Fiorano

Peer-to-Peer Dataflow Pipelines™

www.fiorano.com

AMERICA’'S

Fiorano Software, Inc.

718 University Avenue Suite
212, Los Gatos,

CA 95032 USA

Tel: +1 408 354 3210

Fax: +1 408 354 0846
Toll-Free: +1 800 663 3621
Email: info@fiorano.com

EMEA

Fiorano Software Ltd.

3000 Hillswood Drive Hillswood
Business Park Chertsey Surrey
KT16 ORS UK

Tel: +44 (0} 1932 895005
Fax: +44 (0) 1932 325413
Email: info_uk@fiurann.com

APAC

Fiorano Software Pte. Ltd.

Level 42, Suntec Tower Three 8
Temasek Boulevard 038988
Singapore

Tel: +65 68292234

Fax: +65 68292235

Email: info_dalapac@fioranc:.cr:-m

Fiorano eStudio®

User Guide

Fiorano

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in
any form without prior written permission is forbidden. The information contained herein has been
obtained from sources believed to be reliable. Fiorano disclaims all warranties as to the accuracy,
completeness or adequacy of such information. Fiorano shall have no liability for errors, omissions or
inadequacies in the information contained herein or for interpretations thereof. The opinions expressed
herein are subject to change without prior notice.

FIORANO END-USER LICENSE AGREEMENT

This Fiorano end-user license agreement (the “Agreement”) is a legal agreement between you (hereinafter
“Customer™), either an individual or a corporate entity, and Fiorano Software, Inc., having a place of business at
718 University Ave, Suite 212 Los Gatos, CA 95032, USA, or its affiliated companies (hereinafter “Fiorano”) for
certain software developed and marketed by Fiorano as defined in greater detail below. By opening this package,
installing, copying, downloading, extracting and/or otherwise using the software, you are consenting to be bound
by and are becoming party to this agreement on the date of installation, copying, download or extraction of the
software (the “Effective Date”). If you do not agree with any of the terms of this Agreement, please stop installing
and/or using the software and promptly return the unused software to the place of purchase. By default, the
Software is made available to Customers in online, downloadable form. The terms of this Agreement shall apply to
each Software license granted by Fiorano under this Agreement.

1. Definitions.

"Affiliate" means, in relation to Fiorano, another person firm or company which directly or
indirectly controls, is controlled by or is under common control with Fiorano and the
expression ‘control' shall mean the power to direct or cause the direction of the general
management and policies of the person firm or company in question.

“Commencement Date” means the date on which Fiorano delivers the Software to
Customer, or if no delivery is necessary, the Effective Date set forth in this Agreement or
on the relevant Order Form.

“Designated Center” means the computer hardware, operating system, customer-
specific application and Customer Geographic Location at which the Software is deployed
as designated on the corresponding Order Form.

“Designated Contact” shall mean the contact person or group designated by Customer
and agreed to by Fiorano who will coordinate all Support requests to Fiorano.

“Documentation” means the user guides and manuals for installation and use of the
Software. Documentation is provided in CD-ROM or bound form, whichever is generally
available.

“Error” shall mean a reproducible defect in the Supported Program or Documentation
when operated on a Supported Environment which causes the Supported Program not to
operate substantially in accordance with the Documentation.

“Excluded Components” shall mean such components as are listed in Exhibit B. Such
Excluded Components do not constitute Software under this Agreement and are third party
components supplied subject to the corresponding license agreements specified in Exhibit
B.

“Excluded License” shall mean and include any license that requires any portion of any
materials or software supplied under such license to be disclosed or made available to any
party either in source code or object code form. In particular, all versions and derivatives
of the GNU GPL and LGPL shall be considered Excluded Licenses for the purposes of this
Agreement.

“Resolution” shall mean a modification or workaround to the Supported Program and/or
Documentation and/or other information provided by Fiorano to Customer intended to
resolve an Error.

“Residuals” shall mean information in non-tangible form which may be retained by
persons who have had access to the Confidential Information, including ideas, concepts,
know-how or techniques contained therein.

“Order Form” means the document in hard copy form by which Customer orders
Software licenses and services, and which is agreed to in writing by the parties. The Order
Form shall reference the Effective Date and be governed by the terms of this Agreement.
Customer understands that any document in the nature of a purchase order originating
from Customer shall not constitute a contractual offer and that the terms thereof shall not
govern any contract to be entered into between Fiorano and Customer. The Order Form
herein shall constitute an offer to purchase made by the Customer under the terms of the
said Order Form and this Agreement.

“Software” means each of the individual Products, as further outlined in Exhibit-A, in
object code form distributed by Fiorano for which Customer is granted a license pursuant
to this Agreement, and the media, Documentation and any Updates thereto.

“Support” shall mean ongoing support provided by Fiorano pursuant to the terms of this
Agreement and Fiorano’s current support policies. “Supported Program” or “Supported
Software” shall mean the then current version of the Software in use at the Designated
Center for which the Customer has paid the then-current support fee (“Support Fee”).

“Support Hours” shall mean 9 AM to 5 PM, Pacific Standard Time, Monday through
Friday, for Standard Support.

“Support Period” shall mean the period during which Customer is entitled to receive
Support on a particular Supported Program, which shall be a period of twelve (12) months
beginning from the Commencement Date, or if applicable, twelve (12) months from the
expiration of the preceding Support Period. Should Fiorano withdraw support pursuant to
section 1 (q), the Support Period shall be automatically reduced to the expiration date of
the appropriate Software.

“Supported Environment” shall mean any hardware and operating system platform
which Fiorano provides Support for use with the Supported Program.

“Update” means a subsequent release of the Software that Fiorano generally makes
available for Supported Software licensees at no additional license fee other than shipping
and handling charges. Update shall not include any release, option, feature or future
product that Fiorano licenses separately. Fiorano will provide Updates for the Supported
Programs as and when developed for general release in Fiorano’s sole discretion. Fiorano
may withdraw support for any particular version of the Software, including without
limitation the most current Update and any preceding release with a notice of three (3)
months to Customer.

2. Software License.
(a) Rights Granted, subject to the receipt by Fiorano of appropriate license fees.
(O] The Software is Licensed to Customer for use under the terms of this Agreement

and NOT SOLD. Fiorano grants to Customer a limited, non-exclusive, world wide license to
use the Software as specified on an Order Form and subject to the licensing restrictions in
Exhibit C under this Agreement, as follows:

(@D} to use the Software solely for Customer’s operations at the Designated Center
consistent with the use limitations specified or referenced in this Agreement, the
Documentation for such Software or any Order Form accepted by Fiorano pursuant to this
Agreement. Customer may not relicense, rent or lease the Software or use the Software
for third party training, commercial timesharing or service bureau use;

(@)) to use the Documentation provided with the Software in support of Customer’s
authorized use of the Software;

(©)) to make a single copy for back-up or archival purposes and/or temporarily transfer
the Software in the event of a computer malfunction. All titles, trademarks and copyright
or other restricted rights notices shall be reproduced in any such copies;

(C)) to allow third parties to use the Software for Customer’s operations, so long as
Customer ensures that use of the Software is in accordance with the terms of this
Agreement.

(i) Customer shall not copy or use the Software (including the Documentation) except
as specified in this Agreement and applicable Order Form. Customer shall have no right to
use other third party software or Excluded Components that are included within the
Software except in connection and within the scope of Customer’s use of Fiorano’s
Software product.

Customer agrees not to cause or permit the reverse engineering, disassembly,
decompilation, or any other attempt to derive source code from the Software, except to
the extent expressly provided for by applicable law.

Customer hereby warrants that it shall not, by any act or omission, cause or permit the
Products or any part thereof to become expressly or impliedly subject to any Excluded
License.

) Fiorano and its Affiliates shall retain all title, copyright and other proprietary rights
in the Software. Customer does not acquire any rights, express or implied, in the Software,
other than those specified in this Agreement.

(vi) Customer agrees that it will not publish or cause or permit to be published any
results of benchmark tests run on the Software.

(vii) If the Software is licensed for a specific term, as noted on the Order Form, then the
license shall expire at the end of the term and the termination conditions in section 4(d)
shall automatically become applicable.

(b) Transfer. Customer may transfer a Software license within its organization upon
notice to Fiorano; transfers are subject to the terms and fees specified in Fiorano’s transfer
policy in effect at the time of the transfer. If the Software is licensed for a specific term,
then it may not be transferred by Customer.

(©) Verification. At Fiorano’s written request, Customer shall furnish Fiorano with a
signed certification verifying that the Software is being used pursuant to the provisions of
this Agreement and applicable /Order Form. Fiorano (or Fiorano’s designee) may audit
Customer's use of the Software. Any such audit shall be conducted during regular business
hours at Customer's facilities and shall not unreasonably interfere with Customer's
business activities. If an audit reveals that Customer has underpaid fees to Fiorano,
Customer shall be invoiced directly for such underpaid fees based on the Fiorano Price List
in effect at the time the audit is completed. If the underpaid fees are in excess of five
percent (5%) of the aggregate license fees paid to Fiorano pursuant to this Agreement, the
Customer shall pay Fiorano’s reasonable costs of conducting the audit. Audits shall be
conducted no more than once annually.

(d) Customer Specific Objects.

(O] The parties agree and acknowledge, subject to Fiorano’s underlying proprietary
rights, that Customer may create certain software objects applicable to Customer’s internal
business (“Customer Specific Objects”). Any Customer Specific Object developed solely by
Customer shall be the property of Customer. To the extent that Customer desires to have
Fiorano incorporate such Customer Specific Objects into Fiorano’s Software (and Fiorano
agrees, in its sole discretion, to incorporate such Customer Specific Objects), Customer will
promptly deliver to Fiorano the source and object code versions (including documentation)
of such Customer Specific Objects, and any updates or modifications thereto, and hereby
grants Fiorano a perpetual, irrevocable, worldwide, fully-paid, royalty-free, exclusive,
transferable license to reproduce, modify, use, perform, display, distribute and sublicense,
directly and indirectly, through one or more tiers of sublicensees, such Customer Specific
Objects.

i) Any objects, including without limitation Customer Specific Objects, developed
solely or jointly with Customer by Fiorano shall be the property of Fiorano.

(e) Additional Restrictions on Use of Source Code.

Customer acknowledges that the Software, its structure, organization and any human-
readable versions of a software program (“Source Code”) constitute valuable trade secrets
that belong to Fiorano and/or its suppliers Source Code Software, if and when supplied to
Customer shall constitute Software licensed under the terms of this Agreement and the
Order Form. Customer agrees not to translate the Software into another computer
language, in whole or in part.

(O] Customer agrees that it will not disclose all or any portion of the Software’s Source
Code to any third parties, with the exception of authorized employees (“Authorized
Employees”) and authorized contractors (“Authorized Contractors”) of Customer who (i)
require access thereto for a purpose authorized by this Agreement, and (ii) have signed an
employee or contractor agreement in which such employee or contractor agrees to protect
third party confidential information. Customer agrees that any breach by any Authorized
Employees or Authorized Contractors of their obligations under such confidentiality
agreements shall also constitute a breach by Customer hereunder.

(ii) Customer shall ensure that the same degree of care is used to prevent the
unauthorized use, dissemination, or publication of the Software’s Source Code as Customer
uses to protect its own confidential information of a like nature, but in no event shall the
safeguards for protecting such Source Code be less than a reasonably prudent business
would exercise under similar circumstances. Customer shall take prompt and appropriate
action to prevent unauthorized use or disclosure of such Source Code, including, without
limitation, storing such Source Code only on secure central processing units or networks
and requiring passwords and other reasonable physical controls on access to such Source
Code.

iii) Customer shall instruct Authorized Employees and Authorized Contractors not to
copy the Software’s Source Code on their own, and not to disclose such Source Code to
anyone not authorized to receive it.

(iv) Customer shall handle, use and store the Software’s Source Code solely at the
Customer Designated Center.

(f) Acceptance tested Software

Customer acknowledges that it has, prior to the date of this Agreement, carried out
adequate acceptance tests in respect of the Software. Customer's acceptance of delivery
of the Software under this Agreement shall be conclusive evidence that Customer has
examined the Software and found it to be complete, and in accordance with the
Documentation, in good order and condition and fit for the purpose for which it is required.

3. Technical Services.

() Maintenance and Support Services. Maintenance and Support services will be
provided under the terms of this Agreement and Fiorano’s support policies in effect on the
date Support is ordered by Customer. Support services shall be provided from Fiorano’s
principal place of business or at the Designated Center, as determined in Fiorano’s sole
discretion. If Fiorano sends personnel to the Designated Center to resolve any Error in the
Supported Program, Customer shall pay Fiorano’s reasonable travel, meals and lodging
expenses.

(b) Consulting and Training Services. Fiorano will, upon Customer’s request,
provide consulting and training services agreed to by the parties pursuant to the terms of
a separate written agreement.

(©) Incidental Expenses. For any on-site services requested by Customer,
Customer shall reimburse Fiorano for actual, reasonable travel and out-of-pocket expenses
incurred (separate from then current Support Fees).

(d) Reinstatement. Once Support has been terminated by Customer or Fiorano for
a particular Supported Program, it can be reinstated only by prior approval from Fiorano
and then only upon payment of the reinstatement fee applicable at the time of
reinstatement.

(e Supervision and Management. Customer is responsible for undertaking the
proper supervision, implementation and management of its use of the Supported
Programs, including, but not limited to: (i) assuring proper Supported Environment
configuration, Supported Programs installation and operating methods; and (ii) following
industry standard procedures for the security of data, accuracy of input and output, and
back-up plans, including restart and recovery in the event of hardware or software error or
malfunction. Fiorano does not warrant (i) the performance of, or combination of, Software
with any third party software, (ii) any implementation of the Software that does not follow
Fiorano’s delivery methodology, or (iii) any components not supplied by Fiorano.

) Training. Customer is responsible for proper training of all appropriate personnel
in the operation and use of the Supported Programs and associated equipment.

(9) Access to Personnel and Equipment. Customer shall provide Fiorano with
access to Customer’s personnel and its equipment during Support Hours. This access must
include the ability to dial-in from Fiorano facilities to the equipment on which the
Supported Programs are operating and to obtain the same access to the equipment as
those of Customer’s employees having the highest privilege or clearance level. Fiorano will
inform Customer of the specifications of the modem equipment and associated software
needed, and Customer will be responsible for the costs and use of said equipment.

(h) Support Term. Upon expiration of an existing Support Period for a particular
Supported Program, a new Support Period shall automatically begin for a consecutive
twelve (12) month term (“Renewal Period”) so long as (i) Customer pays the Support Fee
within thirty (30) days of invoice by Fiorano; and (ii) Fiorano is still offering Support on
such Supported Program.

(O] Annual Support Fees. Annual Support Fees shall be at the rates set forth in the
applicable Order Form.

4. Term and Termination.

(E)) Term. This Agreement and each Software license granted under this Agreement
shall continue unless terminated under this Section 4 (“Term and Termination”).

(b) Termination by Customer. If the Software is licensed for a specific term as
noted on an Order Form, Customer may terminate any Software license at the end of the
term; however, any such termination shall not relieve Customer’s obligations specified in
Section 4(d) (“Effect of Termination”).

(©) Termination by Fiorano. Fiorano may terminate this Agreement or any license
upon written notice if Customer breaches this Agreement and fails to correct the breach
within thirty (30) days of notice from Fiorano.

((e)) Effect of Termination. Termination of this Agreement or any license shall not
limit Fiorano from pursuing other remedies available to it, including injunctive relief, nor
shall such termination relieve Customer’s obligation to pay all fees that have accrued or
are otherwise owed by Customer under any Order Form. Such rights and obligations of the
parties’ which, by their nature, are intended to survive the termination of this agreement
shall survive such termination. Without limitation to the foregoing, these shall include
rights and liabilities arising under Sections 2 (a)(iii), 2(a)(iv) (“Rights Granted”), 2(d)
(“Customer Specific Objects”), 4 (“Term and Termination”), 5 (“Indemnity, Warranties,
Remedies”), 6 (“Limitation of Liability”), 7 (“Payment Provisions”), 8 (“Confidentiality™)
and 9 (“Miscellaneous™) Upon termination, Customer shall cease using, and shall return or
at Fiorano’s request destroy, all copies of the Software and Documentation and upon
Fiorano’s request certify the same to Fiorano in writing within thirty (30) days of
termination. In case of termination of this Agreement or any license for any reason by
either party, Fiorano shall have no obligation to refund any amounts paid to Fiorano by
Customer under this Agreement. Further, if Customer terminates the agreement before the
expiry of a term for a term-license, then Customer shall be obliged to pay the entire
license fee for the entire licensed term.

5. Indemnity, Warranties, Remedies.

() Infringement Indemnity. Fiorano agrees to indemnify Customer against a third
party claim that any Product infringes a U.S. copyright or patent and pay any damages
finally awarded, provided that: (i) Customer notifies Fiorano in writing within ten (10)
days of the claim; (ii) Fiorano has sole control of the defense and all related settlement
negotiations; and (iii) Customer provides Fiorano with the assistance, information and
authority at no cost to Fiorano, necessary to perform Fiorano’s obligations under this
Section 5 (“Indemnities, Warranties, Remedies”). Fiorano shall have no liability for any
third party claims of infringement based upon (i) use of a version of a Product other than
the most current version made available to the Customer, (ii) the use, operation or
combination of any Product with programs, data, equipment or documentation if such
infringement would have been avoided but for such use, operation or combination; or (iii)
any third party software, except as the same may be integrated, incorporated or bundled
by Fiorano, or its third party licensors, in the Product licensed to Customer hereunder.

If any Product is held or claimed to infringe, Fiorano shall have the option, at its expense,
to (i) modify the Product to be non-infringing or (ii) obtain for Customer a license to
continue using the Software. If it is not commercially reasonable to perform either of the
above options, then Fiorano may terminate the license for the infringing Product and
refund the pro rated amount of license fees paid for the applicable Product using a twelve
(12) month straight-line amortization schedule starting on the Commencement Date. This
Section 5(a) (“Infringement Indemnity”) states Fiorano’s entire liability and Customer’s
sole and exclusive remedy for infringement.

(B) WARRANTIES AND DISCLAIMERS.

(0] Software Warranty. Except FOR EXCLUDED COMPONENTS WHICH ARE PROVIDED
“AS I1S” WITHOUT WARRANTY OF ANY KIND, For each Supported Software license which
Customer acquires hereunder, Fiorano warrants that for a period of thirty (30) days from
the Commencement Date the Software, as delivered by Fiorano to Customer, will
substantially perform the functions described in the associated Documentation in all
material respects when operated on a system which meets the requirements specified by
Fiorano in the Documentation. Provided that Customer gives Fiorano written notice of a
breach of the foregoing warranty during the warranty period, Fiorano shall, as Customer’s
sole and exclusive remedy and Fiorano’s sole liability, use its reasonable efforts, during the
warranty period only, to correct any reproducible Errors that cause the breach of the
warranty in accordance with its technical support policies. If Customer does not obtain a
Supported Software license, the Software is provided “AS 1S.” any implied warranty or
condition applicable to the software, documentation or any part thereof by operation of
any law or regulation shall operate only for defects discovered during the above warranty
period of thirty (30) days unless temporal limitation on such warranty or condition is
expressly prohibited by applicable law. Any supplements or updates to the Software,
including without limitation, bug fixes or error corrections supplied after the expiration of
the thirty-day Limited Warranty period SHALL NOT be covered by any warranty or
condition, express, implied or statutory.

(i) Media Warranty. Fiorano warrants the tapes, diskettes or any other media on
which the Software is supplied to be free of defects in materials and workmanship under
normal use for thirty (30) days from the Commencement Date. Customer’s sole and
exclusive remedy and Fiorano’s sole liability for breach of the media warranty shall be for
Fiorano to replace defective media returned within thirty (30) days of the Commencement
Date.

(iii) Services Warranty. Fiorano warrants any services provided hereunder shall be
performed in a professional and workmanlike manner in accordance with generally
accepted industry practices. This warranty shall be valid for a period of thirty (30) days
from performance. Fiorano’s sole and exclusive liability and Customer’s sole and exclusive
remedy pursuant to this warranty shall be use by Fiorano of reasonable efforts for re-
performance of any services not in compliance with this warranty which are brought to
Fiorano’s attention by written notice within fifteen (15) days after they are performed.

(1v)DIsCLAIMER OF WARRANTIES. SUBJECT TO LIMITED WARRANTIES PROVIDED FOR
HEREINABOVE, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE
SOFTWARE, DOCUMENTATION AND SERVICES (IF ANY) ARE PROVIDED AS IS AND WITH
ALL FAULTS, FIORANO HEREBY DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS,
WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF
ANY) IMPLIED WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS
FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY, OF ACCURACY OR
COMPLETENESS OF RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF
VIRUSES, AND OF LACK OF NEGLIGENCE, ALL WITH REGARD TO THE SOFTWARE, AND
THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES,
INFORMATION, SOFTWARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR
OTHERWISE ARISING OUT OF THE USE OF THE SOFTWARE. ALSO, THERE IS NO
WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,
CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE
SOFTWARE.

6. Limitation of liability. To the maximum extent permitted by applicable law, in no event shall fiorano
be liable for any special, incidental, punitive, indirect, or consequential damages whatsoever
(including, but not limited to, damages for loss of profits or confidential or other information, for
business interruption, for personal injury, for loss of privacy, for failure to meet any duty of good
faith or of reasonable care, for negligence, and for any other pecuniary or other loss whatsoever)
arising out of or in any way related to the use of or inability to use the software, the provision of or
failure to provide support or other services, information, software, and related content through the
software, or otherwise under or in connection with any provision of this eula, even in the event of
the fault, tort (including negligence), misrepresentation, strict liability, breach of contract or breach
of warranty of fiorano, and even if fiorano or any supplier has been advised of the possibility of such
damages.

Notwithstanding any damages that may be incurred for any reason and under any circumstances
(including, without limitation, all damages and liabilities referenced herein and all direct or general
damages in law, contract or anything else), the entire liability of fiorano under any provision of this
eula and the exclusive remedy of the customer hereunder (except for any remedy of repair or
replacement if so elected by fiorano with respect to any breach of the limited warranty) shall be
limited to the pro-rated amount of fees paid by customer under this agreement for the product,
using a twelve (12) month straight-line amortization schedule starting on the Commencement Date.
Further, if such damages result from customer's use of the software or services, such liability shall be
limited to the prorated amount of fees paid for the relevant software or services giving rise to the
liability till the date when such liability arose, using a twelve (12) month straight-line amortization
schedule starting on the Commencement Date. Notwithstanding anything in this agreement, the
foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails its essential purpose.

The provisions of this Agreement allocate the risks between Fiorano and Customer.
Fiorano’s pricing reflects this allocation of risk and the limitation of liability specified herein.

