure 9.4.6: Setting Constant building block value to admin@nobody.com

5. Now place a = node on the Function Easel.

6. Link the outputs of the Email node and Constant node to the inputs of the = node.

Link the output of the = node to the input of the isFromAdmin node, as shown in
Figure 9.4.7.

Figure 9.4.7: Linking = and isFromAdmin node

7. This completes the desired mappings.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1286

Less Than

Symbol: <

Description: This function returns TRUE if the first input is less than the second input value.

Input: < (Number < Number)

Output: Boolean value (TRUE/FALSE)

Example:

Consider example of Numbers.dtd as Input Structure and Results.dtd as Output Structure.
Suppose we want that Result node of Output Structure should have the value true if the value
of Number1 node is less than the value of the Number2 node of the Input Structure. Then,

1. Load Input Structure and Output Structure.

2. Map the Number1 and Number2 nodes of Input Structure to the Result node of the
Output Structure.

3. Invoke the Function Wizard by right clicking on the Result node.

4. The Function Easel shows the existing mappings.

Place the < node on the Function Easel, as shown in Figure 9.4.8.

Figure 9.4.8: Placing a node on the Function Easel

5. Link the outputs of the Number1 node and Number2 node to the inputs of the <
node.

Also, link the output of the < node to the input of the Result node, as shown in Figure
9.4.9.

Figure 9.4.9: Linking < and Result node

6. This completes the desired mappings.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1287

Greater than

Symbol: >

Description: This function returns TRUE if the first input is greater than the second input
value.

Input: > (Number > Number)

Output: Boolean value (TRUE/FALSE)

Example:

Consider example of TotalMarks.dtd as Input Structure and Result.dtd as Output Structure.
Suppose we want that the value of the PassStatus node is true if the value of the TotalMarks
node of the Input Structure is greater than a constant value 150. Then,

1. Load Input Structure and Output Structure.

2. Map the TotalMarks node of Input Structure to the PassStatus node of the Output
Structure.

3. Invoke the Function Wizard by right-clicking on the PassStatus node.

4. The Function Easel opens with the existing mappings.

5. Now place a Constant building block on the Function Easel and set its value equal to
150, as shown in Figure 9.4.10.

Figure 9.4.10: Setting the Constant building block to 150

6. Place a > node on the Function Easel.

7. Link the outputs of TotalMarks node and Constant node to the input of the > node.

Also, link the output of the > node to the input of the PassStatus node, as shown in
Figure 9.4.11.

Figure 9.4.11: Linking the > and PassStatus node

8. This completes the desired mappings.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1288

Greater than or Equal function

Function: >=

Input: >= (Number >= Number)

Description: True if the first input is greater than or equal to the second input.
Output: True/False

Example:

Consider example of TotalMarks.dtd as Input Structure and Result.dtd as Output Structure.
Suppose we want that the value of the PassStatus node is true if the value of the
TotalMarks node of the Input Structure is greater than or equal to a constant value
150.Then,

1. Load Input Structure and Output Structure.

2. Map the TotalMarks node of Input Structure to the PassStatus node of the Output
Structure.

3. Invoke the Function Wizard by right-clicking on the PassStatus node.

4. The Function Easel opens with the existing mappings.

Now place a Constant building block on the Function Easel and set its value equal to
150, as shown in Figure 9.4.12.

Figure 9.4.12: Setting the Constant building block to 150

5. Place a >= node on the Function Easel.

6. Link the outputs of TotalMarks node and Constant node to the input of the >= node.

Also, link the output of the >= node to the input of the PassStatus node, as shown in
Figure 9.4.13.

Figure 9.4.13: Linking the >= and PassStatus nodes

7. This completes the desired mappings.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1289

OR

Symbol: OR

Description: This function accepts two boolean expressions as arguments and performs
logical disjunction on them. If either expression evaluates to TRUE, the function returns TRUE.
If neither expression evaluates to True, the function returns FALSE.

Input: OR (boolean OR boolean)

Output: Boolean value (TRUE/FALSE)

Example:

Consider example of Chat.dtd as Input Structure and Valid.dtdas Output Structure. Suppose
we want to receive mails that are sent either from the address admin@nobody.com or
aryton@nobody.com that is, we want that the isValid node of the Output Structure takes the
value true if the Email node of the Input Structure has the value admin@nobody.com or
aryton@nobody.com. Then,

1. Load Input Structure and Output Structure.

2. Map the Email node of Input Structure to the isValid node of the Output Structure.

3. Invoke the Function Wizard by right clicking on the isValid node.

4. The Function Easel opens with the existing mappings.

5. Place a Constant node on the Function Easel and set its value equal to
admin@nobody.com.

Place another Constant node and set its value equal to aryton@nobody.com, as
shown in Figure 9.4.14.

Figure 9.4.14: Setting the Constant node value to aryton@nobody.com

Now place two = nodes on the Function Easel, and make links as shown in Figure
9.4.15.

Figure 9.4.15: Placing two = nodes on the Function Easel

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1290

6. Place a OR node on the Function Easel.

7. Link the outputs of the two = nodes to the inputs of the OR node.

Also, link the output of the OR node to the input of the isValid node, as shown in
Figure 9.4.16.

Figure 9.4.16: Linking the OR and isValid nodes

8. This completes the desired mappings.

Less Than or Equal

Symbol: <=

Description: This function returns TRUE if the first input is less than or equal to the second
input.

Input: <= (Number <= Number)

Output: Boolean value (TRUE/FALSE)

Example:

Consider example of Numbers.dtd as Input Structure and Results.dtd as Output Structure.
Suppose we want that Result node of Output Structure should have the value true if the value
of Number1 node is less than or equal to the value of the Number2 node of the Input
Structure. Then,

1. Load Input Structure and Output Structure.

2. Map the Number1 and Number2 nodes of Input Structure to the Result node of the
Output Structure.

3. Invoke the Function Wizard by right-clicking on the Result node.

4. The Function Easel shows the existing mappings.

Place the <= node on the Function Easel, as shown in Figure 9.4.17:

Figure 9.4.17: Placing <= node on the Function Easel

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1291

5. Link the outputs of the Number1 node and Number2 node to the inputs of the <=
node.

Also, link the output of the <= node to the input of the Result node, as shown in
Figure 9.4.18:

Figure 9.4.18: Linking outputs of the Number1 and Number2 nodes

6. This completes the desired mappings.

NOT

Symbol: NOT

Description: This function accepts a boolean expression as the argument and performs
logical negation the expression. The result is a boolean value representing whether the
expression is FALSE. That is, if the expression is FALSE, the result of this function is TRUE.

Input: NOT (boolean)

Output: Boolean value (TRUE/FALSE)

Example:

Consider example of Valid.dtd as Input and Output Structure. Suppose we want to make mails
from email address admin@nobody.com as invalid. That is, we want that if the value of
isFromAdmin node is true, then the value of isValid is set to false. Then,

1. Load Input Structure and Output Structure.

2. Map the isFromAdmin node of Input Structure to the isValid node of the Output
Structure.

3. Invoke the Function Wizard by right-clicking on the isValid node.

4. The Function Easel shows the existing mappings.

Now place a NOT node on the Function Easel, as shown in Figure 9.4.19.

Figure 9.4.19: placing a NOT node on the Function Easel

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1292

5. Link the output of the isFromAdmin node to the input of the NOT node.

Also link the output of the NOT node to the input of the isValid node, as shown in
Figure 9.4.20.

Figure 9.4.20: Linking theNOT and isValid nodes

6. This completes the desired mappings.

Not Equal

Symbol ! =

Description: This function returns TRUE if both the inputs are not equal.

Input != (Object = Object)

Output: Boolean value (TRUE/FALSE)

Example:

Consider example of Chat.dtd as Input Structure and Valid.dtd as Output Structure. Suppose
we want to filter out mails that do not have message body. That is, we want that the
isMessageExist node of the Output Structure takes the value true if the length of the
Message node of the Input Structure is not equal to zero. Then,

1. Load Input Structure and Output Structure.

2. Map the Message node of Input Structure to the isMessageExist node of the Output
Structure.

3. Invoke the Function Wizard by right clicking on the isMessageExist node.

4. The Function Easel opens with the existing mappings.

5. Now place a Constant building block on the Function Easel and set its value equal to
0.

6. Place a Length node on the Function Easel.

Link the output of the Message node to the input of the Length node, as shown in
Figure 9.4.21.

Figure 9.4.21: Linking the Message and Length nodes

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1293

7. Place a != node on the Function Easel.

8. Link the outputs of the Length node and Constant node to the inputs of the != node.

Also, link the output of the != node to the input of the isMessageExist node, as
shown in Figure 9.4.22.

Figure 9.4.22: Linking the !=and isMessageExist nodes

9. This completes the desired mappings.

IsNumber

Symbol: IsNumber

Description: This function returns TRUE if the input value is a number.

Input: Any value

Output: Boolean value (TRUE/FALSE)

9.4.1.11 Lookup functions

The functions in this category are used to perform the lookup of keyvalue pairs in a database
and return the result in sorted fashion.

9.4.1.11.1 Lookup with Default Connection Details

DB

Description: This function accepts a table name, keyvalue pairs and column names as
arguments and does the lookup in the database and returns the result in sorted form.

Input: Table name, Key value pairs, Columns names.

Output: String containing the lookup result in sorted order.

Points to note

1. Lookup functions take key columns name value pairs as
<column1>=<value1>,<column2>=<value2> etc.

For example: dvSendDept=100, dvSendCode=BLK

2. Lookup functions can return value of multiple columns. To get multiple columns, use
the format <column3>,<column4>.
For example: dvValueDA, dvDescription

3. Dates are expected in MM/dd/yyyy HH:mm:ss format

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1294

4. Make sure the input value match the column length defined in the database. For
example, if the dvSendCode is defined as char(10) in the database, the input value
should be BLK followed by seven spaces.

Note: Spaces are not required if you are using MSSQL 2005.

Prerequisites

1. Add required database drivers in the Mapper classpath.

For example, if the lookup tables are in HSQL, include the path of hsqldb.jar in
<java.classpath> of mapper.conf present at
{FIORANOHOME}/esb/tools/mapper/bin.

2. To use this function in Mapper tool, a system property mapper.lookup.dbconfig has
to be defined in mapper.conf and it should point to the path of db.properties file
which contains the url, driverName, user and password.
Sample db properties file is shown below which contains the data for oracle data base.

Figure 9.4.23: Sample db properties file

3. For use in Route transformations, mapper.lookup.dbconfig property has to be set in
{FIORANOHOME}/fps/bin/fps.conf.

4. For use in XSLT component, mapper.lookup.dbconfig property has to be included in
JVM_PARAMS
For example: -Dmapper.lookup.dbconfig=<path of db.properties>

9.4.1.11.2 Lookup with Connection Details

DB

Description: This function accepts a table name, keyvalue pairs, column names, url, driver
name, user name and password as arguments and does the lookup in the database and
returns the result in sorted form.

Input: Table name, Key value pairs, Columns names, url, driver name, user name and
password.

Output: String containing the lookup result in sorted order.

Points to note

1. Lookup functions take key columns name value pairs as
<column1>=<value1>,<column2>=<value2> etc.

For example, dvSendDept=100, dvSendCode=BLK

Lookup functions can return value of multiple columns. To get multiple columns, use
the format <column3>,<column4>.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1295

For example, dvValueDA, dvDescription

2. Dates are expected in MM/dd/yyyy HH:mm:ss format

3. Make sure the input value match the column length defined in the database. For
example, if the dvSendCode is defined as char(10) in the database,
the input value should be BLK followed by 7 spaces.

Prerequisites

1. Add required database drivers in the Mapper classpath.

For example, if the lookup tables are in HSQL, include the path of hsqldb.jar in
<java.classpath> of mapper.conf present at
{FIORANOHOME}/esb/tools/mapper/bin.

9.4.1.12 JMS Message Functions

The various functions in this category extract specific information from a JMS Message and
output to the same. The input for these functions is a JMS Message. The following are the
available JMS Message Functions:

 Byte Content

 Text Content

 Header

 Attachment

9.4.1.12.1 Byte Content

Function: Byte Content

Description: The Byte Content function returns the byte content of a Fiorano document.

Output: Base64 encoded string value

9.4.1.12.2 Text Content

Function: Text Content

Description: The Text Content function returns the content which is in text format from a
Fiorano document.

Output: String value

9.4.1.12.3 Header

Function: Header

Description: The Header function returns the value of the name that is passed as a property
to the function.

Output: String value

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1296

9.4.1.12.4 Attachment

Function: Attachment

Description: The Attachment function returns any attachments attached to a Fiorano
document. The name of the attachment needs to be passed as a property to the function.

Output: Base64 encoded string value

9.4.1.13 User Defined functions

The various functions in this category are user defined and perform various functionalities. The
following User Defined functions are available:

 dateConversion

 compute

 nextMillenium

 replace

9.4.1.13.1 myExt:dateConversion

Description: Converts the date from one format to the other. For example, date can be
converted from MM-dd-yyyy to dd-MM–yy function convertDate (dateString, inFormat,
outFormat)

 Field Full Form Short Form

Year yyyy (4 digits) yy (2 digits), y (2 or 4 digits)

Month MMM (name or abbr.) MM (2 digits), M (1 or 2 digits)

 NNN (abbr.)

Day of Month dd (2 digits) d (1 or 2 digits)

Day of Week EE (name) E (abbr)

Hour (1-12) hh (2 digits) h (1 or 2 digits)

Hour (0-23) HH (2 digits) H (1 or 2 digits)

Hour (0-11) KK (2 digits) K (1 or 2 digits)

Hour (1-24) kk (2 digits) k (1 or 2 digits)

Minute mm (2 digits) m (1 or 2 digits)

Second ss (2 digits) s (1 or 2 digits)

AM/PM a

Input: Accepts three arguments. The first argument is the date passed as a string to the
function. The second argument is the input format and the third argument is the required
output format for the date.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1297

Output: The date string

Examples:

MMM d, y matches: January 01, 2000, Dec 1, 1900, Nov 20, 00

M/d/yy matches: 01/20/00, 9/2/00

MMM dd, yyyy hh:mm:ssa matches: January 01, 2000 12:30:45AM

9.4.1.13.2 myExt: replace

Description: This user-defined function replaces parts of a string that match a regular
expression with another string.

string regexp:replace(string, string, string, string)

Input: The function accepts four arguments. The first argument is the string to be matched
and replaced. The second argument is a regular expression that follows the Javascript regular
expression syntax. The fourth argument is the string to replace the matched parts of the
string.

The third argument is a string consisting of character flags to be used by the match. If a
character is present then that flag is true. The flags are:

g: global replace - all occurrences of the regular expression in the string are replaced. If this
character is not present, then only the first occurrence of the regular expression is replaced.
i: case insensitive - the regular expression is treated as case insensitive. If this character is
not present, then the regular expression is case sensitive.

Output: String

9.4.1.13.3 myExt:compute

Description: This user-defined function can be used to compute all mathematical operations
such as Addition, Subtraction, Multiplication and division of number. The function does not
compute mathematical operations such as cos, sin etc.

Input: A valid javascript expression

Output: A number

9.4.1.13.4 myExt: nextMillenium

Description: This user-defined function returns the number of days in the next millenium.

Input: There is no input for this function

Output: Number

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1298

9.4.2 Funclet Easel

This panel is the basic work area for creating expression based mappings. The user can place
the Function nodes as well as the Source or Destination nodes on this area and make the
required mappings.

The Funclet easel appears as shown in Figure 9.4.24.

Figure 9.4.24: Funclet easel

9.4.2.1 Source Node

The Source node corresponds to a node in the Input Structure Panel. A Source node appears,
as shown in Figure 9.4.25.

Figure 9.4.25: Source Node

9.4.2.2 Destination Node

The Destination node corresponds to a node in the Output Structure Panel. A Destination node
appears, as shown in Figure 9.4.26.

Figure 9.4.26: Destination Node

Add Link between two Nodes

To make a link between two nodes placed on the Funclet easel, follow the steps below:

1. Click on the gray box on the source building block. A small circle appears, as shown in
Figure 9.4.27. This represents the starting point of the link and the output box of the
building block.

Figure 9.4.27: Source node

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1299

2. Now drag-and-drop the mouse to the Destination node’s input point, which is again
represented by a gray box. A big circle appears on the destination node, as shown in
Figure 9.4.28.

Figure 9.4.28: Linking the Source and the Destination node

3. Release the mouse. A link between the two nodes is created.

Add Source node to Funclet easel

Drag-and-drop the source node from the Input Structure Panel to the Funclet easel, as
shown in Figure 9.4.29.

Figure 9.4.29: Adding Source node to Funclet easel

Add Function node to Funclet easel

1. Click the Function node on the Function palette that is to be placed on the Funclet
easel, as shown in Figure 9.4.30.

Figure 9.4.30: Selecting the Function node

2. Now move mouse into the Funclet easel. This changes the mouse to a?+? ‘+’ sign,
representing that the corresponding function node is selected.

3. Now click on the Funclet easel.

4. This places the corresponding function node building block on the Funclet easel.

Alternatively,

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1300

1. Drag-and-Drop the function node from Function palette to the Funclet easel, as shown in
Figure 9.4.31.

Figure 9.4.31: Funclet easel

Add Link between two nodes

To make a link between two nodes placed on the Funclet easel, follow the steps below:

1. Click on the gray box on the source building block. A small circle appears, as shown in
Figure 9.4.32. This represents the starting point of the link and the output box of the
building block.

Figure 9.4.32: Source node

2. Now drag-and-drop the mouse to the destination node’s input point, which is again
represented by a gray box. A big circle appears on the destination node, as shown in
Figure 9.4.33.

Figure 9.4.33: Linking the Source and the destination node

3. Release the mouse. A link between the two nodes is created, as shown in Figure 9.4.34.

Figure 9.4.34: Linking Source and Destination nodes

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1301

Delete link between two nodes

To delete a link between two building blocks,

1. Click on the pointing arrow (ending point) of the link and drag it to an empty area in the
Funclet easel, as shown in Figure 9.4.35.

Figure 9.4.35: Deleting link

2. Now, release the mouse. This removes the link between the corresponding nodes.

Delete node from Funclet easel

1. Select the corresponding building block and right click on it. The shortcut menu appears as
shown in Figure 9.4.36.

Figure 9.4.36: Pop-up menu

2. Click Delete to delete the selected building block.

Auto layout Funclet easel

1. Click on the Autolayout icon in the Funclet easel as shown in Figure 9.4.36.

Figure 9.4.37: Shortcut menu

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1302

The Funclet easel would properly be laid out, as shown in Figure 9.4.38.

Figure 9.4.38: Funclet easel layout

9.5 Creating Mappings

Mappings are defined between nodes of the Input and Output structures. The Structure is
displayed in a tree form.

9.5.1 Understanding Types of Nodes

Mappings are defined between nodes of the Input and Output structures. These nodes can be
divided into four types:

1. Element Node: This type of node contains an XML element.

2. Text Node: This type of node contains an XML element only.

3. Attribute Node: This type of node contains an attribute of the XML element that
contains it.

4. Control Node: The control node is a pseudo node that depicts the cardinality of the
elements in an XML structure. The Control node is displayed in red color, and is
surrounded by square brackets.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1303

The control node serves as a useful indicator while creating mappings between the Input and
Output Structures. For example, an Output structure node that has a cardinality of one or
more requires that at least one element should be added to that XML structure.

4. Control Node[ZERO-MANY] : This Control node specifies that zero to many
occurrences of a node can exist in its parent node. For example, in Figure 9.5.1 the
Mail-List element can contain zero or many Mail nodes.

Figure 9.5.1: Example of Zero to Many control node

5. Control Node [ONE-MANY]: This Control node specifies that one to many
occurrences of a node can exist in its parent node. For example, in Figure 9.5.2 the
Mail node can contain one or many occurrences of the Attachment node.

Figure 9.5.2: Example of One to Many control node

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1304

6. Control Node [OPTIONAL]: This Control node specifies that zero to one occurrences
of a node that can exist in its parent node. This Control node specifies that either zero
or one occurrence of a node can exist in its parent node. For example, in Figure 9.5.3
Student node can have zero or one occurrence of the Nick-Name node.

Figure 9.5.3: Example of Optional control node

7. Control Node [OR]: This Control node specifies that only one of the descendant
nodes can exist in the parent node. For example in Figure 9.5.4 TifosiService node can
have either Java node or Win32 node, but not both.

Figure 9.5.4: Example of OR Control Node

8. Control Node [SEQUENCE]: This Control node specifies that all the descendant
nodes should exist in the specified sequence in the parent node. For example, in
Figure 9.5.5, TifosiService element should have either Java element or Win32 OS
elements.

Figure 9.5.5: Example of SEQUENCE control node

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1305

Limitation

In Fiorano Mapper, the orders of attributes of an element are loaded alphabetically in
descending order. As a result, when you open Fiorano Mapper, the order of attributes might
change, thus leading to generation of incorrect mapping. In such case, Mapper flashes a
message which is as follows:

Note: Order of attributes has been changed for element: Response

9.5.2 Types of Mappings

Mappings from an Input Structure node to an Output Structure node can be singular or
iterative. Singular mappings, known as Name-to-Name mappings in Fiorano SOA Platform,
create only one output element from the first instance of the mapped element in the Input
Structure.

On the other hand, iterative mappings, known as For-Each mappings in Fiorano SOA
PLATFORM, iterate through all instances of the mapped Input Structure element and create
corresponding Output Structure elements.

For Input Structure nodes that contain only single instances of child elements, only Name-to-
Name mappings can be defined.

9.5.2.1 Name-to-Name Mapping

Now create mapping from Name-to-Name, as shown in Figure 9.5.6.

Figure 9.5.6: Name-to-name Mapping

The Funclet Wizard shows a link starting from Nth output of the name input node to name
output node. The Name-to-Name mapping defines how elements and attributes in the Input
Structure map on to elements and attributes in the Output Structure. A Name-to-Name
mapping on its own (without a For-Each mapping context) creates a single instance of the
mapped Input Structure node to the Output Structure.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1306

If the Name-to-Name mapping exists within a For-Each mapping context and there are
multiple elements and attributes in the Input Structure then each of those elements and
attributes is mapped on to an Output Structure node.

9.5.2.2 For-Each Mapping

When an Input Structure node can have multiple instances and you want to define a mapping
for each one of them, then For-Each mapping should be used. A necessary condition for this
type of mapping is that the Output Structure node to which For Each Mapping is being defined
should be of[ZERO-MANY] or [ONE-MANY] cardinality. Figure 9.5.7, shows an instance of a For-
Each mapping.

Figure 9.5.7: For-Each Mapping

This mapping specifies that for each Product element in the input XML, the output XML
contains a Product element. For-each mapping can be applied only to [ZERO-MANY] or [ONE-
MANY] control nodes in the Output Structure.

To create a For-each mapping in the Funclet Wizard, you need to link the Loop output label of
the Input Structure node to a [ZERO MANY] or [ONE-MANY] control node in the Output Structure.
These control nodes signify the cardinality of contained elements and attributes.

All value mappings for the attributes and child elements of a [ZERO MANY] or [ONE-MANY] node
with For-Each mapping, are carried out within this For-Each context.

So, in Figure 9.5.7 the mapping defined creates multiple instances of the Product element
from the Product elements in the Input Structure. The Output element, Product, is created as
per the mappings defined for its attributes and child elements by the respective Name-to-
Name mappings.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1307

9.5.3 Duplicating a For-Each Mapping

There may be situations in which you may want to specify different input values for different
iterations of a For-Each loop. This can be accomplished by duplicating a [Zero Many] or [One
Many] control node in the output structure.

The following example illustrates this situation. A Student DTD has two types of child
elements: male and female. These need to be mapped to student element in the output
structure DTD, as shown in Figure 9.5.8.

Figure 9.5.8: Mapping a node to One Many control node

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1308

The same mapping has to be defined for the female elements. To do this, drag the female
node from the input structure to the output structure. A shortcut menu is displayed as shown
in Figure 9.5.9.

Figure 9.5.9: A shortcut menu prompts you to duplicate the node

Select the Duplicate this node option in the shortcut menu. A mapping is created as shown
in Figure 9.5.10.