7. Payment Provisions.

() Invoicing. All fees shall be due and payable thirty (30) days from receipt of an
invoice and shall be made without deductions based on any taxes or withholdings. Any
amounts not paid within thirty (30) days will be subject to an immediately due and payable
late payment fee equivalent to: the sum of $50.00 plus an interest equal to the lower of
(a) the maximum applicable legal interest rate, or (b) one percent (1%) per month.

(b) Payments. All payments made by Customer shall be in United States Dollars for
purchases made in all countries except the United Kingdom or the European Union, in
which case the payments shall be made in British Pounds Sterling or Euros respectively.
Payments shall be directed to:

Fiorano Software, Inc.

718 University Ave.

Suite 212, Los Gatos, CA 95032

Attn: Accounts Receivable.

If the product is purchased outside the United States, payments may have to be made to
an Affiliate as directed by Fiorano Software, Inc.

(©) Taxes. The fees listed in this Agreement or the applicable Order Form does not
include Taxes. In addition to any other payments due under this Agreement, Customer
agrees to pay, indemnify and hold Fiorano harmless from, any sales, use, excise, import or
export, value added or similar tax or duty, and any other tax not based on Fiorano’s net
income, including penalties and interest and all government permit fees, license fees,
customs fees and similar fees levied upon the delivery of the Software or other
deliverables which Fiorano may incur in respect of this Agreement, and any costs
associated with the collection or withholding of any of the foregoing items (the “Taxes”).

8. Confidentiality.

(a) Confidential Information. “Confidential Information” shall refer to and include,
without limitation, (i) the source and binary code of Products, and (ii) the business and
technical information of either party, including but not limited to any information relating
to product plans, designs, costs, product prices and names, finances, marketing plans,
business opportunities, personnel, research, development or know-how;

Exclusions of Confidential Information. Notwithstanding the foregoing, “Confidential
Information” shall not include: (i) Information that is not marked confidential or otherwise
expressly designated confidential prior to its disclosure, (ii) Information that is or becomes
generally known or available by publication, commercial use or otherwise through no fault
of the receiving party, (iii) Information that is known to the receiving party at the time of
disclosure without violation of any confidentiality restriction and without any restriction on
the receiving party’s further use or disclosure; (iv) Information that is independently
developed by the receiving party without use of the disclosing party’s confidential
information, or (v) Any Residuals arising out of this Agreement. Notwithstanding, any
Residuals belonging to Source Code shall belong exclusively to Fiorano and Customer shall
not have any right whatsoever to any Residuals relating to Source Code hereunder.

Use and Disclosure Restrictions. During the term of this Agreement, each party shall
refrain from using the other party’s Confidential Information except as specifically
permitted herein, and from disclosing such Confidential Information to any third party
except to its employees and consultants as is reasonably required in connection with the
exercise of its rights and obligations under this Agreement (and only subject to binding use
and disclosure restrictions at least as protective as those set forth herein executed in
writing by such employees).

Continuing Obligation. The confidentiality obligation described in this section shall
survive for three (3) years following any termination of this Agreement.Notwithstanding
the foregoing, Fiorano shall have the right to disclose Customer’s Confidential Information
to the extent that it is required to be disclosed pursuant to any statutory or regulatory
provision or court order, provided that Fiorano provides notice thereof to Customer,
together with the statutory or regulatory provision, or court order, on which such
disclosure is based, as soon as practicable prior to such disclosure so that Customer has
the opportunity to obtain a protective order or take other protective measures as it may
deem necessary with respect to such information.

9. Miscellaneous.

(@) Export Administration. Customer agrees to comply fully with all applicable
relevant export laws and regulations including without limitation, those of the United
States (“Export Laws”) to assure that neither the Software nor any direct product thereof
are (i) exported, directly or indirectly, in violation of Export Laws; or (ii) are intended to be
used for any purposes prohibited by the Export Laws, including, without limitation, nuclear,
chemical, or biological weapons proliferation.

(b) U. S. Government Customers. The Software is “commercial items,” as that term
is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of “commercial computer software”
and “commercial computer software documentation” as such terms are used in 48 C.F.R.
12.212 (SEPT 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through
227.7202-4 (JUNE 1995), all U.S. Government Customers acquire the Software with only
those rights set forth herein.

(©) Notices. All notices under this Agreement shall be in writing and shall be deemed
to have been given when mailed by first class mail five (5) days after deposit in the mail.
Notices shall be sent to the addresses set forth at the beginning of this Agreement or such
other address as either party may specify in writing.

(d Force Majeure. Neither party shall be liable hereunder by reason of any failure or
delay in the performance of its obligations hereunder (except for the payment of money)
on account of strikes, shortages, riots, insurrection, fires, flood, storm, explosions, acts of
God, war, governmental action, labor conditions, earthquakes, material shortages or any
other cause which is beyond the reasonable control of such party.

(e) Assignment. Neither this Agreement nor any rights or obligations of Customer
hereunder may be assigned by Customer in whole or in part without the prior written
approval of Fiorano. For the avoidance of doubt, any reorganization, change in ownership
or a sale of all or substantially all of Customer’s assets shall be deemed to trigger an
assignment. Fiorano’s rights and obligations, in whole or in part, under this Agreement
may be assigned by Fiorano.

W) Waiver. The failure of either party to require performance by the other party of
any provision hereof shall not affect the right to require such performance at any time
thereafter; nor shall the waiver by either party of a breach of any provision hereof be
taken or held to be a waiver of the provision itself.

(9) Severability. In the event that any provision of this Agreement shall be
unenforceable or invalid under any applicable law or court decision, such unenforceability
or invalidity shall not render this Agreement unenforceable or invalid as a whole and, in
such event, any such provision shall be changed and interpreted so as to best accomplish
the objectives of such unenforceable or intended provision within the limits of applicable
law or applicable court decisions.

(h) Injunctive Relief. Notwithstanding any other provisions of this Agreement, a
breach by Customer of the provisions of this Agreement regarding proprietary rights will
cause Fiorano irreparable damage for which recovery of money damages would be
inadequate, and that, in addition to any and all remedies available at law, Fiorano shall be
entitled to seek timely injunctive relief to protect Fiorano’s rights under this Agreement.

O) Controlling Law and Jurisdiction. If this Software has been acquired in the
United States, this Agreement shall be governed in all respects by the laws of the United
States of America and the State of California as such laws are applied to agreements
entered into and to be performed entirely within California between California residents. All
disputes arising under this Agreement may be brought in Superior Court of the State of
California in Santa Clara County or the United States District Court for the Northern District
of California as permitted by law. If this Software has been acquired in any other
jurisdiction, the laws of the Republic of Singapore shall apply and any disputes arising
hereunder shall be subject to the jurisdiction of the courts of Singapore, Singapore.
Customer hereby consents to personal jurisdiction of the above courts. The parties agree
that the United Nations Convention on Contracts for the International Sale of Goods is
specifically excluded from application to this Agreement.

a No Agency. Nothing contained herein shall be construed as creating any agency,
partnership or other form of joint enterprise or liability between the parties.

(9] Headings. The section headings appearing in this Agreement are inserted only as
a matter of convenience and in no way define, limit, construe or describe the scope or
extent of such section or in any way affect such section.

(O] Counterparts. This Agreement may be executed simultaneously in two or more
counterparts, each of which will be considered an original, but all of which together will
constitute one and the same instrument.

(m) Disclaimer. The Software is not specifically developed or licensed for use in any
nuclear, aviation, mass transit or medical application or in any other inherently dangerous
applications. Customer agrees that Fiorano and its suppliers shall not be liable for any
claims or damages arising from Customer’s use of the Software for such applications.
Customer agrees to indemnify and hold Fiorano harmless from any claims for losses, costs,
damages or liability arising out of or in connection with the use of the Software in such
applications.

(n) Customer Reference. Fiorano may refer to Customer as a customer in sales
presentations, marketing vehicles and activities. Such activities may include, but are not
limited to; a press release, a Customer user story completed by Fiorano upon
implementation of the Software, use by Fiorano of Customer’s name, logo and other
marks, together with a reasonable number of technical or executive level Customer
reference calls for Fiorano.

(o) Entire Agreement. This Agreement, together with any exhibits, completely and
exclusively states the agreement of the parties. In the event of any conflict between the
terms of this Agreement and any exhibit hereto, the terms of this Agreement shall control.
In the event of any conflict between the terms of this Agreement and any purchase order
or Order Form, this Agreement will control, and any pre-printed terms on Customer’s
purchase order or equivalent document will be of no effect. This Agreement supersedes,
and its terms govern, all prior proposals, agreements or other communications between
the parties, oral or written, regarding the subject matter of this Agreement. This
Agreement shall not be modified except by a subsequently dated written amendment
signed by the parties, and shall prevail over any conflicting “pre-printed” terms on a
Customer purchase order or other document purporting to supplement the provisions
hereof.

Exhibit A

Fiorano Product List

Each of the individual items below is a separate Fiorano product (the “Product”). The
Products in this list collectively constitute the Software. Fiorano reserves the right to

modify this list at any time in its sole discretion. In particular, Product versions might
change from time to time without notice.

Fiorano SOA Enterprise Server

Fiorano ESB Server

FioranoMQ Server Peer / FioranoMQ (standalone version)
Fiorano Peer Server

Fiorano SOA Tools

Fiorano Mapper Tool

Fiorano Database Business Component

Fiorano HTTP Business Component

Fiorano SMTP Business Component

Fiorano FTP Business Component

Fiorano File Business Component

Fiorano MOM Business Components (MQSeries, MSMQ, JMS)

NOTE: Other business components may be added to or removed from this list from time to
time at Fiorano’s sole discretion.

Exhibit B

EXCLUDED COMPONENTS

(a) Any third party or open source library included within the Software

Exhibit C

Licensing Restrictions. The Software licensed hereunder is subject to the following licensing
restrictions.

The parties understand that the modules of the Software are licensed as noted in this section.
The term “Target System” means any computer system containing one or more Processors
based upon any architecture, running any operating system, excluding computers running
IBM MV-S, 0S/390 and related “mainframe” operating systems. The Term “Processor”
means a computation hardware unit such as a Microprocessor that serves as the main
arithmetic and logic unit of a computer. A Processor might consist of multiple “Cores”, in
which case licenses shall have to be purchased on a per-Core basis. A Target System may
have one or more Processors, each of which may have one or more Cores. In the sections
below, Cores may replace Processors as applicable.

If the Software is Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA server or
FioranoMQ Server (JMS), then the Software is licensed on a per Processor basis on a single
Target System, where the total number of Processors on the Target System may not
exceed the total number of Processors licensed, with the additional restriction that only a
single instance of the Fiorano ESB Enterprise Server may run on a single Target System
and that a separate license must be purchased for each instance of the Fiorano ESB
Enterprise Server, Fiorano ESB Peer Server or FioranoMQ Server (JMS) Server for each
Processor;

If the Software is Fiorano SOA Tools or Fiorano Mapper Tool , or any Fiorano Test and/or
Development license, then the Software is licensed on a per-named-user basis, where the
total number of named users may not exceed the total number of named users licensed;

If the Software is a Fiorano Business Component of any kind (including but not limited to
Fiorano HTTP, File, SMTP, File, Database, and other Business Components, etc.), then the
Software is licensed on the basis of the number of CPUs of the Target System on which the
FioranoMQ Peer (to which the Business Component connects runs). A separate license
needs to be purchased for each CPU of each Target System of each FioranoMQ Peer
instance to which any Business Component connects.

Evaluations. Licenses used for evaluation cannot be used for any purposes other than an
evaluation of the product. Existing customers must purchase new licenses to use additional
copies of any Product and may not use evaluation keys in any form. All evaluation keys
are restricted to 45-days and extensions need to be applied for explicitly. Any misuse of
evaluation keys shall be subject to a charge of 125% (one hundred and twenty-five
percent) of the license fee plus 20% support.

Non-Production Environments. For all non-production environments referenced on the
Order Form (including all HA (high-availability), QA, Staging and Development
environments), the following is understood: each non-production environment is an exact
replica of the Production Environment from the standpoint of the number of copies of the
Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA server and/or FioranoMQ
Server (JMS) licensed. Each non-production environment is licensed on the exact same
number and configuration of CPUs and/or Cores as the corresponding Production
Environment.

Run-Time Libraries. The Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA
server and FioranoMQ Server (JMS) products are “server” products, each of which has a
runtime library associated with it. The runtime library may be freely bundled with and/or
used for internal development purposes by all Users who have licensed at least one
production copy of the corresponding Server Software.

Copyright (c) 2008-2010, Fiorano Software Pte Ltd. and Affiliates

Contents

Chapter 1: Introduction to Fiorano eStudio.................cc.u..... 22
I I S T 11 = Y 22
1.2 Getting started With FIOran0o @StUAIO. e et e eee e 23

Chapter 2: Offline Event Process Development Perspective25

b2 I o =Y 1o VA 1oL 26
2.1.1 EVENT PrOCESS REPOSITOIY ..ttt ettt et ettt et e et e e e e e e eeeeaees 26

P e s To] = o (o I @) £od g T=TS] i =X [0 o PP 26
2.01.3 SErVICE Palette ... et 27

N N e o T o 1= TS PP 28
2.0 D PO OIS . e e 28

b T G 30 =1 g o] g X o T PP 29
2.1.7 Service Repository (OFfliNE) ... e 29
220 I T = o] =T ox a4 o (o = 30

B V< | Al o 0 o 2T T 32
2.2.1 Creating NEW EVENT PrOCESSttt ettt ettt et et et e et et e et e et e e e e ee e eeeanees 32
2.2.2 OpeNning SamPIe EVENT PrOCESSttt ettt ettt e e e e e e et e eaaneeaanes 33
2.2.3 Import and EXPOrt EVENT PrOCESSESttt ettt ettt ettt e e aaanns 34
2.2.3.1 EXPOrting @n EVENT PrOCESSttt et ettt et ettt et et e eaneeaas 34
2.2.3.2 IMPOrting @n EVENT PrOCESS ...ttt ettt e e e e e et ean e aanneaaanes 36

2.2.4 Importing NSTUAIO EVENT PrOCESSESttt et eaaas 38
2.3 Service Repository (Offline Event Process Development)ooiiiiiiiii i 39
2.3.1 DePIOYING SEIVICES 10 SEOIVEN ...ttt ettt et ettt e e et et eaae e eanneeaanes 40
2.3.2 Fetching ServiCes frOomM SeIVer et eaeas 41
2.3.3 Exporting Services 10 LOCal DiSK ... 42
2.3.4 Importing Services from Local disSK........ooiiiiiiiiiii e 42

Chapter 3: Online Event Process Development Perspective43

B 0 I o =Y Lo TV 1oV 45
R0 I A ST VT gl o q o] (o] = 45
3.1.2 FIOrano DebUGQET ettt 45

3.2 Service Repository (Online Event Process Development)o eeees 46
3.2.1 Exporting Services 10 LOCaAl DISK ... s 46

3.2.2 Importing Services from Local disK.. 47

Chapter 4: Mapper Perspectiveccccoeeveeiveiiiiiiieieeee, 49

Chapter 5: Composing Event ProCesses........c.cccceeeevvvevinnnnn. 50
LS M2 [0 [T Te T @70] 010] o o] o 1= 0| £ PP 50
L2 0o] o] gT=Tox i [o T Lo 11 1 =2 51
5.3 CoNfigUuIiNG COMPONENTSttt ettt ettt ettt ettt ettt et e et et e e e aneeaneeans 51
5.4 Configuring COmMPONENT PrOPEITIES ...ttt ettt ettt e e e e eaeeeans 53
5.5 Adding RemMOte SErviCe INSTANCE ...ttt 55
5.6 Adding External Event Process (SUDFIOW) ... 57
LS A Lo Tt U [o g T=T o | M I = T q 1 T P 59
5.8 Defining Route TransformatioNs et 61
5.9 Configuring SEIECTOrS 0N ROUTES.ttt ettt et et ettt et aneeaneeans 64
5.10 Configuring AppliCation CONTEXTttt ettt e e e e ae e aans 65
5.11 Check Resource and CONNECTIVITYttt eaeaas 67
5.12 RUNNING EVENT PrOCESS. ...ttt ettt et et et et et e et et e e e e e e e e e e eaneaaes 68
5.13 StopPIiNg AN EVENT PrOCESSttt e e ettt et ettt ettt ettt e et e e et e e aaneeaans 68
5.14 Synchronizing @n EVENT PrOCESS ...ttt et eaaas 69
Chapter 6: Event Process Life Cycle Management 71
6.1 Setting Properties of Service Instances for Different ENVironments...........ccoooviiiiiiiiiiiiiineennn. 71
6.2 Running Event Process on an ENVIFONMENT ... i aneeaes 72

Chapter 7: Debugging Event ProCcessccocoveiieivcicennnnn, 73

7.1 AAAiNgG BreakKpOintttt eaaaas 73

7.1.1 CoNtEXt MENU OPTION ... e ettt ettt ettt ettt et e et e et e et e e e e e e e ee e eeeenees 73

A0 2 1= o 18 T [=T Y 4 =Y 74
7.2 Viewing Messages at BreakpOint s 75
7.3 Editing Messages at BreaKpOint.ot 75
7.4 Inserting Messages iNto BreakpOint ...ttt et e et e et e e aanes 76
7.5 Releasing Messages from BreaKpoint ... et 77
7.6 Discard Messages from BreakKpOint ...ttt 78
A G 010NV = (== L o Lo 1 0 79

Chapter 8: SEIVICES........coouiii e 80

S I ST=T aVATotc R B T=TTod g o) (o] gl =l [} (o PP 80
S I I R @ XY =T V= Y=o o [0 o 82

I 2 =Tt U 1 T g TS o T o 83
8.1.2.1 POt INfOrmMatioN. ... ettt 84

St 22 1 T o] o T 1 84

8.1.2.3 Launch Configurationt 85

S 2 A o To 1Y [o To 1] = PP 85

L B 2 L 0 o 1= Pt 86

S G B D T=T o [0)Y/ o 4 1= o L ST = od 1 [0 o [86
St I T A =T T U o = 87
8.1.3.2 SEerVICE DEPENUENCIES ...ttt ettt ettt ettt et e e et e e e e e e e e te e eaneeaanes 87
Chapter 9: Service Creation........cccoceveviiiiiiiiiie e 89
L AT =T oY o =S 1= o T=T = o o 89
L I I ST = Vo7 SR e Tot= 1 1 o o 89
0.1.2 BaSIC DtallS ...ttt 90
0.1.3 POrts INfOrmMation e e ettt 91

L I I (=T 1 U] o] = PP 92

L SR D 1= o 1= o o [T o o 1= S 93
9.2 BUilding and DePlOYiNGg SEIVICES.ttt ettt ettt ettt et e ettt aneens 93

Chapter 10: eMapPPer ... 95

10.1 Key Features of FIOrano €Mappert e ettt aaee 95
10.2 Fiorano eMapper ENVIFONMENT.ttt ettt ettt e ettt et e et e et e e e e e e e e e eneaneeaees 95
O T2 I =11V =Y o o= gl o o] =T o 96
10.2.2 eMaPPEr EQITOr ... et e e 97

O 2 R T o BV T P 97
10.2.2.2 MetaData tab ... s 98

O B2 N U g od 1 A T 98
10.2.4 eMaPPEr CONSOIE ..ttt et e et et et et ettt 99
10.2.5 MetaData MESSAGES VIBWttt ettt et ettt e ettt e et e e ettt e e e e eaaneens 99
10.2.6 NOAE INTO VIOW et ettt eaas 100
10.3 Working with Input and OULPUL STrUCTUIES ...ttt et et ee e aeeaas 100
10.3.1 Loading INPpULt/OULPUL STrUCTUIEttt et ettt e et e e e e eaaes 100
10.3.1.1 Load Input/Output Structure From an XSD documentocoiiiiiiiiiiiiiiiiaaaaans 100
10.3.1.2 Load Input/Output Structure from a DTD document.........ccoiiiiiiiiiiiiiiiiiiiaeaanns 103
10.3.1.3 Load Input/Output Structure from an XML documentooiiiiiiiiiiiiiiiiiaaanaes 103

10.3.2 Delee STIUCTULIE . ..ottt ettt et et ettt ettt ettt et e et eaan e e eaans 104
O T B Yo [MRS 1 ¥ Tod 18] = PP 105
10.4 Working with the Visual EXpression BUIler 105
10.4.1 FUNCHION Paletle. ... et ettt 106
10.4.1.2 MAth FUNCHIONSttt ettt et et et e e e e et e et e e e e e e e e e e e e e en e annens 109
10.4.1.3 StriNG FUNCHIONS ...ttt et ettt e e e aaaas 111
10.4.1.4 CoNtrol FUNCHION ettt eeaas 114
10.4.1.5 CONVEISION FUNCHIONSuuiie ettt ettt ettt ettt e et e et e et e ae e ae e aneenns 114
10.4.1.6 AdvanNCed FUNCLIONS ...ttt ettt ettt e e e e eaaas 116
10.4.1.7 Date-Time FUNCHIONS ...ttt ettt et e et eaaaas 118
10.4.1.8 NOAESET FUNCHIONS ettt ettt et ettt et e e e et e e et et e et e et e et e et e enn e aneenns 124

10.4.1.9 BOOIean fUNCHIONS ...ttt e e e e eeeeeeeeeeeeeeeeeeeeeennnnnnes 127

O 9 I O I o T] (W] o I U (o4 o i - PP 138

10.4.1.11 JMS MeSSAQgE FUNCHIONS. ..ottt ettt ettt e e e et e et e et eeaneaaanes 140
10.4.1.12 User Defined fUNCLIONS.o e eaees 141

O I 2 U g od 1= == 1= = 142

O T RS Lo TH ot LT = P 143
10.4.2.2 DeStination NOGEttt eas 143

RO IOt =T L] g Lo [V F=T o] o1 T PP 146
10.5.1 Understanding TYPES Of NOUES ...ttt ettt ea e e e eaneeaanas 146
O TR T2 IV o 1= 2SR o) 1Y/ =Y o o 1 T 148
10.5.2.1 NamMe-t0-NamME MaPPING - .. uuenneneen ettt et et ettt et e et et e et e et eaneenns 148

O ST wo] g == Tl o 1Y F= o o 1 o [149

10.5.3 Duplicating a FOr-Each Mappingcoounioie ettt 150
10.5.4 Linking Nodes t0 Define MapPiNgsueuuiiei e e ettt e e e e eeeens 152
10.5.4.1 Using the Automatic Mapping option to Define Mappingscccevviiiiiiiiiiiiiennannns 152
10.5.4.2 Using the Visual Expression Builder to Define Mappings.......ooooeeviiiiiiiiiiiaaaaian. 153