Figure 9.5.10: The One Many Node is Duplicated

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1309

9.5.4 Linking Nodes to Define Mappings

A Mapping is defined in the Fiorano Mapper tool by visually linking the Input Structure nodes
to the Output Structure nodes. This linking can be defined using any of the following
techniques:

1. Drag and drop the node from the Input Structure Panel to the Output Structure Panel

2. Or, create an automatic mapping between child nodes of the selected Input Structure
node and child nodes of the selected Output Structure node

3. Or, by using the Visual Expression Builder

9.5.4.1 Using the Automatic Mapping option to Define Mappings

To create automatic mappings between the selected Input and Output Structure nodes:

Select the nodes in the Input and Output Structure whose child nodes are mapped. Click the
AutoMap > Child to Child option in the menu bar, as shown in Figure 9.5.11.

Figure 9.5.11: Creating Automatic Mapping between child nodes

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1310

9.5.4.2 Using the Visual Expression Builder to Define Mappings

The Visual Expression Builder (VEB) is a useful feature of the Mapper tool. It allows you to
visually link nodes and insert functions to define complex mapping expressions. As an
example, we define a mapping for the DiscountPrice output node. This node should have a
value that is generated by subtracting the value of the Discount input node from the Cost
input node. To use the VEB to define the mapping perform the following steps:

1. Click the Funclet tab in the bottom panel of the MapView. Select the DiscountPrice
output node, as shown in Figure 9.5.12.

Figure 9.5.12: Selecting the Output Node for Mapping

2. The selected Output node is automatically displayed in the Function easel, as shown in
the Figure 9.5.12. To add the input structure nodes to the mapping you need to drag
them to the Funclet easel of the Visual Expression Builder. First, drag the Cost input
node from the Input Structure Panel to the Funclet easel. The Cost input node is added
to the Funclet easel as shown in Figure 9.5.13.

Figure 9.5.13: Dragging an Input node

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1311

3. Now, you need to subtract the value of Discount input node. For this, you need to add
the subtract function to the Funclet easel. The subtract function is available in the
Arithmetic functions. To add the subtract function; first select the Arithmetic function
category from the Function palette. Click on the drop-down list in the Funclet palette.
The drop-down list is displayed in the Funclet palette, as shown in Figure 9.5.14.

Figure 9.5.14: Selecting the Arithmetic Function Category in the Funclet palette

4. Select Arithmetic Functions from the list. The Arithmetic functions are displayed in
the Function palette. Drag the subtract function from the Function palette to the
Funclet easel. The subtract function is added to the Funclet easel as shown in Figure
9.5.15.

Figure 9.5.15: Adding the Subtract function

5. Next, add the Discount input node to the Funclet easel as you added the Cost node as
shown in Figure 9.5.16.

Figure 9.5.16: Adding another input node

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1312

6. Now, you need to link the input nodes to the subtract function. First link the Cost node
to num1 Pin of the subtract function.

Figure 9.5.17: Linking the input nodes to the subtract function

7. Next, link the Discount node to num2 pin of the subtract function.

 Figure 9.5.18: Linking the input nodes to the subtract function

8. Finally, link the subtract function to the DiscountPrice to create the mapping.

Figure 9.5.19: The final mapping is defined

9. The required mapping is defined as shown in Figure 9.5.19.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1313

9.5.5 Mapping XML Formats

Mapping one XML format to another is a common requirement. The steps for mapping XML,
formats to each other are as follows:

1. Load the XML, DTD, or XSD input structure or structures.

2. Load an XML, DTD, or XSD output structure.

3. Link the Input XML Structure node or nodes to the Output XML Structure node.

The following restrictions and conditions apply when mapping one XML format to another:

1. Nodes that do not have any content cannot be mapped. You can, however, map the
child nodes of these nodes, if they can contain content.

2. The SQL and advanced function categories are not available for XML to XML mapping

9.5.6 Mapping XML Formats to CSV Files

The procedure for mapping XML formats to CSV formats is the same as that of mapping XML
formats.

1. Load the XML, DTD, or XSD input structure or structures.

2. Load the CSV output structure.

3. Link the Input XML Structure node or nodes to the Output CSV Structure node.

The following restrictions and conditions apply when mapping an XML format to a CSV format:

1. Nodes that do not have any content cannot be mapped. You can, however, map the
child nodes of these nodes, if they contain contents.

2. The SQL and advanced function categories are not available for XML to XML mapping.

9.5.7 Mapping XML Formats to RDBMS Queries

The procedure for defining mappings to RDBMS queries is a two-step process that involves
configuring the RDBMS Output Structure, and then defining the mapping.

The steps for configuring the RDBMS Output structures have been defined earlier in this
chapter.

9.5.7.1 Mapping XML Formats to RDBMS-Insert Queries

Mapping an XML Input Structure to an RDBMS-Insert output structure creates a SQL query
that inserts the data received from the input XML structure to the specified RDBMS database.

1. Load an RDBMS-Insert output structure: If you invoke the Mapper tool from the
STUDIO tool, the RDBMS-Insert output structure is automatically loaded. However, if
you start it independently, you need to load the output structure.

2. Specify the Set clause: Define the mappings between the input XML structures to
the Set clause of the RDBMS-Insert output structure.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1314

All nodes in the RDBMS-Insert output structure that are displayed in black are database
columns that cannot be null. Therefore, you need to specify a mapping for them that insert the
appropriate values into them.

9.5.7.2 Mapping XML Formats to RDBMS-Update Queries

Mapping an XML input structure to an RDBMS-Update output structure is a simple two step
procedure:

1. Load an RDBMS-Update output structure: If you invoke the Mapper tool from the
STUDIO tool, the RDBMS-Update output structure is automatically loaded. However, if
you start it independently, you first need to load the output structure.

2. Define the mappings: For an RDBMS-Update output structure, you need to define
mappings for both the Set clause and the Where clause:

a. Set clause of RDBMS-Update: All nodes that are displayed in black color are
database columns that cannot be null. Therefore, you need to define a
mapping and set an input value for them.

b. Where clause of RDBMS-Update: You must specify a Where condition for
the RDBMS-Update output. This can be achieved easily using the Visual
Expression Builder. The following section describes the procedure for
specifying the Where clause using the Visual Expression Builder.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1315

Specifying the Where clause using the Visual Expression Builder

1. The Where clause appears as a separate field in the Output Structure Panel for
RDBMS-Update and RDBMS-Delete. To specify the Where clause, first select the Where
node in the output structure and then click the Funclet tab. The Where node appears
in the Funclet easel as shown in Figure 9.5.20.

Figure 9.5.20: Selecting the Where node in the Output Structure Panel

2. Next, click on the Insert Column(s) icon in the Visual Expression Builder.

Figure 9.5.21: Selecting New Columns

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1316

3. The Select Columns dialog box is displayed, as shown in Figure 9.5.21. Select the
columns you wish to add in the Select Column dialog box and click Ok. The selected
columns are added to the Funclet easel as shown in Figure 9.5.22.

Figure 9.5.22: Selected Columns are added

4. You can build condition expressions using the selected columns and SQL Functions
such as AND, OR, Like, and Between available in the Function palette. For this
example, we have built an expression that evaluates if the Status column has the
value ‘Active’ using the = and Constant functions, as shown in Figure 9.5.23.

Figure 9.5.23: A Defined Where clause

5. You can validate, test, and save this transformation.

9.5.7.3 Mapping XML Formats to RDBMS-Delete Queries

Mapping an XML input structure to the RDBMS-Delete output structure is a simple one-step
procedure, as the RDBMS-Delete query does not require a Set clause:

Specify the Where clause: You must specify a Where condition for the RDBMS-Delete
output. This can be achieved easily using the Visual Expression Builder

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1317

9.6 Adding User XSLT

Mapper also allows you to customize the output of the transformation by adding your own xslt
code to the generated XSLT. You can add XSLT code snippets before and after the beginning
tag<> of an element and before and after the end tag </> of an element in the XSLT. By
enabling this, Mapper allows you to further refine on the auto-generated output.

Let’s take an example where the Mapper generates an output that contains elements not
required by the user. In this example, the Mapper generates an output which contains
elements that is not mapped. The mapping has an output structure in which the parent
element is not mapped but the child elements are mapped, Fiorano Mapper does not generate
the if conditions around this unmapped parent element as a result of which this element is
generated in the output.

To avoid the generation of unmapped elements in the output, there should be an if condition
around <unmapped> element in XSLT whose condition is OR of both the child nodes' if
conditions.

Under such conditions, you can use the User XSL feature to customize the output and avoid
the generation of unmapped tags.

1. Right-click the <unmapped element> in the output structure and select the User XSL
option from the shortcut menu as shown in Figure 9.6.1.

Figure 9.6.1: Selecting the User XSL option from shortcut menu

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1318

2. A dialog box appears which contains the xslt script. The xslt script displayed in this
dialog box is partially editable. The editable regions are shown in Figure 9.6.2.

Figure 9.6.2: Editing the user xsl

As shown in Figure 9.6.2, XSL snippets can be added in the following four places:

• just above <element>

• just below <element>

• just above </element>

• just below </element>

3. Add the required if code snippet in these regions.

4. Click the OK button and then test it using Test option as described in the section 9.7
Testing the Transformation.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1319

9.7 Testing the Transformation

To test the transformation that you have created, perform the following steps:

1. Click Tools > Test in the Fiorano Mapper's menu bar, as shown in Figure 9.7.1.

Figure 9.7.1: Invoking the Test option

2. The Test XSL dialog box is displayed, as shown in Figure 9.7.2. Click the Input XML
tab.

Figure 9.7.2: Generating the Input XML

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1320

3. Click Generate Sample XML to create a sample input XML, the Generate Sample
XML dialog box is displayed, as shown in Figure 9.7.3. The default values are
appropriate in most situations.

Figure 9.7.3: Selecting the sample Input XML generation options

4. Click Ok to generate a sample XML. The sample XML is generated in the Input XML tab
as shown in Figure 9.7.4.

Figure 9.7.4: A Sample Input XML

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1321

5. Click on XSL to switch to the XSL tab. The XSL tab is displayed, as shown in Figure
9.7.5.

Figure 9.7.5: Loading another Transformation Script

6. You can also modify the transformation generated automatically from the mappings to
modify or use some other transformations such as:

• Deselect the Always load from Mapper option at the top-right corner of the XSL
tab.

• Click Load from file to load an XSL file, or make changes to the displayed
transformation script.

7. Click the Apply Transformations button to test the defined transformation.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1322

8. The output XML is displayed in the Output XML tab, as shown in Figure 9.7.6.

Figure 9.7.6: The Output XML resulting from the Transformation

9.8 Managing Mappings

Creating mappings is as simple as dragging an input node and dropping it on a target
structure node.

9.8.1 Exporting Mappings to a File

To export the Mappings to a File:

Click File > Save As

Enter the file name in which you want to export the project and click on OK button. The
project gets saved with default file extension (.tmf).

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1323

9.8.2 Importing Project from the File

To import the project from a file:

1. Click File >Open

2. Select the project file you want open and click on OK.

9.8.3 Validating All Mappings

To validate the existing mappings between the Input and Output Structures,

Click Tools from the menu bar and select Validate Mappings.

Or, click the icon on the toolbar.

Or, right-click on the line panel and select Validate Mappings.

If the validation is successful, a dialog box is displayed as Validation Successful message.

If the mappings are invalid, a dialog box is displayed as Validation Failed message.

The See MetaData View for errors message is displayed. The message window also displays
the invalid mapping details. You can see the validation errors in the Error Messages panel of
Metadata view.

9.8.4 Displaying All Mappings

To view all the existing mappings between the input and output structures, perform the
following steps:

27. Click View > Show All Mappings

Or, click the icon on the toolbar

Or right click in the line panel and select Show All Mappings from the shortcut menu

9.8.5 Removing Mappings for a Node

In order to remove all mappings for a particular node:

1. Right-click on the corresponding target node in the Output Structure Panel.

2. Click Remove All Mappings.

Alternatively

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1324

1. Select one of the map lines to the target node in the line panel.

2. Right-click on one of the highlighted map line of the selected map line and click
Delete

9.8.6 Copying functions in a Mapping

You can copy functions within a mapping project and across mapping projects. To copy a
function

1. Select the function in the funclet panel and press <Ctrl+C> as shown below in Figure
9.8.1.

Figure 9.8.1: Copying a function

2. Press <Ctrl+V>. The function is pasted in the funclet tab and can be reused within the
mapping. The copied nodes are pasted exactly above over the original nodes. You
need to move these nodes to view the original and copied node

9.8.7 Clearing All Mappings

To clear all the mappings between the Input and the Output Structure,

1. Click File from menu bar and select Clear Mappings.

Or click the icon from the tool bar.

Or right-click on the line panel and select Clear Mappings.

2. A warning dialog box is displayed showing a confirmation message. Click Yes to
remove all the existing mappings between the input and output structures.

9.8.8 Clearing Data

Clearing Data is meant to unload both the input and output structures along with the
mappings defined between them. To clear data:

1. Click File from the menu bar and click Clear Data

Alternatively, you can click the icon from the toolbar.

Click Yes in the warning dialog box that is displayed.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1325

9.8.9 Modifying the RDBMS Output Structure Settings

For RDBMS output structures, you can modify the tables selected and their dependencies at
any time, using a shortcut menu.

This shortcut menu is displayed when you right-click the Database node in any of the RDBMS
output structures, as shown in Figure 9.8.2.

Figure 9.8.2: Modifying the settings of an RDBMS Output Structure

9.8.10 Configuring Mapper Settings

Fiorano Mapper allows user to configure the following settings through Options dialog box.

To view the Options dialog box:

1. Click Tools from the menu bar and select Options.

Alternatively, click on icon on the toolbar.

General Options

• Look and Feel: Select the UI theme from the dropdown list.

• Default directory: Select the default location for the File and Open dialog box.

• Datatype Conversion: Select this option to convert the datatypes while linking nodes
in the funclet. This needs to be done to control automatic datatype conversion in
Mapper and avoid datatype mismatch.

• Enable Automatic For Mappings: Select this option to automatically map the parent
nodes once the child nodes are mapped in a transformation. If user defines a mapping
for a child element which can occur multiple times in its parent, then Mapper
generates a FOR mapping automatically for the parent's control nodes. XML specific
options.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1326

XML

• XML Schema Parser: Select the schema parser from the dropdown list. This
parser validates the xml file and its corresponding schema. Selecting this option
affects only the new projects created after this. When an existing project is
opened Mapper decides the parser that needs to be used from the project file.
Fiorano Mapper provides two parsers - Xerces and Castor to validate xml schema.

• Format XML: Formats the XML.

• Canonical support for XSL and XML: Makes a Canonical form of the XSL and
XML.

• Use Normalize Function in XPath: It enforces the use of Normalize-String
function whenever using the XPath in logical functions.

9.8.11 Managing XSLT Properties

You can also manage the XSLT properties of the output XSLT. To do the same:

Click View > XSLT Properties. The XSLT Properties dialog box is displayed as shown in
Figure 9.8.3.

Figure 9.8.3: Viewing XSLT Properties

This dialog box contains the following components:

• XSLT Encoding; Specifies the encoding of the generated XSL.

• Include DTD: Select this option to include the internal specified DTD in the
transformation output. By default, this option is disabled.

• <xsl output: attributes>

a. Output Method: Select the method of output after transformation from the
dropdown list. The method of output can be HTML, XML, or text.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1327

b. Indent: Select this option to indent the output XSLT.

c. Output Encoding: Specifies the encoding of the generated output XSL

• Omit-xml-declaration: Specifies whether the output XML generated should contain
XML declaration or not.

• Suppress optional empty items: Select this option for defining a mapping to an
output node, always generate the output node in output xml, event input xml has no
matching node. It is some times desirable not to generate optional output nodes if no
input matching node is found in input xml. This requires using a conditional mapping.
You can specify such conditional mapping by using "User XSL" feature. Mapper can
generate such conditions automatically for optional elements if this option is selected.

9.9 Customizing the Mapper User Interface

The Fiorano Mapper is equipped with preset themes to improve the look and feel of the user
interface. You can alter the appearance of the tool by selecting one of the following themes:

• Windows

• Metal

• Motif

To set the theme, perform the following steps:

1. Click Tools > Options

2. Select an option from the LookAndFeel drop-down list, as shown in Figure 9.9.1.

Figure 9.9.1: Options Dialog Box

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1328

3. Click the Ok button. For example, if you select Metal, the user interface looks as
shown in Figure 9.9.2.

Figure 9.9.2: Fiorano Mapper User Interface

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1329

9.10 Fiorano Mapper –Custom Funclets

9.10.1 Creating Custom Funclets

Apart from the prebuilt funclets, user defined funclets can also be integrated in Mapper.
Custom functions can be built using Java or JavaScript. The following sections explain how to
integrate JavaScript and Java functions in Mapper.

9.10.1.1 Integrating JavaScript functions

1. Launch the Mapper

2. Select Create/Edit User Defined Function(s) from Tools menu. The Extensions
Dialog appears.

3. Type in an extension name (this can be any unique name). Click OK.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1330

The New Script Function wizard is launched. Choose language as JavaScript.

4. Define JavaScript function(s). A sample JavaScript function createNvPair is shown in
the Figure below which accepts prefix, language, user and password as arguments and
returns an NVPair string.

Note: Multiple functions can also be defined in this area.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1331

5. Click Next and all the functions defined in Script Information panel are displayed in
Function List panel. Select the functions to be integrated in Mapper and click Finish.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1332

6. Now the newly defined function createNvPair is integrated with the Mapper and is
available under UserDefined Functions category. This funclet can be used while
defining mappings.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1333

9.10.1.2 Integrating Java functions

Creating the jar file

Build the function logic in a java class, create a jar file and place it in the folder
FIORANO_HOME/esb/lib/ext.

Follow the below points while building the jar file

• Package has to be necessarily mentioned in the java file.

• The java class need not have a main method.

• The class should be declared Public and the methods Public Static

• The class can have multiple methods. All of them will be available as funclets(
provided they are public static)

Including the funclets in the Mapper

Note: You cannot add custom java funclets to Mapper when it is invoked from route
transformation, it works when invoked using an XSLT component.

1. Launch the Mapper

2. Select Create/Edit User Defined Function(s) from Tools menu. The Extensions
Dialog appears.

3. Type in an extension name (this need not necessarily be the name of the jar file).
Click Ok.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1334

4. The New Script Function wizard is launched. Choose language as java. Type in the
qualified class name in the text box and click Next.

5. The Function List panel appears. This lists all the Public static functions available in
the class file. Select the desired functions from the functions list and the data type
that they return. The data type specified here is used for verifying the mapping
connections of that function to other functions. For example, a function that returns a
decimal data type cannot be used as input for a function that expects a boolean input
value.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1335

The selected functions are added to the category UserDefined Functions as shown in the
following figure.

9.10.2 Editing Existing User Defined Funclets
1. Select Create/Edit User Defined Function(s) from Tools menu.

2. In the Extensions Dialog box, select an existing extension and click Ok.

3. The class name can be edited to reflect a new class. If the same class is to be used,
click Next.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1336

4. The functions can be selected or deselected. The input and return data types can also
be edited. Click Finish to save and reflect changes.

9.10.3 Updating UserDefined funclets

If the user defined funclets have to be updated (assuming the functions that are currently
used in Mappings are not modified. Only new functions have been added to it), replace the jar
file in FIORANO_HOME/esb/ext and restart the Mapper tool.

Follow the usual steps to add new funclets:

1. Select the name of the extension, go next.

2. Since an existing extension is being modified, class name would be same as before, go
next.

3. Check the newly added and modified functions. Finish the wizard to save the settings.

9.10.4 Removing User Defined Funclets.

9.10.4.1 Removing User defined funclets from Fiorano Mapper

Follow the steps given below to remove a funclet from an extension. (Please refer to the
following sub-section for the procedure to delete an extension.)

1. Launch the Mapper.

2. Select Create/Edit User defined Function(s) from Tools menu.

3. Choose the extension that contains the funclets to be deleted

4. Click Next on Script Information panel.

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1337

5. Uncheck the funclets to be removed.

6. Click Finish.

Note: The funclets thus removed can be re-included by following the same steps and choosing
the funclet in the Function List panel. The limitation here is that an extension must have at
least funclet that is chosen.

9.10.4.2 Deleting entire extension

1. Browse to the folder <FIORANO_HOME>/esb/tools/mapper/bin

Fiorano SOA Platform User Guide

Chapter 9: Fiorano Mapper Page 1338

2. Open the file functions.repository for editing

3. Search from the tag Extension that has the name of the extension to be deleted as
the value for its name attribute.

4. Re-launch the Mapper tool; the extension would have been deleted.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1339

Chapter 10: Common Components
Configurations

This chapter describes the configurations that are common across a most of adapters.
However, if there are any additional components specific details for any of the configurations
which are not described here, such details can be found in that component help file.

10.1 Component Instance Properties

Component instance properties appear in the Properties pane when a component instance of
an application is selected. Component instance properties for a SMTP component are shown in
Figure 1.

Figure 1: Component instance properties for a SMTP component

10.1.1 Properties

This group contains general properties that identify the component instance or affect the
appearance of the component instance.

Version

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1340

When there are multiple versions of a component with same GUID, the Version property
determines the component that this instance represents.

Example: Web Service Consumer has two versions of components, version 4.0 and version
5.0. Version 4.0 uses axis API and version 5.0 uses axis2 API.

Note: It is recommended that the configuration of the component is compatible across
versions when developing custom components.

Name

Name of the component instance in the application. This name should be unique in an
application.

Short Description

A one line description for the component instance. This description is shown as tool tip for the
component. By default, the value defined for short-description element in the component's
Service Descriptor is shown here. If there is no value defined for this property, the default
value is shown in tool tip.

Example: For a SMTP component that is configured to send mails using a Fiorano email
account, the short description can be changed as shown in Figure 2 to give a more appropriate
description.

Figure 2: Tool tip showing the changed Short description for SMTP component

Long Description

A detailed description about the component instance. By default, the value defined for long-
description element in the component's Service Descriptor is shown here.

Icon

Icon to be used for the component instance in the application. Click the ellipses button to
browse the icon that should be used. Icon with size 32 X 32 is recommended. By default, the
value defined for attribute large of icon element in the component's Service Descriptor is
used. Removing the value specified against this property will restore the default icon.

Figure 3: SMTP component instance using a custom icon

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1341

Show Port Names

Names of ports for the component instance are shown if the value for this property is set to
yes, otherwise the port names are hidden. When the port names are turned on at an
application level, this property has no effect.

Note:

A floating note containing a custom message can be added to component as shown in Figure
4.

Figure 4: SMTP component with a note containing custom message

10.1.2 Deployment

This group contains properties that effect the way components are deployed in Fiorano
environment.

Nodes

A delimited list of Peer Servers from Fiorano network on which this component instance is
launched. The component is launched on the first Peer Server in the list that is available in
Fiorano network. If the Peer Server on which the component instance is running shuts down,
the component instance fails over to the next available Peer Server.

Click the ellipses button to launch an editor to configure the Peer Servers as shown in
Figure 5.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1342

Figure 5: Editor to configure Peer Servers on which the component instance can
launch.

• To add a Peer Server, click the Add... button and select Peer Server that has to be added
to the list.

• To remove a Peer Server, select the Peer Server and click the Remove button.

• The order of the Peer Servers can be changed using the Up button and the Down button.

Note the following:

• If the component instance persists data on the Peer Server on which it is running, then the
data is lost when the component instance fails over to a different Peer Server.

• The fail over process is equivalent to manually stopping the component instance changing
the Peer Server on which the component instance should be launched and restarting the
component.

• Messages that are received by the component instance during the fail over are lost.

• This is not the same as fail over when Peer Server is configured in HA mode.

Cache Component

• yes

The resources required for execution by the component instance are fetched from the
Enterprise Server and cached on the Peer Server, if not already done, when the CRC
(Check Resources & Connectivity) operation is performed.

A resource can be marked as required for execution in the Service Descriptor.

If the resources are not changed in the Enterprise Server, then they need not fetched
every time the application is launched there by reducing the time taken to perform a CRC
operation for the application.

• no

The resources required for execution by the component instance are fetched from the
Enterprise Server to the Peer Server every time the CRC operation is performed.

Note: If there are changes done to the component resources, this property should be set
to no before performing the CRC operation and can be reset to yes later.

Version Locked

• yes

The component instance is launched with component version provided for property
Version.

• no

The component instance is launched with highest available component version at all times.

Configuration

The serialized configuration of the component instance. Any changes made to this are
reflected when the component instance is launched or the CPS of the component instance is
opened.

Note: It is recommended that the value for this property should not be changed manually.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1343

10.1.3 Execution

This group contains properties that effect launch behavior of the component.

Launch Type

This property specifies how the component instance is launched. There are four possible
values.

• Separate Process

The component instance is launched in a separate JVM. It is automatically launched when
the application is launched. When this option is selected properties Debug Mode and
JVM_PARAMS are visible.

• In Memory

The component instance is launched in the JVM of the Peer Server. It is automatically
launched when the application is launched. When this option is selected properties Debug
Mode and JVM_PARAMS are not visible.

• Manual

The component instance is not launched when the application is launched. It has to be
launched manually from the command line.

To launch the component manually -

1. Right click the component, select Execution from the pop-up menu and click
Save Manual Launch Script... as shown in Figure 6.

Figure 6: Saving launch script for manual launch

2. Select the file to save the properties for manual launch and click Save.

3. Follow the steps mentioned in the window that pops up to launch the component
instance.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1344

Figure 7: Pop up window showing the steps for launching the component
instance manually

4. When this option is selected, properties Debug Mode is not visible and the value
for property JVM_PARAMS is ignored.

• None

If selected, the component instance is never launched. When this option is selected
properties Debug Mode is not visible and the value for property JVM_PARAMS is
ignored.

The boundary of the component is changed to provide a visual clue for the launch type.
Figure 8 shows the change in the boundary of component instance for each launch type

Figure 8: Boundary of component instance with visual clue for launch type

Debug Mode

• yes

The component instance is launched in debug mode. A debugger from any IDE can be
attached to the component instance to debug the component instance step by step at
runtime. When this value is selected, the property Debug Port is visible.

• no

The component instance is not launched in debug mode and a debugger cannot be
attached. When this value is selected, the property Debug Port is visible.

This property is only used when the property Launch Type is set to Separate Process.
To debug the component instance launched in the memory of Peer Server JVM, debug
parameters have to be in the configuration file –
%FIORANO_HOME%\esb\fps\bin\fps.conf – of the Peer Server.

Debug Port

The port on which the component waits for instructions from debugger.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1345

When property Debug Mode is set to yes, then the property Debug Port is set to 5000. It is
equivalent to launching the component with the following command line arguments.

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5000

Note: The component instance can be alternatively launched in debug mode by specifying the
required command line arguments in the property JVM_PARAMS.

10.1.4 Log Module Instances

This group contains different loggers that are used and their log level configuration.

All the loggers that are used by the component instance are shown as properties in this
section. The level at which logging should be performed for each of the logger is defined.
There are nine logging level available in the drop-down list – Off, Severe, Warning, Config,
Info, Fine, Finer, Finest, and All.

For information about log levels and the effect they have on logs generated, please refer to
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Level.html.

The levels of all the loggers can be changed together by selecting required log level for the
property All Modules.

10.1.5 Runtime Arguments

This group contains a single property JVM_PARAMS which contains all command line
parameters that are passed to launch the component. This property is used only when the
Launch Type of the component instance is set to Separate Process. Any system properties
can be set using this property.

Example: To support regional language specific characters during HTTP transfer, character set
encoding of the regional language has to be specified using the system property
file.encoding. The system property can be provided as -
Dfile.encoding=<required_encoding> for this property. If there are some other properties
already defined, then the value to add should be appended to the existing value separated by
a space.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Level.html

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1346

10.2 Port Properties

10.2.1 Input Port Properties

Input port properties appear in the Properties pane when an input port of a component
instance is selected. Input port properties for a SMTP component are shown in Figure 9.

Figure 9: Input port properties for a SMTP component instance

The properties in the Authentication group are not used by pre-built components provided
by Fiorano. However, they can be used in custom components.

10.2.2 JMS Destination

This group contains properties related to destinations created for the ports of the component.

Destination Type

Specifies whether the destination for the port is a Queue or a Topic. Visual representation of
port is changed based on the type of the destination as shown in Figure 10. A square indicates
a queue and a circle indicates a topic.

Figure 10: Input port as queue and as topic

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1347

• When this property is set to Topic, the property Durable Subscription is visible.

• When this property is set to Queue, the property Durable Subscription is not visible.

Use Specified Destination

Destinations for each port in the application are created automatically and associated with a
port when the application is launched. The destination name for destination created and
associated to a port is constructed using the following function – <Event Process
GUID>__<Component instance name>__<Port name>

Example: If an Event Process whose GUID is SAMPLE_APP contains a SMTP component
instance with name MAIL_SENDER. The destination created for the input port is
SAMPLE_APP__MAIL_SENDER__IN_PORT.

However, if the destination to be used has to explicitly defined, then this property should be
set to yes.

• When this property is set to yes, the property Destination Name is visible.

• When this property is set to no, the property Destination Name is not visible.

Destination Name

The name of topic or queue that has to be associated with the port. The destination is
automatically created if it is not present.

10.2.3 Messaging

This group contains properties related to JMS messaging concepts. In general, pre-built
components provided by Fiorano use a single connection and share same session for reading
messages on input port and sending messages on the output port.

Transacted

Specifies whether the JMS session is transacted or not.

• yes - JMS session is created as a transacted session. Multiple input messages can be
grouped into a single transaction. Messages are not sent on the output port of the
component until the transaction is complete. They are held in-memory of the component.
When this value is selected, property Transaction Size is visible.

• no - JMS session is created as a non-transacted session. Messages are sent on the output
port of the component immediately. When this value is selected, property Transaction
Size is visible.

Note:

When the output of component is very large, it is not advised to set this property value to
yes.

A transaction is based on the number of input messages processed and not based on the
number of output messages sent. In cases, where a component sends a large number of
output messages for each input request, it is not advised to set this property value to yes
even if value for property Transaction Size is set to 1.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1348

Example: A File Reader component reading a large binary file or a DB component that
returns result set containing a large number of rows.

Transaction Size

Number of input messages that should be processed before committing the transaction.

Number of Sessions

Number of sessions that are created by the component instance to process messages received
on the input port. Messages are processed in a separate session by each thread. This property
is used to increase the number of threads that can process the requests and thereby increase
the through put. However, the number of threads that can at a time is restricted by Max Pool
Size property in Connection Pooling Configuration panel.

Acknowledgement Mode

Specifies the acknowledgement mode that is used to acknowledge messages. Messages are
not deleted from destinations until they are acknowledged. When the component fails over
because of the HA fail over of Peer Server, all the messages that are not acknowledged are
redelivered. The number of duplicate messages in case of fail over can be controlled using this
property.

DUPS_OK_ACKNOWLEDGE

Messages are acknowledged after configured number of messages are successfully processed
and output messages are sent by the component instance. The number of messages after
which the messages are acknowledged can be configured at the following node in FMQ profile
– Fiorano > mq > pubsub > TopicSubSystem > DupsOkBatchSize. Number of duplicate
messages is utmost the DupsOkBatchSize for each session on each input port of the
component instance.

AUTO_ACKNOWLEDGE

Messages are acknowledged after a message is successfully processed and the output
message is sent by the component instance. Hence, number of duplicate messages is utmost 1
for each session on each input port of the component instance.

CLIENT_ACKNOWLEDGE

This property is ignored if the property Transacted is set to yes. When the property
Transacted is set to yes, messages are acknowledged when the transaction is committed.
Hence, number of duplicate messages is utmost the number denoted by property
Transaction Size for each session on each input port of the component instance.

Durable Subscription

Specifies whether a durable subscriber is created on the destination represented by the input
port or not. This property is visible only when value for the property Destination Type is set
to Topic.

• yes - A durable subscription is created to the topic represented by the input port.
Messages sent to the topic are not lost when the component fails over because of the HA
fail over of Peer Server. If selected, then the property Subscription Name is visible.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1349

• no - A durable subscription is created to the topic represented by the input port. Messages
sent to the topic may be lost when the component fails over because of the HA fail over of
Peer Server.

Note: If the Destination Type is Queue, then messages are not lost when the component fails
over because of the HA fail over of Peer Server.

Following components do not create durable subscriptions and hence have to use only queues
as input ports – WSStub and HTTPStub.

Subscription Name

Subscription name that should used be when creating a durable subscriber. This should be a
unique name for the Peer Server on which the component instance is running.

Client ID

Unique ID for the JMS connection created by this port. This property is not used by pre-built
components provided by Fiorano as there is only one connection created for each component
instance.

Message Selector

Specifies a condition (JMS Message Selector) to select only a particular set of messages.

10.3 Output Port Properties

Output port properties appear in the Properties pane when an output of a component
instance is selected. Output port properties for a SMTP component are shown in Figure 11.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1350

Figure 11: Input port as queue and as topic

The properties in the Authentication group are not used by pre-built components provided
by Fiorano. However, they can be used in custom components.

10.3.1 JMS Destination

This group contains properties related to destinations created for the ports of the component.
For more information, refer to section JMS Destination under Input Port Properties.

10.3.2 Messaging

Time to Live

Specifies the time in milliseconds for which the message is available from the system after it is
sent from the producer. The message is discarded on the expiration of this time. 0 (zero)
milliseconds indicate infinite life time.

Example: Consider an application contains four component instances. Value for this property
is set to 30000 milliseconds on the output port of the first component instance. This means,
once the message is sent on the output port of first component instance, the message should
be consumed by the fourth component instance in 30 seconds. If it is not consumed in 30
seconds, then the message will be lost and will never reach the fourth component.

Client ID

Unique ID for the JMS connection is created by this port. This property is not used by pre-built
components provided by Fiorano as there is only one connection created for each component
instance.

Message Priority

The priority of the message sent, can be any integer value from 0 (zero - lowest) to 9 (nine -
highest). The default priority is 4.

Persistent

Specifies whether the producer on this port sends persistent messages or not. If this property
is set to yes, all messages are persisted to message store. If this property is set to no, the
messages are not persisted and there may be message loss noticed during the HA fail over of
the Peer Server.

10.3.3 Preventing message loss

To avoid message loss in Fiorano Event Processes, change the following properties -

28. On each output port, set value of property Persistent to yes.

29. On each route, set value of property Durable to yes.

30. On each input port that is a topic, set value of property Durable Subscription to
yes.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1351

31. Whenever a JMS* component is used, make sure all messages sent are persistent and
all subscriptions to topics are durable. These properties can be set in CPS of JMS
components.

10.3.4 Components with implicitly defined JMS messaging properties

Some of the less used components in Fiorano have Acknowledgement Mode, Transaction Type
and Transaction Size implicitly defined and will not pick the values from input port.

• Aggregator AUTO_ACKNOWLEDGE, true, 1

• Chat AUTO_ACKNOWLEDGE, false, 1

• DiskUsageMonitorService AUTO_ACKNOWLEDGE, true, 1

• Display AUTO_ACKNOWLEDGE, false, 1

• ExceptionListener AUTO_ACKNOWLEDGE, false, 1

• Feeder AUTO_ACKNOWLEDGE, false, 1

• HTTPReceive AUTO_ACKNOWLEDGE, false, 1

• HTTPStub DUPS_OK_ACKNOWLEDGE, false, 1

• Join AUTO_ACKNOWLEDGE, from command line, 1

• SAPR3Monitor AUTO_ACKNOWLEDGE, false, 1

• Sleep AUTO_ACKNOWLEDGE, false, 1

• Timer AUTO_ACKNOWLEDGE, true, 1

• WSStub DUPS_OK_ACKNOWLEDGE, false, 1

• XMLVerification AUTO_ACKNOWLEDGE, true, 1

10.4 Managed Connection Factory

Use Connection details from input

The parameters to create the connection can be specified in the input message when this
property is selected. If this property is selected the validation errors in the managed
connection factory panel of the CPS are treated as warnings. So user can bypass this step
without giving valid configuration and complete the configuration of the component. If valid
properties are not provided even in the input message exception will be thrown at runtime.

Note:

• If this option is chosen, An additional element ConnectionFactorySettings is added to
the schema of the input port of component. Properties that are used to create the
connection for a specific component are present under this element.

• For the components EJBAdapter and WebServiceConsumer, the user cannot proceed
with the configuration of the component by giving invalid configuration, even if this
option is chosen.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1352

Connection Pool Params

Defines the connection pool settings for the component. Creating a connection to external
systems like Database or FTP Server or HTTP Server is typically a resource extensive and time
consuming process. Configuring a connection pool reduces the overhead of creating a
connection on each request.

Click the ellipses button to launch an editor to configure connection pool parameters as
shown in Figure 12

Figure 12: Connection pool configurations

• Enable Connection Pool

If this property is selected, the connections created are cached in a pool for
subsequent use. When the connection pool is disabled it implies that the connection
should not be cached and a new connection will be created for each request.

Enabling connection pool property will reduce the time spent in creating a new
connection for every input request.

Properties Max Pool Size, Blocking Timeout and Idle Timeout are enabled only
when this property is selected.

• Max Pool Size

The maximum number of connections that can be cached in the pool.

• Blocking Timeout (in ms)

The time in milliseconds after which the call to fetch a connection from the pool will
timeout, if there is no unused connection available. Connection will not be created
after timeout.

• Idle Timeout (in mins)

Specifies the maximum number of minutes that an idle (unallocated) connection can
remain in the pool before being removed to free resources.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1353

Proxy Settings

Click the ellipses button to launch an editor to configure proxy configurations as shown in
Figure 13.

Figure 13: Proxy configurations

Use Proxy Server

Select this option if the connection has to be established using a proxy server. Properties
Proxy Address, Port Number, Username, Password and SOCKS Proxy.

• Proxy Address

The IP address or the host name of the machine where the proxy server is running.

• Port Number

Port number on which the proxy server is running.

• Username

The user name with which the user can login to the proxy server.

• Password

Password for the user name provided.

• SOCKS Proxy

Enable this property to use SOCKS protocol to connect to the proxy server.

Note: When the property Use Connection details from input is chosen, an element
ProxySettings will be added to the schema of the input port of the component as shown in
figure below to provide the proxy details in the input message.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1354

Figure: Schema changes for proxy settings when Use Connection details from input is set

10.4.1 SSL Security

Click the ellipses button to launch an editor to configure SSL configurations as shown in
Figure 14.

Figure 14: SSL configurations

• Enable SSL

Select this option to enable SSL Settings. Rest of the properties in this editor are
enabled and configurable only when this property is checked.

• Accept Server Certificate

Select this option to accept server certificate without validating the certificate.

• Ignore Hostname Mismatch

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1355

Select this option to accept server certificate even if hostname in the certificate does
not match with the hostname in the request URL.

Note: Accept Server Certificate and Ignore Hostname Mismatch properties are useful
only in consumer type components like HTTPAdapters, WebServiceConsumer etc.

• Trust Store Location

Location of the trust store file. TrustStore is a file where digital certificates of trusted
sites are stored and retrieved for authentication during an SSL connection. TrustStore
is used to authenticate a server in SSL authentication.

• Trust Store Password

Password of the specified trust store.

• Key Store Location

Location of the key store file. The KeyStore is used by the component for client
authentication.

• Key Store Password

Password of the specified key store.

• Key Store Type

Type of the Key Store whose location is specified by Key Store Location.

• Trust Store Type

Type of Trust Store whose location is specified by property Trust Store Location.

• Trust Manager Factory Type

Algorithm for the Trust Manager Factory.

• Key Manager Factory Type

Algorithm for the Key Manager Factory.

• Security Provider Class

Determines Security provider class.

• Security Protocol

Determines Security protocol

• Key Store Client Key

Determines Key Store Client Key

Note:

• For more information on SSL Configurations, please refer to Section 3.11 – Public Key,
Cryptographic Keystore and Truststore.

• When the property Use Connection details from input is chosen, an element SSL Settings
will be added to the schema of the input port of the component as shown in figure 16 to
provide the SSL details in the input message.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1356

Figure: Schema changes for SSL settings when Use Connection details from input is set

10.5 Interaction Configurations

Figure 15: Common configurations in Interaction Spec panel

Validate Input

• no - The input is not validated and is directly processed by the component. Exception
may occur while processing if the message is invalid.

• yes - The input is validated against the structure specified on the input port of the
component. If it is not valid, exception occurs and further processing is not done.

Cleanup resources (excluding connection) after each document

A component creates various objects to process business logic. Some of these objects are
connection objects or are related to connection where as other objects are not related to
connection but are required to process business logic. Holding these objects in-memory all the
time will make lesser memory available that can be freed and deleting these objects to free up
space results in higher processing time as the objects have to be recreated. Hence, the objects
related to business logic can be removed from time to time.

• no - When this option is selected, objects that are not connection related are
destroyed and recreated for each request.

• yes - When this option is selected, objects that are not connection related are not
destroyed and are reused for each request.

Note: When a connection object is destroyed all objects are recreated on subsequent request.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1357

Target Namespace

Two or more XML schema having same namespace will cause problems if there are elements
which are defined with same name. Schema set on the input and output ports of the
component are in some created by the component. To avoid the clash of elements from
different schema, the schema generated by the component use the value provided for this
property to compute the namespace for input or output schema.

Monitoring Configuration

When monitoring is enabled for a component the following statistics are sent to
FPS_USER_EVENTS_TOPIC at configured intervals of time

• Minimum execution time

The minimum amount of time taken to process any message during the last publish
interval.

• Maximum execution time

The maximum amount of time taken to process any message during the last publish
interval.

• Count

Number of messages processed during the last publish interval.

• Throughput

Rate at which messages are processed during the last publish interval.

Click the ellipses button to launch an editor to configure monitoring configurations as
shown in Figure 16.

Figure 16: Monitoring configurations in Interaction Spec panel

• Enable Monitoring

Select the check box to enable monitoring for request execution time.

• Publish Interval

The time interval after which monitoring statistics are computed and sent.

To view the monitoring statistics in dashboard, open FES profile and navigate to FES >
Fiorano > Esb > Events > FESEventsManager. Click on FESEventsManager and set the
property ListenForUserEvents to yes in the properties window.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1358

10.5.1 Scheduler Configurations

A component can be scheduled to execute fixed request at configured intervals of time. When
the component is configured to run in scheduler mode the component will not have input port.
However, messaging properties that are usually configured on the input port can be configured
in Transport Configurations panel.

Figure 17: Scheduler configurations panel

Enable Scheduling

Select the check box to run the component in the scheduling mode.

Interval between polls

Specifies time interval between successive requests.

Number of polls

Number of times the input request is executed.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1359

Infinite times

If this option is enabled, then the number of times the input request is executed will be
infinite.

Start time

The polling start time. If the specified start time is earlier then the component start time, the
first schedule will happen at the next scheduled time. For example, start time is 08:00:00, poll
interval is 30 minutes, and component starts at 8:10:00, the first schedule will happen at
08:30:00.

Start date

The polling start date. If the specified start date is earlier then the component start date, then
it will be ignored and input messages are sent at next scheduled date.

Use specified Input

Select the check box to configure input that is repeatedly executed.

Validate

Validates the specified input against the structure specified on the input port.

Generate Sample Input

Generates the sample input for the structure specified on the input port.

10.6 Transport Configurations

Transport Configurations panel is used to configure messaging properties when the component
is configured in scheduling mode. These properties are configured on the input port when the
component is not in scheduling mode.

Figure 18: Transport configurations panel

Output Transport

Click the ellipses button to launch an editor for configuring transport properties. The
properties in the editor are shown in Figure 19.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1360

Figure 19: Transport properties

• Acknowledgement Mode

Valid values for this field are 1 to indicate AUTO_ACKNOWLEDGE, 2 to indicate
CLIENT_ACKNOWLEDGE and 3 to indicate DUPS_OK_ACKNOWLEDGE. Any other value
will throw an exception and component will not be started.

For information on acknowledgement modes, refer to section Acknowledgement
Mode in Input Port Properties.

• Enable request-reply

If this property is set to yes, then responses will be sent to JMSReplyTo port if it is
present, else response is sent on the output port of the component.

• Transacted

For information on this property, refer to section Transacted in Input Port
Properties.

• Transaction Size

For information on this property, refer to section Transaction Size in Input Port
Properties.

10.7 Error Handling

Errors that occur in the component are classified into five categories – JMS Error, Response
Generation Error, Request Processing Error, Connection Error and Invalid Request Error.
Actions that have to be taken when an error occurs are defined in the Error Handling panel.

Figure 20: Error handling

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1361

10.7.1 Connection Error

This property in Error Handling Panel will be visible only if the Managed Connection Factory
panel is present. Presence of Managed Connection Factory implies that the component makes
a connection to external system.

Example: Components like FileReader and FileWriter do not create any connections and hence
they do not have this property in the CPS.

Errors that occur because of the connection to an external system cannot be made or because
the connection to an external system is lost are categorized under the category Connection
Error.

Example: Trying to connect to an external web site when the network connection is not
active.

Figure 22: Available actions for Connection Error category

Remedial Actions

Actions that can be taken when a Connection Error occurs is shown in Figure 22.

• Send To Error Port

The component will send the error on the ON_EXCEPTION output port of the
component if this action is enabled. By default, ON_EXCEPTION port is present in all
components that support error handling. If this option is unchecked, then the Retries
before sending error property in Advanced Settings group is disabled.

• Try reconnection

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1362

The component will re-execute the input request with a new connection, if this action
is enabled. Configuring for retries is explained in Retry Configuration section.

• Discard Connection

The component removes the connection from the connection pool as soon as a
connection error occurs. Subsequent request uses a new connection from the
connection pool.

• Stop Service

The component is stopped when an error occurs if this action is enabled.

10.7.2 JMS Error

Errors that occur in transport (JMS)

Figure: Available actions for JMS Error category

Remedial Actions

Actions that can be taken when a JMS Error occurs is shown in Figure 23.

Log to error logs

Logs the exception and trace to error logs.

Stop service

The component is stopped when an error occurs if this action is enabled.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1363

10.7.3 Response Generation Error

Errors that occur while building a response for the processed request.

Figure: Available actions for Response Generation Error category

Remedial Actions

Actions that can be taken when a Response Generation Error occurs is shown in Figure 24.

Log to error logs

Logs the exception and trace to error logs.

Send to error port

The component will send the error on the ON_EXCEPTION output port of the component if this
action is enabled. By default, ON_EXCEPTION port is present in all components that support
error handling. Retries before sending error property in Advanced Settings group is
disabled if this option is unchecked.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1364

10.7.4 Request Processing Error

Request Processing Errors are categorized based on the following conditions -

• The error occurs after input message is successfully parsed and understood.

• The error is not a result of connection problems.

Example: In case of FTPGet, a Request Processing Error occurs when the specified file (to be
downloaded) in the input request is not present in FTP Server.

Figure 21: Available actions for Request Processing Error category

Remedial Actions

Actions that can be taken when a Request Processing Error occurs is shown in Figure 21.

• Log to error logs

Logs the exception and trace to error logs.

• Re-execute Request

The component will re-execute the input request if this action is enabled. Configuring
for retries is explained in section Retry Configuration section. This action should be
enabled only for errors that may be rectified over time.

Example: Error in file reader because a file is not found. If the required file should be
placed by another process, then the file not found error can be rectified over time and
hence can be retried.

• Send To Error Port

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1365

The component will send the error on the ON_EXCEPTION output port of the
component if this action is enabled. By default, ON_EXCEPTION port is present in all
components that support error handling. Retries before sending error property in
Advanced Settings group is disabled if this option is unchecked.

• Stop Service

The component is stopped when an error occurs if this action is enabled.

• Throw fault on warnings

In some cases, a problem in the component which is not severe is treated as a
warning. Such warnings are just logged by default. The component will treat such
warnings as errors, if this property is enabled.

Example: When the FileReader is configured to read files with a particular pattern for
file names, a warning is logged if there are no files whose names match the pattern
configured. If the FileReader is polling a directory, then it is an inherent assumption
that files are not always present and hence treating it as warning is appropriate. But if
the file reader is not in scheduler mode, then absence of files has to be treated as an
error.