10.5.5 Mapping XML FOIMIAESuuite ettt et et et et et et ettt et et e et et et e aneeanees 156

O I3 Lo [o TR 7= € A 156
10.7 Working With deriVed Ty DS e et 159
10.8 Create/Edit User Defined FUNCTION(S) - .ueutet ettt ettt et ettt ettt e e e eaneeans 161
10.9 Testing the TransformatioN.o ettt e e e ettt e e e e eaeeeeannean 164
O 2 O I Y/ =Yg F=To T g o T, =T 0] o 11 Lo L= 169
10.10.1 EXPOrting €MapPer PrOJECT.ttt ettt et et ettt et anens 169
10.10.2 Importing Project from the File ... et e eaeaas 170
10.10.3 Copying fuNCLIONS IN @ MaPPING ... eeie ettt 170
10.10.4 Cle@aring All MaPPINGS ... uueneee e ettt e ettt e e et e et e e e e e e e e et e e e e e e e e e anen 170
10.10.5 ManNaging XSLT PrOPertiES ...ttt et ettt ettt e e e et et ee e e e aanneaaanes 171

Chapter 11: Working With Multiple Servers And

PeISPECIIVES. ... e 172
11.0 ACEIVE SEIVEE NOGE ...ttt et ettt ettt ettt 172
11.2 SWILChING OF ACTIVE SEIVETttt ettt ettt et ettt e a e e aneens 173
11.3 SWItChiNg BetWEEN PerS PECTIVESttt et ettt e anees 175
Chapter 12: Fiorano Preferences..........ccccoeveviiiiiiiicein e, 178
12.1 ESB CONNECLION PreferenCeSc..iiiiii ettt aeeaeaes 178
12.2 SOA OrCRESTIatiON ...ttt ettt et ettt 179
D2 R C =T o T=T = T I o) o o 179
D22 V1Y o] 4 [0V @ o 1 o o = 179
D2 RS T=T oV ol =T @ o] o] o - P 179
12.2.3.1 Default JVM ConfigUrations ...t eaeaas 180
12.2.3.2 Connection Factory PreferenCeso ittt aaaes 181

i A 01 S T @ o] 1 o = PP 181

12.3 SOA Orchestration ONIINE. ettt et ee e e eeeeenennnnnnns 183

2 T R ©1 =T g [T = I @ o] o] 1 T PP 183

JIDZ3C J22 AN o o] %= 1 To] @ o £ (o o = 184

12.3.3 SEIVICE O tiONS ...ttt et ettt e et et aaaas 184

I I o =TT g @ o] o] o £ PP 184
12.4 Key Board Short CUL PreferenCeS. ... ittt ettt e e e e eaneas 185
Chapter 13: Schema ReposSitorycccoovvvvieiiiieviiiieeiieeeennnn, 188
Chapter 14: SCM Integration..........cccccoveiiiiiiiieiieeceeeeeen, 190
14.1 Downloading and integrating SCM plugins in Fiorano eStudio...........cooiiiiiiiiiiiiiii e 190
14.2 SPECITYING SCM FEPOSITONY ...ttt ettt et ettt ettt ettt ettt e et e et e et e ane e aneeaneeans 190
14.3 Creating a project for Version CONTIOl i e 191
14.4 Adding the ProjeCt 10 REPOSITONY ... ettt e aeees 194
14.5 Updating the project into the REPOSITONYttt ettt aneeans 196

14.6 Updating an Event Process with older version from RepoSitoryc.cooiiiiiiiiiiiiiiii i 196

Fiorano eStudio User Guide

Chapter 1: Introduction to Fiorano
eStudio

1.1 Key Features

This section outlines some of the key new features added to the Fiorano eStudio:

1. Offline Event Process Development

In Offline Event Process Development mode, Event Processes development is done without
connecting to a server. The Offline perspective maintains its own repository of event
processes and services. Event Processes can be developed in Offline mode and can be
deployed to any Enterprise Server. A server connection is required only while deploying an
Event Process.

2. EPLCM (Event Process Life Cycle Management)

EPLCM allows a user to move Event Processes in different labeled environments that is,
Testing, Staging, QA, and Production, all at the click of a button. Pre-created profiles for
each environment are automatically picked up by the Server at the deployment time. This
allows the user to specify properties for service instances in an Event Process for multiple
environments, rather than creating new event processes for each environment. With the
new EPLCM functionality, migration from one environment to another is simple.

3. Sub-Flows

A powerful new Sub-flow concept has been added. Sub-flow allows the user to insert an
event process into another event process, easing composition of large applications.

4. Improved Debugger Implementation
Message injection is added, together with a better set of views to simplify debugging.
5. Split File Development for Services and Application

The ServiceDescriptor.xml and Application.xml are changed to split files, therby making
them more readable and reducing the memory footprint of eStudio.

To reduce the memory footprints, internally the application object now contains just details
of service instances while no longer holding any information of their configurations and
schemas associated. Configurations and schemas are now picked up on demand.

6. Service Descriptor Editor

The editor edits the ServiceDescriptor._xml file, making the editing easier to perform than
when using a Text/Xml editor.

7. Quicker Custom Property Sheet (CPS) launch

The CPS, when associated with a given component now launches significantly faster than
previous versions of the Studio.

Chapter 1: Introduction to Fiorano eStudio Page 22

Fiorano eStudio User Guide

The Save and Close options have been introduced in the CPS, allowing the user to save the
CPS in the middle of configuration and revisit it at a later point of time.

8. Dynamic Validations while Editing and Creating Services and Applications

Dynamic Validations point out errors at development time, while Event Processes are being
composed, or Services created; errors that had to previously wait until compilation or run-
time can now be detected earlier in the development/composition cycle.

9. Ul crafted for Rich User Experience

Significant user feedback has been incorporated within eStudio to provide a richer user-
experience. Most common operations can now be performed with a single click and with
much less navigation than in previous versions.

10. Support for Version Control Systems

Users can now store applications in any Version Control System (SVN, CVS, or VSS) using
Fiorano eStudio.

11. The New Mapping Tool: eMapper

The eStudio incorporates a brand new mapping tool that is developed ground-up in Eclipse.
This new version fixes many more bugs as compared to past versions and has several
other enhancements.

12. Customization Possible as an Advantage of Eclipse Based Product

Since eStudio is developed over the Eclipse platform, users can now write their own plug-
ins or use existing ones. Users are now able to customize the eStudio the way they want.
For instance, a user can add a version control plug-in.

1.2 Getting started with Fiorano eStudio

To start Fiorano eStudio:
1. Navigate to $FIORANO_HOME/eStudio and run the eStudio executable file.

2. Workspace Selection dialog is shown prompting for the workspace directory.
Workspace is a directory where all the repositories (Event Processes, Services and
other metadata) are stored.

3. The default workspace is set to
$FIORANO_HOME/runtimedata/eStudio/workspace. It is recommended to
use the default workspace, but the user can change the workspace if required. The
Remember workspace option can be selected to save the workspace used and not to
show the dialog next time eStudio is launched.

Note: The workspace preferences are stored at
FIORANO_HOME/runtimedata/eStudio/WSprefs.properties

The following preferences are stored in workspace preferences:
wsLastUsedWorkspaces, wsRemember and wsRootDir.

If the user chooses a workspace and selects the Remember workspace option, and, if
later, the Workspace Selection dialog has to be shown, then this can be done by
changing the value of wsRemember to false in the workspace preferences.

Chapter 1: Introduction to Fiorano eStudio Page 23

Fiorano eStudio User Guide

When the Fiorano eStudio has completely launched, the user can switch between
different workspaces. The option to switch the workspace is present at File ->
Switch Workspace.

The current workspace selected is shown in Fiorano eStudio title bar.

4. By default, eStudio is launched in Offline Event Process Development Perspective
mode and the offline repository is populated when eStudio is launched for the first
time.

5. In Case, eStudio does not load properly, install XULRunner on your machine.
Follow the guide lines from:
https://developer.mozilla.org/en/Getting_started_with_XULRunner to install and
add the following:

-Dorg.eclipse.swt.browser . XULRunnerPath=$XULRunnerHome/xulrunner to
$FIORANO_HOME/eStudio/eStudio. ini and restart eStudio.

Note: In Windows Server 2008, there are certain permissions settings that do not allow
standard eclipse to function normally if eStudio is not run as an administrator. This will be
resolved if eStudio is run as an administrator.
Fiorano eStudio has three perspectives:

1. Offline Event Process Development Perspective

2. Online Event Process Development Perspective

3. Mapper Perspective
A perspective defines the initial set and layout of views in the Workbench window. Within
each window, the perspective has a set of views and editors. Each perspective provides a

set of functionality aimed at accomplishing a specific type of task or works with specific
types of resources.

For example, the Java perspective contains views that are commonly used while editing
Java source files, while the Debug perspective contains the views used while debugging

Java programs. User can switch from one perspective to another.

An icon added to the shortcut bar allows you to switch to other perspectives.

J

L

- v v | e Fle X0] 2|0
I (3 Offline Event Process Development |

g & Java

@ Online Event Process Development

l

Figure 1.2.1: Perspective switch

Chapter 1: Introduction to Fiorano eStudio Page 24

https://developer.mozilla.org/en/Getting_started_with_XULRunner

Fiorano eStudio User Guide

Chapter 2: Offline Event Process
Development

The Offline Event Process Development (OEPD) perspective contains all the views and
the editors required for the offline event process development. The OEPD perspective
maintains its own repository of Event Processes and Services and no server connection is
required to create Event processes. This offline repository is populated when the user
launches the Fiorano eStudio for the first time. The default location of the Offline
repository is $FIORANO_HOME/runtimedata/eStudio/workspace/.repositories/Offline.

A Server connection is required only to export the developed Event Processes into the
Server. Similarly, Event Processes present in the Server can also be imported into the
eStudio. Figure 2.1 illustrates the OEPD perspective.

B Z 5) " : " 527C =, . bl
@ eStudio File Edit View Window Help Tools Run Search si77om B & 4 (=1 (100%) Tue 2:46 PM Phani Ao
@06 eStudio =

(Wit - - v - =2 &
| &t [] @] Rwow§) -LRFEE 2
5 @ Online Event Process Development () Offline Event Process Development
Event Process Repository 52 =0 w = O || -4 service Palette 52 BpveoO
B 2 [i; Select
v ®@ Event Process Repository (1) | Route
¥ (& User Processes (1) (= Bridges
B{g Event Processl
(= Collaboration
(= DB
(= Error
ey) 4 | » (bl
= = Flow
@ Service Repository 52 | iy pag © = O =
MOMs
» 2 Bridges =
» # collaboration (aferformance,
» Oop (= Samples
» O Error (== Seript
> P File (= Transformation
» O Flow el
» £ moms =L
» P performance (= web
» O samples = WebService
» & script
» P systemLib
» & Transformation v
] v
[l problems zﬂ@snomoﬂ Econsole‘ ¥ = O || = properties 5 ¥ =0
0 items |
| Resource Path astia Type General Name: Event Process1
Application Context
Environment Properties | CVi¢ EVENT_PROCESS1
Version: Lo
Categories User Processes v
Cache Component
Description: .
p= - I ERES v

Figure 2.1: Offline Event Process Development perspective

The OEPD perspective comprises of various Views as explained in the following section.

Chapter 2: Offline Event Process Development Page 25

Fiorano eStudio User Guide

2.1 Fiorano Views

2.1.1 Event Process Repository View

The Event Process Repository view is one of the views of the Offline Application

Development Perspective, which is available under Window > Show View > Fiorano >

Event Process Repository.

Event Process Repository view shows all the event processes created in the offline
application development perspective, under various categories.

B‘E Event Process Repository &3 = O
i £
- '&E Event Process Repository (3)
= [~ User Processes (1)
I[E EventProcess1
= [= User Processes2 (2)

I[E EventProcessz?
l[E EventProcess3

Figure 2.1.1: Event Process Repository

2.1.2 Fiorano Orchestration

Offline and Online Event Process Development perspectives are comprised of an editor

area Fiorano Orchestrator.

When an Event Process is opened, the design of the event process is shown in the Fiorano

Orchestrator.

Chapter 2: Offline Event Process Development

Page 26

Fiorano eStudio User Guide

tﬁ Event Process Repository &4 =0 H

[ZofaT

v iﬁ Event Process Repository (2)
¥ (= Samples (1)
3 Simple Chat
B [= User Processes (1)

%ServiceRepcsimr‘f = & I?\'=7| ¥ =g /—ID OT

routel
chat2
route2

chatl

yYyy
o0
]
P&
g R
o

» O MOMs

> .ﬂ Performance
> .ﬂ Samples

» 2 script

v
o
: 3
o
«r

Figure 2.1.2: Orchestration Editor

2.1.3 Service Palette

The Service Palette shows the services that are present in the eStudio repository. The
Service Palette contains all the Fiorano services grouped into various categories such as:
Bridges, Collaboration, DB, Error, File, and so on as shown in figure 2.1.3.

& Service Palette E:@l W~ —-0O
[} Select

] Route

Ml

Figure 2.1.3: Fiorano Service Palette

Chapter 2: Offline Event Process Development Page 27

Fiorano eStudio User Guide

2.1.4 Properties

The Properties view displays all the property names and values for any selected item such
as: a service instance, route, port, and so on. The Properties view is available under
Window > Show View > Other > General > Properties.

Placing the cursor on a property shows the property description.

=l Properties 22 T s |
General Marne: | chatl

Execution Wersion: 40\::

el shert Desc: | A simple Chat Comgenert

Log Module Instances

Runtirme Arguments

Long Desc:

Figure 2.1.4: Properties view

2.1.5 Problems

When working in the Fiorano environment, the errors and warnings occurred are displayed
in the Problems view. For example, when an Event Process containing errors is saved, the
errors are displayed in the Problems view as shown in Figure 2.1.5.

The Problems view is available under Window > Show View > Other > General >
Problems.

[Problems 3 . @ Javadoc [E Declaration El Propertes @] Error Log %% Debug
2 errors, 0 warnings, 0 others . .
Description Resource Path Location Type
= @ Errors (2 items)
@ Configuration is mandatory for DBProc EventProcess. testEventProcess line 1 Fiorano Orchestration f

@ Configuration is mandatory for SMTP1 EventProcess. testEventProcess line 1 Fiorano Orchestration F

(] [I

Figure 2.1.5: Problems view

By default the problems are grouped by severity level. The grouping can be selected using
the Group By menu.

Chapter 2: Offline Event Process Development Page 28

Fiorano eStudio User Guide

Problems view can also be configured to show the warnings and errors associated with a
particular resource or group of resources. This is done using the Configure Contents option
in the drop-down menu. Additionally, you can add multiple filters to the problems view and
enable or disable them as required. Filters can either be additive (any problem that
satisfies at least one of the enabled filters will be shown) or exclusive (only problems that
satisfy all of the filters will be shown).

2.1.6 Error Log

The Error Log view captures all the warnings and errors logged in the Fiorano environment.
The underlying log file (-1og) is stored in the _metadata subdirectory of the workspace. The
Error Log view is available under Window > Show View > Error Log.

= Properties @ Error Log 2 g E- | = R o i)

Workspace Log

Message Plug-in Date v
@1 null argument: org.eclipse.ui.navigato 2008-12-11 11:13:09.341
3 Contributor com fiorano studio.commen. org.eclipse uiviews pre 2008-12-11 11:11:58.247
@ Plug-in 'com fiorano.studio.esb.orchestrz org.eclipse.ui 2008-12-11 11:09:35.680
= & Warnings while parsing the key bindings f org.eclipse.ui 2008-12-11 11:08:58.436
4 cannot bind to an undefined comman org.eclipse ui 2008-12-11 11:08:58 437
& Cannot bind to an undefined comman org.eclipse ui 2008-12-11 11:08:58.437

& rannnt hind tn an undafined camman ara eclinse i ZNNR8-17-11 11 :NR'5R 437 ()

Figure 2.1.6: Error Log view

2.1.7 Service Repository (Offline)

Fiorano eStudio provides a Service Repository view which is available under Window >
Show View > Fiorano > Service Repository. This shows a categorized list of all available
services. When the Fiorano eStudio is launched for the first time, the offline repository will
be loaded from the installer.

Services which are available only in the service repository can be used for composing
event processes in eStudio. Services can be imported from or exported to a file system or
a Fiorano ESB Server from the Service Repository.

Chapter 2: Offline Event Process Development Page 29

Fiorano eStudio User Guide

O Service Repository 53 =g

B4 g2a

:
b O Collaboration
- O DB

E DB4D

E= DEProc:4.0

% DEQuery4.0

i DEQueryOninput:4.0
b 2 Error
b O File
= 2 Flow

sge Aggregatord.0

5 Cached.0

% CER:4.0

=E DistributionService:4.0

" join:4.0

E Sleepd.0

& Timer4.0

& workList:4.0

FK workListManager4.0

=s: XMLSplitter4.0

F XMLVerfication:4.0
b O Moms

b 82 Performance

Figure 2.1.7: Service Repository

2.1.8 Project Explorer

The Project Explorer view lists all the projects in eStudio. The Project Explorer view is
available under Window > Show View > Project Explorer.

All the Event Process, Service and Mapper projects are shown in Project Explorer view.
Structure of the Event process is shown in Figure 2.1.8.

To use Version Control, corresponding plug-ins have to be added in drop-ins. If the drop-
ins are added, then the version control options will be available in the context menu of a
project in this view.

3 eropertes B&” "0
v = appl_ZA-1.0@EnterpriseServer m
P = config
B (= env
» = help
P [= schemas
I{E EventProcess.xml
1 bond_trading-L.0@EnterpriseServer
b = compositebc_demo-1.0@EnterpriseServer
107 database_replication-1.0@EnterpriseServer
b [=* Database Replication
C1 db_transaction_support-1.0@EnterpriseServer
11 eai_demo-L.0@Enter priseServer
b = event_process1-1.0
1 hospitality_service- L.O@EnterpriseServer
b =% Hospitality Service
1 mortgage_property_request_automation-L.0@EnterpriseServer
] order_entry-1.0@EnterpriseServer
1 portal_integration-1.0@EnterpriseServer T

Figure 2.1.8: Project Explorer

Chapter 2: Offline Event Process Development Page 30

Fiorano eStudio User Guide

The service projects are by default shown as closed projects. User can open a project by
right-clicking on a project and by selecting the Open Project option. For performance
reasons it is advised to close the service projects when they are not being used.

2.1.9 Service Descriptor Editor

Service can be edited using a Service Descriptor editor. To edit a service in the service
descriptor editor, right-click on the desired service in Service Palette or in Service
Repository and click the edit option from the context menu.

The properties of Service are divided into three categories:

e Overview — Contains general information about the Service like Name, GUID,
version, icon etc.

e Execution — Contains information about service ports, runtime arguments, launch
options and log configuration.

¢ Deployment — Contains information about service resources, dependencies and
general deployment information.

. Offline Event Process Development - .editServiceProjectliresources/ServiceDescriptor.xml - Eclipse Platform

File Edit MNavigate Search Project Tools Service Editor Bun Window Help

T FOffline Event.. >

I{E EventProcess3 & ServiceDescriptor.xml 53 = 8

=}
B Overview

[=

General Information Display

[0}
L

Name: chat Palette lcon: @ Browse.. &
= Version: 4.0 Display Icon @ Browse.
®] cun: chat

Category: Collaboration

Tool Tip: A Simple Chat Component

Description Metadata

Author: Fiorano Software Technologies Pvt. Ltd.
Creation Date: | 04-01-2005 12:00:00

Licensed

Overview | Execution Deployment

ki Selected Nothing

Figure 2.1.9: Service Descriptor Editor

Note: Changes made to the Service will be saved to the repository only after the editor
associated with the Service is closed.

Chapter 2: Offline Event Process Development Page 31

Fiorano eStudio User Guide

2.2 Event Processes

Event Processes are composite applications created as event-driven assemblies of service
components. They represent the orchestration of data flow across customized service-
components distributed across the ESB network. Event processes in Fiorano are designed
to connect disparate applications in a heterogeneously distributed SOA environment.

Fiorano eStudio enables intuitive visual configuration of all the elements of an event
process including the components of the process, the data flow or routes between
components, deployment, profile information, and layout. The event process metadata
contains all required information in XML format, which is stored in the repository.

2.2.1 Creating New Event Process

To create a new Event Process, perform the following steps:

1. Right-click on the Event Process Repository node and select Add Event
Process. The Customize Event Process dialog box appears.

ﬁ ii“l iiiﬁi I'“Ei ﬁ = O ||={3 Event Process1 52 L

(T

Event P Re J Pr
¥ B Event Process «" Add Event Process &l
¥ [= User Proces/

= Event Pt dig Add Sample Event Process

sl Open Event Process... ¥0
£21 Import Event Process
£21 Import Event Process (nStudio)

Refresh

& s BB

[Qq Service Repository &3 iy gy - O

Figure 2.2.1: Creating new Event Process

Chapter 2: Offline Event Process Development Page 32

Fiorano eStudio User Guide

2. Specify the name and category of the Event Process project and click Finish.
The specified Event Process appears under Event Process Repository node
of Event Process Repository view.

ene Customize Event Process

Create an Event Process Project

Create an Event Process project in the Workspace.

Project Name: Event Process2

Version: 1.0
Category: User Processes v
Repository: Offline Event Processes Repository

(Cancel) G—thh—) r

A

Figure 2.2.2: Customize Event process

3. To see the graphical view of an Event Process, double-click the event process
node, which opens the Fiorano Orchestration editor. For information on
composing an Event Process, see Chapter 5: Composing an Event Process.

2.2.2 Opening Sample Event Process

Few pre-configured sample event processes are shipped with the Fiorano installation. To
open a pre-configured sample event process, perform the following steps:

1. Right-click on the Event Process Repository node and select Add Sample
Event Process. The Add Sample Event Process dialog box appears.

SR eentprocessfopostony 8| D)o@ evencerocess 33|

e By

v 'EE Event Process Re———— —
v (= User Process Uim Add Event Process]

=g Event P " Add Sample Event Process

siz Open Event Process... 30
g1 Import Event Process
g1 Import Event Process (nStudio)

Refresh

Figure 2.2.3: Add Sample Event Processes

Chapter 2: Offline Event Process Development Page 33

Fiorano eStudio User Guide

2. Select the Event Process(s) to be opened by selecting the check box against
each entry and click Finish. The selected Event Process(s) appears under
Event Process Repository Node.

Add Sar-ﬂple Event Process

806

| Example Event Process

Create an Event Process project from one of the predefined examples

Examples:

Name C Select all 3
1 |Bond Trading

CompositeBC Demo E Deselect All 3

Database Replication

EC

DB Transaction Support
EAl Demo
Hospitality Service

I

Mortgage Property Request Automation
Order Entry
Portal Integration

I

I

Purchasing System

Retail Television

18]l

RetailAutomation_SportingGoods

Revenue Control Packet

1l

SalesForce_Integration
Simple Chat
WorkList Example

I

WorkList_Manager

ull
o

l':_ Cancel :;I f—ﬂwhh—)

' y,

Figure 2.2.4: Sample Event Processes

3. To see the graphical view of an Event Process, double-click the event process
node which opens in the Fiorano Orchestration editor.

Note: The samples that are added to the repository already will not be visible in the Add
Sample Event Process wizard.

2.2.3 Import and Export Event Processes

The following sections describe the procedure for exporting and importing an event
process.

2.2.3.1 Exporting an Event Process

Event Process can be exported to local disk or to a server in Offline Event Process
Development perspective.

Chapter 2: Offline Event Process Development Page 34

Fiorano eStudio User Guide

To export an Event Process onto a local disk, perform the following steps:

1. Right-click on the Event Process to be exported from the Event Process
Repository view and select Export from the menu (Figure 2.2.5). The Export
dialog box appears.

L 4 'EE Event Process Repository (1)
¥ [User Processes (1)

"[ﬁ Event Processl i
sz Open

M2 Delete

Save As...
—

Figure 2.2.5: Export Event Process to local disk

2. Specify the file name and location to save and click OK. The Event Process
project will be saved as a .zip file.

To export an Event Process to Server, perform the following steps:

1. Click on Export Event Process to Server icon located on Event Process
Repository view tool bar as shown in the figure 2.2.6. The Select Event
Process To Be Exported dialog box appears listing all the Event Processes in
offline repository and shows the Servers list specified in Fiorano Preferences.
For more information on configuring servers please refer to Chapter 12 Fiorano
Preferences.

'EE Event Process Repository 4 =0 W

B £y

v 'EE Event Process Repe Export Event Process to Server
¥ = User Processes (1) |
T Event Process 1

Figure 2.2.6: Export Event Process to Server

Chapter 2: Offline Event Process Development Page 35

Fiorano eStudio User Guide

2. Select the Event Process to be exported and the Server onto which is to be
exported and click OK.

Select Overwrite if exists option if the Event Process with same GUID is
already present in the Server.

& Select Event Processes To Be Exported L @E|

Selact an itemn to apen (7 = any character, * = any string): -
[4
Matching items:

oo sample
B{Jtest1z3

B{gtest?

Filter Criteria; (I Mame () GuidiVersion () Catequries (%) Any one
[Clovenure if exists w

of SAMPLE-1.0{Cabegories : User Processes)

) [concel

R

Figure 2.2.7: Select Event Process to be exported

2.2.3.2 Importing an Event Process
Event Process can be imported from the local disk and from the Server.

To import an Event Process from local disk, perform the following steps:

1. Right-click the Event Process Repository node and select Import Event
Process from the menu as shown in figure 2.2.8.

ﬁ ﬁi“' iiiﬁi i'ﬁﬁi ﬁ = O ||={g Event Process1 3

EY Eig

v 'ﬁ Event Process Repos =
i
v (= User Processes | g Add Event Process]

#{2 Event Proce dig Add Sample Event Process

sz Open Event Process... ®O

r 1 Import Event Process

t2g Import Event Process (nStudio)

Refresh

Figure 2.2.8: Import Event Process from local disc
2. Specify the location of Event Process zip file and click OK. Event Process
project will be imported to the Event Process Repository.
To import an Event Process from the Server, perform the following steps:

1. Click on Import Event Process from Server icon present on Event Process
Repository view tool bar as shown in the figure 2.2.9.

Chapter 2: Offline Event Process Development Page 36

Fiorano eStudio User Guide

=0ad

e By

v 'EE Event Process Reposil Import Event Proces

"[ﬁ Event Proc

s from Server

¥ [= User Processes (1)
3 Event Processl

Figure 2.2.9 Import Event Process from Server

Select a Sever dialog box appears listing a
Connection Preferences page.

& 7 () Select a Server

Server Local Enterprise Sen-'er|:i

(Cancel } E—OI(—)

Figure 2.2.10: Select Enterprise Server

Select the Server from which Event Process

Il servers specified in Fiorano ESB

has to be imported and click OK.

The Select Event Process To Be Imported dialog box appears which lists all

the Event processes deployed in the server

£ Select Event Processes To Be Imporied

as shown in Figure 2.2.11.

Selact an bem bo open (7 = any character, ® = any string):

i
Matching ibems:
{3 Bond Trading
B0 CompositeBC Dema
{3 Database Rephcation
"'[:'DB Transaction Support
B{QEAT Dema
-'[:Hospult',l Service
=2 Mortgage Property Request Automation
o2 crder Entry
{3 Portal Integration
g Purchasing System
#{3 fetalld tomation_SportingGoods
840 Rekai Television
{3 Raverus Cortrol Packst
{0 SalesForce_Integration
{0 Serple Chat
o] tast 1234
o Worklist_Manager
T T PR R T
Filter Criteria: (Name () Guid:¥ersion () Categories (%) Any one
[l overvrite if exists

®{g BOND_TRADING-1.0(Categories : Samples, Financial)

i

ok J[concd |

Figure 2.2.11: List of Event Process in server

3. Select the Event Process to be imported and click OK. Event Process project
will be imported to the Event Process Repository.

Chapter 2: Offline Event Process Development

Page 37

Fiorano eStudio User Guide

2.2.4 Importing nStudio Event Processes

Event Processes that are developed and exported from nStudio can be imported into

eStudio using the Import Event Process (nStudio) option present on the context menu of
Event Process Repository node.

SR Eenprocessfeposion B3]~ O G everprocess:

(T

v 5§ Event Procel dif Add Event Process 381
¥ = User Pr

o{2 Eue dig Add Sample Event Process

sz Open Event Process... ®O
g2 Import Event Process

1 Import Event Process (nStudio)

Refresh

Figure 2.2.12: Import nStudio Event Process

Selecting the import option opens an Import Wizard as shown in Figure 2.2.13.

= Import nStudio Flows x
Select the nStudio flows to be imported

(@ Click the Add button and select the files to be imported

File Name Location | Add ||E]

@ | Finish H Cancel

Figure 2.2.13: Import nStudio Flows

The Event Processes to be imported can be added to the table by clicking the Add button.

A file chooser dialog appears where the nStudio flows can be selected. Multiple files can
also be selected at once.

Chapter 2: Offline Event Process Development Page 38

Fiorano eStudio User Guide

To import all the Event Processes present in a particular folder, select the Add From
Folder option present in the drop-down button located on the right side of the add button.
All the supported flows present in the folder and all of its sub-folders will be added to the
table.

The state of the wizard after adding the flows is shown in Figure 2.2.14:

r Import nStudio Flows x
Select the nStudio flows to be imported
@ select files to be imported

Fle Name Location add ||+]
'O EVENT_PROCESS1_1.0.xml froot/Desktop/Flows/EVENT_PROCESS1_1.0.xml ' P
W EVENT_PROCESSZ_1.0.xml froot/Desktop/Flows/EVENT_PROCESSZ_1.0.xml —_—
O SIMPLECHAT_1.0.xml froot/Desktop/Flows/SIMPLECHAT 1.0.xmi Select Al |
[COMPOSITEBCDEMO1_1.0xml jroot/Desktop/Flows/COMPOSITEBCDEMO1_1.0.xml

[0 EventProcess.xmil froot/Desktop/Flows/Event Process.xmil

[DB_TRANSACTION_SUPPORT 1.0. froot/Desktop/Flows/SubFlows/DB_TRANSACTION_SUPPORT_1.0.xml

@ Cancel

Figure 2.2.14: Select nStudio flows to import

After adding the selected files to the table, the flows to be imported can be selected using
the check box against each entry present in the table. Click the Finish button to import
the selected flows to the current repository. If any of the selected flows already exist in the
repository, the user is prompted with a dialog box with the options to
overwrite/ignore/rename the flow. The imported flows can be viewed under the Event
Process Repository Node.

2.3 Service Repository (Offline Event Process Development)
Fiorano eStudio has an independent service repository in Offline Event Process
Development perspective, which enables services to be configured offline (without

connecting to the Enterprise Server).

The service repository can be viewed by opening the Service Repository view, which
displays categorized services as shown in Figure 2.3.1.

Chapter 2: Offline Event Process Development Page 39

Fiorano eStudio User Guide

O service Fepository &4 =g
By

F$

Bridges
Collaboration
DE

Errar

File

Flo

MOMs
Performance
Samples
Scripk
System Lib
TransFormation
kil

Web
WebService

R R R = B B = R 3 R e R = R B
OD0DO0O0000DODOD0DO0ODODDODD

Figure 2.3.1: Service repository

2.3.1 Deploying Services to Server

A service can be deployed to an Enterprise server by right-clicking the component in
Service Repository view and selecting Export Service to Server from the context menu.
The Export Service To Server dialog box appears as shown in Figure 2.3.2.

e Export Service To Server

Server configuration and dependencies

Server:

Local Enterprise Server

Select the dependent services, if any, which should be included in export:

0

T base64:4.0
> G{) BCCateway:4.0
> G{) dmlparser:4.0
» T jdbcd.0

Ty log4j:4.0

G{) xalan:4.0

—

[

—

OO0l

| Overwrite if exists

rd N
| elect Al |

(: Cancel } E—HH

Figure 2.3.2: Export service to server

The dependencies are shown in a tree format. This excludes the actual Service (which gets
exported by default). To export any dependencies of this Service, select the Dependency
and click Finish.

Chapter 2: Offline Event Process Development Page 40

Fiorano eStudio User Guide

If the Overwrite If Exists checkbox is selected, the services in the server will be over-
written by the one in the Service Repository, otherwise conflicting services will not be
export to the server.

2.3.2 Fetching Services from Server

1. The services present on server can be imported into the service repository by
selecting the Import from Server option as shown in Figure 2.3.3.

O Service Repository 57

=

o R R R

2 Bridges

B Collaboration
@ B
@ csChat:4.0
@ wbchat:4.0
@ woichat:4.0

O pe

B Error

2 File

£ Flow

0 moms

£ performance

= B
—

E4g
QA

|In'||:u:|rt Frarm Serverl

E4g

Figure 2.3.3: Import from Server option

This opens Import Service From Server dialog box as shown in Figure 2.3.4.

806

Import Service From Server

| Service Import

Select the Server

and the Services to import

Server: | Local Enterprise Server

- ~
%) (connect)

MName Id
Aggregator | Aggregator
BCCommon | BCCommon
BCEngine BCEngine
BCGateway BCGateway

BeanShell

BeanShell

BinaryFileRead BinaryFileReader

Version
4.0 |
i 0|
40 |
4.0

4.0 r
4.0 v

MUOROOOD

7] overwrite if exists

(Cancel) ‘—Hﬂdl% |

v

Figure 2.3.4: Import service from server

2.

Select the server from where services have to be imported and click the
Connect button. This displays all the available services in that server.

Select the services to be imported and click the Finish button to import the

service.

Chapter 2: Offline Event Process Development

Page 41

Fiorano eStudio User Guide

If the Overwrite If Exists checkbox is selected, service in the Service Repository will be
over-written by the one in the server, otherwise conflicting services are not imported from
the server.

2.3.3 Exporting Services to Local Disk
The Services in Service Repository can be exported to a local disk by right-clicking the

Service and selecting the Export Service To Local Disk option from the context menu.
This opens the Export Service To Local Disk dialog box as shown in Figure 2.3.5.

8eNe Export Service To Local Disk

Export location and dependencies

Export To:

fUsers/phanif/Desktop/chat_4.0.zip =
Select the dependent services, if any, which should be included in export:

> Q;, BCCommaon:4.0
b Y cpsi40
Q;, Jjms:4.0
» ¥ Swdio:4.0
» s TifosilavaRTL:4.0

Ooa0E

m
&
2]
=
g
R

(Cancel) (Finish)
Ai

Figure 2.3.5: Export service to Local Disk

You can choose the export location, by default only the selected service gets included in
the export. Select other services from the tree to be exported if required, and click the
Finish button to export the service.

2.3.4 Importing Services from Local disk

The components can be imported from the file system. This can be done by clicking the
Import From Local Disk button as shown in Figure 2.3.6.

O service Repository 57 =8

O Bridges k Y
= & Collabaoration Import From Local Disk,

@ csChat:4.0
@ wbchat:4.0
@ weChat:4.0

O pE

O Errar

O File

O Flow

0 MOMs

O performance

o]][]]

bl

Figure 2.3.6: Import from Local Disk button

Chapter 2: Offline Event Process Development Page 42

Fiorano eStudio User Guide

This opens the Import Services file selection dialog box with which the zip file containing

services on the disk is selected. Upon selection a dialog

box is shown in which the services

in the zip file are shown in the form of a dependency tree as shown in Figure 2.3.7.

& Import services

Service selection

Select the service and dependencies that have to be imported:
= []@&) chat:4.0

ﬂg. B Carnrmon: 4.0

1% cpsi40

1% jms:4.0

[1%% studio:4.0

(1% TifosilavaRTL:4.0

[] owerwrite i exists

=

Finish

] [Cancel

Figure 2.3.7: Import services dialog box

Components that are already present are labeled in red,

repository are labeled in black.

and those not present in the

If the Overwrite If Exists checkbox is selected, service in the service repository will be
over written by the one in the zip file, otherwise conflicting services are not imported from

the local disk.

Chapter 3: Online Event Process
Development Perspective

To open the Online Event Process Development perspective, perform the following steps:

1.

Click Windows on the menu bar, select Open Perspective and click on Others..

option from the drop-down menu. Or click the Open Perspective button from the
shortcut bar and select Other... from the drop-down menu. The Open Perspective

dialog box appears.

Select the Online Event Process Development to
OK button.

open online perspective. Click the

Chapter 3: Online Event Process Development Perspective

Page 43

Fiorano eStudio User

Guide

Online perspective contains all the views and editors required for online application
development. During online Event Process development, event process development can
be done after logging into the Enterprise Server.

After switching onto Online Event Process Development mode, select the Enterprise Server

node, right-click and select Login to login into the Enterprise Server.

_’fﬁ EnterpriseSery, -

Logout

Dupli

cate

¥m Delete

Figure 3.1.1:Enterprise Server node

By default the configurations of the Enterprise Server running locally is set on the

Enterprise Server node. These can be changed from the properties view if required.

Each time during login, eStudio fetches the information of Services, Event Processes and
Peer Servers from the Enterprise Server and populates the online repository. The default
location of the online repository for a particular Enterprise Server is

$FIORANO_HOME/runtimedata/eStudio/workspace/.repositories/Online/<Enterprise Server

name=>. Screenshot of the Online Event Process Development mode is shown in Figure

l @ eStudio File Edit View Navigate Search Tools Run Window Help . 4) EF@5% Mon 10:30PM Phani @ @
ene eStudio =
|t Hacror |- e]f | |HoEE|@ ook 7] -EFESEO QL
£ @ Online Event Process Development (%) Offline Event Process Development
|5\ server Explorer 2 m¥=8 W = O || & Service Palerte &3 B ~—0
v F EnterpriseServer [Select
¥ B8 Event Process Repository (19) § Route
» (= Samples (17)
¥ (= User Processes (2) (= Bridges
={a event_procesé1 (= Collaboration
_ {3 Event Process1 =08
¥ i Peer Repository
> & fps (= Error
» & fps1 [File
(= Flow,
(= MOMs
e EE——T
routel————»n -/_-E (= Performance
; ; F .- =0
@y Service Repository 33 | (% Feeder] o = samples
» 2 Bridges o scrint
» 2 Collaboration
» O D8 = Transformation
» P Error (il
» O File L (= Web
> & Flow 3 (= WebService
» £ moms 1
[roblems [Error Log [B Console 52 [& Fiorano Debugger 5 BB | % B £+ = B2 properties 52 =g
Orchestration —
[@1/Mar/2010 22:30:35][Execution Info] Peer 'fpsi’ available for Enterprise Server : Entery || General Name: Event Process1

Application Context

Environment Properties | GUIC

Version:

Categories
™ Cache Component
Description

Long Description

M

¢

EVENT_PROCESS1

1.0

User Processes

Figure 3.1.2: Online Event Process Development perspective

The Event Process Repository node contains a tree structure of various Event Processes in
the Enterprise Server.

The Peer Repository node contains the information of Peers connected to the Enterprise

Server.

Chapter 3: Online Event Process Development Perspective

Page 44

Fiorano eStudio User Guide

3.1 Fiorano Views

All the views described in Offline Event Process Development mode are available in Online
mode. There are additional views specific to Online mode. These views are described in
this section.

3.1.1 Server Explorer

The Server Explorer view shows the Enterprise servers, which contains Event Process
Repository and Peer Repository nodes.

The Server Explorer view is available under Window > Show View > Fiorano > Server
Explorer.

The Event Process repository is centrally stored in the Enterprise Server. The Enterprise
Server provides API access to the event processes such as to save, view, export, launch,
debug, stop, and similar actions as required. The Fiorano eStudio provides an easy-to-use
GUI to manage event processes. The Peer Repository shows the peer servers connected to
the Enterprise Server.

[, server Explorer £3 =0
= jf‘_ Enterprise Server
o BE Ewvent Process Repostory (18)
~ E& Samples (17)
I (= Financial (2)
= Inventory (3)
= Mortgage (1)
= Portals (1)
(2= Retail (2)
= SalesForce (1]
= Travel (1)
(2= WorkFlow (2)
I[E CompositeBC Demo
l[': Database Replication
I[E DB Transaction Support
o5 Simple Chat
P = User Processes (1)

v v vV ¥ v V7

I 7 Peer Repository
jf(_, Enterprise Server_1

Figure 3.1.3: Server Explorer

3.1.2 Fiorano Debugger View

The Fiorano Debugger view shows the list of routes on which debugger is enabled and
messages trapped within each route. This gives users the ability to take action on debug
message.

Chapter 3: Online Event Process Development Perspective Page 45

Fiorano eStudio User Guide

¢ eraniems |) rror o 5 consote -0

Breakpoints: Messages:
(b)) (&) (&) (2) (=) (@) (=2) (W)
route2
B RS

{Tenl | Application Context)

<ChatMessage><Sender><Name>FioranoESE Demo< /Name> <Email>fesb@fiorano.com</
Email> < /Sender><Message>test< /Message></ChatMessage>

Figure 3.1.4: Fiorano Debugger view

3.2 Service Repository (Online Event Process Development)

In Online Event Process Development perspective, the services present in the connected
enterprise server are shown in the service repository.

The service repository can be viewed by opening the Service Repository. This view which
display the categorized services as shown in Figure 3.2.1.

O service Fepository &4 = O
\-.u o

Bridges

Collaboration

DE

Errar

File

Flow

MOMs

Performance

Samples

Scripk

System Lib

TransFormation

1kl

Web

WebService

R R e sy R O
boboooooooooOOOD

Figure 3.2.1: service repository (Online Event Process Development perspective)

3.2.1 Exporting Services to Local Disk

The Services in Service Repository can be exported to local disk by right-clicking the
service and selecting Export to Local disk option from context menu. This opens a dialog
box as shown in Figure 3.2.2.

Chapter 3: Online Event Process Development Perspective Page 46

Fiorano eStudio User Guide

e Export Service To Local Disk

Export location and dependencies

Export To:

fUsersfphani/Desktop/chat_4.0.zip

Select the dependent services, if any, which should be included in export:

E | 2 ﬂ'g. BCCommon:4.0

z [2 Q{s cps:4.0
z ﬂ'g. jms:4.0

b ™ Studio:4.0
1 » *, TifosjavaRTL4.0

ra Y
| elect Al) w

(Cancel) (Finish 3

A

Figure 3.2.2: Export service to Local Disk

You can choose the export location by clicking the Browse button and specifying the
location to be exported. By default, the selected service gets included in the export. To
export Dependent services have to be selected from the tree as shown in Figure 3.2.2.

3.2.2 Importing Services from Local disk

Components can be imported from the file system. This can be done by clicking the

Import From Local Disk button as shown in Figure 3.2.3.

O Semvice Repository 25 = B
L =
= .Bridges Iﬁ ~
sl EJBAdapter:4.0 [1mport From Local Disk|
Y FTPGeL:4.0

%3 FTPPUL:4.D
ﬁ HL7Receiver:4.0
B HL7Sender:4.0
A Twhay:4.0
£ popP3i4.0
=7 SAPRI:4.0 B
¥ SapR3Manitar:4.0
" sMsBridge:4.0
B9 SMTP:4.0

£ Collaboration

O o

© Error

Lo B0

ARN R R e

b

Figure 3.2.3: Import from Local Disk

Chapter 3: Online Event Process Development Perspective

Page 47

Fiorano eStudio User Guide

This opens a file selection dialog box with which the zip file containing services on the disk
is then selected. Upon selection, the Import services dialog box appears where the
services in the zip file are shown in the form of a dependency tree, as shown in Figure
3.2.4.

& Import services |Z| E'E'

Service selection

Select the service and dependencies that have to be imported:
= []@&) chat:4.0
ﬂg. B Carnrmon: 4.0
1% cpsi40
Dﬂg jms:4,0
[1%% studio:4.0
(1% TifosilavaRTL:4.0

[] owerwrite i exists

(2 Finish] [Cancel

Figure 3.2.4: Import services dialog

Note: Components that are already present are labeled in red, and those not present in
the repository are labeled in black.

If the Overwrite If Exists checkbox is selected, the service in the service repository will
be over written by the one in the zip file, otherwise conflicting services are not imported
from the local disk.

Chapter 3: Online Event Process Development Perspective Page 48

Fiorano eStudio User Guide

Chapter 4. Mapper Perspective

The eStudio incorporates Eclipse based Fiorano eMapper as a separate perspective. To
open Fiorano eMapper, perform the following steps:

1. Click the Open Perspective 1 button from the shortcut bar on the left-hand side
of the Workbench window.

2. Select Other... from the drop-down menu.

3. Select the eMapper Perspective to open Fiorano perspective. Click OK button.
The eMapper perspective containing Project Explorer and Funclet View appears.

More information on eMapper is present in Chapter 10 eMapper.

Chapter 4: Mapper Perspective Page 49

Fiorano eStudio User Guide

Chapter 5: Composing Event
Processes

Composition of Event Processes is based on component-based programming model. An
Event Process is composed of services (also known as Business Components) linked to
each other by Data Routes.

The Event processes are designed by drag-drop-connect function of service components.
The components are customized by configuration rather than by custom code. The routes
between components are drawn by visually connecting the component ports. Every
component instance in the flow can be configured so that it can be deployed on different
ESB network nodes.

The following sections describe how to compose an Event Process, adding remote service
instances and adding external Event Processes. The sample Event Process illustrated below
connects Fiorano Chat Business Components with bidirectional Event Routes. The two
instances will be configured to run on different nodes in the network.

5.1 Adding Components

To add components, perform the following steps:

1. Open the Service Palette and click the Category tab (Collaboration)
corresponding to the service.

2. Drag and drop the business component icon (Chat) onto the Event Process

editor.