10.7.5 Invalid Request Error

Errors that occur when parsing the input request are categorized under Invalid Request Error.
Remedial actions are different for EDBC and BC components.

Figure 23: Available actions for Invalid Request Error category

EDBC Components

Remedial Actions

• Log to error logs

Logs the exception and trace to error logs.

• Process invalid request

Do not stop processing in case request is invalid. Continue Processing.

• Send To Error Port

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1366

The component will send the error on the ON_EXCEPTION output port of the
component if this action is enabled. By default, ON_EXCEPTION port is present in all
components that support error handling. If this option is unchecked, then the Retries
before sending error property in Advanced Settings group is disabled.

• Stop service

The component is stopped when an error occurs if this action is enabled.

BC Components

Remedial Actions

Actions that can be taken when an Invalid Request Error occurs.

• Send To Error Port

The component will send the error on the ON_EXCEPTION output port of the
component if this action is enabled. By default, ON_EXCEPTION port is present in all
components that support error handling. Retries before sending error property in
Advanced Settings group is disabled if this option is unchecked.

• Do not stop service

If this property is not checked, when an invalid input is sent to the component, the
component will be stopped immediately. This property is checked by default.

Example: In case of SMTP, if the input message is not valid according to the schema
set on its IN_PORT, an exception occurs and the component will be stopped only if this
property is unchecked.

10.7.6 Retry Configuration

When Re-execute Request is enabled for Request Processing Error or when Try
Reconnection is enabled for Connection Error, the Advanced Settings group containing
configurations for retries is visible.

Time between retries(ms)

The time interval between two successive retries.

Number of retries

The number of times the component should retry the request. This property is enabled only if
Infinite check box is unselected.

Infinite

If the check box is selected, the component will continuously retry the request until the
request is process successfully. when this option is selected, the property Number of retries
is disabled and its value is ignored.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1367

Retries before sending error

This property is enabled only if Send To Error Port action is enabled. If Send To Error Port
action is enabled and if the value for this component is a number n, then the component
sends an error on the ON_EXCEPTION port after every n retries.

10.8 Schema Editor

Figure 24: Schema Editor

Schema Editor is used to configure schemas that are required for the functionality of a
component.

In general,

• XSDs and DTDs can both be provided in the schema editor. Some components allow
only XSDs.

• Only one root element can be selected. Some components allow selecting multiple root
elements.

• When a DTD is provided in the schema editor, the External XSDs tab is disabled.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1368

XSD – Schema tab

XSD/DTD can be provided in the text area in the schema tab shown in figure 24. Schemas

that are present on the file system can be loaded by clicking on Load button . This
opens a file browser which enables navigation to the required schema on the file system. The
file type can be chosen as XSD or DTD in the filechooser.

Root element can be selected by clicking on Select Root Element button . A list containing
all the elements present in the schema will be displayed as shown in Figure 25. A root element
(multiple root elements, in some cases) should be selected from that list of elements. The
selected root element(s) will be displayed in the schema editor next to Select Root Element
text.

Figure 25: Selection of root element

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1369

XSD – Structure tab

The structure tab displays a tree structure of the schema provided as shown in figure 26. The
structure depends on root element.

Figure 26: Structure of the schema when no Root Element is chosen

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1370

Figure 27: Structure of the schema when Bookstore is chosen as Root Element

The structure of the entire schema is displayed if none of the root element is selected. If root
element is selected (as Bookstore in the Figure 27), the structure of that element is displayed.

External XSDs Tab

If there are any imported schemas in the schema provided in XSD-Schema tab, they can be
resolved by adding them as the external XSDs here. Any number of external schemas can be
added here.

Note: Imported schemas can also be resolved by adding the schemas in Schema Repository.

Schemas provided as external XSDs must have target namespace defined.

Click on the Add button to add the external schema. Select an option from Manual or Load
from File.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1371

Figure 28: Adding external schema

• Manual - The text editor on the right is editable only when Manual option is selected.
The schema has to be provided manually in the text editor.

• Load from File - Opens a File Chooser to browse the required external schema.

After loading the schema in the text editor, click on Save button to save the schema.
The schema will be added to the list of external XSDs only when it is saved.

To remove a schema, select the corresponding namespace and click Remove button .

To view a schema, select the corresponding namespace and the schema can be viewed in the
text editor.

Figure 29: Configuring external schema

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1372

Clear

On clicking Clear button, the schema, external schemas, root element and structure present
in the schema editor will be cleared.

Fetch from Connected Source

Figure 30: List of connected ports from which schema should be fetched

On clicking Fetch from Connected Source button, a list of ports (which have schema set on
them) of the components connected to this component are displayed. Application Context of
the event process is also listed, if defined. On selecting one of the ports or application context,
the schema present will be set as schema in the schema editor.

10.9 Schema Repository

Schema Repository is used to store schemas that are imported in schemas used by different
components/event processes. The imported schemas referred from anywhere in an Event
Process/component can be stored here so that they are resolved even when they are not
added explicitly. Hence, schemas which are imported across multiple event
processes/components can be stored in the schema repository.

To add schemas to the Schema Repository, perform the following steps.

• In Studio, navigate to Tools -> Schema Repository. This opens a Schema Repository
editor as shown in Figure 31 using which schemas can be added to schema repository.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1373

Figure 31: Schema repository editor

• Click on Add... Button to add schemas to the repository, Customize Add... editor
shown in Figure 32 will be opened.

 Figure 32: Adding XSD to the schema repository

• Click on to browse the required XSD.

• Select an XSD and click OK

The values URI, Location, schema name will be automatically updated.

• The URI value should not be an empty field. In case, if the schema has a target
namespace, URI should be same as the target namespace of the XSD.

• The Location field displays the absolute path of the schema file.

• If the schema is to be copied and saved in the location <FIORANO_HOME>/xml-
catalog/user, select the field Save to Catalog folder with name and specify a name
with which the file has to be saved.

• If Save to Catalog folder with name is not selected, the file is not copied to the
location <FIORANO_HOME>/xml-catalog/user and will be referred from its original
location.

• Click on OK to close Customize Add... editor.

A new row specifying the URI and Location of the XSD will be added in the table.

• To remove a schema from the schema repository, select a row from the table and click
Remove.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1374

 Figure 33: Removing XSD from the schema repository

• The option 'Delete schema file' specifies whether to delete the file from the system
or just to remove the schema from xml-catalog. Select the check box to remove the
file completely.

• In case, if the file is not copied to <FIORANO_HOME>/xml-catalog/user, the file will be
deleted from its original location if this option is selected.

10.10 XPath Editor

Figure 34: XPath Editor

XPath Editor can be used for specifying path expressions to identify nodes in an XML document
and for specifying conditions. The list of elements from schema provided are shown in the left
panel of the editor. An XPath Editor with sample schema is shown in Figure 34.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1375

 Figure 35: Adding a constant in XPath Editor

An element can be selected by simple drag and drop onto the right panel. An XPath expression
may consist of different constant values, functions or/and operators. These can be added
easily by right clicking on the right panel and selecting the option based on the requirement as
shown in Figure 35.

Adding a Function: A function can be added either by right clicking on the right hand side
panel --> Add Function or by selecting from the list available in the palette tab which is
present in the left panel as shown in figure 36.

 Figure 36: XPath Editor – Palette containing different XPath functions

A string function matches which takes two arguments and returns a boolean value is shown
in the Figure 36.

Adding a Constant value: Supported types of constants are String, Boolean, Numeric, Date-
Time, and Duration.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1376

Example: Addition of a boolean value can be done as described below

16. Right-click on the right panel. Select Add Constant -->Boolean Value.

17. Select the value as shown in Figure 37.

Figure 37: Adding a boolean constant

Addition of a Operator:

Figure 38: Adding an operator

18. Right-click on the right panel. Click on Add Operator.

19. Select the operator as shown in Figure 38.

Fiorano SOA Platform User Guide

Chapter 10: Common Components Configurations Page 1377

Figure 49: Add(+) operator

Figure 39 illustrates a sample Xpath expression using a '+' operator. It contains two numeric
constant values which are passed as arguments to the operator.

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1378

Chapter 11: Backlog Monitoring

Fiorano Backlog Monitoring enables you to define policies over the number of pending requests
for a component and raise notifications or alerts appropriately. The Backlog Monitoring feature
provides a runtime governance mechanism for pending requests with the ability to generate
instant alerts which are delivered via multiple transports including email. This helps
administrators keep track of possible errors and also monitor performance bottlenecks at
runtime in production systems.

11.1 Configuring Transports

Every alert uses a specific transport for notification. Each Transport has set of transport
specific parameters for the message to be carried on that transport. For instance, for an SMTP
Transport, the details of the SMTP Mail server together with authentication information are
required. These settings can be common across all SMTP Alerts within the system or particular
for different cases. The transport setting has default values which are used if the alerts do not
specify the settings explicitly.

The supported transports are listed under the Navigation Panel -> Monitoring -> Alert
Manager on the Fiorano Web Dashboard. Clicking on the transport lists the transport specific
properties on the right hand side of the page.

11.1.1 SMTP Transport

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1379

Properties Description

SMTP Server The URL or the IP address of the SMTP
Server to connect to for sending the email

SMTP Port The port on which the SMTP Server is
running

Username Authentication to be used to send the email.

Password Credentials of the authentication

The username and password configured must have the permission to send emails on this mail
server. It is best to create a Fiorano Admin login account for Fiorano SOA and to use that
account for all Fiorano notifications. If the communication to the SMTP Server has to go
through a proxy server, then use the proxy parameters and Save the configuration. All saved
values will be used by default for all SMTP Alerts if there is no specific setting provided on the
alert.

11.1.2 JMS Transport

Properties Description

Fiorano Provider URL The internal URL (or the MQ Layer) of the
Fiorano Server to which the message will be
published

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1380

Properties Description

Initial Context Implementation The implementation class of the JNDI initial
context.

Backup URL The semi colon separated backup URL(s) of
the Fiorano Server if the primary URL is not
available. This should point to the secondary
server in case of an HA Setup.

Default Security Principal The default username of the principal to
authenticate.

Default Security Credential The default security credential of the
principal to authenticate.

Default Connection Factory The name of the default uniform connection
factory to be looked up by this transport
while publishing the message into the
transport.

The authentication information provided should have rights to publish the messages to the
server. In case the server is set up in a HA mode, the backup URL should contain the URL of
the secondary server. You can over-ride these transport settings and provide specific settings
for each JMS alert when it is created.

11.2 Managing Alerts

Alerts are a combination of a message and a transport for delivering that message. A message
could be in different formats such as plain text, XML, etc and transports could any of the
supported ones. Alerts created can be re-used across different policies. The alert manager
screen lists all the alerts configured in the system along with the details of the alerts as shown
below.

The Main panel lists the alerts and the Transport Type. This is a paged data grid and the pages

can be navigated by using the next and previous buttons. A Refresh button reloads the
alerts from the Alert Repository. Clicking on an alert displays the details of the alert.

Please refer to section (Enterprise Repository) Alert Repository section to know how the alerts
are stored in the Fiorano Enterprise Repository and recommendations on backing them up and
migrating.

11.2.1 SMTP Alert

Alert messages are delivered as an Email via the SMTP Transport protocol. This is used to
notiy users asynchronously about certain events occurring in the system. Default message
content will be in a readable text format. The content can be changed to reflect a context
specific message. This transport is not ideal to start or execute a workflow.

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1381

Property Name Description

From Name The sender Name as it appears on the email client.

NotificationID Unique identifier of the notification. one should use meaningful
IDs to make it easier to reuse this alert in multiple policies.

Message Content Type Text/Plain. The content type of the message to be delivered.

Message Body The actual Message content to be delivered.

To The intended recipient of the notification.

UseTransport Boolean to indicate whether the default transport settings to be
used or the alert specific transport settings have to be used. If
true, it means that the alert specific setting has to be used.

Subject Short description of the content / subject of the message.

CC The list of recipients to be carbon copied.

BCC The list of recipients to be black carbon copied.

11.2.2 Creating New SMTP Alerts

By clicking on the Add button on the top right panel, users can add new alerts. A drop–
down list of available transports is listed and on selecting a transport, a panel which describes
the message format for that transport is displayed.

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1382

If you check Transport Settings, the Alert Manager will use the transport parameters
specified in this alert and the default transport settings are ignored. Each Policy Type has a set
of variables which can be used in the alert fields. Variables help build a context sensitive
message / alert in contrast to a constant one. Variables are specific to types of policies. If
there is a variable defined which cannot be resolved by a particular kind of policy, it will
remain un-resolved in the final message. The table below lists the variables specific to backlog
Policy. If specific alerts coupled with these policy specific parameters are created, it is best to
identify this link in the ID of the alert so that this alert is not assigned to a different kind of
policy by mistake.

Variable Name Description

{policy_id} The Policy ID for which this Alert is getting executed. Every
time this alert is executed, this variable will get resolved.

{depth} The count of pending requests for which the policy was
configured.

{port_name} The Port Name at which the requests-pending count reached
the {depth} level in Direction {direction}. The port name has
the following format:

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1383

EVENT_PROCESS_ID__SERVICE_INSTANCE_NAME__PORT_NA
ME

{Service_instance_name
}

The name of the service instance for which the requests-
pending count reaches the {depth} level in Direction
{direction}. The Service Instance has the following format:
EVENT_PROCESS_ID__SERVICE_INSTANCE_NAME

{application_guid} The event process within which the pending requests for
{service_instance_name} / {port_name} reached the {depth}
level in Direction {direction}.

{direction} The direction in which the backlog depth was reached.

{event_time} The date and time at which the backlog depth reached the
specified {depth}

{alert_id} This Alert ID can optionally be inserted in the message body
and subject with this variable.

11.2.3 JMS Alert

This alert will be used to notify an end-user or a program via the JMS transport
asynchronously. This transport is typically used to start a workflow based on this alert
condition, and the default message content is in XML format which can be read / parsed by a
system and set of workflow actionables can be executed. The Fiorano Event Process can also
be used to execute this workflow with the inbound listening to the destination defined in this
alert.

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1384

Property Name Description

Connection Factory The name of the unified connection factory
which needs to be used for creating the
connection with the specified server.

Destination Name The name of the destination on which the
Notification message has to be published.
This can be a topic or a queue and the
corresponding destination type has to be
specified.

Message Content Type Text/Plain. The content type in which the
message content has to be delivered.

Notification ID The identifier for this notification.

Content MIME The MIME of the content. Text/xml by
default.

Message Body The content of the notification.

Delivery Mode The Mode of delivery. Persistent or non-
persistent. Persistent messages are stored
in the hard drive if the in-memory buffer is
full and are guaranteed to be delivered.

Backup Provider URL The URL of the backup server to connect if
the primary URL is not available.

TimetoLive TimetoLive property of the JMS Message
created.

AutoCreateDestination Specifies whether to create the destination
if it is not present in the target server.

Destination Type The type of the target Destination (Queue
or Topic).

Message Priority The priority of the JMS Message created.

Username The username of the principal which will be
authenticated while making connection with
the server.

Password The credential of the principal which will be
authenticated while making connection with
the server.

Use Transport Specifies whether the transport settings
specified in this alert to be used or the
default server settings to be used. If true,
the settings local to this alert will be used.

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1385

11.2.3.1 Adding a New JMS alert

Click the Add button on the top right panel to add new alerts. A drop-down list of available
transports is listed. On selecting the JMS transport, the Add New JMS Alert window is
displayed as shown in the figure below:

11.2.3.2 Editing/Removing Alert

Alerts can be edited by clicking on the edit icon and can be removed by clicking the
remove icon. Once the alert is edited, it will be saved into the repository and will be
automatically picked up from the next execution of the alert. AlertID and the Alert Type
cannot be modified. An Alert with the same and different type can be created by deleting the
old alerts with the same id. When an alert is deleted and a policy is dependent on it, the
policy execution will fail with error logs notifying the user about the system cannot find the
specified alert.

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1386

11.3 Managing Backlog Policies

The Backlog Policies monitor the backlog request count and raise notifications based on them.
Multiple backlog policies can be created and applied at different levels like he Event Process
level, Component Level or Port level. The policy applied on an Event Process will indirectly
apply to all the components within that event process and will translate automatically to all
monitorable ports* of the components.

Note: Monitorable ports are the destinations over which backlog depth monitoring is possible.
Currently monitoring is possible only on queues. Future versions of the product may extend
backlog monitoring support for topics as well.

The Main panel lists the policies together with type and current state of each policy. A Policy
can be in one of three states: ACTIVE, INACTIVE or ERROR. When a policy is successfully
applied it is in ACTIVE state and when there is an error it is in ERROR state. When the user
has suspended the policy execution, the policy becomes INCTIVE. The policy list displayed is

apaged data grid and the pages can be navigated by using the next and previous tool
buttons. A Refresh button reloads the policies from the Policy Repository. Clicking on the
policyID displays the details of the policy.

Parameters Description

Application GUID The event process on which the policy is applied.

Service Instance Name The service instance name on which the policy is applied if the
policy is applied at SERVICE_LEVEL or PORT_LEVEL.

Port Name The port name on which the policy is applied if the policy is
applied at the PORT_LEVEL

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1387

Policy Level The level at which the policy is targeted. It could be targeted for
the Event Process / Component / Port level. Event Process
translates to all components and component-level translates to all
ports of the component.

Direction The direction of reaching the specified depth. This could be ANY,
UP or DOWN. If notification has to be raised when the pending
requests are reducing, then DOWN will be specified otherwise UP
will be specified. ANY is for both cases.

Depth The integer value indicating the count of pending requests.

Alerts The list of alert IDs which will be executed when the condition for
this policy is satisfied.

Enabling backlog monitoring policy effect the performance on the concerned peer server (the
peer on which destinations exist over which backlog monitoring policies are applied). As such,
performance has to be empirically observed after turning on backlog monitoring.

11.3.1 Creating Policy

By clicking the Add button, you can add new policies. A drop-down menu of policy types is
displayed and on choosing the backlog policy, a panel backlog is displayed and a new policy
can be added.

Fiorano SOA Platform User Guide

Chapter 11: Backlog Monitoring Page 1388

11.3.2 Managing Policy Executions

Once a policy is created, the policy could be applied on the system and suspended from the
top panel by clicking on Apply Policy or Suspend Policy button respectively.
Suspending the policy execution will result in no alerts being generated and the monitors for
backlog events for this policy from different peer servers will be switched off. A Policy cannot
be edited while it is running; it has to be suspended before you edit a policy. The policy details
will be fetched and refreshed with every activate action. Multiple policies can be selected and
activated/suspended simultaneously.

The Policy attributes can be edited except for the policyID and the type of the policy. A
different type of policy can be created with an ID after deleting the older policy with the same
ID. An Active policy cannot be deleted. The policy has to be suspended from execution before
it can be removed from the system.

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1389

Chapter 12: Audit Management

Fiorano Audit Management provides visibility into the system and more importantly provides a
means of accountability of the changes performed on the system. In certain cases, it can also
help in detecting security violations and conducting a post-mortem analysis on the logged
information helps narrow down and find the root causes of problems.

Fiorano Audit Management enables you to define policies that specify the type of user/system
actions that need to be monitored. The information about each such action (once selected to
be audited) is stored in a central audit events database maintained on the Enterprise Server.
The database stores audit events generated locally as well as events that are generated within
connected Peer Servers.

Audit Events are broadly classified into following categories:

1. Authentication Event

2. Authorization Event

3. Security Database Modification Event

4. Event Process Repository Modification Event

5. Service Repository Modification Event

6. Event Process Life Cycle Event

7. Component Life Cycle Event

8. Principal Store Synchronization Event

Each of the above audit events has the following fields:

Field Name Field Description

User Name The name of the user who took the action represented by
this event. User name will be null/empty if the action was
taken directly by the system without a specific user request.

Source Server Name Name of the server in which the event was generated. As all
events in ESB network are stored within the Enterprise
Server, this field can be used to distinguish the events that
were generated locally within the Enterprise Server or those
which were generated by the Peer Servers.

Event Generation Time The time at which the event was generated.

Event Status The result of the action (Success or Failure) taken by the
user.

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1390

Field Name Field Description

Event Category One of the following categories based on the severity of the
action being performed:

• Information

• Warning

• Error

Event ID Each event is assigned an ID which represents the type of
specific action being performed e.g. Event ID ‘201’
represents new user creation operation.

Event Description This field provides an abstract description of the action taken
by the user. This field might be empty for some events if the
fields above are sufficient to describe the event properly.

A more detailed description of each of these audit events is provided in section 12.4
(Description of Audit Events).

12.1 Audit Policies

The decision to audit a particular action by the server is taken based on a policy defined for
that particular event. These policies (also refered to as Filters. Storage Policies or Audit
Policies) are rules that define certain conditions and the server records all audit events that
match these conditions. The policies can be thought of as configuration tools that users have
at their disposal to fine-tune the details of events to be recorded. For each type of audit event
defined above, a maximum of one policy can be defined. The policies allow users to choose
selective actions to be audited using filters defined in the policy. For example,a user may
choose to audit only those authentication attempts that were not successful (incorrect
username/password combination used at the time of login).

By default, no audit policies are enabled. Users can view a list of passive policies in the
Dashboard and enable them selectively. Once policies are activated, events/actions within
Enterprise Server/Peer Servers matching those policies will be audited. Users also have a
choice of deleting selected audit events and deleting all audit events that match specified
criteria(s). Both these actions, are protected by permissions. By default, only administrators
have been assigned these privileges. More information on audit permissions is available in
section 12.3 Audit Security Permissions.

The following policies are available for each type of audit event. As already mentioned, each
policy handles one particular type of audit event and determines whether the audit event
corresponding to the policy will be raised/handled by the system (this also depends upon the
filters chosen within the audit policy).

• Authentication Policy: audits authentication events.

• Authorization Policy: audits authorization events.

• Security Database Modification Policy: audits Security Database Modification
events.

• Event Process Repository Modification Policy: audits Event Process Repository
Modification events.

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1391

• Service Repository Modification Policy: audits Service Repository Modification
events.

• Event Process Life-cycle Change Policy: audits Event Process Life-cycle events.

• Component Life-cycle Change Policy: audits Component Life-cycle events.

• Principal Store Synchronization Policy: audits Principal Store Synchronization
events.

Each of the policies above defines the following filters using which users can enable selective
actions to be audited.

Event Status Filter

Each action that results in an audit event can be classified either as a Successful or a Failed
attempt. This filter allows users to selectively enable Success and/or Failure attempts.

Event Category Filter

Each action that results in an audit event can also be classified as one of Information, Warning
or an Error attempt based on the severity of the action performed. This filter allows users to
selectively enable Information, Warning and/or Error attempts.

Event ID Filter (This filter is not applicable for authentication and authorization audit
events).

Each audit event generated by the system (other than authentication and authorization
events) is assigned a unique identifier. The Event ID field is used to classify audit events
based on the type of action being performed, for example, a new user creation action is
assigned an event ID of ‘201’ and Event Process update action is assigned an Event ID of ‘102’
and so on. For more information on list of event IDs available for each of the audit events, see
section 12.4 Description of Audit Events. This filter thus allows users to selectively enable one
or more of these actions to be audited.

12.1.1 Enabling Audit Policies

To start recording a particular audit event, perform the following steps:

1. Navigate to the Audit Management -> Policies panel in dashboard and choose the
policy that applies to that event. The bottom panel in the displayed page will show the
filters available for the audit policy.

2. Choose the actions that you want to audit and click Save Changes.

3. On successful execution, the policy status will be shown as ‘ACTIVE’ (See figure 12.1).
You can click Discard Changes at any time to re-fetch the policy information from the
server and discard all changes performed to that point.

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1392

Figure 12.1: Audit Policies Panel

12.1.2 Disabling Audit Policies

To disable an active policy, select the policy. unselect all parameters under the policy and click
Save Changes. On successful operation, the policy status turns to ‘PASSIVE’.