Each icon in the Event Process editor represents an instance of the service. By default, the
name of each instance of the service is the service GUID followed by the instance ID
count. The Service instances can be renamed if required.

g LG

[~ Bridges
= Collaboration

(&) chat

(= DB

Figure 5.1.1: Adding components

Chapter 5: Composing Event Processes Page 50

Fiorano eStudio User Guide

5.2 Connecting Routes

For the data to flow between two service instances, they need to be linked through Event
Routes. The Route represents the Brokered Peer to Peer data Route.

The Event Routes are unidirectional and always originate at output Event Port of the
source service and end at input Event Port of the target service.

Connect the Route from the output channel (OUT_PORT) of Chatl service icon to the input
channel (IN_PORT) of the Chat2 service icon and vice versa, as shown in the Figure 5.2.1.
By default, each Route is identified by an Event Route name such as; Routel and Route2.
The suffix represents the instance count of the Route. You can edit the Route name using
the Properties window.

|

routed

I

chat2 chatl

Figure 5.2.1: Connecting components through routes
5.3 Configuring Components

All the services contain configuration information that can be provided in the Custom
Property Sheet (CPS) dialog.

To review the custom property sheet associated with any component, double-click the
component in the event process editor.

A Sample Database component CPS is shown below, containing all the details of the
Database connection, SQL, and so on. Sample CPS is shown in Figure 5.3.1.

Chapter 5: Composing Event Processes Page 51

Fiorano eStudio User Guide

806 DB1 [DB:4.0]

Managed Connection Factory
(i) Configuration is Valid

D Show Expert Properties

Database " Oracle H-]

Driver oracle.jdbc.driver.OracleDriver 5

URL jdbcioracle:thin@<hosthame>:152 L:orcl B

User name scott

Password ssnne

Connection Properties Click ... to edit =
Auto Commit B

Connection Pool Params Click ... to edit P

)
‘Query timeout (in seconds) 60 E} second(s)
— .
Fetch size 200 = fetch size
4}
Connection ping sql select * from dual
Enable |DBC Driver Logging B
Description

Place cursor on a property to view its description

< Back Finish (Cancel) (_- Save and Close)

Figure 5.3.1: DB Custom Property Sheet (CPS)

During configuration, clicking the Test button provided in the CPS can also test the

configuration.

Components configurations are saved in EventProcess.xml file. This file is in a simple XML

format.

Service instances contain configuration information that is used for execution at runtime.

The data flows from service instances through connected routes.

Chapter 5: Composing Event Processes

Page 52

Fiorano eStudio User Guide

5.4 Configuring Component Properties

Apart from the component specific properties that can be configured using the CPS, there
is a set of properties associated with every component. These properties are shown in

properties view when a component is selected. The properties are categorized into various
sections as shown in Figure 5.4.1

| FIOW
[~ MOMs
outel—————»n (= Performance
CBR1 = Samples
[== Script
== Transformation a
L il 1
E Properties 53 l ¥ =g
|
General Mame: CBR1
Deployment |
T —— Guid: CBR =
Log Manager Version: 4.0 v
Log Module Instances
Runtime Arguments Short Description: The CBR service filters data based on the an XPATH selection criteria.]

Long Description:

The CBR service allows data filtering based on the given XPATH selection criteria. This
service accepts XML data on the input channel, performs XPATH selection and writes
data to the appropriate output port.

Figure 5.4.1: Component properties

General: Contains the general information of the service likeName, GUID, Version Short
Description, and Long Description.

Deployment: Contains the deployment information of the component. The Peer Server
node on which the component has to be launched can be configured here.

Clicking on ellipsis button against the Nodes property opens the Select Nodes dialog box
where the Peer Server can be selected.

=l pProperties 23 l

General | Nodes: fpsl

Deployment

Exacution | Cache Component: |Yes i
8en Select Nodes

Log Manager |

Log Module Instances | Available Nodes Selected Nodes

Runtime Arguments &1 fps [fpsl

Up

-
L

Chapter 5: Composing Event Processes

Fiorano eStudio User Guide

Figure 5.4.2: Component ports

Based on the selected Peer Server, the component color changes to give a visual clue as to
which Peer the component is configured to launch. As shown in Figure 5.4.3, the Feeder
component is configured to launch on fps Peer and CBR is configured to launch on Peer
fps1.

Feederl

Figure 5.4.3: Components configured to launch on different Peer servers

By default, when a Peer Server is added to an Enterprise Server, a unique color is chosen.
The user can customize this color using colors from Peer properties by selecting the Peer
Server in Peer Repository.

A property called Cache component specifies whether component resources have to be re-
fetched each time when Connectivity and Resource Check (CRC) is done. When Cache
Component is set to yes, the resources are fetched for the first time when CRC is done.
This property is set to No only when the component resources have been updated.

This property is also available at the Event Process level.

Execution: The Execution section contains information about the launch type, connection
factory properties, and so on. Components can be launched in Separate Process (separate
JVM for each service instance), inMemory (launches in Peer Server JVM), Manual (manual
launch mode where the user has to launch the service instance manually) and None (no
launch mode) modes.

Log Manager: Contains logging information like the type of Logger Handler, log directory,
and so on.

Log Module Instances: Log levels for various loggers available for the service can be
configured in this section.

By default the log level is set to SEVERE. This can be changed to the desired level. For
example, the log level can be set to CONFIG when working on the Development
environment.

Runtime Arguments: Contains the information about the runtime arguments for the
service.

JVM_PARAMS section contains the JVM parameters that are used while launching the
component. Whenever a change is made in JVM PARAMS section, the Update all Service
Instances dialog box appears asking whether the change has to be updated for all the
service instances in all Event Process having the same JVM PARAMS value.

Chapter 5: Composing Event Processes Page 54

Fiorano eStudio User Guide

8O0 Update all Service Instances

Do you wish to update Service Instances from all the Event Process with Jvm
Arguments value ' -DLOG_TO_STREAM=true -Xrs' to ' —-DLOG_TO_STREAM=true -
¥rs -Xmx128m'? Selecting no will update the Jvm Arguments value of currently
selected Service Instance(s).

Figure 5.4.4: Update all Service Instances dialog

If No option is selected, then it updates to the current service instance. If Yes option is
selected, a dialog listing the service instances with same JVM PARAMS value appears and
the required service instances can be selected for an update.

‘|| Select Service Instances
[w=SAPPL 22
] % chatl
] % chatz
] %% DBL

> "[‘: Event Processl

{ Cancel) 6—“—%

Figure 5.4.5: Select Service Instances

5.5 Adding Remote Service Instance

The Fiorano SOA Platform allows you to compose an Event Process with Business
Component instances from other Event Processes. The Remote Service instance is one of
the available options for communication between different event processes. If the producer
component is in a calling event process, then the producer component needs to send
messages to the consumer component in a called event process, then a remote instance of
the consumer component can be used in the calling event process.

The imported service instance is the reference to the service instance in the parent Event
Process. Any changes made to the imported service instance in the parent Event Process
are reflected in the current Event Process. Current Event process can be launched only
when the Event Process of the remote service instance is running.

To add a remote service instance, perform the following steps:

1. Click the Insert Element into Event Process o icon and select Insert
Remote Service instance option (or) right-click on orchestration editor and
select Insert Remote Service instance.

L REE @ -

Insert Service Inskance

Insert Remote Service Instance

Insert Event Process

Chapter 5: Composing Event Processes Page 55

Fiorano eStudio User Guide

Figure 5.5.1: Insert Remote Service Instance option
The Select Remote Service Instance wizard starts, as shown in Figure 5.5.2.

This dialog box lists all the Event Processes and their service instances.

ene Select Remote Service Instance

type filter text

P [Bond Trading pr
b (= CompositeBC Demo
¥ [= Database Replication
MAppConext_OracleDut
8 cam
E CRM_AppContext
& Oracleln
Q OraclelnResult
E OracleQut
& sqLServerin
Q SQLserverinResult
B [DB Transaction Support
b = EAl Demo
b = Hospitality Service
B [Mortgage Property Request Automation
b = Order Entry
b (= Portal Integration
B = Purchasing System &/
P = RetailAutomation_SportingGoods
P [= Retail Television
B [Revenue Control Packet 1
B = SalesForce_Integration

! £ Cancel 3 { oK }

Figure 5.5.2: Select Remote Service Instance dialog

2. Select the service instance you want to add as Remote Service Instance and click
the OK button.

The Remote service is added to your Event Process with a satellite like icon in the
component as shown in the Figure 5.5.3.

DATABASE_RE
PLICATION.Or
aclelnl

Figure 5.5.3: Remote service added

A Remote Service instance can be used in a similar manner to normal a service instance.
Routes can be created between other service instances in the Event Process and the ports
of the Remote Service instance.

Note: While using Remote Service instance with Event Process Life Cycle Management
(EPLCM), and if a component is running in a configured mode (say Testing) in the parent
Event Process and if this component is used as a Remote Service instance in a caller Event
Process, then changing the mode in the caller Event Process will not have any effect. It still
uses the mode used in parent Event Process.

Chapter 5: Composing Event Processes Page 56

Fiorano eStudio User Guide

5.6 Adding External Event Process (Subflow)

Subflow concept is used to ease the Event Process development when composing large
Event Processes. When an Event Process B is copied into another Event Process A, all the
data (service instances, routes etc) in B is copied and shown as a single entity (icon) in A.
By default, the icon takes the name of the added Event Process (that is, B). When we
double-click on the icon it shows all the service instances/routes and so on. The ports of
the inserted Event Process B can be exposed for communication with Event Process A.

The External Event Process is explained with an example. Steps to add EAI_DEMO Event
Process in Simple Chat Event Process are explained below:

1. Open an Event process (Simple Chat) and click the Insert Element into Event

Process icon and select the Insert Event Process option from the drop-
down list (or) right-click on the Orchestration Editor and select Insert Event
Process.

LR EE O
Insert Service Instance
Insert Remote Service Instance

Insert Event Pror

Figure 5.6.1: Insert Event Process option

2. The Select Event Process dialog box appears as shown in Figure 5.6.2. Select
the Event Process from the list and click the OK button.

808 Select Event Process

Select an item to open (7 = any character, * = any string): hd

?

Matching items:

oD APPL_122 -~
"[E Bond Trading

"[E CompositeBC Demo
"[: Database Replication
"[E DB Transaction Support
=g EAl Demo

"[': Hospitality Service

"[‘: Mortgage Property Request Automation .
"[‘: Order Entry

"[E Portal Integration

"[: Purchasing System

"[E RetailAutomation_SportingGoods

M2 Retall Television

. o e Y P 11 - " -
Filter Criteria: [_JMame [_) Guid:Version (_) Categories @Aﬂy one

|"[‘: EAI_DEMO-1.0{Categaories : Samples.lnventory) |

li Cancel) (oK }
A

Figure 5.6.2: Select Event Process dialog

3. The Event Process instance representation appears on the Event Process editor,
as shown in Figure 5.6.3.

Chapter 5: Composing Event Processes Page 57

Fiorano eStudio User Guide

o rsimple chat & |

/ﬂj

route].
chatz

route2 B
chatl ‘

EAl Demo

Figure 5.6.3: Inserted Event process

Note: This concept is different compared to the Remote Service Instance. In the Remote
Service Instance, remote instance will refer to the original instance but in this case a copy
of the selected Event Process is made and used in the Event Process. This is basically a
visual representation that makes the composition easier when working with large event

processes.
4. Double clicking the EAlI Demo icon shows all the service instances and routes
inside as shown in Figure 5.6.4.

o sSimple Chat - EAIDemo 5% |

/o

ejected_Orde
Rejection_Ewvent rs

c_m_m_..u.gj<

Acceptance_Event

n
\—H] C—Mail_Event—m»] Q

Xslt_Tranform SMTP_Bridge

Figure 5.6.4: Component ports

By default, no input and output ports are shown for an inserted Event Process instance.
The user can expose the required input and output ports of service instances present in
the Event Process instance from the Properties tab as shown in Figure 5.6.5.

Chapter 5: Composing Event Processes Page 58

Fiorano eStudio User Guide

.~ Samples
== Seript
o| g4 |o :
== Transformation
EAl Dermo [Util
(= Web
= WebService
* 0O || E properties £2 =0
|
General MName: EAl Demao
Description :
Components:
Service Instances: Ports:
Rejected_Orders M n_PoORT
ERP ™ ouT_poRT
CRM "] ON_EXCEPTION
Xslt_Tranform
SMTP_Bridge

Figure 5.6.5: Properties tab

5. Routes can be connected between other service instances in the Event process and
subsequently inserted into the Event Process. This allows the connected service
instances to communicate with each other.

5.7 Document Tracking

A workflow in Fiorano terminology consists of an entry point, an intermediary points and
an end point. The entry and intermediary points are defined as Workflow Items and the
end point is defined as a Workflow End.

To track the documents going through the Service Instances, document tracking can be
enabled on service instance ports. If tracking is enabled, the documents that pass through
that port are stored in a database. By default these documents are stored in the H2
database that runs inside the Enterprise Server. It is recommended to use an external
database for document tracking. An external database can be configured for document
tracking by providing the database configuration details in sbwdb.cfg file located in the
Enterprise Server profile.

A workflow starts with Workflow Items and ends at Workflow End. A workflow is defined
within an Event Process scope through which a large number of documents pass.
Whenever a new document enters into the workflow, a new workflow instance is
generated. Each workflow instance has a unique ID assigned by the Fiorano SOA
environment. In a state enabled workflow, all the states that these workflow instances
traverse are stored for tracking purposes.

Each workflow instance contains information about documents that pass through. Each
time a document passes through a trackable state, a state event is generated and the
document is given a new Document ID by that trackable state. Information related to the
documents can be viewed in the Fiorano Web Console.

eStudio provides a state-based workflow view that enables tracking and monitoring of
documents from one state to another.

Chapter 5: Composing Event Processes Page 59

Fiorano eStudio User Guide

To enable document tracking in an Event Process, perform the following steps:

1. Select the Service Instance Port on which document tracking has to be enabled.
The Properties pane appears (if the Properties pane does not appear, go to
Window->Show View-> Others-> and select Properties).

2. To enable the Enable Document Tracking, select Workflow Item/Workflow
End option in the Workflow property drop-down list as shown in Figure 5.7.1.

= Script
&—rputel—»O0 C—route2—eO o] = Transformation
- (= Util @
Feederl SMTP1 Displayl %3, LECO M pressmcmmmm
B Decryption
 (FEiDiclll- T
= Web
[WebService
Bl | e B £+ = 0= Properties 52 = = F
|
General Name: OUT_PORT
IMS Destination
- Workflow: Workflow Item
Messaging No WorkFlow
Workflow Data Type:
Workflow End

Figure 5.7.1: Enabling Document Tracking

3. In the sample Event Process shown below, the workflow starts at Feeder Output
port. The SMTP Output port is marked as an intermediary point and the workflow
ends at Display Input port.

Feederl SMTP1 Displayl

Figure 5.7.2: Event Process with Document Tracking enabled

4. Workflow items are filled in with the color green and Workflow End is shown in the
color red.

In the Event Process, the state tracking is enabled for Feederl output port, SMTP1 output
port and Displayl input port. All the messages which pass through these are tracked.

The default Workflow data type is set to Message Body. This implies that only the JMS
message body is tracked. This can be configured by clicking on ellipsis button against the
Workflow Data Type property to track Message Header, Message Body, Attachments,
Application Context or all of these items.

Chapter 5: Composing Event Processes Page 60

Fiorano eStudio User Guide

[NGNS Doc Properties Dialog

Select the item(s) which are applicable:

All

Message Header

| —

E Message Body

| | Attachments

| —

| | Application Context

| —

l;: Cancel :,l (OK

Figure 5.7.3: Document Tracking Properties

5.8 Defining Route Transformations

In addition to XSLT component, transformations can also be defined on routes having
schema mismatch. In the example shown below, there is a schema mismatch between
Feeder output port and CBR input port and hence the route is shown as dotted line.

A route transformation can be defined in two ways, defining a Mapper Project or by
providing a Custom XSL. Defining a Mapper Project allows the user to define mappings
between the source and target port schema using Fiorano eMapper.

To define the transformation using eMapper, perform the following steps

1. Right-click on the route and select Mapper Project option in Configure

Transformation sub menu.

Chapter 5: Composing Event Processes

Page 61

Fiorano eStudio User Guide

r|-.a-r--.-l-

Edit

{:-..--’P-H

Feederl

[C] Properties
< Undao Move

Fun As
Debug As
Team
Compare With
Replace ‘With

Configure Transformation

Chrl+alt+y, P

- - - - - |

Cuskorm w50

Figure 5.8.1: Route Transformation

Mapper Project

2. Route transformation editor will be opened which automatically picks up the

schemas on connected ports.
Transformations can be defined on the schemas by connecting elements from input
structure with output structure elements. Additional computations on elements can
also be made by using functions present in Funclet view.

"[E *Event Processl *) =0

B +-x B +-x

¥ <F» Application-Context ¥ <R¥ IN_PORT

[] context
v <R> OUT_PORT
¥ [E] BookStore
w =1 [ONE MANY]
L J El Book

[€] Title
[E] Author———— e
El Date
[€] 15BN
[€] publisher

Figure 5.8.2: Route transformation editor

v [e] YZkFamilyReunion
v [E] Participants
¥ =1 [ONE MANY]
— [g] Name

Note: While the editor is open for defining transformations, the Event Process
editor will be in non-editable state to prevent further changes till the
transformation editor is closed. This becomes editable when the transformation
editor is closed.

Once the transformation is defined and closed, transformation will be set on the
route and the route is shown as bold.

Chapter 5: Composing Event Processes

Page 62

Fiorano eStudio User Guide

O_'_'_‘_"Dutﬂl—'—-—-—-u el

B D
Feederl CERL

Figure 5.8.3: Route with transformation set
To provide a Custom XSL, perform the following steps:

1. Right-click on the route and select Custom XSL from Configure Transformation
menu.

2. The Custom XSL Dialog is opened. Provide the XSL in the first tab and XSL for the
JMS Message (if any) in the second tab. Click OK to set the transformation on the
route. The XSLT Engine to be used (Xalan / Saxon) can be specified from the drop-
down in the top right corner.

3. The XSL provided can be tested by clicking the Test button.

| Custom XSL E
MetaData A5LT Engine

HSL | aMs waL

=g

< 7xml version="1.0" encoding="JTF-3"? =
<wsliskylesheet wersion="1.0" xmins:math="htktp: fewxslk, arafmath" xminscalan="htkp: el apache, org)xsk”
wmlns; sek="http: [fexslk, orglsets” xmins:java="http: ffxml, apache, org sl java"”
wrnlns xsi="hkbps v w3, org/ 2001 [2MLSchema-instance” xmins: bxslt="http: /xml.apache. . orgfxslt"
wmins:datetime="http:flexslt, org/dates-and-times" xmins: xsl="http: e, w3, org)f 1999 %50 Transform”
exclude-result-prefixes="<alan java lxslt" xmins:ins3="http: /vy, books,org”
wmins:nsd="htkp: /e, w3 org/2001 fXMLSCchema" xmins:ns1="http: v, Fiorano, comFesh) activits /SMTP fsmtp/in®
wmilns;dateConversion="gxt1" xmins:myext="extz" xmins:strings="gxt3" exkension-element-prefixes="datetime set
math dateConversion myext strings" =
«wshoukput method="xrml" indent="rn" encading="UTF-3" xalan:indent-amounk="2"
amit-xrl-declaration="no" = < sl oukpuk =
<wslivariable name="document" select="}"" = <xsl:variable =
<wslivariable name="document_OUT_PORT" select="document{"OUT_PORTY =< fxslvariable =
<wslikemplate match=""=
<ns3:BookStore =
<ns3:Book:>
<ns3:Title =
«wwslivalle-of seleck="¢document_OUT_PORT/ns1:EmailfSubject” =< fxslhvalug-of =
<Ins3iTikle =
<ns3Author =
<wslivalle-of seleck="¢docurment_OUT_PORT ns1:Email/From” =< fxshvalug-of =
< fns3Author =
«<ns3:Publisher =
<wslivalle-of select="¢document_OUT_PORTns1:EmailHeadersiHeader/i@value" = < sl valug-of =
<ins3:Publisher =
< [ns3iBaooks
</ns3:Bookstore =
sl template =
< uslistylesheat |

Test] [4] [Cancel

Figure 5.8.4: Custom XSL Dialog

Chapter 5: Composing Event Processes Page 63

Fiorano eStudio User Guide

The transformation defined on route is executed inside the Peer server. So it is advised to
not to define complex mappings (involving huge schemas and mappings) using Route
Transformations since it may affect the Peer server performance. For complex
transformations XSLT component can be used.

The transformation defined on route can be cleared by selecting Clear Transformation
option in the right-click menu option on the route.

Route transformation can be changed on the route at both configuration time and runtime.
During runtime if the transformation is changed, the changes are automatically deployed
to the server. The user need not explicitly synchronize the event process for the changes
to take effect.

5.9 Configuring Selectors on Routes

eStudio allows you to define Selectors for the data flow through an event route. Take an
example of an Event Process containing two instances of a Chat service and an instance of
a Display connected through routes as shown in Figure 5.9.1.

P

route3

chatl
>—.E| Q o0—
routed
@D o Displayl
routel

chat2

Figure 5.9.1: Out-port of chatl and chat 2 to display in-port, out-port of display to in-port of
Chatl and chat2
In the above event process, the event routes exist as defined below:
e Routel: Connects OUT_PORT of Displayl to IN_PORT of Chat2
e Route2: Connects OUT_PORT of Displayl to IN_PORT of Chatl
¢ Route3: Connects OUT_PORT of Chatl to IN_PORT of Displayl
¢ Route4: Connects OUT_PORT of Chat2 to IN_PORT of Displayl
When the Event Process is launched, if a message is sent from Chatl component, it is

received by Display component and the message is sent back to both Chatl and Chat2
components from Display output port.

Now, let’s define conditional data flow from the Display business component instance.
Assume that Displayl has to send only those messages on Routel which are sent from
Chat2. Similar conditions should also apply to Chatl that it should also receive only those
messages that it sends to Display1l.

To define conditional data flow through routel, perform the following steps:

1. Select Route 1, the properties of this route is displayed in the Properties tab.

Chapter 5: Composing Event Processes Page 64

Fiorano eStudio User Guide

2. In Selectors tab, choose the option chat2 from Sender properties as shown in

Figure 5.9.2.
El properties 3@] = =0
|
General Sender: chat2 _
= <NONE> Add a new Sender Selector
Messagin ,
_Messaging |y, chael -

Selectors

Displayl

Figure 5.9.2: Configuring Selectors on route

This ensures that data sent only by Chat2 will travel through this route. Similarly, set this
value to Chatl for Route2. This ascertains conditional flow of data. After the changes, if
the event process is launched, messages sent by Chatl are received only by Chatl and
messages sent by Chat2 are received only by Chat2.