12.1.3 Audit Policy Store Synchronization

Whenever a change is made in any of the audit policies, the change is propagated to all
connected peer servers where the same change is made to the policy. Users can view the
result of this operation (known as an “audit storage policy synchronization” operation) by
navigating to the Audit Management -> Audit Policy Store Sync panel on the dashboard
(as illustrated figure 12.2). A synchronized audit policy store means that the audit policies
stored within the Enterprise Server are active in all peer servers as well. If stores are not
synchronized, the status field will display false and the reasons for which synchronization
could not be achieved are displayed under the Comment column. Users may perform
corrective actions in such cases. For instance, a user can force a re-synchronization of audit
policies with a particular peer server by clicking on the image shown under the Synchronize
column.

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1393

Figure 12.2: Audit Policy Store Synchronization Status

12.2 Handling Peer Server Audit Events

The audit events generated within Peer Servers are sent to the Enterprise Server over a JMS
channel and stored in a persistent database accessable by the Enterprise Server. If the
Enterprise Server is not available when an audit event is generated within a Peer Server, the
Peer Server stores that event locally in a temporary persistent data store. Such events are
redelivered to the Enterprise Server as soon as the connection between Peer Server and
Enterprise Server is restored. This temporary persistent data store is located in the Peer
Server’s runtime database as the directory
$FIORANO_HOME/runtimedata/PeerServers/<PeerProfileName>/FPS/run/cspCache/ESBX__SY
STEM__PEER__<PeerName>.pubsub/FES_AUDIT_EVENT_TOPIC.

Note: In case of a shared HA server, as the location is:
$DB_PATH/cspCache/ESBX__SYSTEM__PEER__<PeerName>.pubsub/FES_AUDIT_EVENT_TOP
IC.

12.3 Audit Security Permissions

Changes in the audit database and audit policy store are protected via permissions. By default,
administrators have the privilege to create, update and delete audit events. These permissions
can be changed via the dashboard as explained in section 2.5 of the dashboard
documentation. These actions are governed by the following two permissions:

• PERMISSION TO CREATE OR MODIFY OR DELETE AUDIT STORAGE POLICIES

• PERMISSION TO DELETE AUDIT EVENTS

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1394

12.4 Description of Audit Events

This section describes various audit events defined in the previous section. In addition to the
common fields described above, each audit event has some additional fields as discussed
below.

12.4.1. Authentication Event

This event is raised when a user tries to log into or create a connection with the server. This
event can also be used to check if someone is trying to hack into the system by trying some
random username/password combinations. This event has one additional field named
‘Encrypted Password’ which is the encrypted version of the password that was used at the
time of login. Multiple failed login audit events with different values in this field might indicate
that someone is trying to hack into the system.

Additional properties of authentication event:

Field Name Field Description

Encrypted Password Provides the encrypted version of the password used to login
into the system.

12.4.2. Authorization Event

This event is raised when a user tries to perform an operation that is protected by permissions
granted to the user (e.g. looking up a connection factory, creating a JMS connection,
launching an event process, changing audit policies, deleting audit events, etc.). This event
has a few additional fields that describe the permission being checked and the resource/entity
being used.

Additional properties of authorization event:

Field Name Field Description

Authorized Entity Name Represents the name of the resource/entity with which this
operation is concerned. This can be the name of a
connection factory, a topic, a queue, a connection factory, an
event process or a global level ESB permission etc.

Authorization Entity Type Specifies the type of the resource/entity type withwhich this
operation is concerned i.e. a topic, a queue, a connection
factory, an event process or a global level ESB permission
etc.

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1395

Field Name Field Description

Permission Authorized Specifies the permission which was authorized on the
resource/entity specified by the above two fields. E.g.
‘LAUNCH PERMISSION’/’VIEW PERMISSON’ for an Event
Process OR, ‘SUBSCRIBE’/’UNSUBSCRIBE’ permission for a
topic/queue.

12.4.3. Security Database Modification Event

This event is raised whenever there is a modification in the security database of the server, for
instance: a new user creation, user deletion, group creation, addition of a member to a group,
granting a specific permission to a user etc. All these actions are classified by unique event
IDs described below:

Event ID Operation being performed

201 Addition of a new user

202 Deletion of a user

203 Changing password of a user

204 Addition of a new group

205 Deletion of a group

206 Addition of new member to a group

207 Deletion of a member from a group

208 Granting one or more MQ permissions to a user

209 Denying one or more MQ permissions to a user

210 Revoking one or more MQ permissions assigned to a user

211 Deletion of an ACL

212 Deletion of an ACL entry (positive/negative entry)

301 Granting an ESB Global Permission to a user

302 Revoking an ESB Global Permission assigned to a user

303 Modification in ESB Global permissions i.e. either grant/revoke. This ID is
used only in those cases where it is not possible to determine whether the
operation is a grant and/or revoke operation.

304 Granting one or more ESB application permissions to a user

305 Denying one or more ESB application permissions to a user

306 Revoking one or more ESB application permissions assigned to a user

This event has some additional fields to describe the security resource/entity being modified
by the operation and user/group with which this operation is concerned (if applicable).

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1396

Additional properties of the Security Database Modification Event:

Field Name Field Description

Security Entity
Name

Specifies the name of the security resource/entity that was directly
affected by this operation. E.g. Topic Name (if a topic ACL is being
modified), Event Process Name (if and Event Process ACL is being
modified), etc.

Security Entity
Type

Specifies the type of the security resource/entity based on the
‘Security Entity Name’ field. For instance, this field can take one of the
following values:

• USER

• GROUP

• TOPIC_ACL

• QUEUE_ACL

• CONNECTION_FACTORY_ACL

• GLOBAL_ACL

• APPLICATION_ACL

Sub Entity Name Specifies the name of the user/group for which this operation was
performed. E.g. the user name to whom some permission was
granted/denied or the user/group name that was added to a group.

Sub Entity Type Specifies the type of the sub entity as specified by ‘Sub Entity Name’.
This field can take one of the following values:

• USER

• GROUP

• BOTH_USER_AND_GROUP

The third value, that is, BOTH_USER_AND_GROUP is used in cases
where it is difficult to determine whether the principal(s) concerned
are users/groups.

Security Event ID Specifies the ID of the security audit event. This field takes one of the
values as described in the previous table.

12.4.4. Event Process Repository Modification Event

This event is raised whenever there is a modification in the Event Process Repository e.g.
when changes are made to an Event Process, the deletion of an Event Process, an addition of
an Event Process to repository etc. All these actions are classified by unique event IDs as
described in the table below.

Note: Since the Event Process repository is only maintained in Enterprise Server, only
Enterprise Server can raise these events.

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1397

Event ID Operation being performed

101 Creation of a new Event Process

102 Update of an existing Event Process

103 Deletion of an Event Process from the repository

This event has some additional fields to describe the properties of the application and its
repository.

Additional properties of the Application (i.e. Event Process) Repository Modification Event:

Field Name Field Description

Application GUID Specifies the GUID of the application with which this operation
is concerned

Application Version Specifies the version of the application with which this
operation is concerned

Application Categories Specifies all the categories to which the application belongs

Application Count Specifies the number of applications present in the application
repository at the time this event was raised

Application Repository
Event ID

Specifies the event ID of the operation as described in the
previous table.

File Store Size Specifies the application repository size at the time this event
was raised.

Note: This field is not used as of SOA 9.2 and its value is
always zero. Future versions of the product might populate a
value for this field if so required.

12.4.5. Service Repository Modification Event

This event is raised whenever there is a modification in the component repository of either the
Enterprise Server or any of the Peer Servers. Each Peer Server maintains its own local
repository of components that gets modified at the time of the CRC (Connectivity and
Resource Check) operation. Component Repository modification events have been classified
into the following categories:

Event ID Operation being performed

151 Creation/Registration of a new service to the component repository

152 Updating an existing service present in the component repository

153 Deletion of a service from the component repository

156 Addition of a resource to a component

157 Deletion of a resource from a component

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1398

Event ID Operation being performed

158 Modification in service definition (that is, in the ServiceDescriptor.xml file)

This event has some additional fields to describe the properties of the service being modified
by the action taken, together with its effect on the component repository.

Additional properties of the Component Repository Modification Event include:

Field Name Field Description

Component GUID Specifies the GUID of the service with which this operation is
concerned.

Component Version Specifies the version of the service with which this operation is
concerned.

Component Count Specifies the number of services present in the local
component repository at the time this event was raised.

Component Repository
Event ID

Specifies the event ID of the operation as described in the
previous table.

Effected Event Processes Specifies all the running Event Processes that are affected by
this operation. For example, when a service is deleted from
the Peer Server’s component repository, the Event Processes
using that service at that time will be affected by this
operation.

File Store Size Specifies the component repository size at the time this event
was raised.

Note: This field is not being populated as of SOA 9.2 and its
value is always zero. Future versions of the product may
populate relevant values for this field

12.4.6. Event Process Life Cycle Event

This event is raised whenever there is a change in the status of an Event Process, for instance
a transition from from stopped to launched state, etc.. Application Life Cycle events are
classified into the following categories:

Event ID Operation being performed

104 Event Process being launched

105 Event Process being killed/stopped

106 Event Process being synchronized

107 Event Process being restarted

This event has some additional fields to describe the properties of the Event Process
concerned.

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1399

Additional properties of Application Life Cycle Event:

Field Name Field Description

Application GUID Specifies the application GUID with which this operation is
concerned

Application Version Specifies the version of the application with which this
operation is concerned

Application Categories Specifies all the categories to which the application belongs

Application Launch Time Specifies the time at which the Event process was launched

Application Life Cycle
Event ID

Specifies the event ID of the operation as described in the
previous table

Destinations Status Specifies the status of the destinations (topics/queues)
created for components in the peer server. This field can take
one of the following values:

• DESTINATIONS_CREATED

• DESTINATIONS_CREATION_ERROR

• DESTINATIONS_DELETED

• DESTINATIONS_DELETION_ERROR

• UNKNOWN

12.4.7. Component Life Cycle Event

This event is raised whenever there is a change in Component life cycle e.g. from stopped to
running state or vice-versa. Component Life Cycle events have been classified into following
categories:

Event ID Operation being performed

154 Service instance launched

155 Service instance stopped

This event has some additional fields to describe the properties of the concerned Component
instance.

Additional properties of Component Life Cycle Event:

Field Name Field Description

Component GUID Specifies the GUID of the service with which this operations
concerned

Component Version Specifies the version of the service with which this operation is
concerned

Component Instance Specifies the component instance name as specified in the

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1400

Field Name Field Description

Name Event Process

Application Name Specifies the name of the Event Process to which this service
instance belongs

Application Version Specifies the version of the Event Process to which this
component belongs

Component Life Cycle
Event ID

Specifies the event ID of the operation as described in the
previous table

Component Launch Time Specifies the time at which component instance was launched

12.4.8. Principal Store Synchronization Event

This event is raised whenever a peer server synchronizes its principal store with that of
Enterprise Server. On successful connection, the Enterprise Server sends a command to the
Peer Server to synchronize its Principal Store with that of the Enterprise Server. This
command can also be issued via the dashboard to force principal store synchronization.
Additionally, this event is also raised whenever there is a change in the principal store of the
Enterprise Server (e.g. addition of a user/group), in which case the Enterprise Server sends
event to the Peer Server(s) to synchronize their principal store(s). This event records the
result of these synchronization operations and has been classified into following sub-
categories:

Event ID Operation being performed

401 Addition of a new user

402 Deletion of a user

403 Changing password of a user

404 Addition of a new group

405 Deletion of a group

406 Addition of a new member to a group

407 Deletion of a member from a group

408 Complete Principal Store Synchronization

This event has some additional fields to describe the security resource/entity being modified
by the operation and the user/group with which this operation is concerned (if applicable).

Additional properties of Principal Store Synchronization Event:

Field Name Field Description

Peer Server Name Specifies the name of the Peer Server with which
synchronization was performed.

Security Entity Name Specifies the name of the security resource/entity that was

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1401

directly affected by this operation. E.g. Group Name (if group
is being modified/created/deleted), User Name (if a user is
being modified/created/deleted).

Security Entity Type Specifies the type of the security resource/entity as specified
by the ‘Security Entity Name’ field. E.g. this field can take one
of the following values:

USER

GROUP

Sub Entity Name Specifies the name of the user/group for which this operation
was performed. E.g. the user/group name that was added to a
group.

Sub Entity Type Specifies the type of the sub entity as specified by ‘Sub Entity
Name’. This field can take one of the following values:

USER

GROUP

Principal Store
Synchronization Event ID

Specifies the ID of the principal store synchronization audit
event. This field takes one of the values as described in the
previous table.

12.5 Audit Event Viewer

Audit events can be viewed by navigating to the Audit Management -> Event Viewer panel
in the dashboard. The event viewer panel provides a capability to filter audit events based on
all the fields available in the audit event. Events are retrieved from the Enterprise server in a
bunch of size N, where N is the page size (configurable via the bottom toolbar in the grid). For
example, to search for audit events, click the ‘Filter Events’ button located on the right hand
side of the table header and then choose the audit filters for which you want matching events.

The event selection filter window allows adding multiple audit event filters via the ‘Add More
Audit Event Filter(s)’ option. With this option, a list of available filters is shown where each
filter refers to one particular type of audit event. An additional filter, the ‘Global Audit Event
Filter’ allows searching for all audit events by applying filters on the common properties of
audit events. Creating multiple audit event filters would mean that events matching one of
those filters would be retrieved and shown within the audit event viewer. A snapshot of filter
panel with ‘Global Audit Event Filter’ shown in figure 12.3.

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1402

Figure 12.3: Set Event Filters

As illustrated in figure 12.3, most of the common properties that apply to all audit events can
be filtered using this panel. Not selecting anything out of a particular filter property is
equivalent to selecting everything. The field ‘Custom’ under ‘User Name’ and ‘Source Server
Name’ allows the addition of filter values that are not shown under the available values. While
searching events, a union of values under the ‘Selected’ and ‘Custom’ fields is used to match
the events that would be shown in the Event Viewer grid panel. Using the ‘Event Time’ filter
events can also be filtered based on the time at which they were generated. This filter allows
you to specify either absolute or a relative value for time (by selecting the ‘Use Relative’
checkbox). The relative values of time are evaluated in the server with respect to current
time. The relative values of time field accepts values in following format.

• Now – Present Time

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1403

• 1h – One hour ago

• 1d – One day ago

• 1w – One week ago

• 1m – One month ago

• 1y – One year ago

Thus, legal values for the relative date field would be 1d, 2w, 5m, and so on. On clicking the
‘Search’ button, a typical Event Viewer panel is populated with events as shown in figure 12.4.

Figure 12.4: Unified Audit Event Viewer

12.5.1 Remembering Search Preferences

As Audit search filters become complex, it becomes difficult to define filters each time a user
wants to search for events of interest. The ‘Remember Search’ option (as seen in the filter
panel snapshot of figure 12.3) eases this task by saving search preferences, allowing them to
be used later . On clicking this button, another window pops up as shown in figure 12.5,
asking for the name under which the current selected preferences should be saved. You can
enter any meaningful name here that briefly describes the filters selected and click OK. The
search will be saved in the server to be used later.

Figure 12.5: Remember Search As

Fiorano SOA Platform User Guide

Chapter 12: Audit Management Page 1404

12.5.2 Using Saved Search Preferences

By clicking the ‘Saved Searches’ button in the filter panel, a user can view all the saved
searches present in the server (as shown in figure 12.6). Clicking are particular search name
executes the search and the corresponding results are displayed. If there is a need to edit
some of the search preferences before execution, select the ‘edit’ option. The filter properties
are populated in the filter panel window where user can modify them.

Note: Editing search preferences this way will not actually affect the search filter saved in the
server. To over-write the search filter with new preferences, save the modified filter again
using the same name as used before.

Figure 12.6: Using Saved Searched

Fiorano SOA Platform User Guide

Chapter 13: SOA Best Practices Page 1405

Chapter 13: SOA Best Practices

13.1 Development Model

13.1.1 Event Process Development

A business process should be typically composed of multiple Event Processes (EP’s). Each EP
performs a specific activity. The EP’s taken together solve a business problem. EP’s have the
following properties:

• Consist of not more than 10-15 components for easier management.

• Each EP can be composed by a specific developer.

• The EP uses port bindings to communicate between each other. that is, if the
Business Process definition requires data to flow from EP1 to EP2 then the OUT_PORT
of the last component in EP1 is bound to a specific destination (say, Status_Update).
The IN_PORT of the first component of EP2 is then bound to the above destination
(Status_Update).

Figure 13.1.1: Event Process 1 (MortgageFlow)

Fiorano SOA Platform User Guide

Chapter 13: SOA Best Practices Page 1406

Figure 13.1.2: Event Process 2 (MortgageFlowUpdate)

Now the event processes like MortgageFlow and MortgageFlowUpdate can communicate with
each other.

This approach enables developers to:

 Create and test their flows (EP’s) individually.

 Handle large number of components in a modular fashion by splitting them up into
EP’s instead of using one large monolithic process. Later the EP’s can be integrated
together by simply modifying the port bindings for the components.

Note: The current restriction with the port bindings approach is that the components using
port bindings would have to be on the same peer. In case, the components are on different
peers, use JMS In/Out adapters to achieve the same effect.

13.1.2 Service Component Development

The new service development kit enables service development inside Eclipse, JBuilder
IntelliJIdea and so on, and all the tasks like compiling, building and deploying services into
Enterprise Server is done through ANT scripts.ANT scripts come handy when it comes to
automating (without manual intervention) the process of building and deploying services into
any of QA/Staging and production environments.

Fiorano SOA Platform User Guide

Chapter 13: SOA Best Practices Page 1407

13.1.3 Error Handling

A common error process can be defined to handle errors across all business processes. This
again could be handled by using the port binding functionality as explained in the
“Development Model” section.

The service component customization sheet includes an Error Panel which gives various
options like send on exception port, log the message, and stop the service and so on to handle
errors/exceptions. For e.g. connection lost, invalid request and so on, occur within the
component. The default Error Panel configuration is to log the errors and send out the same
on ON_Exception port. This Error Panel needs to be configured to meet your requirements. For
example: To stop the service on first error or to configure the component retry connections
and so on.

13.1.4 Explicit Transformations

For easier management of processes and data it is recommended to use the XSLT business
component.

Figure 13.1.3: Configure Transformation

This recommendation also holds good for setting Application Context in a process. Instead of
right clicking on a component and setting the App Context, it is better to do this via an XSLT
component.

Fiorano SOA Platform User Guide

Chapter 13: SOA Best Practices Page 1408

13.1.5 Version Control Integration

As with any other development best practice, it is recommended to keep the files you create/
modify in Fiorano ESB/SOA version/source control systems.

The files typically include:

1. Peer server and enterprise server profiles

2. Event processes

3. Custom service components

4. Custom mapper functions

5. Destinations (that is, queues/topics)

13.2 Testing

13.2.1 Component Level Testing

Fiorano Service Component Development Kit allows you to setup JUnit test cases. It is
recommended to start building the test cases along with service component development.

13.2.2 Process Level Testing

It is recommended to develop test cases for each process using JUnit or a unit testing tool.

13.3 Deployment Model

13.3.1 Server Deployment

It’s recommended to dedicate peer servers per business process.

Note: A business process consists of one or more event processes. If there is a need to run
two business processes on one single machine then run two instances of the peer server, one
dedicated for running event processes of first business process and the other peer server
instance for running second business process flows. This helps you manage individual business
processes without impacting other business processes.

You can run as many as peer servers as you need on a single machine, as long as there’s free
CPU and Physical RAM.

Fiorano SOA Platform User Guide

Chapter 13: SOA Best Practices Page 1409

13.3.2 Event Process and Component Deployment

An event process consists of one or more components that combine to create a business
process. The Fiorano SOA deployment architecture allows the components to be deployed on
any available peer server across the network.

The precise deployment architecture for each solution needs to be determined experimentally.

The simplest organization is to run all components of an event process on a single peer server.
However, as the number of components increase, one has to do the following:

1. Create multiple smaller event processes rather than a single very large event-process;
a good rule of thumb is to limit the number of component instances per process to
about 13.

2. Run components on different peers (installed on different machines over the network).
Fiorano SOA allows you to deploy components dynamically at the click of a button, so
you can experiment with running different components on different machines. This
becomes particularly important when you have heavy memory processes such as large
XML transformations, some of which can bring down an entire machine if there are too
many concurrent instances. In such cases, it is always better to run different
components on different machines to spread the load and ease memory utilization.

13.4 Performance Tuning and Memory Optimization

13.4.1 Servers

Enabling optimized memory settings:

Server JVM Parameters are located in fiorano_vars.bat. The servers start off with default
parameters. The following is an example of setting a box with 1GB RAM:

SET ESB_JVM_SERVER_ARGS=-server -Xms256m -Xmx512m

Log Levels

In dev and QA environments, it is recommended to set the log level to Config that is, the logs
contain all the configuration settings. This applies to service components as well. The “Config”
level is one level more verbose than “error” (which is the default setting). By setting the log
level to “Config” during development and QA, it becomes a lot easier to debug and test flows.
Once a flow is ready for production deployment, the log level can be set back to “Errors”
(making the logs less verbose). Note that the default log level configuration in Fiorano
products is Errors.

Fiorano SOA Platform User Guide

Chapter 13: SOA Best Practices Page 1410

13.4.2 Service Components

Service threading options that is, max/min # of sessions and so on

By default, a service component is single threaded i.e. there is only one document being
processed by a service component. If you observe that CPU is not at 100% utilization during a
load test, then it is highly recommended to increase the # of sessions (i.e. threads) for a
component. The number of threads per component can be set within the Properties Window in
the STUDIO (as a Main property, in the LHS of the properties window). Always start off with
the bottleneck component. There would be only one bottleneck at a time. If you fix one
bottleneck component, the bottleneck moves to another component in the flow. Using this
technique, one can optimize the number of sessions/threads for each component based on the
ability of the hardware to process the flow.

JVM Parameters

The default max JVM heap size is 64MB. STUDIO tool leaves the JVM parameters as default,
i.e. 64 MB heap memory for each of the components.
This parameter can be fine tuned to reduce the memory footprint of service components. The
amount of memory allocated per JVM can (and should) be reduced for smaller components
(such as flow-control components) or increased for memory-heavy components (such as
XSLT, Database Adapter and so on)

Large Messages

Try to split the message into smaller XML messages using XMLSplitter component. Any
message over 1 MB is considered large message with the default service memory settings. The
XML splitter allows a message to be split into multiple messages so take the advantage of this
component.

Note:

 Once a message is split, it has to be aggregated back at the target note by using
Aggregator component.

 All messages cannot be split. Splitting works only when each of the final messages
after the split becomes standalone documents and that’s why the XML Splitter cannot
be used for all large messages.

Message Attachments (Binary)

Instead of carrying the binary attachment (for example: PDF, XML, Images and so on.) with
Tifosi Document/JMS Message or ESBRecord, all across the flow, make use of SAN/NAS to
store the attachment and carry forward only the reference.

Note: The above technique works even when the flow executes across distributed machines.
The technique is to store large binary attachments in one location (essentially a file
somewhere on the network), pass just a reference around the flow and then on the final step
to access the (large) binary as needed. Please note that the binary attachment in most cases
is not parsed at every step of the event process. As such, it is not needed at each step of the
process and a simple reference would do.

Fiorano SOA Platform User Guide

Chapter 13: SOA Best Practices Page 1411

Log Levels

In Dev and QA environments, it is recommended to set the log level to Config, that is, the logs
contain all the configuration settings. This applies to Peer server and Enterprise Server as well.

The “Config” level is one level more verbose than error (which is the default setting). By
setting the log level to “Config” during development and QA, it becomes a lot easier to debug
and test flows. Once a flow is ready for production deployment, the log level can be set back
to Errors (making the logs less verbose).

Note: The default log level configuration in Fiorano products is Errors.

13.5 Troubleshooting
a. To ensure successful server startup

It is always recommended to make sure the servers start off fine without ANY errors. If
you find an entry in the error log files during the server startup, take a moment to resolve
the error. Most of the times, it is the incorrect server configuration or configured paths
that do not exist.

Feel free to contact Fiorano tech support for further assistance. If you choose to ignore the
errors and the log files roll over, it might become difficult to debug the errors/exception
that may occur later on.

b. To ensure successful Process or Service startup

Similar to successful server startup, we need to ensure successful start of event processes
before using the event process for processing the incoming message load.

Fiorano SOA Platform User Guide

Index Page 1412

Index

ACL, 1221

Add
breakpoint, 55
JMS Property, 1075
log Modules for the component, 222
new parameters to the component,
225
new resource/dependency, 198
new system library, 199, 205
Node Name to a Component Instance,
227
Peer Server, 108
Ports for the component, 220
resource to class path, 202, 205
Runtime Arguments for the
component, 223
User to a Group, 87
User XSLT, 1316

Additional Component Administration
Features in the Fiorano Studio, 239

Aggregator, 658
aggregator condition, 662
completeness condition, 659
completeness criteria source, 662
correlation id, 665
functional demonstration, 668
message persistence, 666
override message, 667
timeout with override, 659
xpath, 664, 665

alert
create, 1380
edit, 1384
jms, 1382
managing, 1379
remove, 1384
smtp, 1379

Application Context
Configuring, 1054

application level
changing permission, 1227
permission, 1221

Assign Rights to Users and Groups, 92

Assigning Rights to Users and Groups, 91

Asynchronous Components, 186

Authentication, 1200

authentication mode
HTTPAdapter, 917

Authorization, 1201

Backlog policies
managing, 1385

Basic Authentication
Jetty Server, 140

Cache, 705
add operation, 710
configuration, 706
delete operation, 714
functional demonstration, 710
input and output, 708
lookup operation, 713
output, 710
output and input, 708
remove entry, 707
threshold, 707
update operation, 712

CBR, 670
configuration, 671
functional demonstration, 675
namespaces, 672
processor, 673
routing rules, 672
schema, 671
use case, 676
xpath, 673
xslt, 674

Clear
All Mappings, 1323
Data, 1323
Input Structure, 1246
Output Structure, 1252

Clearing ESB Server Database, 93

Clearing Peer Server Database, 112

Comments Tab, 1238

common component properties, 1337

common properties
cache component, 1341
connection error, 1360
connection pool params, 1351

Fiorano SOA Platform User Guide

Index Page 1413

defined jms, 1350
deployment, 1340
error handling, 1359
execution, 1342

debug mode, 1343
debug port, 1343

input port properties, 1345
interaction configuration, 1355
invalid request, 1364
jms destination, 1345, 1349

destination name, 1346
destination type, 1345
use specified destination, 1346

log module instance, 1344
managed connection factory, 1350
messaging, 1346, 1349

acknowledgement mode, 1347
durable subscription, 1347
transacted, 1346

monitoring configuration, 1356
outport transport, 1358
output port properties, 1348
port properties, 1345
proxy server, 1352
proxy settings, 1352
runtime arguments, 1344
scheduler configuration, 1357
schema editor, 1366
schema repository, 1371
ssl security, 1353
transport configuration, 1358
version locked, 1341
xpath editor, 1373

Communicating with ESB Server, 63

Component
Configuration, 190
Creation, 246
Creation from the Fiorano Studio, 269
Dependencies and System Libraries,
195
Deployment, 216
Launch Semantics, 187

Component and Component Instances, 185

Compose
Event Process, 49

configuration
XMLSplitter, 694

configuration
Exception Listener, 613
File Writer, 634
Join, 679

configuration
MQSeriesIn, 770

configuration
MQSeriesOut, 799

configuration
XSLT, 884

configuration
HTTPAdapter, 916

configuration
HTTP Stub, 960

configuration
HTTP Stub

fes connection, 961

configuration
Simple HTTP, 972

Configure and run Business Components,
232

Configuring
Application Context, 1054
Document Tracking, 1046
event tracking, 169
Logging Parameters, 213
Scheduler, 208, 210
Servers, 132
specific database, 171
Specific Database, 1046
Tools, 132
transport, 1377

Configuring Jetty Server, 140

Configuring Mapper Settings, 1324

Configuring SSL support, 137

connection error
common properties, 1360

connection mode
HTTP Receive, 943

Copying functions in a Mapping, 1323

Create
a New Group, 87
a New User Account, 83
Mappings, 1301
New system libraries, 204

Creating
alerts, 1380
jms alert, 1384
policy, 1386

Fiorano SOA Platform User Guide

Index Page 1414

creating queues, 770, 799

Customizing the Mapper User Interface,
1326

Database
configuring, 171

database configuration
DBQueryOnInput, 571

DB Adapter Tuning, 1161

DBProc, 558
advanced settings, 561
connection properties, 560
database configuration, 559
functional demonstration, 569
input schema, 567
interaction configuration, 562
JDBC, 560, 561
output schema, 568
sp configuration, 562
wrap DB object, 561

DBQueryOnInput, 570
advanced settings, 573
database configuration, 571
functional demonstration, 578
input, 577
interaction configuration, 574
JDBC, 572
JDBC driver, 573
output, 578
single batch mode, 577
wrap db object, 573

Default Users, Groups and ACLs
LDAP Security Realm, 1214
RDBMS Realm, 1211
XML Security Realm, 1218

Define Mappings
Using the Automatic Mapping option,
1308
Using the Visual Expression Builder,
1309

Defining Components, 251

defining jms message xsl, 890

Delete
Group, 89
User from a Group, 88

Deploying
component, 268
Event Process, 54

JCA Component in an External JCA
container, 236

deployment
common properties, 1340

Deployment Manager, 49, 1205

Details Pane, 1238

Developing and Adding New Components,
58

Different Topologies, 63

Displaying All Mappings, 1322

Distribute components, 1159

Document Tracking, 1045
Configuring, 1046

Duplicating For-Each Mapping, 1306

Dynamic Change Support, 1157

Enabling Basic Authentication
bswsgateway, 141
wsstub, 141

error action map
HTTP Receive, 951

error handling, 209
common properties, 1359

Error Messages Panel, 1241

ESB Component and Process Repository,
63

ESB Peer
Installation Steps, 65
System Requirements, 65

ESB Server
Installation Steps, 65
System Requirement, 65

ESB Server to Peer Server communication,
62

Event
tracking, 169

Event Ports Information Panel, 258

Event Process
Debugging, 55
Deploying, 54
security, 1221

Event Processes, 1038

Event Topics, 175

Fiorano SOA Platform User Guide

Index Page 1415

Event tracking
configuring, 169

Event Types, 175

Exception Handling, 57

Exception Listener, 612
backup server url, 615
configuration, 613
connection to enterprise server, 616
functional demonstration, 617
use case, 618

execution
common properties, 1342

execution configuration
HTTP Stub, 961

Existing XML Input Structure, 1242

Export a Component, 244

Export and Import Components, 244

Exporting Mappings to a File, 1321

Figure
Adding Breaking Point, 55
Adding Components to Palette, 59
CRM Logs, 58
Exception Handling, 57
Fiorano Network, 67
Fiorano Services and Security
Manager, 60
Fiorano System Architecture, 61
HA on ES, 59
HA on Peer, 60
Inport Properties, 51
Installation Topology, 64
Log Manager, 57
Out Exception Properties, 51
Server Explorer, 54
Service Component, 50
Shutting Down FES, 71
Tracking Document, 56

file encoding
File Writer, 640

File Reader, 619
chunk size, 621
file encoding, 623
functional demonstration, 632
input, 631
output, 631
postprocessing actions, 626
preprocessing command, 624
testing, 631

use case, 632

file timeout
File Writer, 640

File Writer, 633
configuration, 634
file encoding, 640
file timeout, 640
functional demonstration, 647
input, 645
output, 645
output mode, 638
post processing command, 642
sample scenario, 643
target directory, 636
testing, 646
timestamp format, 637
use case, 648

Fiorano
ESB Server, 62
Peer Server, 62

Fiorano Environment, 61

Fiorano ESB Server
Configuration, 72
Configuration Steps, 73
External Ports, 73
Functionality, 68
Internal Ports, 78
Offline Mode, 73
Online Mode, 75
Server Port Configuration, 73

Fiorano Event Manager, 49

Fiorano Peer Server
Configuration, 98
Functionality, 95

Fiorano Processes
Managing, 54

Fiorano Server, 48
Enterprise Server, 48
Peer Server, 48

Fiorano Service and Security Manager, 49

Fiorano Studio, 49

Fiorano System Architecture, 61

Fiorano System Events, 175

Fiorano Tools, 49

For-Each Mapping, 1305

FTPGet

Fiorano SOA Platform User Guide

Index Page 1416

advanced settings, 398
client authentication type, 394
connect mode, 398
connection error, 415
connection pool params, 395
debug responses, 399
enable scheduling, 412
error handling, 413
functional demonstration, 422
input schema, 420
inteaction configuration panel, 401
key type, 395
Managed Coonection Factory, 392
monitor progress interval, 407
Monitor settings, 407
output schema, 422
port, 395
private key file, 395
protocol, 393
proxy settings, 396
renote host, 395
request processing error, 414
site command, 400
source settings, 402
ssl security, 397
target settings, 410
transfer type, 399
use case scenario, 425
validate input, 407

FTPPut
target settings, 440

FTPPut, 426
advanced settings, 432
client autentication type, 428
connect mode, 432
connection pool params, 429
interaction configurations, 435
key type, 429
managed connection factory, 427
monitor settings, 437
private key file, 429
protocol, 428
proxy settings, 430
resume type, 433
site command, 434
source settings, 436
ssl security, 431
testing connection, 435
transfer type, 433

FTPPut
input and output, 442

FTPPut

functional demonstration, 446

FTPPut
use case, 449

Funclet Easel, 1297

Funclet Tab, 1240

Function Palette, 1253

functional demonstration
XMLSplitter, 699
XSLT, 897

functional demonstration
DBProc, 569
DBQueryOnInput, 578
Exception Listener, 617
File Reader, 632
File Writer, 647
Join, 685
POP3, 463
SMTP, 474

functional demonstration
XMLVerification, 704

functional demonstration
Cache, 710

functional demonstration
MQSeriesIn, 794

functional demonstration
MQSeriesOut, 822

functional demonstration
HTTPAdapter, 938

functional demonstration
HTTP Receive, 957

functional demonstration
HTTP Stub, 969

functional demonstration
Simple HTTP, 975

functional demonstration
WS Stub, 1011

Functions
Advanced, 1264
Arithmetic, 1254
Boolean, 1281
Control, 1261
Conversion, 1262
Date-Time, 1266
JMS Message Functions, 1294
Lookup, 1292
Math, 1256

Fiorano SOA Platform User Guide

Index Page 1417

NodeSet, 1277
SQL, 1273
String, 1259
User Defined, 1295

Generate
Code for the Defined Component, 267
manual launch script from studio, 229

global level
changing permission, 1225
permission, 1222

High Availability, 59

HL7
Receiver, 477
Sender, 481

HTTP Receive, 941
advanced properties, 948
connection mode, 943
error action map, 951
functional demonstration, 957
input, 953
output, 955
request parsing, 944

headers, 946
parameters, 944
post data, 945

response generation, 947
use case, 959

HTTP Stub, 959
configuration, 960
error details, 966
execution configuration, 961
fes connection configuration, 961
functional demonstration, 969
input, 967
output, 967
request details, 962

parameters, 963
post data, 963

response details, 965
use case, 971

HTTPAdapter, 914
authentication mode, 917
configuration, 916
content type, 922, 925
functional demonstration, 938
http response property, 924
input, 927
interaction configuration, 918
output, 935
parameter details, 922

post data details, 922
proxy settings, 917
response code, 924
use case, 941

IBM WebSphere, 770, 799

Import
Component, 245
Project from the File, 1322

input
DBQueryOnInput, 577
File Reader, 631
File Writer, 645
HTTP Receive, 953
HTTP Stub, 967
HTTPAdapter, 927
MQSeriesIn, 788
MQSeriesOut, 816
SMTP, 472

input port properties
common properties, 1345

Input Structure Panel, 1237

Installation, 63
Enterprise Edition, 63
Workstation Edition, 63

interaction configuration
HTTPAdapter, 918

Inter-Connect flows, 1160

invalid request
common properties, 1364

JDBC
DBQueryOnInput, 572

Jetty
basic authentication, 140
configuring server, 140
SSL configuration, 136

jms, 1345
alert, 1382
create alert, 1384
transport, 1378

jms message xsl
define, 890

JMS property
adding, 1075

Join, 679
configuration, 679
functional demonstration, 685

Fiorano SOA Platform User Guide

Index Page 1418

saxon, 680
xalan, 680

JVM Parameters, 1158

Kill a running component instance, 189

Labels, 1205

Launch
Component in a running application,
189
Components Using the Fiorano Studio,
188
Fiorano Peer Server, 95
Fiorano Peer Server from Fiorano
Studio, 95
Fiorano Text Schema Editor, 352
The CPS, 190

Launching Fiorano ESB Server, 69
from Fiorano Studio, 69
from Script Files, 69

Lines Panel, 1237

Linking Nodes to Define Mappings, 1308

List of pre-built components, 383

Load Balancing, 1154

Loading
CSV Output Structure, 1249
Existing XML Input Structure, 1242
Input Structure, 1242
New Input XML Structure, 1245
Output Structure, 1247
XML Output Structure, 1248

log level
offline server setting, 157

log levels
changing running server, 158

log module instance
common properties, 1344

Logging, 57

Logging and Document Tracking Panel, 264

manage connection
MQSeriesOut, 804

manage connection:, 775

Managing
alerts, 1379
backlog policy, 1385
Fiorano Processes, 54
Mappings, 1321

policy execution, 1387
Users, 83
XSLT Properties, 1325

Mapper, 1231
autoMap menu, 1234
edit menu, 1233
environment, 1231
file menu, 1233
help menu, 1234
map view, 1236
menu bar, 1233
structure menu, 1233
toolbar, 1234
tools menu, 1234
view menu, 1233

mapping
XSLT, 887

Mapping types, 1304

Mappings
Tab, 1239
XML Formats, 1312
XML Formats to CSV Files, 1312
XML Formats to RDBMS Queries, 1312
XML Formats to RDBMS-Delete
Queries, 1315
XML Formats to RDBMS-Insert Queries,
1312
XML Formats to RDBMS-Update
Queries, 1313

Memory Configurations, 82

Memory Optimization, 1158

Messages Tab, 1240

messaging
common properties, 1346

MetaData View, 1241

Modify a saved configuration XML file, 235

Modifying the RDBMS Output Structure
Settings, 1324

monitoring configuration
common properties, 1356

MQSeriesIn, 770
CCSID, 788
configuration, 770
defining MQMD headers, 783
destination queue, 778
functional demonstration, 794
host address, 775

Fiorano SOA Platform User Guide

Index Page 1419

input, 788
interaction configuration, 777
managed connection, 775
MQMD headers, 784
output, 793
port for MQSeries server, 776
receiveexitclass, 777
RFH2 header, 786
securityexitclass, 777
sendexitclass, 777

MQSeriesOut
CCSID, 815
configuration, 799
defining MQMD headers, 810
functional demonstration, 822
input, 816
interaction configuration, 807
managed connection, 804
message selection properties, 814
monitored queue, 807
MQMD headers, 812
output, 817
output mode, 808
port for MQSeries server, 805
queue name, 808
receive exit class, 806
security exit class, 806
send exit class, 806
sync point control, 814

MQSeriesOut, 799

Name-to-Name Mapping, 1304

Network Administrator, 49

New
Input XML Structure, 1245

New Group
Configuration, 87

Node
Destination Node, 1297

Node
Source Node, 1297

Node types, 1301

NodeInfo Tab, 1239

output
DBQueryOnInput, 578
File Writer, 645
HTTP Receive, 955
HTTP Stub, 967
HTTPAdapter, 935

MQSeriesIn, 793
MQSeriesOut
SMTP, 474

output mode
File Writer, 638

output port properties
common properties, 1348

Output Structure Panel, 1238

Parallel Data Flow, 1157

peer server
adding, 108

permission
application level, 1221
changing application level, 1227
changing defaults, 1225
changing global, 1225
global level, 1222
system level, 1222

policy
create, 1386

policy execution, 1387

POP3, 452
functional demonstration, 463
input schema, 460
interaction configuration, 455
output schema, 461
sample

input and output, 459

Port
Adding a Port, 259
Modifying details of Port, 259
Removing a Port, 259

port properties
common properties, 1345

post processing command
File Writer, 642

Pre-built Components, 383

Precedence, 1206

properties
common, 1338
common component, 1337

proxy settings
HTTPAdapter, 917

RDBMS Realm, 1211
User Management, 1211

Fiorano SOA Platform User Guide

Index Page 1420

Removing Mappings for a Node, 1322

Removing Network Rights for Users and
Groups, 93

Repository Location, 168

RMI Server Ports, 104

RMI Server Ports Configuration
Offline Mode, 104
Online Mode, 105

Rule syntax, 1206

Rules, 1205

Running Components from Outside the
Studio, 228

running server
changing log levels, 158

runtime arguments
common properties, 1344

Sample Rule, 1206

sample scenario
File Writer, 643

saxon
XSLT, 894

Scalability, 1157

Scalability and Load Balancing, 1154

scheduler configuration
common properties, 1357

Scheduling and Error Handling, 208

schema editor
common properties, 1366

schema repository
common properties, 1371

security
event process, 1221

Security, 60, 1200

Separate machines for Servers, 1159

Server Ports Configuration, 99
Offline Mode, 99
Online Mode, 101

Service Component Characteristics,
Configuration, and Deployment, 187

Service Components Characteristics, 185

setting

offline server log level, 157

Setting Access Control to Users and
Groups, 90

Setting Component Launch Type in the
Studio, 188

Setting Up Users and Groups, 82

Settings
mapping, 1324

Simple HTTP, 972
configuration, 972
functional demonstration, 975

Size of Event Flows, 1160

Size of Messages, 1160

smtp
alert, 1379
transport, 1377

SMTP, 468
authentication details, 470
functional demonstration, 474
input, 472
interaction configuration, 471
output, 474
sender information, 471
timeout settings, 470
use case, 476

SSL configuration
Jetty, 136

ssl security
common properties, 1353

Stopping
Fiorano ESB Server, 70

from Fiorano Studio, 70
from Script Files, 71

Fiorano Peer Server, 96
Fiorano Peer Server from Fiorano
Studio, 96

Subscriber Application, 176

Synchronous Components, 185

system level
permission, 1222

Template Engine, 247

testing
File Writer, 646

Testing Transformation, 1318

Fiorano SOA Platform User Guide

Index Page 1421

Testing Web Service, 138, 142, 143

Thread Count of Components, 1156

timestamp format
File Writer, 637

tracking
events, 169

Tracking Document, 56

Transparent Resource Addition, 1157

transport
configure, 1377
jms, 1378
smtp, 1377

transport configuration
common properties, 1358

use case
XMLSplitter, 701

use case
Exception Listener, 618
File Reader, 632
File Writer, 648
SMTP, 476

use case
XSLT, 898

use case
HTTPAdapter, 941

use case
HTTP Receive, 959

use case
HTTP Stub, 971

Use Case, 1155

User Management
LDAP Security Realm, 1214
RDBMS Realm, 1211

Using Script Files, 95

Using the Variables in Template, 250

Validating All Mappings, 1322

Variables Defined in the fiorano Setting,
249

View the resources of a component, 196

Viewing
Output Structure Source, 1252

Source of Input Structure, 1246

Web Service Consumer 4.0, 1013

Web Service Consumer 5.0, 1029

working with ACL, 1221

Working with the Visual Expression Builder,
1253

WS Stub
functional demonstration, 1011
realms, 1008

xalan
XSLT, 894

XMLSplitter
configuration, 694
functional demonstration, 699
namespaces, 695
schema, 695
use case, 701
xpath, 696

XMLSplitter, 694

XMLVerification
functional demonstration, 704
xsd structures, 703

XMLVerification, 702

Xms, 1158

Xmx, 1158

xpath editor
common properties, 1373

xsl
XSLT, 889

XSLT, 884
configuration, 884
engine, 893
fail transformation error, 896
functional demonstration, 897
jms message xsl, 890
mapping, 887
optimization, 896
saxon, 894
strip white spaces, 894
transformer factory class, 894
use case, 898
xalan, 894
xsl, 889

Xss, 1158

	Fiorano SOA Platform User Guide
	Contents
	Chapter 1: Introduction
	1.1 What is Fiorano SOA Platform
	1.2 Why Fiorano SOA Platform
	1.3 Introduction to Fiorano SOA Platform Environment
	1.3.1 Fiorano Servers
	1.3.2 Fiorano Tools
	1.3.3 Composing an Event Process
	1.3.4 Deploying Event Processes
	1.3.5 Monitoring Event Processes
	1.3.6 Extending the Component Palette
	1.3.7 Scalability
	1.3.8 High Availability
	1.3.9 Security Framework

	Chapter 2: The Fiorano Environment
	2.1 Fiorano System Architecture
	2.1.1 Fiorano ESB Server
	2.1.2 Fiorano Peer Server

	2.2 Installation
	2.2.1 Different Topologies
	2.2.2 ESB Server
	2.2.2.1 System Requirements
	2.2.2.2 Installation Steps

	2.2.3 ESB Peers
	2.2.3.1 System Requirements
	2.2.3.2 Installation Steps

	2.3 Fiorano ESB Server
	2.3.1 ESB Server Functionality
	2.3.2 Launching ESB Server
	2.3.2.1 From Fiorano Studio
	2.3.2.2 From Script Files

	2.3.3 Shutting Down ESB Server
	2.3.3.1 From Fiorano Studio
	2.3.3.2 From Script Files

	2.3.4 ESB Server Configuration
	2.3.4.1 Server Ports Configuration
	2.3.4.2 Memory Configurations
	2.3.4.3 Java Configurations

	2.3.5 Setting Up Users and Groups
	2.3.5.1 Managing Users
	2.3.5.2 Creating a New User Account
	2.3.5.3 Configuration Steps
	2.3.5.4 Managing Groups
	2.3.5.5 Creating New Group
	2.3.5.6 Adding a User to a Group
	2.3.5.7 Deleting a User from a Group
	2.3.5.8 Deleting a Group
	2.3.5.9 Setting Access Controls
	2.3.5.10 Assigning Rights
	2.3.5.11 Removing Network Rights

	2.3.6 Clearing ESB Server Database

	2.4 Fiorano Peer Server
	2.4.1 Peer Server Functionality
	2.4.2 Launching the Peer Server
	2.4.2.1 From Fiorano Studio
	2.4.2.2 Using Script Files

	2.4.3 Shutting Down the Peer Server
	2.4.3.1 Using Fiorano Studio
	2.4.3.2 Using Script Files

	2.4.4 Peer Server Configuration
	2.4.4.1 Server Ports Configuration
	2.4.4.2 Memory Configurations
	2.4.4.3 Java Configurations
	2.4.4.4 Changing to different ESB Network

	2.4.5 Adding New Peer Server
	2.4.6 Clearing Peer Server Database

	2.5 Fiorano Web Console
	2.5.1 Login Page
	2.5.1.1 Events
	2.5.1.2 Applications
	2.5.1.3 Server Status
	2.5.1.4 Document Tracking
	2.5.1.5 Web Services
	2.5.1.6 Resource Search

	2.5.2 Enabling Fiorano Web Console

	2.6 Configuring Servers and Tools
	2.6.1 Configuration File
	2.6.2 Reference Matrix
	2.6.3 Configuring the Jetty Server with SSL Support
	2.6.3.1 SSL Configuration for Jetty

	2.6.4 Using Basic Authentication with the Jetty Server
	2.6.4.1 Configuring Jetty Server
	2.6.4.2 Enabling Basic Authentication with bcwsgateway
	2.6.4.3 Enabling Basic Authentication with WSStub
	2.6.4.4 Testing Web Service from Dashboard
	2.6.4.5 Testing Web Service from Web Service Consumer

	2.6.5 Adding Additional Port for Peer to Peer Communication
	2.6.6 Configuring Server Execution Timeout
	2.6.7 SNMP Configuration
	2.6.7.1 Fiorano SOA 9 Platform MIB
	2.6.7.2 Fiorano SOA 9 Platform Agent
	2.6.7.3 Getting the information
	2.6.7.4 Trap Messages
	2.6.7.5 Configuring the SNMP parameters for the Fiorano ESB