Apart from Sender selector, the JMS selector can also be defined which checks for a
particular value for a JMS message property and routes the message.

5.10 Configuring Application Context

There are times when a target Event Port needs information that was produced by a
service instance that occurred earlier in the workflow. Consider an event process
representing a ten-step business process. Each step is implemented using a service
instance. By using application context, a service instance representing the tenth step in
the process can use the information generated by the service instance in the second step.

Application context is set as a JMS Message Property on the message and is available
throughout the function.
To define Application Context for an application, perform the following steps:

1. In the Event Process project, click on the Orchestration Editor and open the
Properties view.

2. Click the Application Context tab in the Properties view.

3. To define an Application Context for the Event Process, enable the Application
Context option.

4. Select DTD/XSD option and provide the schema content.
5. Click the Save Content button to save the changes.

6. Select root element from the list of available roots in the Root drop-down list. Now
the application context schema is defined for the Event Process.

Chapter 5: Composing Event Processes Page 65

Fiorano eStudio User Guide

ii ﬁ = =
General i gApplication Context
Application Context Value: —]
Environment Properties ':.\-’ OTD a XSD
Schema: <?xml version="1.0"7> -~
<xs5d:schema xmins:xsd="http:/ /www.w3.0rg/2001/XMLSchema”
targetNamespace="http: //www.binary.org"
Con;:ent clalf-S-ch ér.na pw. blnaw:o_rg'_
e ———————— | s [V =V L =T
<x5d:element name="binary-string">
<xsd:complexType>
<xs5d:choice minOccurs="0" maxOccurs="unbounded”>
<xs5d:element name="zero" type="xsd:unsignedByte" fixed="0"/>
<xsd:element name="one" type="xsd:unsignedByte" fixed="1"/> &
</xsd.choice>
</xsd:complexType> i
< /xsd:element> v
Save Content Root: {http://www.binary.orgibinary-string v
Figure 5.10.1: Application Context option
7. The default value of Application Context defined can be provided in the Value
section. If not provided here, this can be defined in the context menu on the
Output port of a component or using an XSLT component.
8. To define from Output port option, Right-click on the Output port and select
Application Context option.
La (&)« =
| Subscribe/Receive Messages
chatl Browse Messages I-
View Schema Structure... ¥
Edit >
Browse Routes
[Properties LHVP
Save Selection As... [
< Undo Move
Redo
cC
Run As »
Debug As > f
Team >
Compare With >
Replace With >
Application Context
Clear Application Context
Figure 5.10.2: Application Context on output port
9. The Mapper editor opens up where the mapping for the Application context can be
defined. Save the mappings. The port figure will be shown in bold font to give a
visual representation.
Chapter 5: Composing Event Processes Page 66

Fiorano eStudio User Guide

"[‘: *Simple Chat =
=REESS LR
v <R* Application-Context v <F* Application-Context
v [E] binary-string v [E] binary-string
w =0 [ZERD MANY] ¥ =0 [ZERD MANY]
¥ OR [Choice] ¥ OF [Choice]
(2] zero (] zero
(2] one (2] one

¥ <R> OUT_PORT
v [e] ChatMessage
w [€] Sender
[e] Name
(€] Email
[e] Message

Figure 5.10.3: Mapper editor

10. Once Application Context is configured at one of the out ports, the value is
propagated in the message flow.

11. The application context can be used anywhere in the event process using Xslt
component or Route Transformation.

5.11 Check Resource and Connectivity

Fiorano enables the deployment of an event processes over a distributed peer-to-peer grid
of infrastructure servers (known as “peer servers”) at the click of a button. A developed
event process contains a set of configured components connected via routes. The
configuration for these components also includes the names of the grid-nodes (Fiorano
Peers) on which the components are to be deployed.

To do a connectivity and resource check, perform the following steps:

e Select the Event Process. Click the Check Resource Connectivity button from
the tool bar as shown in Figure 5.11.1.

e All the resources required by the component at runtime will be deployed to the
configured Peer Server.

Qﬂ,]%v.f -]<‘;) mu%B RS

Offline Event Process Development

|

chat2 rqute2
chatl

-

Figure 5.11.1: Check Resources and Connectivity

Chapter 5: Composing Event Processes Page 67

Fiorano eStudio User Guide

During the development process, some components might have external resources added.
Also, for custom-built components the source files might be updated from time to time. To
reflect the changes for such components across the peers at runtime, eStudio has an
option; Cache Component in its Properties view, a deployment configuration at both the
Event Process as well Component levels, that optionally force the resources of the
component to be re-fetched each time a Connectivity and Resource Check is done.

5.12 Running Event Process

To run the event process, perform the following steps:

e Select the Event Process. Click the Launch Event Process @ button as shown in
Figure 5.12.1.

A O R T UL - —
Dffline Event Process Development

o2 Simple Chat &3]

|

chat2 routez
chatl

ﬁ@wmﬂ@ﬁ

Figure 5.12.1: Launching an Event Process

When the Event Process is launched successfully, all the service instances label names
turn green in color.

5.13 Stopping an Event Process

To stop the event process, perform the following steps:

e Select the Event Process. Click the Stop [button on the toolbar; all running
component instances in the Event Process are stopped and the Event Process is
stopped.

Chapter 5: Composing Event Processes Page 68

Fiorano eStudio User Guide

eStuc
P | |E 0Ll v x ok) - 2Risqe

Dffline Event Process Development

| =@ sime crac 2

o_._____,_._-rnutel‘_'_'_'_'_'_.ﬂ OT

chatz route2
chatl

.

Figure 5.13.1: Stopping an Event Process

Stop button can also be used to stop selected service instances or all service instances
without stopping the Event Process. When a component is stopped, its name turns to red
in the orchestration editor.

5.14 Synchronizing an Event Process

Fiorano has the capability to modify existing running applications on the fly. For example,
launch the Simple Chat event process and once the event process is successfully launched,
add another component-instance to the event process from the component palette.
Configure the component and connect the routes. The application then needs to be
synchronized to reflect the changes.

To synchronize event processes, perform the following steps:

e Select the Event Process. Click the Synchronize Event Process button. Now the
newly added component starts and turns green in color and the synchronize button
is in a disabled state.

vl | O [V % o W) s RO

fline Event Process Development

o15 ssimple Chat &1

chatZz routez
chatl

@ —— @

Do

Chapter 5: Composing Event Processes Page 69

Fiorano eStudio User Guide

Figure 5.14.1: Event Process Synchronization

Chapter 5: Composing Event Processes Page 70

Fiorano eStudio User Guide

Chapter 6: Event Process Life Cycle
Management

The Event Process Life Cycle Management refers to deployment of an Event Process in
various environments like Development, Testing, Staging, and Production. The user does
not have to create different Event Processes for different environments; instead the user
can simply specify the properties for service instances comprising Event Processes for
various environments in a single Event Process.

6.1 Setting Properties of Service Instances for Different Environments

When a Service instance is dragged and dropped in the Orchestration editor, the default
environment is set to development. To configure a different environment, select the
Target Environment in the Environment Properties tab of the Event Process comprising
the service instance. Hereafter, the environment dependent service properties will be
written to the corresponding env.xml file and will be picked up from that file when Event
Process is launched in that particular environment.

You can specify these properties for more than one environment by switching the Target
Environment label in the properties of an event process. Configuring service instances for
different environments is made easy, since the configuration properties of the service
instance in a new environment will be picked up from the previously configured
environment when the CPS is opened.

This way service instances can have different set of properties while running on different
environments. For example a File Reader instance can be configured to read from a dev.txt
file in a Development environment and from a test.txt file in a Testing environment.

T Properties &2 ¥ =0
General Target Environment: d=velopment R
Application Context
Environment Properties Property Value a8

Configuration Properties : D

) . File Name dew.txt
Environmen...operties:
Post Processing Action NO_ACTION

Pre Processing Arguments
Relative Directory froot/Desktop/EPLCM |[~+]

Figure 6.1.1: Environment Properties Tab

Chapter 6: Event Process Life Cycle Management Page 71

Fiorano eStudio User Guide

6.2 Running Event Process on an Environment

To run an Event Process on a particular environment, follow the steps as mentioned in the
example below:

4. Take a flow containing File Reader and Display components. Configure the File
Reader providing different inputs in different environments as mentioned in the
above section. Select the Target Environment in the Environment Properties
tab of the Event Process. The environment specific properties for the service
instances in the flow can be viewed from the Environment Properties table view
present below the Target Environment section.

5. Do the CRC and launch the flow. When the flow is launched in development
environment, the contents from the dev.txt will be read and these messages can
be viewed in the display. Similarly when launched in testing environment the
contents from the test._txt will be read and these messages can be viewed in the
display.

Target Environment: deve]cpment |Tl

ext |
ropeiiies : | Property Value
' | FileReaderl
Conﬁgura.tion Properti
File Name dev.txt

EPLCMTEST_ Displayl
History(last 4 of 4% Gelect a row to load the message) [|Select message when received

| Received | Massage
1 Tue Aug 04 11:57:32 IST 2008 Cantents from dew txt
2 Tue Aug 04 11:57:42 15T 200% Contents from dew txt
3 Tue Aug 04 11:57:52 15T 2005 Contents from dewtxt
A

Toim Aa (A T-EQNT ITT 3OO0 Caedaete froen clone bt

e

1

4
0
[O

|
|
1

Target Environment: ' |T"
Xt
roper-t'i'es ' | Property Value

HIeReadelrl
Configuration Properti
File Name test.txt

EPLCMTEST_ Displayl

History(last 3 of 3x Gelect a row to load the message) [|Select fnessage when received

#| Received | Message
1 Tue Aug 04 12:00:18 I5T 2009 Contents from test txt

2 Tue Aug 04 12:00:28 15T 2009 Contents fram test.txt
|3 Tue Aug 04 12:00:28 15T 2009 Contents fram test 1x1

Figure 6.2.1: Display showing messages received from file reader in different environments

Note: These properties cannot be edited from the table provided. But they can be edited
from the CPS of the specific service instance and form the deployment tab of the service
instance in the properties view.

Chapter 6: Event Process Life Cycle Management Page 72

Fiorano eStudio User Guide

Chapter 7: Debugging Event
Process

Fiorano’s unique Event Process orchestration model enables the debugging of live Event
Processes in real time. The debugging model gives a view of the current state of executing
service instances within Event Processes and also provides a mechanism to setup event
interceptors to capture, view, modify and discard messages flowing between service
instances on the same or different machines across the network.

Note: Breakpoint can be added in Online Event Process Development perspective only.

7.1 Adding Breakpoint

Breakpoint can be added from context menu present on the route or from the Fiorano
Debugger view.

7.1.1 Context Menu option

Right-click on the route on which breakpoint has to be added and select the Add
Breakpoint option.

When the breakpoint is added, the route color is changed to Red.

_ eall &
Interceptor &" View Fiorano Debugger X3V D

[Properties 3V P

= Add Breakpoint
m Remove Breakpoint

Save Selection As...

< Undo Delete Send All
Redo Discard All
Run As >

Figure 7.1.1: Adding breakpoint from context menu

Chapter 7: Debugging Event Process Page 73

Fiorano eStudio User Guide

7.1.2 Debugger View

To add a breakpoint to a route, perform the following steps:

1. Go to Fiorano Debugger pane and click the Add BreakPoint button as shown in
Figure 7.1.1. All the available routes in the Event Process are listed as shown in

Figure 7.1.2.
. roviems [9 eror og | B conso il
Breakpoints: Messages:

B Ch) (= =) (@ i

lMd BreakPaint

ETem | Application Context |

Figure 7.1.2: Adding break point from debugger view

& Solect Route

Select an item to open {7 = any character, * = any string): -

E |
Matching ikems:

routez

chatl,QUT_PORT - chatz,IN_PORT

(z) (04] [Cancel

Figure 7.1.3: Select route to add breakpoint

2. Select the route on which the breakpoint has to be added and click OK to add the
breakpoint.

When a breakpoint is added on a route, at runtime the messages passing through the
route are intercepted by the breakpoint. The intercepted messages can be viewed, edited
or forwarded to the next service instance.

Message body, message properties and the application context can be viewed in the

debugger view. When an intercepted message is selected, the properties are shown in the
Properties view.

The Application context is shown in the Application Context tab.

Chapter 7: Debugging Event Process Page 74

Fiorano eStudio User Guide

7.2 Viewing Messages at Breakpoint

All the messages sent to a route having breakpoint set on it are visible in the breakpoint
view when clicked on that particular route as shown in Figure 7.2.1.

When the messages are intercepted on the route, the route blinks and the message count
will be appended to the route name.

» 2 Collaboration w
» 2 Dpe __—»O
» O Error o_ﬂ__ﬂ_,,routelﬂll
» D File chatz ez
» 2 Flow (3 chatl ‘
b 2 moMs v
L pratiems |) error og | 5 consote 0
Breakpoints: Messages:
(v) () (&F) (B) (2) (W) (=) (W)
route2 <ChatMessage><Sender...
=ChatMessage><Sender...
<ChatMessage><Sender...
=) Jalsl
{Tm... : Application Context]
<ChatMessage> <Sender><Name>FioranoESBE Demo< /Name:> <Email>fesb@fiorano.com</
Email> < /Sender><Message>simple message</Message> </ChatMessage>

Figure 7.2.1: Message at breakpoint in Fiorano Debugger

7.3 Editing Messages at Breakpoint

To edit a message at debug time, perform the following steps:

e Select the message to be edited and edit it in the Text section as shown in Figure
7.3.1.

e The message is saved.

21 probiems | 9 eror oo | B consoe il =

Breakpoints: Messages:
() () (&) (@) (=) (@) (=) (i)
route2
<ChatMessage><Sender...
=ChatMessage><Sender...
=) Y]

[I |

| Text | Application Context

<ChatMessage> <Sender><Name>FioranoESBE Demo< /Name> <Email>fesb@fiorano.com</
Email> < /Sender><Message>edited| message < /Message></ChatMessage>

Figure 7.3.1: Edit message in Fiorano debugger

Chapter 7: Debugging Event Process Page 75

Fiorano eStudio User Guide

7.4 Inserting Messages into Breakpoint

New messages can be inserted into breakpoint at debug time without the message being
sent by the source component.

To insert messages into breakpoint, perform the following steps:

1. Click the Create button in the Messages pane as shown in Figure 7.4.1.

. pratiems |) error o | 9 consote

Breakpoints: Messages:
(B) B (& &
Create..
route2 <Chaliviessage><sender...
<ChatMessage><Sender...
<ChatMessage><Sender...
e

{Tem | Application Context]

Email> < /Sender><Message> edited message< /Message> < /ChatMessage>

Figure 7.4.1: Create message in Fiorano debugger

2. Choose the type of message to be created (either XML or Text message) as shown
in Figure 5.4.2 and click OK .For a Text type, a default message is inserted, which

can be edited in the Text section. For XML type, the XML schema of the message

is shown and the user can click on Generate Sample button to generate a sample

XML data and can edit the data in the Text section.

& Create Message le

Message Type: (%) Text

ML

Ok, l [Cancel

Figure 7.4.2 select type of new message

<ChatMessage> <Sender> <Name>FioranoESE Demo< /Name> <Email>fesb@fiorano.com</

Chapter 7: Debugging Event Process Page 76

Fiorano eStudio User Guide

7.5 Releasing Messages from Breakpoint

The messages present on a breakpoint can be released anytime so that they reach their
destination.
To release messages from the breakpoint, perform the following:

1. Select the message to be released and click the Send button shown in Figure
7.5.1. The message will be sent to the next service instance in the event process.

nsole | &" Fiorano Debugger &3 | c=

Messages:

(=) (=) (@ (=)

Send
<ChatMessage><>ender...

<ChatMessage><5Sender...

<ChatMessage><5Sender... 1%
This is the message ... ¥

{Tyﬁ I Application Context 1

<ChatMessage><Sender> <Name>FioranoESB Demo< /Name><Email>fesb@fiorano.com</
Email> < /Sender><Message>edited message</Message></ChatMessage>

Figure 7.5.1: Send message in Fiorano debugger

2. All messages on Breakpoint can be released at a time by clicking on the Send All
button as shown in Figure 7.5.2.

nsole | & Fiorano Debugger L | -=

Messages:

(=) (= () = D

Send All
<ChatMessage> <Sender...
<ChatMessage> <Sender... “

=ChatMessage><Sender... |

This is the messaqe ... B
IS

{Tmﬁ I Application Context 1

<ChatMessage> <Sender> <Name>FioranoESE Demo< /Name> <Email>fesb@fiorano.com</
Email> < /Sender><Message>edited message</Message> < /ChatMessage>
Figure 7.5.2: Send all messages in Fiorano debugger

All the messages can also be sent at a time from route context menu by right-clicking on
the route and by selecting the Send All option.

Chapter 7: Debugging Event Process Page 77

Fiorano eStudio User Guide

7.6 Discard Messages from Breakpoint

To discard the messages from the breakpoint, perform the following:

1. Select the message to be discarded and click the Discard button shown in Figure
7.6.1. The discarded message will be removed from Breakpoint.

nsole | #" Fiorano Debugger E@l =00

Messages:

(=) (=) (@) (= @)

<ChatMessage> <Sender... m
rs
v

<ChatMessage><5Sender...
<ChatMessage><5Sender...
This is the message ...

Talw
Figure 7.6.1: Discard message in Fiorano debugger

2. All messages on Breakpoint can be discarded all at a time by clicking on the
Discard All button as shown in Figure 7.6.2.

nsole | &" Fiorano Debugger 52 l =0

Messages:

= & @ & @

<ChatMessage><Sender... m
rs
v

<ChatMessage><5Sender...
<ChatMessage><Sender...
This is the message ...

Jal
Figure 7.6.2: Discard All messages in Fiorano debugger

All the messages can also be discarded at a time from the route context menu by right-
clicking on the route and by selecting the Discard All option.

Chapter 7: Debugging Event Process Page 78

Fiorano eStudio User Guide

7.7 Remove Breakpoint

To remove the breakpoint set on a route, perform the following:

1. Select the route on which the breakpoint has to be removed and click the Remove

Breakpoint button shown in Figure 7.7.1. The breakpoint will be removed on that
route.

E_L, Problems |@ Error Log | El console [*' Fiorano Debugger &3 l

Breakpoints: Messages:

()) () (=) (= @ (=) @)

routez <ChatMessage> <Sender...
route1(4) <ChatMessage><Sender...

<ChatMessage ><Sender...

This is the message ...

i

{ Text | Application Context 1

Figure 7.7.1: Remove Breakpoint in Fiorano debugger

Note: When removing a breakpoint an input dialog box comes up asking whether to
send the messages or discard the messages. The user can choose the appropriate
option.

Breakpoint can also be removed from context menu options on the route.

2. Breakpoints on all the routes can be removed by clicking on the Remove All
Breakpoints button as shown in Figure 7.7.2.

[& Prablems | | Error Log | £ Console W

Breakpoints: Messages:

®) @) (@ @ @ =) (B

. Remove All BreakPoints
route? diml

route 1(4})

o o e |

{ rext | Appficati

Figure 7.7.2: Remove All BreakPoints in Fiorano debugger

All the messages can also be discarded at a time from route context menu by right-clicking
on the route and by selecting the Discard All option.

Chapter 7: Debugging Event Process Page 79

Fiorano eStudio User Guide

Chapter 8: Services

8.1 Service Descriptor Editor

A service can be customized using the Service Descriptor Editor. To customize a service,

perform the following steps:

1. Right-click the service in the Service Palette or in the Service Repository view
and select the Edit.. option as shown in Figure 8.1.1.

s Service Palette &7 Y =08
[Select
} Route
[=- Bridges
= Collabar ation]
(&) chat
Details
() cshe
(&) vbche Delete g
(&) veChs Help
(= DB Layauk [
Use Large Icons
[-= Erraor
Setkings. ..
(= Fila e
[Flow
== MO

Figure 8.1.1: Edit option

2. The ServiceDescriptor.xml of the selected service is opened in the Service
Descriptor Editor as shown in Figure 8.1.2.

Chapter 8: Services Page 80

Fiorano eStudio User Guide

L 4 ServiceDescriptor.xml 7 =8
Overview
General Information Display
Mame: | “hat Palette Ican: (&)

|
‘Version: | 4.0 : Display Teon: @
|

GUID: [chat

Tod Tip: | 2 Simple Chat Component Zakegory: Collaboration [

Descripkion:
Metadata
Aukhar: | Fiorano Software Technologies Pk, Lk
Creation Date: | 04-01-2005 12:00:00
[Licensed

¢ >

Everview Execution | Deplovment

Figure 8.1.2: ServiceDescriptor.editor

The Service Descriptor Editor has three sections:
e Overview
e Execution
e Deployment

These sections are further divided into sub-sections. A brief explanation of these sections
and subsections is provided below.

The sections can be accessed using the tabs provided at the bottom left corner of the
editor as shown in Figure 8.1.3.

Chapter 8: Services Page 81

Fiorano eStudio User Guide

l'[E *Hhhhij & ServiceDescriptor,xml &3

Execution

Ports Information

Input Ports:
Mame Description
IMN_PORT Accepts daka which is in the format sp...
Oukpuk Porks:
Mame Description
QUT_PORT Sends the chat message
L

Orveryie Execu%ﬂ? Deployment

Fiorano Debugger

Figure 8.1.3: Sections under Service Descriptor

8.1.1 Overview Section

The Overview section has three sub-sections — General Information, Display, and
Metadata.

The information used to identify the service is shown under the General Information
section. The user can change the Name, Version, GUID, Tool Tip, and Description of the
component in this section. Figure 8.1.4 illustrates the General Information section.

Chapter 8: Services Page 82

Fiorano eStudio User Guide

Overview

General Information

Mame: | chat |
Mersion: | 4.0 |
GUID: | chat |

|

Tool Tip: | A& Simple Chat Component

Descripkion:

Figure 8.1.4: General Information
In the Display section, icons used to represent the service and the categories under which
the service are provided. Categories can be selected using the Category Selection dialog

box, which is similar to the one used during Service Creation (Figure 8.1.5).

In the Metadata section, the information about authors of the service, creation date and
time of the service and licensing mode are provided (Figure 8.1.5).

Note: The Creation Date field cannot be changed manually.

Display

Palette Icon: @
Display Ican: @

Category: | Collaboration (]|

Metadata

Author: | Fiorann Software Technologies Pyt, Lkd,

Creation Date: | 04-01-2005 12:00:00
[]Licensed

Figure 8.1.5: Display and Metadata sections

8.1.2 Execution Section

The Execution section has following subsections — Port Information, Support, Launch
Configuration, Log Modules, and Runtime. A brief explanation of these subsections is
provided below.