	2.6.8 Setting the Offline Server Log Levels
	2.6.9 Changing the Running Server Log Levels

	2.7 Fiorano Enterprise Repository
	2.7.1 Event Process Repository
	2.7.2 Component Repository
	2.7.3 Peer Repository
	2.7.4 Security Store
	2.7.5 Runtime Store
	2.7.6 State Based Workflow Repository
	2.7.6.1 Disabling SBW Tracking

	2.7.7 Event Repository
	2.7.8 Custom Event Listener
	2.7.9 Alert Repository
	2.7.10 Policy Repository
	2.7.9 Changes in Repository Location

	2.8 Events Tracking
	2.8.1 Configuring Event Tracking
	2.8.1.1 Disabling Event Tracking

	2.8.2 Configuring Specific Database
	2.8.3 Database Table Structure

	2.9 Subscribe to Fiorano System Events
	2.9.1 Event Topics
	2.9.2 Event Types and Content
	2.9.3 Sample Subscriber Application

	2.10 Connecting to Server Using JConsole
	2.10.1 How to connect to the FES/FPS using jconsole [running

	2.11 Running Fiorano SOA Profiles as NT Services
	2.11.1 Configuring Server JVM Settings for running as NT-Ser
	2.11.2 Configuring Email Alerts for Server JVM Restart/Sudde
	2.11.3 How to install/uninstall a StandAlone (Non-High Avail
	2.11.4 How to install/uninstall a Profile as NT Service with
	2.11.5 Viewing Server Logs
	2.11.6 FAQs

	Chapter 3: Component and Component Instances
	3.1 Service Components Characteristics
	3.1.1 Synchronous Components
	3.1.2 Asynchronous Components
	3.1.3 Design Choices

	3.2 Service Component Characteristics, Configuration, and De
	3.2.1 Component Launch Semantics
	3.2.2 Setting Component Launch Type in the Fiorano Studio
	3.2.3 Launching Components Using the Fiorano Studio
	3.2.3.1 Launching a Component in a Running Application
	3.2.3.2 Stopping a Running Component Instance

	3.3 Service Component Configuration
	3.3.1 CPS for Component instance configuration
	3.3.1.1 Launching the CPS
	3.3.1.2 Customizable and Expert Properties
	3.3.1.3 Online Help for components
	3.3.1.4 Runtime Arguments

	3.3.2 Component Dependencies and System Libraries
	3.3.2.1 Viewing the Resources of a Component

	3.3.3 Add New Library Dependencies
	3.3.3.1 Adding New Resource/Dependency
	3.3.3.2 Adding Service Dependencies
	3.3.3.3 Adding Resources to Class Path

	3.3.4 Creating New System Libraries
	3.3.4.1 Adding a New System Library

	3.3.5 Scheduling and Error Handling
	3.3.5.1 Scheduler Configurations
	3.3.5.2 Error Handling

	3.3.6 Configuring Logging Parameters

	3.4 Component Deployment
	3.4.1 Adding Ports for the Component
	3.4.2 Adding Log Modules for the Component
	3.4.3 Adding Runtime Arguments for the Component
	3.4.4 Adding New Parameters to the Component
	3.4.5 Adding Node Name to a Component Instance
	3.4.6 Manual Deployment
	3.4.6.1 From Scriptgen Tool
	3.4.6.2 From the configureBC and runBC utilities

	3.4.7 External Deployment
	3.4.7.1 Deploying a Synchronous Component in JBoss Applicati
	3.4.7.2 Additional Features for Component Administration

	3.4.8 InMemory Launch

	3.5 Export and Import Service Components
	3.5.1 Exporting a Component
	3.5.2 Importing a Component

	3.6 Component Creation
	3.6.1 Template Engine
	3.6.1.1 Component Creation from the Command Line
	3.6.1.2 Creating a Setting
	3.6.1.3 Variables
	3.6.1.4 Modifying the Templates
	3.6.1.5 Defining Components
	3.6.1.6 Getting familiar with wizard and service configurati
	3.6.1.7 Generating Code for the Defined Component
	3.6.1.8 Building the Component
	3.6.1.9 Deploying the Component

	3.6.2 Component Creation in Fiorano Studio
	3.6.3 Java Components
	3.6.3.1 Defining Asynchronous Component
	3.6.3.2 Creating a Synchronous Component

	3.6.4 Non-Java components
	3.6.4.1 Defining a C component
	3.6.4.2 Creating a C++ component.

	3.6.4.3 Creating a C# Component
	3.6.4.3.1 Code Generation
	3.6.4.3.2 Adding Business Logic
	3.6.4.3.3 Deploying the component

	3.7 Service Component Testing
	3.7.1 Testing Synchronous Components
	3.7.1.1 Testing in Configuration Property Sheet (CPS)
	3.7.1.2 Testing using JUnit test cases

	3.7.2 Testing Asynchronous Components
	3.7.2.1 Configuring a JUnit test case
	3.7.2.2 Executing a JUnit test case

	3.8 Component Generation - SimpleJMS, MultiThreaded and POJO
	3.8.1 EDBC Templates
	3.8.1.1 Scripts
	3.8.1.2 Simple JMS
	3.8.1.3 Multi threaded
	3.8.1.4 POJO

	3.9 Eclipse IDE Support
	3.9.1 Importing the Project into Eclipse
	3.9.2 Defining Variables
	3.9.3 Defining ANT_HOME
	3.9.4 Defining JDK
	3.9.5 Compiling Deploying and Registering the Component

	3.10 Text Schema Editor
	3.10.1 Text Format Layout Concepts
	3.10.2 Launch Fiorano Text Schema Editor
	3.10.2.1 Defining Text File Schemas
	3.10.2.2 Using the Text Schema Editor
	3.10.2.3 Warnings
	3.10.2.4 Limitations

	3.11 Public Key, Cryptography Keystore, And Truststore
	3.11.1 Using Public Key Cryptography for Authentication
	3.11.2 Keystore and Truststore
	3.11.2.1 Generating a Client Keystore
	3.11.2.2 Getting the Digital Certificate of Server
	3.11.2.3 Creating the Client Truststore
	3.11.2.4 Using the Keystore and Truststore in an SSL Applica

	3.12 Component Control Protocol (CCP)
	3.12.1 Communication Channels
	3.12.2 Events
	3.12.3 Component Lifecycle and CCP
	3.12.4 Sample component

	Chapter 4: Pre-built Components
	4.1.1 EJBAdapter
	4.1.1.1 Configuration and Testing
	4.1.1.1.1 Managed Connection Factory Panel

	4.1.1.2 Interaction Configurations Panel
	4.1.1.3 Functional Demonstration
	4.1.1.4 Input Message
	4.1.1.5 Output Message

	4.1.2 FTPGet
	4.1.2.1 Managed Connection Factory Panel
	4.1.2.1.1 Connection Properties tab
	4.1.2.1.2 Advanced Settings tab
	4.1.2.1.3 Testing the Connection

	4.1.2.2 Interaction Configurations Panel
	4.1.2.2.1 Source Setting
	4.1.2.2.2 Monitor Settings
	4.1.2.2.3 Target Settings
	4.1.2.2.4 Miscellaneous Settings

	4.1.2.3 Scheduler Configuration
	4.1.2.4 Error Handling Panel
	4.1.2.4.1 Request Processing Error pane
	4.1.2.4.2 Connection Error pane
	4.1.2.4.3 Invalid Request Error pane

	4.1.2.5 Testing the Interaction Configurations
	4.1.2.6 Input Schema
	4.1.2.7 Output Schema
	4.1.2.8 Functional Demonstration
	4.1.2.8.1 Scenario 1
	4.1.2.8.2 Scenario 2
	4.1.2.8.3 Scenario 3 (Scenario 1 Using SFTP Protocol)

	4.1.2.9 Configuring FTPGet Component
	4.1.2.10 Use Case Scenario
	4.1.2.11 Scheduling
	4.1.2.12 Useful Tips

	4.1.3 FTPPut
	4.1.3.1 Managed Connection Factory Panel
	4.1.3.1.1 Connection Properties
	4.1.3.1.2 Advanced Settings tab
	4.1.3.1.3 Testing the Connection

	4.1.3.2 Interaction Configurations Panel
	4.1.3.2.1 Source Settings
	4.1.3.2.2 Monitor Settings
	4.1.3.2.3 Target Settings
	4.1.3.2.4 Miscellaneous Settings

	4.1.3.3 Input and Output
	4.1.3.4 Testing the Interaction Configurations
	4.1.3.5 Functional Demonstration
	4.1.3.5.1 Scenario 1
	4.1.3.5.2 Scenario 2
	4.1.3.5.3 Scenario 3 (Scenario 1 Using SFTP Protocol)

	4.1.3.6 Configuring FTPPut Component
	4.1.3.7 Use Case Scenario
	4.1.3.8 Useful Tips

	4.1.4 IWay
	4.1.4.1 Configuration and Testing
	4.1.4.2 Input Schema
	4.1.4.3 Output Schema
	4.1.4.4 Functional Demonstration
	4.1.4.5 Use Case Scenario
	4.1.4.6 Useful Tips

	4.1.5 POP3
	4.1.5.1 Managed Connection Factory
	4.1.5.1.1 Attributes

	4.1.5.2 Interaction Configuration
	4.1.5.2.1 Attributes

	4.1.5.3 Sample Input and Output
	4.1.5.3.1 Input Schema
	4.1.5.3.2 Output Schema

	4.1.5.4 Functional Demonstration
	4.1.5.4.1 Scenario 1
	4.1.5.4.2 Scenario 2

	4.1.5.5 Useful Tips

	4.1.6 SAPR3
	4.1.7 SMS Bridge
	4.1.7.1 Configuration and Testing
	4.1.7.2 Managed Connection Factory Configuration
	4.1.7.3 Functional Demonstration
	4.1.7.3.1 Scenario 1

	4.1.7.4 Useful Tips

	4.1.8 SMTP
	4.1.8.1 Managed Connection Factory Panel
	4.1.8.1.1 SMTP Server
	4.1.8.1.2 Authentication Details
	4.1.8.1.3 TimeOut Settings

	4.1.8.2 Interaction Configurations Panel
	4.1.8.2.1 Sender Information

	4.1.8.3 Input
	4.1.8.4 Output
	4.1.8.5 Functional Demonstration
	4.1.8.5.1 Scenario 1

	4.1.8.6 Use Case Scenario
	4.1.8.7 Useful Tips

	4.1.9 SapR3Monitor
	4.1.10 HL7Receiver
	4.1.10.1 Configuration and Testing
	4.1.10.2 Functional Demonstration
	4.1.10.2.1 Scenario 1
	4.1.10.2.2 Scenario 2

	4.1.11 HL7Sender
	4.1.11.1 Configuration and Testing
	4.1.11.2 Functional Demonstration
	4.1.11.2.1 Scenario 1
	4.1.11.2.2 Scenario 2

	4.2.1 Chat
	4.2.2 C# Chat
	4.2.3 VB Chat
	4.2.4 VC Chat
	4.3.1 DB
	4.3.1.1 Database Connection Configuration
	4.3.1.2 Interaction Configurations
	4.3.1.2.1 SQL Configuration
	4.3.1.2.2 Stored Procedure Configuration
	4.3.1.2.3 Monitor Table Configuration
	4.3.1.2.4 SQL Statement Details Configuration
	4.3.1.2.5 Editing Query Configuration
	4.3.1.2.6 Removing Query Configuration
	4.3.1.2.7 Testing Query Configuration

	4.3.1.3 Child Queries
	4.3.1.3.1 Nested Query
	4.3.1.3.2 Post Processing Query
	4.3.1.3.3 Failover Query
	4.3.1.3.4 Child Query Configuration

	4.3.1.4 Miscellaneous Configurations
	4.3.1.4.1 Request Level Post Processing Query
	4.3.1.4.2 Adapter Mode
	4.3.1.4.3 Output Options
	4.3.1.4.4 Post Processing Execution
	4.3.1.4.5 Advanced Configuration

	4.3.1.5 Input Schema
	4.3.1.6 Output Schema
	4.3.1.7 Functional Demonstration
	4.3.1.7.1 Scenario 1

	4.3.1.8 Use Case Scenario
	4.3.1.8.1 Scenario 1
	4.3.1.8.2 Scenario 2

	4.3.1.9 Scheduling
	4.3.1.10 Useful Tips

	4.3.2 DBProc
	4.3.2.1 Managed Connection Factory Panel
	4.3.2.1.1 Connection Properties
	4.3.2.1.2 Advanced Settings

	4.3.2.2 Interaction Configurations Panel
	4.3.2.2.1 Attributes

	4.3.2.3 Input Schema
	4.3.2.4 Output Schema
	4.3.2.5 Functional Demonstration
	4.3.2.5.1 Scenario 1

	4.3.2.6 Useful Tips

	4.3.3 DBQueryOnInput
	4.3.3.1 Managed Connection Factory Panel
	4.3.3.1.1 Connection Properties
	4.3.3.1.2 Advanced Settings

	4.3.3.2 Interaction Configurations Panel
	4.3.3.2.1 Attributes

	4.3.3.3 Input and output
	4.3.3.3.1 Input
	4.3.3.3.2 Output

	4.3.3.4 Functional Demonstration
	4.3.3.4.1 Scenario 1
	4.3.3.4.2 Scenario 2

	4.3.3.5 Useful Tips

	4.3.4 DBQuery
	4.3.4.1 Managed Connection Factory Panel
	4.3.4.1.1 Connection Properties
	4.3.4.1.2 Advanced Settings

	4.3.4.2 Interaction Configurations Panel
	4.3.4.2.1 Attributes

	4.3.4.3 Input
	4.3.4.3.1 SELECT
	4.3.4.3.2 INSERT
	4.3.4.3.3 UPDATE
	4.3.4.3.4 DELETE

	4.3.4.4 Output
	4.3.4.5 Functional Demonstration
	4.3.4.5.1 Scenario 1

	4.3.4.6 Useful Tips

	4.4.1 Exception Listener
	4.4.1.1 Configuration and Testing
	4.4.1.1.1 Attributes
	4.4.1.1.2 Connection to Enterprise Server

	4.4.1.2 Functional Demonstration
	4.4.1.2.1 Scenario 1
	4.4.1.2.2 Scenario 2

	4.4.1.3 Use Case Scenario
	4.4.1.4 Useful Tips

	4.5.1 File Reader
	4.5.1.1 Interaction Configurations
	4.5.1.1.1 Attributes

	4.5.1.2 Input and Output
	4.5.1.2.1 Input
	4.5.1.2.2 Output

	4.5.1.3 Testing the Interaction Configurations
	4.5.1.4 Functional Demonstration
	4.5.1.4.1 Scenario 1

	4.5.1.5 Use Case Scenario
	4.5.1.6 Useful Tips

	4.5.2 File Writer
	4.5.2.1 Interaction Configurations
	4.5.2.1.1 Attributes

	4.5.2.2 Sample Scenario
	4.5.2.3 Input and Output
	4.5.2.3.1 Input
	4.5.2.3.2 Output

	4.5.2.4 Testing the Interaction Configurations
	4.5.2.5 Functional Demonstration
	4.5.2.5.1 Scenario 1

	4.5.2.6 Use Case Scenario

	4.5.3 File Transmitter
	4.5.3.1 Configuration and Testing
	4.5.3.2 Functional Demonstration
	4.5.3.2.1 Scenario 1
	4.5.3.2.2 Scenario 2

	4.5.3.3 Useful Tips

	4.5.4 File Receiver
	4.5.4.1 Configuration and Testing
	4.5.4.2 Functional Demonstration
	4.5.4.2.1 Scenario 1

	4.5.4.3 Useful Tips

	4.6.1 Aggregator
	4.6.1.1 Configuration and Testing
	4.6.1.1.1 Attributes

	4.6.1.2 Functional Demonstration
	4.6.1.2.1 Scenario 1
	4.6.1.2.2 Scenario 2

	4.6.1.3 Useful Tips

	4.6.2 CBR
	4.6.2.1 Configuration and Testing
	4.6.2.1.1 Schema
	4.6.2.1.2 Namespaces
	4.6.2.1.3 Routing Rules
	4.6.2.1.4 Processor

	4.6.2.2 Functional Demonstration
	4.6.2.2.1 Scenario 1

	4.6.2.3 Use Case Scenario
	4.6.2.4 Useful Tips

	4.6.3 Distribution Service
	4.6.3.1 Configuration and Testing
	4.6.3.2 Functional Demonstration
	4.6.3.2.1 Scenario 1

	4.6.4 Join
	4.6.4.1 Configuration and Testing
	4.6.4.1.1 Mappings
	4.6.4.1.2 Transformer factory class Name
	4.6.4.1.3 Use context value from
	4.6.4.1.4 Use properties and headers from
	4.6.4.1.5 Prefer Properties and Headers from

	4.6.4.2 Testing
	4.6.4.3 Functional Demonstration
	4.6.4.3.1 Scenario 1

	4.6.4.4 Sample Input
	4.6.4.5 Useful Tips

	4.6.5 Sleep
	4.6.5.1 Configuration
	4.6.5.2 Functional Demonstration
	4.6.5.2.1 Scenario 1

	4.6.5.3 Useful Tips

	4.6.6 Timer
	4.6.6.1 Configuration and Testing
	4.6.6.1.1 Scheduler Configuration
	4.6.6.1.2 Message Format
	4.6.6.1.3 Message Content

	4.6.6.2 Output Schema
	4.6.6.3 Functional Demonstration
	4.6.6.3.1 Scenario 1

	4.6.6.4 Useful Tips

	4.6.7 WorkList
	4.6.8 WorkList Manager
	4.6.9 XMLSplitter
	4.6.9.1 Configuration and Testing
	4.6.9.1.1 Attributes

	4.6.9.2 Sample Input and Output
	4.6.9.3 Functional Demonstration
	4.6.9.3.1 Scenario 1
	4.6.9.3.2 Scenario 2

	4.6.9.4 Use Case Scenario
	4.6.9.5 Useful Tips

	4.6.10 XMLVerification
	4.6.10.1 Configuration and Testing
	4.6.10.1.1 Attributes

	4.6.10.2 Functional Demonstration
	4.6.10.2.1 Scenario 1

	4.6.10.3 Useful Tips

	4.6.11 Cache
	4.6.11.1 Configuration and Testing
	4.6.11.1.1 Attributes

	4.6.11.2 Input and Output
	4.6.11.2.1 Input
	4.6.11.2.2 Output

	4.6.11.3 Functional Demonstration
	4.6.11.3.1 Scenario 1
	4.6.11.3.2 Add operation
	4.6.11.3.2 Update operation
	4.6.11.3.3 Lookup operation
	4.6.11.3.4 Delete operation

	4.6.11.4 Useful Tips

	4.7.1 JMSIn 4.0
	4.7.1.1 Configuration and Testing
	4.7.1.2 Functional Demonstration
	4.7.1.2.1 Scenario 1

	4.7.1.3 Useful Tips

	4.7.2 JMSIn 5.0
	4.7.2.1 Connection
	4.7.2.1.1 Connection Configuration
	4.7.2.1.2 Send Configuration
	4.7.2.1.3 Producer Configuration
	4.7.2.1.4 Message Definition
	4.7.2.1.5 Additional Configuration

	4.7.2.2 Functional Demonstration
	4.7.2.2.1 Sample Input
	4.7.2.2.2 Sample Output

	4.7.2.3 Useful Tips

	4.7.3 JMSOut 4.0
	4.7.3.1 Configuration and Testing
	4.7.3.1.1 Interaction Configurations

	4.7.3.2 Functional Demonstration
	4.7.3.2.1 Scenario 1

	4.7.3.3 Useful Tips

	4.7.4 JMSOut 5.0
	4.7.4.1 Configuration
	4.7.4.1.1 Connection Configuration
	4.7.4.1.2 Receive Configuration
	4.7.4.1.3 Message Definition Configuration
	4.7.4.1.4 Additional Configuration

	4.7.4.2 Functional Demonstration
	4.7.4.2.1 Scenario 1

	4.7.4.3 Useful Tips

	4.7.5 JMSReplier
	4.7.5.1 Configuration and Testing
	4.7.5.2 Input Schema
	4.7.5.3 Output Schema
	4.7.5.4 Functional Demonstration
	4.7.5.4.1 Scenario 1

	4.7.5.5 Use Case Scenario
	4.7.5.6 Useful Tips

	4.7.6 JMSRequestor 4.0
	4.7.6.1 Configuration and Testing
	4.7.6.2 Functional Demonstration
	4.7.6.2.1 Scenario 1

	4.7.7 JMSRequestor 5.0
	4.7.7.1 Configuration
	4.7.7.1.1 Connection Configuration
	4.7.7.1.2 Requestor Configuration
	4.7.7.1.3 Request Configuration
	4.7.7.1.4 Producer Configuration
	4.7.7.1.5 Response Configuration
	4.7.7.1.6 Error Destination Configuration
	4.7.7.1.7 Consumer Configuration
	4.7.7.1.8 Additional Configuration

	4.7.7.2 Functional Demonstration
	4.7.7.2.1 Scenario 1

	4.7.7.3 Useful Tips

	4.7.8 MQSeriesIn
	4.7.8.1 Configuration and Testing
	4.7.8.1.1 Creating queues on IBM WebSphere MQ using WebSpher

	4.7.8.2 Managed Connection Factory
	4.7.8.2.1 Attributes

	4.7.8.3 Interaction Configuration
	4.7.8.3.1 Attributes

	4.7.8.4 Input and Output
	4.7.8.4.1 Input
	4.7.8.4.2 Output

	4.7.8.5 Functional Demonstration
	4.7.8.5.1 Scenario 1
	4.7.8.5.2 Scenario 2
	4.7.8.5.3 Scenario 3

	4.7.8.6 Useful Tips

	4.7.9 MQSeriesOut
	4.7.9.1 Configuration and Testing
	4.7.9.1.1 Creating Queues on IBM WebSphere MQ using WebSpher

	4.7.9.2 Managed Connection Factory
	4.7.9.2.1 Attributes

	4.7.9.3 Interaction Configuration
	4.7.9.3.1 Attributes

	4.7.9.4 Input and output
	4.7.9.4.1 Input
	4.7.9.4.2 Output

	4.7.9.5 Functional Demonstration
	4.7.9.5.1 Scenario 1
	4.7.9.5.2 Scenario 2
	4.7.9.5.3 Scenario 3
	4.7.9.5.4 Scenario 4
	4.7.9.5.5 Scenario 5
	4.7.9.5.6 Scenario 6

	4.7.9.6 Useful Tips

	4.7.10 MSMQ Receiver
	4.7.10.1 Configuration and Testing
	4.7.10.2 Input and Output
	4.7.10.2.1 Input Schema
	4.7.10.2.1 Output Schema

	4.7.10.3 Functional Demonstration
	4.7.10.3.1 Scenario 1

	4.7.10.4 Use case scenario
	4.7.10.5 Useful Tips

	4.7.11 MSMQ Sender
	4.7.11.1 Configuration and Testing
	4.7.11.2 Input and Output
	4.7.11.2.1 Input Schema
	4.7.11.2.2 Output Schema

	4.7.11.3 Functional Demonstration
	4.7.11.3.1 Scenario 1

	4.7.11.4 Use case scenario
	4.7.11.5 Useful Tips

	4.7.12 TibcoRVIn
	4.7.13 TibcoRVOut
	4.8.1 Receiver
	4.8.1.1 Configuration and Testing
	4.8.1.2 Functional Demonstration
	4.8.1.2.1 Scenario 1

	4.8.1.3 Useful Tips

	4.8.2 Sender
	4.8.2.1 Configuration and Testing
	4.8.2.2 Functional Demonstration
	4.8.2.2.1 Scenario 1

	4.8.2.3 Useful Tips

	4.9.1 Binary File Reader
	4.9.2 CRM
	4.9.3 Composite BC
	4.9.4 LDAP Lookup
	4.9.5 LDAP Authenticator
	4.9.6 Market Prices GUI
	4.9.7 Prices
	4.9.7.1 Configuration and Testing
	4.9.7.2 Input and Output
	4.9.7.2.1Input Schema
	4.9.7.2.2 Output Schema