Chapter 8: Services Page 83

Fiorano eStudio User Guide

8.1.2.1 Port Information

Each Asynchronous Service Component (also referred as Event Driven Business
Component) can have any number of inputs and outputs as determined by the developer
of the component. The input and output ports can be added or removed in the Service
Descriptor Editor as applicable to the component in the Port Information section (Figure
8.1.6).

The Add, Remove and Edit Schema buttons can be used to add, remove and/or edit the
ports of services. Name and Description of any port can be modified from their respective

columns in each table.

Ports Information

Inpuk Ports:
Marme Description
IN_PORT Accepks daka which is in the Farmat sp. ..

Outpuk Ports:
Marme Description
QUT_PORT Sends the chat message

Figure 8.1.6: Port Information section

8.1.2.2 Support

In the Support section, Failover Supported and Transaction Supported options are
available as shown in Figure 8.1.7.

Support

E Failover Supported
:' Transaction Supported

Component Control Protoco
Figure 8.1.7: Support section
Failover Supported
If the Failover Supported option is selected, then during the component's runtime if the

Peer Server on which component is running goes down, the component keeps running on
the next available Peer Server.

Chapter 8: Services Page 84

Fiorano eStudio User Guide

If this option is not selected at the component's runtime, if the Peer Server on which
component is running goes down, the component stops.

Transaction Supported

Transaction Supported is used to specify whether the service allows transacted session or
not.

Component Control Protocol

e Checked — Component listens, understands and responds to control events from
Peer Server. Using this option allows components launched as separate process to
cleanup when stopping

¢ Unchecked — Component does not handle control events from the Peer Server.
The Peer Server will not send any control events to the component. Component
launched in separate process is issued a destroy command to stop and the
component process will be killed instantly without any cleanup.

8.1.2.3 Launch Configuration

In the Launch Configuration section, information about the type of component and the
different launch type supports (None, Separate Process, In Memory, and Manual) are
provided.
Launch Configuration
Supported: |:| Mone Separate Process
Manual [1n Memary

Preferred: |SeparateProcess

Figure 8.1.8: Launch Configuration section

8.1.2.4 Log Modules

In the Log Modules section, logging options of the service are provided. Loggers which are
used to log messages during service runtime can be added or removed.

To add a new logger, click the Add button and specify log module name and the log level
at which logging has to be performed. Messages logged at levels which are lower than the
selected log level will not be written to the log files.

Log Modules

com. fiarano, edbe, chak SEVERE w
ERR_HAMOLER ‘SEY
OUT_HAMDLER.

Mame Level

Remove

3 ?

Figure 8.1.9: Log Modules section

Chapter 8: Services Page 85

Fiorano eStudio User Guide

8.1.2.4 Runtime

In the Runtime section, configurations required to launch services are provided. Executable
specifies the Java class to be used to launch the service when it is launched in a Separate
Process.

In Memory Executable specifies the Java class to be used when the service is launched in
in-memory mode.

The Working Directory specifies the directory which will serve as the service's runtime
directory when launched in a separate process.

A component while executing, might require parameters to execute different requests or
details for handling different request. There are two ways of passing this information to the
component: by configuring the details in the Configuration Property Sheet of the panel or
by defining the command line arguments that can be passed to the component at the time
the component is launched. These command line arguments are captured as runtime
arguments in this panel.

Run Time
Executable: com.fiorano,be.chat, ChatService
In Memory Executable:

Wharking Direckarsy: . Browse, ..

Funtime Arguments:

Marme Type Mand... | “alue
"

T¥M_PARAMS v False -DLOG_TO ...

£ *

Figure 8.1.10: Runtime section

8.1.3 Deployment Section

The Deployment section contains subsections related to the deployment information of the
component. The Resource/Service Dependencies required by the component can be
configured in this section.

Chapter 8: Services Page 86

Fiorano eStudio User Guide

E"[E *hhhhj & ServiceDescriptor,xml &3

Deployment

General Information Resource
Label:
®production (O ga O Developement estudio-chat. jar Frue
Supported OS5 fesb-comp-chat. jar krue
wersion. properties false

Ctinux [Jwindows [] Macintash
[solaris all o

Autolnstallable <

Service Dependencies

Dependency Manne AddiRemaove. ..

Q;; cps

Sy jms

£, Studia

Q;; B Cornmon
T, TiFosilavaRTL

Cverview | Execution | Deployvment

Figure 8.1.11: Deployment page

8.1.3.1 Resource

The resources required by the service (either during configuration time or runtime) can be
added in this wizard. Resources can be any files which are used by the component.
Typically resource files are — dll, zip, jar, so, and exe.

e To add a resource, click on Add and select required resource for the service.
e To remove a resource, select the resource and click Remove.

e To change the order of resources, select the resource and click the Up or Down
button. The order is used to determine the classpath of the service.
8.1.3.2 Service Dependencies

Dependencies are predefined. Each component or system library registered can be added
as a dependency.

Click the Add/Remove button to open the Add Dependencies dialog box. This contains a
list of all available dependencies.

Chapter 8: Services Page 87

Marne Far Confi, ..

Fiorano eStudio User Guide

& Add Dependencies

Bridges ﬂg cpsid.0
Collabaration ﬂg jms:4.0

D %, studia:4.0

Errar = ‘}g B Cormmon:4.0
File T, TiFosilavaRTL:4.0
Flo

MOMs
Performance
Samples
Scripk
System Lib
TransFormation
kil

Web

WiehService

R O O O 0 O o = = o O = = 0 A |
bDooboboboboboODODODODODODODODD

K l [Cancel

Figure 8.1.12: Service Dependencies section

e To Add: Select the dependency on the left side table and move it to the right side
table.

e To Remove: Select the dependency on the right side table and move it to the left
side table.

Chapter 8: Services Page 88

Fiorano eStudio User Guide

Chapter 9: Service Creation

Apart from the exhaustive list of pre-built services, custom services can be written, built,
and deployed into the Fiorano SOA Platform by developers. To aid developers in service
creation, the platform provides a template engine to generate the skeleton code for
custom services in Java, C, C++, C# (.Net). User can create a component in any
language, add the business logic and deploy it in the Fiorano environment.

9.1 Service Generation

To create a new service, goto Tools -> Create Service Component to open the Service
Creation Wizard. All the details related to the creation of a new service must be specified in
this wizard. Various steps in service creation are illustrated below.

9.1.1 Service Location

The destination folder in which the component source code and other required files to be
generated has to be specified.

Note: A new folder name has to be specified here. If the folder name provided already
exists, then the wizard does not allow proceeding to the next page.

SETVI CENGIEET DI Zamd| (i)
Service Location
Specify Service Location || Browsei
@ Cancel |

Figure 9.1.1: Specific Service Location

Chapter 9: Service Creation Page 89

Fiorano eStudio User Guide

9.1.2 Basic Details

The Basic Details of the service like Service Guid, Name, Version, Category, and so on
have to be provided here.

e Service Creation Wizard

Basic Details

Information required to identify service

Service Guid: SampleComponent

Name: Sample

Version: 1.0

: — |
| Category: Mew Category |

@ Generate Source S Assemble From Binary

Source Language: (M5 |+]

[1is CCP enabled

Package MName: com.fiorano.esb.service

I:: < Back)(: Mext >) I:: Cancel) { Finish 3 l

A

Figure 9.1.2: Service creation wizard

In the Category field, a new Category name can be provided for the component or an
existing Category can be selected from the available categories. Existing Categories can be
viewed by clicking the ellipsis button that appears against the Category field. On clicking
ellipsis, the Category Selection dialog box appears as shown in Figure 9.1.3. Multiple
Categories can also be selected in the Category Selection dialog box.

Chapter 9: Service Creation Page 90

Fiorano eStudio User Guide

|t_= CaTEgoTy el ECLion (sE3)

Select a category from existing ones

Existing Categories

Collaboration
[]=] =
Error
File

Flow

MOMs
Performance
Samples

[0 Script [~
Create a new category

MNew Category

(separate multiple categories with a comma)

| OK | Cancel

Figure 9.1.3: Category Selection dialog box

The option Generate Source is used to generate sources for various languages and the
option Assemble From Binary is used to create System Libraries.

Is CCP Enabled

e Yes — Component listens, understands and responds to control events from
Peer Server. Using this option allows components launched as a separate
process to cleanup when stopping.

e No — Component does not handle control events from the Peer Server. The
Peer Server will not send any control event to component. Component
launched in separate process is issued a destroy command to stop and the
component process will be killed instantly without any cleanup.

This property will not be editable while editing the service from Studio.

For additional details on the Component Control Protocol refer to section 3.12 in Fiorano
SOA User Guide

9.1.3 Ports Information

The input and output ports of the service can be configured here.

A new port can be added by clicking the Add button. By default Port Type is Input Port.

The Port Type and other port properties can be changed in the Service Creation Wizard as
required.

Chapter 9: Service Creation Page 91

Fiorano eStudio User Guide

,Er SETVICe Gles '51_. [hhykﬁ_:_u_gj. @
Ports Information
Specify input & ouput event ports
| ype Port Type Name Description Add |
Normal Inport IN_PORT_1 Anew port fort) ————
'Normal = o Remove|

]

| < Back '| Next > H Einish | Cancel

@

Figure 9.1.4: Ports Information

9.1.4 Resources

The resources required by the service (either during configuration time or runtime) can be
added in Service Creation Wizard. Resources can be any file types which are used by the
component. Typically resource files are of types — dll, zip, jar, so, exe. However, there is

no strict restriction on this; a file of any type can be added as a resource.

The server makes a local copy of these files in the component’s folder. Resources can be

added or removed using Add and Remove buttons.

Resources

Specify resources for the service

MName For Configuration For Execution | Add |
bee jar Yes s
@ < Back || Next > | Finish | cancel |

=2 S BTV CENGT AT DTV 257 [e |

Figure 9.1.5: Resources section

Chapter 9: Service Creation

Page 92

Fiorano eStudio User Guide

9.1.5 Dependencies

Dependencies are predefined. Every component or system library registered can be added
as a dependency. The dependencies are referenced from the existing location and are not
copied locally into the component's folder.

Note: Dependencies are loaded only once when the components are launched in-memory
of same peer server, there by reducing the memory footprint.

e To Add: Select the dependency on the left-hand side of the page and move it to
the right-hand side.

¢ To Remove: Select the dependency on the right-hand side of the page and move
to the left-hand side.

2 SETVICeCTaateW Zard| =

Add DependenciesPage
Move Dependencies to the Right to add to Service being created

Vg DaImnipie s

= & TifosijavaRTL:4.0
b & Script = :
) & jms:4.0
= @ System Lib &)
3 . ¢ EDBCENgine:4.0
b & addressing:4.0 s

& cpsid.0
b & antlr:4.0
b & axis:4.0
| >>
b & base64:4.0
@ | < Back Finish | Cancel

Figure 9.1.6: Dependencies
e Click the Finish button after adding the dependencies.
When the wizard is finished, sources are generated under the src directory in the directory

specified in the Service Location Page. It also creates necessary files to build and deploy
the components.

9.2 Building and Deploying Services

By default, the build.properties file contains the URL of the Enterprise Server running on
the machine on which the sources are generated. If the service has to be deployed to an
Enterprise Server running on a different machine, then the property server has to be
changed in the build.properties file.

To register the service, perform the following steps:

1. Open the command prompt at the location where the sources are generated and
execute the command ant register.

Terminal Tabs Help
an-desktop:~/Desktop/new$ ant registerD

Figure 9.2.1: Registering the service

Chapter 9: Service Creation Page 93

Fiorano eStudio User Guide

2. This builds the service's sources and registers the service with the Enterprise
Server.

3. The service is now available in the eStudio Service Palette and can be used in
composing Event Processes.

@ Service Pale &3 @~ FioranoDeb | — O
[} Select
} Route

[~ Bridges

[Collaboration

(=DB

= Error

== File

[Flowa

(= MOMs

= Mew Category 0
& Sample

Figure 9.2.2: Service Palette

Chapter 9: Service Creation Page 94

Fiorano eStudio User Guide

Chapter 10: eMapper

The Fiorano eMapper is a high-end graphical tool that presents the user with both source
document structure and target document structure side-by-side and lets the user define
semantic transformation of data by simply drawing lines between nodes, elements, and

functions.

The Fiorano eMapper uses standards based XSLT (Extensible Stylesheet Language for
Transformations), which is a language for transforming documents from one XML structure
to another.

Additionally, Fiorano eMapper ensures that the source and target document structures
conform to the DTD (Document Type Definition) standards.

10.1 Key Features of Fiorano eMapper

The Fiorano eMapper performs a variety of operations including:

Transforming one or more XML, XSD or DTD files.
Generating XML, XSD or DTD as output of the transformation.
Using Funclets to define complex mapping expressions.

Validating the transformation.

Defining the transformation (mapping) with simple drag-and-drop actions.

10.2 Fiorano eMapper Environment

The Fiorano eMapper tool consists of the following interface elements:

eMapper Projects Explorer
eMapper Editor

o Map View

o MetaData
Funclet View
MetaData Messages View
eMapper Console

Node Info View

The interface of the Fiorano eMapper tool is displayed in Figure 10.2.1.

Chapter 10: eMapper

Page 95

Fiorano eStudio User Guide

& Mapper, - MapperDemo/MapperDemo.fmap - Eclipse Platform

=1

File Edit Mavigate Search Project Toaols Run Window Help
. 3 HR B . . l . -
| i EE::E:EP%:ﬁ'ﬁ'%'lggvif e

{Er Mapper Project Exp 23 = O || 2k MapperDema fmap 53

ﬁ |E Mapper | >

=Od

= =
5= |8 - x H - %
= MapperDemo

tlz= Map iew | % MetaData

:]-l Funclet Yiew &2 MetaData Messages | [Mapper Console | £ Mode Info

|LlserDeFined Functions |

h Select

] myesticompute

|§| myexk:replace
|§| strings:rultican. ..

Figure 10.2.1: eMapper Perspective

10.2.1 eMapper Projects.
This view serves as an explorer for the eMapper Projects created by the User.

To create a new eMapper project, perform the following steps:

1. Right-click on the eMapper Projects view and select New > Fiorano Map. The
New eMapper Project Wizard is opened.

2. Provide a valid name for the project and click Finish. A new eMapper project is
created. Figure 10.2.2 shows a sample eMapper project as shown in the eMapper
Projects Explorer.

Chapter 10: eMapper Page 96

Fiorano eStudio User Guide

{EF Mapper Project Explorer &3 = B

= &

= =F MapperDemo
=l-[= resources

|5] Inputl. xS0
[0] Cukputl . DTD
E MapperDenna, Frap

Figure 10.2.2: eMapper Projects

An eMapper Project contains a resources folder which holds the .fmp file. The .fmp stores
the mappings defined between the input and output structures. The schemas provided for
all the input and output structures are stored in the PROJECT_HOME/resources/schemas
folder. The names of these schema files are of the form
<Structure_Name>.<Mime_type>.

10.2.2 eMapper Editor

The eMapper Editor is a tabbed editor containing two tabs, Map View and MetaData.

10.2.2.1 Map View

The Map View shows the Input and Output Structures and the mappings defined in the
pane. This view allows users to load the input and output structures and create mappings
between them.
This view consists of the following panels:

e Input Structure Panel

e Graph Panel

e Output Structure Panel
Input Structure Panel
This panel shows the input specification structure in a tree format.
Graph Panel
The middle panel in Map View is the Graph panel. It shows the mappings defined by lines
(called Mapping lines). A Mapping can be selected by selecting one of the mapping lines in

the line panel.

A Function icon at the end of a mapping line indicates that mapping uses that particular
function(s) as shown in Figure 10.2.3.

Chapter 10: eMapper Page 97

Fiorano eStudio User Guide

sl MapperDerQE.Fmap &3
i

B - X B - %
= <R* Inpukl = <R¥ Qukputl
= [&] admissions = [e] admissions
B =0 [ZERD MANY] B =0 [ZERD MANY]
= [B] applicart %—E = [€] applicank
nare + narie
(8] Age [8] &ge
[B] Marks [8] Marks

tlzs Map View | %, MstaData

Figure 10.2.3: Map View
Output Structure Panel

This panel shows the output document structure in a tree format.

10.2.2.2 MetaData tab

The MetaData tab shows the transformation XSL generated from the mappings defined in
the Map View for the selected output structure.

10.2.3 Funclet View

The Funclet view contains the Visual Expression Builder that provides a graphical view for
the mappings defined in the Map View, as shown in Figure 10.2.4. It also shows the

functions and their links with the input and target nodes/elements.

Note: The Funclet view is explained in detail in the Visual Expression Builder section later
in this chapter.

Chapter 10: eMapper Page 98

Fiorano eStudio User Guide

:]-l Funclet Yiew &3 Messages 1 Mapper Consale =0

|.ﬁ.rithmetic Funckions (¥ |

[:3 Select |lst ||E| Marks |lst¢}—
+

=) —— (2| Marks
n div
o
ek

W Flaee

=

¥
=

| &

Figure 10.2.4: Funclet Vlew

10.2.4 eMapper Console

The eMapper Console is used to display the various error and warning messages generated

by the tool while parsing the input and output structures and while testing the generated
XSL.

10.2.5 MetaData Messages View

Error or Warning Messages (if any) thrown while generating the transformation XSL are
displayed in the MetaData Messages View. The view is shown in Figure 10.2.5.

& Mapper Perspective - MapperDemo/MapperDemo. fmap - Eclipse Platform
File Edit Mavigate Search Project Tools Run Window Help

- - apoa -] T e s . -
L H EH = G e -G B Al =] ﬁ|EMapperPersp...|
{Er Mapper Projects &2 = O || = *MapperDemo.fmap 2 =0
= =
8= Seleck Oukput Struckure:
(= 1= MapperDemo
- resources <7xml wersion="1.0" encoding="JTF-g"7> ~
<xslistylesheet version="1.0" xmins:xsl="http: f fwmame, w3, orgf19990%5L Transform” xmins:java="http:/fxml. apache org/xslt/jawva" T
== schemas #mins:datetime="http:/exslt . orgfdates-and-times" xmins:set="http: flexslt.orgfsets” xminsimath="http: {fexsl, orgfmath"
@ Inputl.DTD exclude-result-prefixes="xalan java lxslt" xmins:lxslt="http:{fxml. apache.orgfxslt" xmins:xalan="http:/{xml apache.orgfxslt"
[B] output1.oTD wrnins:dateConversion="gxt1" xmins:myext="ext2" xmins: strings="ext3" extension-element-prefixes="datetime set math dateConversion

myexk skrings" >
<xslioutput method="xml" indent="yes" encoding="UTF-&" xalan:indent-amount="2" omit-xml-declaration="no" = </xsl:output =
<xslivariable name="document" seleck="{"= <fxsl:variable>
<xsl:template match="{">
<Admissions =
<xsl:for-each select="admissions/Applicant" =
<xslisort seleck=", fMarks" order="ascending" data-type="text"><fxslsort>
<xslisort select=", fage" order="ascending" data-type="text" > </xsl:sort=
<Applicant =
<xsliattribuke name="name" =
<xslivalue-of select=", [@name" >« xslivalue-of =
«fxsl:atbribute >

E MapperDemo.friap

<hge=<fhges v
E Map Yiew E Metalata
:]-l Funclet Yiew Messages &3] Mapper Console =0

& Datatype mismatch: + -3 Age in map to $document_outputl]Admissions/&pplicant] age
3 Input pin 'mumz’ of + is not linked in mapping For $document_Output 1 /Admissions/applicant/Age
@ Mapping should be defined For node: $document_Output 1 jadmissions{Applicant/Marks

Messages

|
o

Chapter 10: eMapper Page 99

Fiorano eStudio User Guide

Figure 10.2.5: Meta Data and MetaData Messages view

10.2.6 Node Info View

The Node Info View shows the information about nodes in the Input and Output
Structures. The view is shown in Figure 10.2.6. It has two panels that provide the data
type and cardinality information about the selected input and output structure
node/element.

1 Mode Infa &3 :]-ﬂ Funclet Yiews | 52| MetaData Messages |] Mapper Console

Input node information Oukput node information
Parameter Yalue Parameter Yalue
Marne {htkp: f fvmeavy Fiorano . comfFesb/activity/Request}STMAME Tarne narme
Cardinality MNOME Type CDATA
Type {htkp: f e w3, org 2001 fRMLSchermalstring Use Required
SIMPLE_TYPE preserve Conskraink

Figure 10.2.6: Node Info View

10.3 Working with Input and Output Structures

10.3.1 Loading Input/Output Structure
1. An Input/Output Structure can be loaded in one of the following ways:

e Click the Add Structure button from the tool bar in the Input/Output
Structure Panel and choose the structure type from the drop down list. Or,

e Right-click on the Input/Output Structure Panel and select Add Structure
and choose the structure type from the sub-menu.

2. The drop-down list or the sub-menu has the following options
e XSD For loading an XSD document
e DTD For loading a DTD document

e XML For loading an XML document

10.3.1.1 Load Input/Output Structure From an XSD document

Select XSD from the Add Structure menu. The Load Input/Output XSD Structure Wizard
appear as shown in the Figure 10.3.1. The wizard contains two pages, Structure Selection
page and External XSDs page.

Chapter 10: eMapper Page 100

Fiorano eStudio User Guide

& Load Input XSD Structure \ |:|@@

Structure selection page

Structure MName Inputl |
#5D cankent Load From File
<vuml wersion="1,0"7 = ~

<xsdischema xmins:xsd="http: v w3, orgf 2001 f5MLScHEMS"
kargethamespace="http: [v, books, org"
wmins="http: [fvaa books org"
elementFormbDef ault="qualified" >
<wsd:element name="BookStare" =
<ysd:complexType = —
<wad sequence =
<wsd:element ref="Book" minCcours="1"
maxcours="unbounded”| =
< fxsdisequence =
< fwsdicamplexType =
< [xsdielement =
<wsd:element name="Book" =

'\':’J Mext =] [Finish l [Cancel

Figure 10.3.1: Structure Selection Page
Structure Selection Page

The name of the structure can be specified in the Structure Name text field at the top of
the page.

Note: The structure name cannot contain special characters. Only alphabets, numbers and
' "are allowed in a structure name. Two structures with the same name are not allowed.

The XSD content can be defined in the text area provided in this page.

The schema can also be loaded from an existing file using the Load from File button.
Clicking this button will open a file dialog through which you can browse through the file
system to choose an existing file. Modifications, if any, to the schema are loaded from the
file from this page.