	4.9.7.3 Use Case scenario

	4.9.8 RFQ Manager
	4.9.9 Trade Bus
	4.9.10 ERP
	4.10.1 Bean Shell Script
	4.10.1.1 Interaction Configuration
	4.10.1.2 Sample Input and Output
	4.10.1.3 Functional Demonstration
	4.10.1.3.1 Scenario 1
	4.10.1.3.2 Scenario 2

	4.10.1.4 Useful Tips

	4.10.2 Groovy Scrip
	4.10.2.1 Configuration and Testing
	4.10.2.1.1 Interaction Configuration
	4.10.2.1.2 Sample Input and Output

	4.10.2.2 Functional Demonstration
	4.10.2.2.1 Scenario 1
	4.10.2.2.2 Scenario 2

	4.10.2.3 Useful Tips

	4.10.3 Java Script
	4.10.3.1 Configuration and Testing
	4.10.3.1.1 Interaction Configuration
	4.10.3.1.2 Sample Input and Output

	4.10.3.2 Functional Demonstration
	4.10.3.2.1 Scenario 1

	4.10.3.3 Useful Tips

	4.10.4 Perl Script
	4.10.4.1 Configuration and Testing
	4.10.4.1.1 Interaction Configuration
	4.10.4.1.2 Sample Input and Output

	4.10.4.2 Functional Demonstration
	4.10.4.2.1 Scenario 1
	4.10.4.2.2 Scenario 2

	4.10.4.3 Useful Tips

	4.10.5 Python Script
	4.10.5.1 Configuration and Testing
	4.10.5.1.1 Interaction Configuration
	4.10.5.1.2 Sample Input and Output

	4.10.5.2 Functional Demonstration
	4.10.5.2.1 Scenario 1
	4.10.5.2.2 Scenario 2

	4.10.5.3 Useful Tips

	4.11.1 EDI 2 XML
	4.11.1.1 Configuration and Testing
	4.11.1.2 Functional Demonstration
	4.11.1.2.1 Scenario 1

	4.11.2 HL7 Reader
	4.11.2.1 Configuration and Testing
	4.11.2.1.1 Interaction Configuration:
	4.11.2.1.2 Sample Input and Output

	4.11.2.2 Functional Demonstration
	4.11.2.2.1 Scenario 1

	4.11.2.3 Useful Tips

	4.11.3 HL7 Writer
	4.11.3.1 Configuration and Testing
	4.11.3.1.1 Interaction Configuration
	4.11.3.1.2 Sample Input and Output

	4.11.3.2 Functional Demonstration
	4.11.3.2.1 Scenario 1

	4.11.3.3 Useful Tips

	4.11.4 Text 2 XML
	4.11.4.1 Configuration and Testing
	4.11.4.1.1 Managed Connection Factory
	4.11.4.1.2 Interaction Configuration

	4.11.4.2 Sample Input and Output
	4.11.4.3 Functional Demonstration
	4.11.4.3.1 Scenario 1

	4.11.4.4 Use Case Scenario
	4.11.4.5 Useful Tips

	4.11.5 XML 2 EDI
	4.11.5.1 Configuration and Testing
	4.11.5.2 Functional Demonstration
	4.11.5.2.1 Scenario 1

	4.11.6 XML 2 PDF
	4.11.6.1 Configuration and Testing
	4.11.6.1.1 Interaction Configuration
	4.11.6.1.2 Sample Input and Output

	4.11.6.2 Functional Demonstration
	4.11.6.2.1 Scenario 1

	4.11.6.3 Useful Tips

	4.11.7 XML 2 Text
	4.11.7.1 Configuration and Testing
	4.11.7.1.1 Managed Connection Factory
	4.11.7.1.2 Interaction Configuration

	4.11.7.2 Sample Input and Output
	4.11.7.2.1 Sample Input
	4.11.7.2.2 Sample Output

	4.11.7.3 Functional Demonstration
	4.11.7.3.1 Scenario 1

	4.11.7.4 Useful Tips

	4.11.8 XSLT
	4.11.8.1 Interaction Configurations
	4.11.8.1.1 Attributes

	4.11.8.2 Functional Demonstration
	4.11.8.2.1 Scenario 1

	4.11.8.3 Use Case Scenario
	4.11.8.4 Useful Tips

	4.12.1 Compression
	4.12.2 Decompression
	4.12.3 Decryption
	4.12.3.1 Configuration and Testing
	4.12.3.2 Input and Output
	4.12.3.2.1 Input Schema
	4.12.3.2.2 Output Schema

	4.12.3.3 Functional Demonstration
	4.12.3.3.1 Scenario 1

	4.12.3.4 Use Case Scenario
	4.12.3.5 Useful Tips

	4.12.4 DiskUsageMonitorService
	4.12.4.1 Configuration and Testing
	4.12.4.2 Functional Demonstration
	4.12.4.2.1 Scenario 1

	4.12.4.3 Useful Tips

	4.12.5 Display
	4.12.5.1 Configuration and Testing
	4.12.5.2 Functional Demonstration
	4.12.5.2.1 Scenario 1
	4.12.5.2.2 Scenario 2

	4.12.5.3 Use Case Scenario

	4.12.6 Encryption
	4.12.7 Feeder
	4.12.7.1 Configuration and Testing
	4.12.7.2 Input and Output
	4.12.7.2.1 Input Schema
	4.12.7.2.2 Output Schema

	4.12.7.3 Functional Demonstration
	4.12.7.3.1 Scenario 1

	4.12.7.4 Use Case Scenario
	4.12.7.5 Useful Tips

	4.12.8 PrintPDF
	4.12.8.1 Configuration and Testing
	4.12.8.1.1 Error Handling Configuration
	4.12.8.1.2 Sample Input and Output

	4.12.8.2 Recommendations
	4.12.8.3 Limitations

	4.13.1 HTTPAdapter
	4.13.1.1 Configuration and Testing
	4.13.1.1.1 Managed Connection Factory

	4.13.1.2 Interaction Configuration
	4.13.1.2.1 Attributes

	4.13.1.3 Input and Output
	4.13.1.3.1 Input
	4.13.1.3.2 Output

	4.13.1.4 SSL Setup
	4.13.1.5 Functional Demonstration
	4.13.1.5.1 Scenario 1

	4.13.1.6 Use Case Scenario
	4.13.1.7 Useful Tips

	4.13.2 HTTP Receive
	4.13.2.1 Configuration and Testing
	4.13.2.1.1 General Configuration
	4.13.2.1.2 Multithread Configuration

	4.13.2.2 Input and Output
	4.13.2.2.1 Input
	4.13.2.2.2 Output

	4.13.2.3 Functional Demonstration
	4.13.2.3.1 Scenario 1

	4.13.2.3 Use Case Scenario
	4.13.2.4 Useful Tips

	4.13.3 HTTP Stub
	4.13.3.1 Configuration and Testing
	4.13.3.1.1 Deployment Configuration
	4.13.3.1.2 FES Connection Configuration
	4.13.3.1.3 Execution Configuration

	4.13.3.2 Input and output
	4.13.3.2.1 Input
	4.13.3.2.2 Output

	4.13.3.3 Functional Demonstration
	4.13.3.3.1 Scenario 1
	4.13.3.3.2 Scenario 2

	4.13.3.4 Use Case Scenario
	4.13.3.5 Useful Tips

	4.13.4 SimpleHTTP
	4.13.4.1 Configuration and Testing
	4.13.4.1.1 Interaction Configurations

	4.13.4.2 Functional Demonstration
	4.13.4.2.1 Scenario 1
	4.13.4.2.2 Scenario 2

	4.13.4.3 Useful Tips

	4.14.1 WSStub
	4.14.1.1 Configuration
	4.14.1.1.1 WS Definition
	4.14.1.1.2 Basic
	4.14.1.1.3 Advanced
	4.14.1.1.4 WSDL
	4.14.1.1.5 Common Panels
	4.14.1.1.6 WS Standards
	4.14.1.1.7 Transport Security
	4.14.1.1.8 Miscellaneous Configuration
	4.14.1.1.9 Port Generation

	4.14.1.2 Functional Demonstration
	4.14.1.3 Useful Tips

	4.14.2 Web Service Consumer (4.0)
	4.14.2.1 Configuration and Testing
	4.14.2.2 Input and Output
	4.14.2.2.1 Input Schema
	4.14.2.2.2 Output Schema

	4.14.2.3 Accessing Share Point Web Services
	4.14.2.4 Functional Demonstration
	4.14.2.4.1 Scenario 1
	4.14.2.4.2 Scenario 2

	4.14.2.5 Use Case Scenario
	4.14.2.6 Useful Tips

	4.14.3 Web Service Consumer (5.0)
	4.14.3.1 Configuration and Testing
	4.14.3.1.1 General
	4.14.3.1.2 Authentication Type

	4.14.3.2 Input and Output
	4.14.3.2.1 Input Schema
	4.14.3.2.2 Output Schema

	4.14.3.3 Functional Demonstration
	4.14.3.3.1 Scenario 1
	4.14.3.3.2 Scenario 2

	Chapter 5: Event Processes
	5.1 What are Event Processes?
	5.2 Creating Event Processes
	5.2.1 Creating a New Event Process

	5.3 Configure Event Processes
	5.3.1 Configuring Components through Custom Property Sheet
	5.3.2 Configuring Common Component Properties
	5.3.3 Adding Additional Jars/Libraries to Components
	5.3.4 Setting up Component Port Properties
	5.3.5 Defining Data Transformation
	5.3.6 Defining Exception Flows
	5.3.6.1 Using the Exception Listener Service Component:

	5.3.7 Using the Error Ports View
	5.3.8 Document Tracking
	5.3.8.1 Configuring Document Tracking
	5.3.8.2 Configuring Specific Database
	5.3.8.3 Database Table Structure
	5.3.8.4 Structure of IMAGE/BLOB field

	5.3.9 Message Selector on Route
	5.3.9.1 Defining Message Selector on Route

	5.3.10 Setting Alerts and Notification
	5.3.11 Configuring the Application Context

	5.4 Using External Event Processes
	5.4.1 Importing Remote Service Instance
	5.4.2 Using External Event Processes

	5.5 Debugging Event Processes
	5.5.1 Viewing Component Logs
	5.5.2 Setting Event Interceptors
	5.5.2.1 Setting an Event Interceptor on a Route
	5.5.2.2 Viewing Intercepted Messages
	5.5.2.3 Viewing Content of an Intercepted Message
	5.5.2.4 Viewing Component Launch and Kill Time
	5.5.2.5 Viewing Component Pending (Queued) Messages

	5.6 Modifying Event Processes
	5.6.1 Replacing a Component at Runtime
	5.6.2 Adding a New Component Instance at Runtime

	5.7 Monitoring Event Processes
	5.7.1 Tracking Events within Processes
	5.7.2 Defining a Workflow
	5.7.2.1 Starting a Workflow
	5.7.2.2 Viewing Tracked Documents of a Workflow
	5.7.2.3 Tracking Documents across Workflows

	5.7.3 Setting up Database to store Tracked Documents
	5.7.4 Re-Injecting Tracked Documents
	5.7.4.1 Re-Injection Document Structure
	5.7.4.2 Re-Injection of Tracked Documents
	5.7.4.3 Re-Injected Workflow

	5.8 Import and Export Event Processes
	5.8.1 Importing Event Processes
	5.8.2 Exporting an Event Process
	5.8.3 Exporting Multiple Applications

	5.9 Deploying Event Processes
	5.9.1 Connectivity and Resource Check
	5.9.2 Enabling/Disabling the Component Cache

	5.10 Launching Components and Event Processes from Studio
	5.10.1 Launching an Event Process
	5.10.2 Stopping an Event Process
	5.10.3 Synchronizing Event Processes
	5.10.4 Launching and Stopping Individual Components

	5.11 The Event Process Command Line Interface
	5.11.1 List of Ant Tasks provided by command Line Interface
	5.11.2 Launching an Event Process from Command Line
	5.11.3 Launching Components from Command Line
	5.11.4 Executing Components Manually

	5.12 Best Practices in Deployment
	5.12.1 Creating Port Bindings Between Components in Differen

	5.13 Testing Event Processes
	5.14 Sample Event Processes
	5.14.1 Bond Trading
	5.14.2 Database Replication
	5.14.3 EAI Demo
	5.14.4 Order Entry
	5.14.5 Portal Integration
	5.14.6 Purchasing System
	5.14.7 Retail Television
	5.14.8 Revenue Control Packet
	5.14.9 Simple Chat
	5.14.10 WorkList Sample

	Chapter 6: High Availability
	6.1 ESB Server High Availability
	6.2 Peer Server High Availability
	6.3 Fiorano Replicated High Availability Working
	6.3.1 HA Locking Mechanism
	6.3.2 Server States
	6.3.3 Configuring Fiorano SOA High Availability Servers
	6.3.4 Configuration Steps
	6.3.4.1 Setting up the LockFile
	6.3.4.2 Configuring the FES HA Profile

	6.3.5 Verifying HA Setup
	6.3.6 Shutting down the HA Server
	6.3.7 Troubleshooting Steps

	6.4 Fiorano High Availability Working In Shared Mode
	6.4.1 Shared HA Precondition
	6.4.2 Server States
	6.4.3 Configuring Fiorano SOA High Availability Servers
	6.4.4 Configuration Steps
	6.4.4.1 Setting up the Lock File
	6.4.4.2 Setting up the shared database
	6.4.4.3 Configuring the FES/FPS HA Profile
	6.4.4.4 Changing the location of log files

	6.4.5 Verifying HA Setup
	6.4.6 Shutting down the HA Server
	6.4.7 Troubleshooting Steps

	6.5 Limitations of Fiorano SOA High Availability
	6.6 Reference Matrix – HA Profile
	6.7 Determining Server State

	Chapter 7: Scalability, Load Balancing and Memory Optimizati
	7.1 Server-Level Load Balancing
	7.1.1 Scaling by adding more peers to the network
	7.1.2 Scaling by distributing load across multiple service i
	7.1.3 An example of Load Balancing

	7.2 Thread Count of Components
	7.3 Scalability
	7.3.1 Transparent Resource Addition
	7.3.2 Dynamic Change Support
	7.3.3 Parallel Data Flow

	7.4 Memory Optimization
	7.4.1 JVM Parameters
	7.4.2 Separate Machines for Servers
	7.4.3 Distribute Components
	7.4.4 Inter-Connect Flows
	7.4.5 Size of Event Flows
	7.4.6 Size of Messages
	7.4.7 DB Adapter Tuning

	7.5 Component Memory Tuning
	7.5.1 Tuning Memory for Service Components
	7.5.1.1 Know about Heap sizes
	7.5.1.2 Default Heap size
	7.5.1.3 Setting Heap sizes
	7.5.1.4 Garbage Collection
	7.5.1.5 Monitoring Component JVM Statistics
	7.5.1.6 Tuning the memory settings

	7.5.2 Recommendations
	7.5.2.1 Component Overloading

	7.5.3 Components
	7.5.3.1 File Reader
	7.5.3.2 File Writer
	7.5.3.3 XSLT
	7.5.3.4 CBR
	7.5.3.5 Aggregator
	7.5.3.6 Distribution

	7.5.4 Walkthrough
	7.5.4.1Application
	7.5.4.2 Tuning Process

	7.6 Memory Management of Fiorano Peer Server
	7.6.1 Physical Machine Configuration
	7.6.2 Java Virtual Machine
	7.6.3 Machine Setup
	7.6.4 Processing Message Size
	7.6.5 Peer Server Load
	7.6.6 Recommendations
	7.6.7 Interpreting and Applying Recommendations
	7.6.8 Handling Memory Problems
	7.6.7 Java Heap Space
	7.6.7.1 Debugging

	7.6.8 Permgen Space
	7.6.8.1 Debugging

	7.6.9 Requested Array size exceeds VM Limit
	7.6.10 Swap Space
	7.6.11 Unable to Create New Native Thread
	7.6.12 Enabling GC logging

	7.7 In-Memory Execution and Load Balancing of Components Acr
	7.7.1 Separate Process
	7.7.2 In-memory

	Chapter 8: Security
	8.1 Authentication
	8.2 Authorization
	8.3. Password Rules
	8.3.1 Password Strength
	8.3.2 Password Validation
	8.3.3 Custom Password Rule Implementation

	8.4 Deployment Manager
	8.5 Labels
	8.6 Rules
	8.7 Changing Security Database Implementation
	8.7.1 Security Related MBeans
	8.7.2 Modifying ACLManager Implementation
	8.7.3 Modifying Principal Manager Implementation
	8.7.4 Editing Destination Level Security Through ACL’s
	8.7.5 RDBMS Realm
	8.7.5.1 Setting up
	8.7.5.2 Additional Configuration
	8.7.5.3 Sample Configurations
	8.7.5.4 Verifying

	8.7.6 LDAP Security Realm
	8.7.6.1 Sample Configuration – Netscape Directory Server
	8.7.6.2 Sample Configuration – ApacheDS1.5.4

	8.7.7 XML Security Realm
	8.7.7.1 Configuring Principal Manager
	8.7.7.2 Configuring ACL Manager
	8.7.7.3 Sample xml files
	8.7.7.4 Group.xml
	8.7.7.5 acl.xml

	8.8 Event Process Security
	8.8.1 How ACLs Work
	8.8.1.1 Application Level Permission
	8.8.1.2 Global/System Level Permission(s)

	8.8.3 Default Allowed Set Of Users
	8.8.4 Changing Default Permissions
	8.8.4.1 Changing Global Permissions
	8.8.4.2 Changing Application Level Permissions

	8.8.5 Principal Store Synchronization

	Chapter 9: Fiorano Mapper
	9.1 Key Features of Fiorano Mapper
	9.2 Fiorano Mapper Environment
	9.2.1 Menu Bar
	9.2.1.1 File
	9.2.1.2 Edit
	9.2.1.3 Structure
	9.2.1.4 View
	9.2.1.5 AutoMap
	9.2.1.6 Tools
	9.2.1.7 Help

	9.2.2 Toolbar
	9.2.3 MapView
	9.2.3.1 Input Structure Panel
	9.2.3.2 Lines Panel
	9.2.3.3 Output Structure Panel
	9.2.3.4 Details Pane

	9.2.4 MetaData View
	9.2.4.1 Error Messages Panel

	9.3 Working with Input and Output Structures
	9.3.1 Loading the Input Structure
	9.3.1.1 Loading an Existing XML Input Structure
	9.3.1.2 Loading a New Input XML Structure

	9.3.2 Viewing Source of Input Structure
	9.3.3 Clearing the Input Structure
	9.3.4 Loading the Output Structure
	9.3.4.1 Loading an XML Output Structure
	9.3.4.2 Loading a CSV Output Structure

	9.3.5 Viewing the Output Structure Source
	9.3.6 Clearing the Output Structure

	9.4 Working with the Visual Expression Builder
	9.4.1 Function Palette
	9.4.1.1 Arithmetic Functions
	9.4.1.2 Math Functions
	9.4.1.3 String Functions
	9.4.1.4 Control Function
	9.4.1.5 Conversion Functions
	9.4.1.6 Advanced Functions
	9.4.1.7 Date-Time Functions
	9.4.1.8 SQL Functions
	9.4.1.9 NodeSet Functions
	9.4.1.10 Boolean functions
	9.4.1.11 Lookup functions
	9.4.1.12 JMS Message Functions
	9.4.1.13 User Defined functions

	9.4.2 Funclet Easel
	9.4.2.1 Source Node
	9.4.2.2 Destination Node

	9.5 Creating Mappings
	9.5.1 Understanding Types of Nodes
	9.5.2 Types of Mappings
	9.5.2.1 Name-to-Name Mapping
	9.5.2.2 For-Each Mapping

	9.5.3 Duplicating a For-Each Mapping
	9.5.4 Linking Nodes to Define Mappings
	9.5.4.1 Using the Automatic Mapping option to Define Mapping
	9.5.4.2 Using the Visual Expression Builder to Define Mappin

	9.5.5 Mapping XML Formats
	9.5.6 Mapping XML Formats to CSV Files
	9.5.7 Mapping XML Formats to RDBMS Queries
	9.5.7.1 Mapping XML Formats to RDBMS-Insert Queries
	9.5.7.2 Mapping XML Formats to RDBMS-Update Queries
	9.5.7.3 Mapping XML Formats to RDBMS-Delete Queries

	9.6 Adding User XSLT
	9.7 Testing the Transformation
	9.8 Managing Mappings
	9.8.1 Exporting Mappings to a File
	9.8.2 Importing Project from the File
	9.8.3 Validating All Mappings
	9.8.4 Displaying All Mappings
	9.8.5 Removing Mappings for a Node
	9.8.6 Copying functions in a Mapping
	9.8.7 Clearing All Mappings
	9.8.8 Clearing Data
	9.8.9 Modifying the RDBMS Output Structure Settings
	9.8.10 Configuring Mapper Settings
	9.8.11 Managing XSLT Properties

	9.9 Customizing the Mapper User Interface
	9.10 Fiorano Mapper –Custom Funclets
	9.10.1 Creating Custom Funclets
	9.10.1.1 Integrating JavaScript functions
	9.10.1.2 Integrating Java functions

	9.10.2 Editing Existing User Defined Funclets
	9.10.3 Updating UserDefined funclets
	9.10.4 Removing User Defined Funclets.
	9.10.4.1 Removing User defined funclets from Fiorano Mapper
	9.10.4.2 Deleting entire extension

	Chapter 10: Common Components Configurations
	10.1 Component Instance Properties
	10.1.1 Properties
	10.1.2 Deployment
	10.1.3 Execution
	10.1.4 Log Module Instances
	10.1.5 Runtime Arguments

	10.2 Port Properties
	10.2.1 Input Port Properties
	10.2.2 JMS Destination
	10.2.3 Messaging

	10.3 Output Port Properties
	10.3.1 JMS Destination
	10.3.2 Messaging
	10.3.3 Preventing message loss
	10.3.4 Components with implicitly defined JMS messaging prop

	10.4 Managed Connection Factory
	10.4.1 SSL Security

	10.5 Interaction Configurations
	10.5.1 Scheduler Configurations
	10.6 Transport Configurations
	10.7 Error Handling
	10.7.1 Connection Error
	10.7.2 JMS Error
	10.7.3 Response Generation Error
	10.7.4 Request Processing Error
	10.7.5 Invalid Request Error
	10.7.6 Retry Configuration

	10.8 Schema Editor
	10.9 Schema Repository
	10.10 XPath Editor

	Chapter 11: Backlog Monitoring
	11.1 Configuring Transports
	11.1.1 SMTP Transport
	11.1.2 JMS Transport

	11.2 Managing Alerts
	11.2.1 SMTP Alert
	11.2.2 Creating New SMTP Alerts
	11.2.3 JMS Alert
	11.2.3.1 Adding a New JMS alert
	11.2.3.2 Editing/Removing Alert

	11.3 Managing Backlog Policies
	11.3.1 Creating Policy
	11.3.2 Managing Policy Executions

	Chapter 12: Audit Management
	12.1 Audit Policies
	12.1.1 Enabling Audit Policies
	12.1.2 Disabling Audit Policies
	12.1.3 Audit Policy Store Synchronization

	12.2 Handling Peer Server Audit Events
	12.3 Audit Security Permissions
	12.4 Description of Audit Events
	12.4.1. Authentication Event
	12.4.2. Authorization Event
	12.4.3. Security Database Modification Event
	12.4.4. Event Process Repository Modification Event
	12.4.5. Service Repository Modification Event
	12.4.6. Event Process Life Cycle Event
	12.4.7. Component Life Cycle Event
	12.4.8. Principal Store Synchronization Event

	12.5 Audit Event Viewer
	12.5.1 Remembering Search Preferences
	12.5.2 Using Saved Search Preferences

	Chapter 13: SOA Best Practices
	13.1 Development Model
	13.1.1 Event Process Development
	13.1.2 Service Component Development
	13.1.3 Error Handling
	13.1.4 Explicit Transformations
	13.1.5 Version Control Integration

	13.2 Testing
	13.2.1 Component Level Testing
	13.2.2 Process Level Testing

	13.3 Deployment Model
	13.3.1 Server Deployment
	13.3.2 Event Process and Component Deployment

	13.4 Performance Tuning and Memory Optimization
	13.4.1 Servers
	13.4.2 Service Components

	13.5 Troubleshooting

	Index