Chapter 10: eMapper Page 101

Fiorano eStudio User Guide

External XSDs Page

& Load Input XSD Structure

Specify External X5Ds

Referred Schemas

Mamespace

Existing Schema

Finish] [Cancel

Figure 10.3.2: Adding External XSDs

Any external XSDs used by a structure can be added from this page. Figure 10.3.2 shows
the External XSDs Page. External XSDs can be added by performing the following steps:

Click the New button to add a new external schema. A context menu will appear as shown
in the Figure 10.3.2. The user can either add a New XSD or use an Existing Schema that is
already present in the eMapper Project.

Adding a new XSD

Click New XSD. This will enable the Schema Content Area where the content of
the schema can be entered.

A valid file name should be provided in the Schema File field. The provided XSD
will be saved with the name specified in the PROJECT_HOME/resources/schemas
directory.

The content can also be loaded from a file using the Browse button. Click this
button and browse through the file system and select the required file.

After providing the XSD, it can be saved as an external XSD for the structure by
clicking the Save button. As specified earlier, the XSD will be saved in the
PROJECT_HOME/resources/schemas folder with the name specified in the Schema
File field.

The target name space of the schema is added to the list of Referenced URIs
present on the left end of the page.

Chapter 10: eMapper Page 102

Fiorano eStudio User Guide

Adding an existing schema

e To use an XSD which is already present in the eMapper Project, click Existing
Schema in the New context menu. A list of all the XSD present in the
PROJECT_HOME/resources/schemas directory is shown. Choose an XSD and it will
be saved as an external schema to the current structure.

Note: As target name space is used in referring to these schemas, therefore
saving an XSD without a target name space is not allowed. Two schemas with
same target name space cannot be added.

e External schemas can be removed by selecting the namespace of the structure to
be deleted and clicking the Delete button.

10.3.1.2 Load Input/Output Structure from a DTD document

Select DTD from the Add Structure menu. The Load Input/Output DTD Structure wizard
appears as shown in the Figure 10.3.3. The DTD content can be specified from the
Structure Selection Page present in this wizard. Similar to the Structure Selection Page in
Load Input/Output XSD Structure Wizard, this page allows the user to enter the structure
content directly or by loading it from an existing file. To load content from an existing DTD
document, click the Load From File button.

& Load Input DTD Structure |Z|@@

Structure selection page

Structure Mame Inputl |

DTD conkent Load from File

<IELEMEMT female { name) =
<IELEMEMT male [name) =

<IELEMEMT name { #PCDATA) =
ZIELEMEMT schoal [male+, female+) =

(2 Finish] [Cancel

Figure 10.3.3: Load Input DTD Structure

10.3.1.3 Load Input/Output Structure from an XML document

Select XML from the Add Structure menu. The Load Input/Output XML Structure wizard
appears as shown in the Figure 10.3.4. The dialog contains two panes: XML Content and
Generated DTD.

Chapter 10: eMapper Page 103

Fiorano eStudio User Guide

The name of the structure can be specified in the Structure Name field. The structure
name cannot contain special characters. Only alphabets, numbers and '_' are allowed in a
structure name. Two structures with the same name are not allowed.

The XML can be provided in the text area present in the XML Content pane. This text area
has a tool bar with two buttons, Load From File and Generate DTD. The content can be
loaded from an existing file by clicking the Load From File button. Click the Generate
DTD button to generate a DTD from this XML document. The DTD is shown in the text
area present in the Generated DTD pane. This DTD document is used to load the structure.
Modifications, if needed, can be made to this DTD.

The structure can be saved and loaded in the Input/Output Structure panel by clicking the
Finish button. The content is saved in a file with nhame <Structure_Name>.<Mime_Type>
in the PROJECT_HOME/resources/schemas directory. If the schema is not valid an
exception is logged in the Error Log view.

& Load Input XML Structure

Specify XML for which schema has to be generated

ML Content Generaked DTD
3 |
ra e | ELEMENT aAdmissions { Applicant+) =
il : <IELEMENT Age { #PCDATA) =
<:.ﬁ.d A~ I <IELEMEMNT Applicant { Age, Marks) =
<Applicant name="tany" = = <IATTLIST Applicant name MMTOKEM #REQUIRED =
<AgesP5<jiges <IELEMEMT Marks { #PCDATA] =
<Marks =90< Marks =

</Applicant =
<Applicant name="scott" >
“Age=23<lhge
“Marks =95 </Marks >
</Applicant = T
<Applicant name="awrton" >
ZAge=24 <lhge
=Marks =30 </ Marks =
</ npplicant =
<Applicant name="schumac"=
<hge=24<lhges

&

(2] Finish] [Cancel

Figure 10.3.4: Load Input XML Structure

10.3.2 Delete Structure

A structure can be deleted from the Input/Output Structure Panel by clicking the Delete
Structure panel present in the structure panel's tool bar. This will delete the selected
structure and will clear all the mappings associated with this structure.

Chapter 10: eMapper Page 104

Fiorano eStudio User Guide

10.3.3 Edit Structure

To edit Input/Output Structure:

1. Right-click the structure and click the Edit Structure option. The Edit Structure
dialog is opens as shown in Figure 10.3.5.

2. The selected structure is shown in the text area. Modifications to the structure can
be done here. The Load From File button can be used to load structure from a
file.

3. Click the OK button to save the modifications done.

If the new structure is valid, it gets saved and loaded in its corresponding panel.
Otherwise, an error dialog box is shown and the modifications are ignored.

Upon editing a structure, mappings defined to the affected elements/attributes are
discarded.

B & - %

= 4R Inputl
= [8] admissions
B =1 [CNE MaNY]

= [E] Applicant & Edit Structure
narne
[&] nge Edit Struckure:
[8] Marks

<IELEMENT Admissions { et) =

<|ELEMENT Age { #PCDATA) =

<IELEMEMT Applicant { Age, Marks) =

<IATTLIST Applicant name NMTOKEN #REQUIRED =
<|ELEMENT Marks { #PCDATA) =

Ok] l Cancel

Figure 10.3.5: Edit Structure Dialog

10.4 Working with the Visual Expression Builder

Fiorano eMapper provides an easy to use graphical user interface — the Visual Expression
Builder, used for building simple or complex expressions using several predefined
functions. All this can be done by performing simple drag-n-drop of required functions,
input nodes and connecting them visually.

The Funclet View provided in the Fiorano eMapper Perspective consists of the Visual
Expression Builder. The Visual Expression Builder is shown automatically upon clicking on
any node in the Output Structure.

Chapter 10: eMapper Page 105

Fiorano eStudio User Guide

The Visual Expression Builder consists of two areas:
Function palette

Funclet easel

:]-l Funclet Yiew &3 Messages | | Mapper Console

|P.rithmetic Functions w | /
[,\\) Seleck L
+

=- Funclet Easel |
8] i

mod
E *
W Elee b \\

Figure 10.4 Funclet View

10.4.1 Function Palette

The Function palette contains all the functions logically grouped into different categories:

e Arithmetic Functions
e String Functions

e Boolean Functions

e Control Functions

e Advanced Functions
¢ JMS Message Functions
e Date-Time Functions
e NodeSet Functions

e Math Functions

e Conversion Functions
e Look-up Functions

e User defined functions

Fiorano eMapper provides several Arithmetic functions to work with numbers and nodes.

This section describes these functions.

Addition

Visual representation

Description: This function calculates and returns the sum of two nodes or numbers.

Input: Two number constants or input structure nodes.

Output: Number

Chapter 10: eMapper

Page 106

Fiorano eStudio User Guide

Subtraction

Visual representation J
Description: This function subtracts the values of two numbers or nodes.
Input: Two number constants or input structure nodes.
Output: Number
Division
Visual representation J

Description: This function obtains and returns the quotient after dividing the values of
two nodes or numbers.

Input: Two number constants or input structure nodes.
Output: Number

Modulo

Visual representation

Description: This function returns the remainder after dividing the values of the two
nodes or numbers.

Input: Two number constants or input structure nodes.
Output: Number

Multiplication

Visual representation ki

Description: This function multiplies the values of two nodes or numbers.
Input: Two number constants or input structure nodes.
Output: Number

Floor

Visual representation =

Description: This function rounds off the value of the node or number to the nearest
lower integer.

Input: A number constant or an input structure node.
Output: Number

Example: The number 3.3 is floored to 3.

Chapter 10: eMapper Page 107

Fiorano eStudio User Guide

Ceiling

Visual representation;;l

Description: This function rounds off the value of the node or number to the nearest
higher integer.

Input: A number constant or an input structure node.
Output: Number
Example: The number 25.6 is ceiled to 26.

Round

Visual representationLt

Description: This function rounds off the value of the preceding node or a number to the
nearest integer.

Input: A number constant or an input structure node.
Output: Number
Example: The number 4.8 is rounded off to 5 and 4.2 is rounded off to 4.

Number Function

Visual representation;l

Description: This function converts the input to a number according to the XPath
specifications.

Input: A number constant or an input structure node.

Output: Number based on the following rules:
e Boolean true is converted to 1, and false is converted to O.

e A node-set is first converted to a string and then converted in the same
way as a string argument.

e A string that consists of optional whitespace followed by an optional minus
sign followed by a number followed by whitespace is converted to the IEEE
754 number that is nearest to the mathematical value represented by the
string; any other string is converted to NaN.

e An object of a type other than the four basic types is converted to a
number in a way that is dependent on that type.

Chapter 10: eMapper Page 108

Fiorano eStudio User Guide

10.4.1.2 Math Functions

Absolute

Visual representationﬁ
Description: This function returns the absolute (non-negative) value of a number.
Input: Number
Output: The absolute value of the input
Sin
Visual representationﬁ
Description: This function returns the Sine value of the input. The input is in radians.
Input: A number in radians.
Output: The Sine value of the input.

Cos

Visual representationﬁ
Description: This function returns the Cosine value of the input. The input is in radians.
Input: A number in radians
Output: The Cosine value of the input

Tan

Visual representationﬁ
Description: This function returns the Tan value of the input. The input is in radians.
Input: A number in radians.
Output: The Tan value of the input.

Arc sine

- -
Visual representation EllL

Description: This function returns the Arc Sine value or the Sine Inverse value of the
input. The output is in radians.

Input: Number

Output: The Sine Inverse value of the input in radians.

Chapter 10: eMapper Page 109

Fiorano eStudio User Guide

Arc cos

I
Visual representation &5

Description: This function returns the Arc Cosine value or the Cosine Inverse value of the
input. The output is in radians.

Input: Number
Output: The Cosine Inverse value of the input in radians.

Arc tan

=i
Visual representation

Description: This function returns the Arc Tan value or the Tan Inverse value of the input.
The output is in radians.

Input: Number
Output: The Tan Inverse value of the input in radians.

Exponential

Visual representationﬁ
Description: This function returns the exponential value of the input.
Input: Any number
Output: The exponential value the input.

Power

Visual representationﬁ

Description: This function returns the value of a first input raised to the power of a
second number.

Input: Two numbers: the first number is the base, and the second number is the power.

Output: A number that is the result of the above described calculation or NaN in case the
value could not be calculated.

Random

Visual representationm
Description: This function returns a random number between 0 and 1.
Input: No input

Output: A number between 0 and 1.

Chapter 10: eMapper Page 110

Fiorano eStudio User Guide

Sqgrt

Visual representation
Description: This function returns the square root of the input value
Input: A number
Output: A number that is the square root of the input value.

Log

Visual representationm

Description: This function returns the natural logarithm (base e) of a numerical (double)
value.

Input: A positive numerical value.
Output: The natural logarithm (base e) of the input - a numerical (double) value.

Special cases:
e If the argument is NaN or less than zero, the result is NaN.
e If the argument is positive infinity, the result is positive infinity.

e If the argument is positive zero or negative zero, the result is negative infinity.

10.4.1.3 String Functions

Fiorano eMapper has several string functions. All the functions accept Unicode strings and
are case-sensitive. This section covers the string functions.

XPath

Visual representationJ

Description: This function evaluates the specified XPath expression and returns the
result.

Input: For elements within the first structure of the document, specify the XPath as:

/<root element>/<child element>
Example/school/student

For elements within the second structure onwards, specify the XPath as:

document(“<structure name>")/<root element>/<child element>

Example: document(" input2®)/school/student

Output: Result of the XPath expression.

Chapter 10: eMapper Page 111

Fiorano eStudio User Guide

Concat

Visual representationJ

Description: This function accepts two or more string arguments and joins them in a
specified sequence to a form a single concatenated string.

Input: Two or more string constants or input structure nodes.
Output: A concatenated string.
Example: Concat (“'abc', *"'xyz'") returns "abcxyz™.

Constant

Visual representationJ
Description; This function creates a constant building block with a string literal.
Input: String
Output: String

Length

Visual representationJ
Description: This function returns the length of a string.
Input: A string constant or an input structure node.
Output: Number
Example: Length (“'abcd'™) returns 4

Normalize_Space

Visual representationJ
Description: This function accepts a string as an argument and removes leading, trailing,
and enclosed spaces in the specified string. The unnecessary white spaces within the string
are replaced by a single white space character.
Input: A string or an input structure node.
Output: String with no whitespace before, after, or within it.

Example: Normalize_Space(*" eMapperTool ') returns "‘eMapper Tool".

White spaces before and after the string is removed and the white spaces between
"eMapper” and "Tool" are replaced by a single blank space.

Chapter 10: eMapper Page 112

Fiorano eStudio User Guide

SubString-After

Visual representationJ
Description This function accepts two strings as arguments. The first string is the source
and the second input string is the string pattern. It returns that part of the first input
string that follows the string pattern.
Input: Two string constants or input structure nodes.
Output: String

Example: SubString-After(“abcde”, “bc”) returns *‘de"

SubString-Before

Visual representationJ
Description: This function accepts two strings as arguments. The first string is the source
and the second is the string pattern. The function returns that part of the first input string
that precedes the string pattern specified as the second argument to the function.
Input: Two string constants or input structure nodes.
Output: String

Example: SubString-Before(“abcde”, “cd’) returns “ab”

SubString-Offset

Visual representationJ
Description: This function accepts two string constants as argument. The first string is
the source and the second string is a numerical value that specifies the offset. The output
is that part of the source string which starts from the offset specified as the second
argument to the function.
Input: Two string constants or input structure nodes.
Output: String

Example: SubString-Offset(“abcde”, 3) returns *cde"

SubString-Offset-Length

Visual representationJ

Description: This function accepts three arguments. The first argument is the source
string, the second and third arguments are numerical that specify the offset and the size of
the output substring respectively. The output is a substring which starts from the offset
specified as the second argument to the function. The number of characters that need to
be obtained is specified as the third argument.

Input: Two string constants or input structure nodes and a number.

Chapter 10: eMapper Page 113

Fiorano eStudio User Guide

Output: String

Example: SubString-Offset-Length(“abcde”, 2, 3) returns "‘bcd"

10.4.1.4 Control Function
The following Control functions are available in Fiorano eMapper:

If-Then-Else

Visual representationJ
Description: This function accepts an input value. The first input is a Boolean value and
the second and third are string constants. Based on the Boolean value, the function
returns the output. If the Boolean value specified in the first input is TRUE, then the
function returns the second input string else it returns the third input string.

Input: Boolean value and a string, an optional string in the same sequence.

Output: The second input string or third input string (if present) depending on the first
input Boolean value.

Sort Function

Visual representationJ
Description: This function accepts two inputs. The first input is a set of nodes and the
second input is the value of the nodes. The function sorts the nodes in its first input based
on the second input.
Input: Sort (nodes, value)

Output: Sorted nodes as Loop Source

Filter Function

Visual representationJ
Description: This function accepts two arguments. The first argument is a set of nodes
and the second argument is a Boolean value. It filters out and returns the nodes for which
the second input value is TRUE.

Input: Filter (node set, bool)

Output: Nodes for which the second input value is true as Loop Source.

10.4.1.5 Conversion Functions

Fiorano eMapper consists of several Conversion functions to convert numerical from one
format to the other. These functions are covered in this section.

Chapter 10: eMapper Page 114

Fiorano eStudio User Guide

Decimal

Visual representationﬁ

Description: Converts the first input value having a base that is specified by the second

input value to a decimal number.

Input: Two numbers: The first input value is the number to be converted to decimal, and

the second input value specifies the base of the first input value.
Output: Number in base 10.

Hex

Visual representation@

Description: Converts a decimal number to a hexadecimal (base 16) number.

Input: Decimal number
Output: Hexadecimal (base 16) nhumber

Octal

Visual representationm

Description: Converts a decimal number to an octal (base 8) number.

Input: Decimal number
Output: Octal (base 8) number

Binary

Visual representationm

Description: Converts a decimal number to a binary (base 2) number.

Input: Decimal number
Output: Binary (base 2) number

Radians

Visual representationm
Description: Converts a value in Degrees to a value in Radians.
Input: Number

Output: Number

Chapter 10: eMapper

Page 115

Fiorano eStudio User Guide

Degrees

Visual representationﬁ
Description: Converts a value in Radians to a value in Degrees.
Input: Number
Output: Number

ChangeBase

Visual representationﬂ

Description: The ChangeBase function is used to change a number from one base to
another. This function accepts three arguments.

1. num- the number to be changed
2. fromBase- base of the given number

3. toBase- base to which number should be converted
Input: Number

Output: Number

10.4.1.6 Advanced Functions

Fiorano eMapper provides a number of advanced functions. This section explains all these
functions.

CDATA Function

Visual representationm

Description: This function accepts a string as an argument and specifies the character
data within the string.

Input: String argument or input structure node.
Output: Input string or node text enclosed within the CDATA tag.
Example: CDATA ('string’) returns <![CDATA[string]l]l>

Position

Visual representationE

Description: This function is available for the RDBMS-Update or RDBMS-Delete Output
structures only and returns the current looping position.

Input: None

Output: The position of the element in the parent tree.

Chapter 10: eMapper Page 116

Fiorano eStudio User Guide

Example: In an XML tree that has three elements, Position() returns
e O for the first element
e 1 for the second, and

e 2 for the third.

Format-Number

Visual representationﬂ

Description: This function converts the first argument to a string, in the format specified
by the second argument. The first argument can be a real number or an integer, and can
be positive or negative.

Input: Two values: The first input is a number, and the second, a string of special
characters that specifies the format. These special characters are listed in the following
table:

Representation Signifies Example
a digit [0-9] HHH
the decimal point HHH HH
, digit separator HittH, HHH HHE
0 leading and trailing zeros 000.0000
% inserts a percentage sign at the end #H###.00%
; a pattern separator ##.00;##.00

The format string is created by using these characters in any order.
Output: String with the number in the specified format.

Node-Name

Visual representationﬁ

Description: This function accepts an element or attribute and returns the name of the
particular element or attribute.

Input: A single element or attribute of any type
Output: A string

Count

Visual representation@

Description: This function accepts an element or attribute and returns the number of
instances of a particular element or attribute.

Input: A single element or attribute of any type

Output: A number

Chapter 10: eMapper Page 117

Fiorano eStudio User Guide

Deep-Copy

Visual representationE

Description: Copies the current node completely including the attributes and sub-
elements.

Input: An Input structure node

Output: All the contents of the Input structure node — including its attributes and sub-
elements.

Param

Visual representationm

Description: This function is used to access the runtime parameters by its name. Various
properties of Tifosi Document (such as header, message, and attachments) are available
as runtime parameters at runtime. The names of these parameters follow the convention
given below:

Header Properties TIF HEADER <HEADERNAME>

Message (text) TIF_BODY TEXT

Message (byte) TIF BODY BYTE

Attachment TIF ATTACH <NAVE>

Input: Name of the parameter

Output: Value of the parameter specified

10.4.1.7 Date-Time Functions
Date-Time functions include:

Date

Visual representation &2

Description: The Date function returns the date part in the input date-time string or the
current date if no input is given. The date returned format is: CCYY-MM-DD

If no argument is given or the argument date/time specifies a time zone, then the date
string format must include a time zone, either a Z to indicate Coordinated Universal Time
or a + or - followed by the difference between the difference from UTC represented as
hh:mm. If an argument is specified and it does not specify a time zone, then the date
string format must not include a time zone.

Input: Optionally, a string that can be converted to a date (the string should have the
date specified in the following format: CCYY-MM-DD)

Output: A date in the format: CCYY-MM-DD

Chapter 10: eMapper Page 118

Fiorano eStudio User Guide

DateTime

Visual representationt

Description: This function returns the current date and time as a date/time string in the
following format:

CCYY-MM-DDThh:mm:ss

Where,
e CCis the century
e YY is the year of the century
e MM is the month in two digits
e DD is the day of the month in two digits
e T is the separator between the Date and Time part of the string
e hh is the hour of the day in 24-hour format
e mm is the minutes of the hour
e ssis the seconds of the minute
The output format includes a time zone, either a Z to indicate Coordinated Universal Time

or a + or - followed by the difference between the localtime from UTC represented as
hh:mm.

Input: This function has no input.

Output: The current date-time in the following format: CCYY-MM-DDThh:mm:ss as described
above.

DayAbbreviation

Visual representation:
Description: This function returns the abbreviated day of the week from the input date
string. If no argument is given, then the current local date/time is used as the default
argument.

Input: Optionally, a date-time string

Output: The English day of the week as a three-letter abbreviation: 'Sun’, 'Mon', "Tue’,
'Wed', 'Thu’, 'Fri', or 'Sat'.

DaylnMonth

Visual representation 2L

Description: This function returns the day of a date as a number. If no argument is given,
then the current local date/time is used as the default argument.

Input: A date-time string in any of the following formats:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

Chapter 10: eMapper Page 119

Fiorano eStudio User Guide

--MM-DD

---DD

If no input is given, then the current local date/time is used.
Output: A number which is the day of the month in the input string.

DaylnWeek

Visual representation =l

Description: This function returns the day of the week given in a date as a number. If no
argument is given, then the current local date/time is used the default argument.

Input: A date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

Output: The day of the week as a number - starting with 1 for Sunday, 2 for Monday and
so on up to 7 for Saturday. If the date/time input string is not in a valid format, then NaN is
returned.

DaylnYear

J
Visual representation|

Description: This function returns the day of a date as a day number in a year starting
from 1.

If no argument is given, then the current local date/time, as returned by date-time is used
as the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

Output: A number representing the day in a year.
Example: The DaylnYear for 2003-01-01 returns 1, where as for 2003-02-01 it returns 32.

DayName

Visual representation L=

Description: This function returns the full day of the week for a date. If no argument is
given, then the current local date/time is used the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

Output: An English day name: 'Sunday’, 'Monday', 'Tuesday', "Wednesday®, 'Thursday® or
'Friday'.

Chapter 10: eMapper Page 120

Fiorano eStudio User Guide

DayOfWeeklnMonth

Visual representation L)
Description: This function returns the occurrence of that day of the week in a month for a
given date as a number. If no argument is given, then the current local date/time is used

as the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

Output: A number that represents the occurrence of that day-of-the-week in a month.
Example: DayOfWeekInMonth returns 3 for the 3rd Tuesday in May.

HourInDay

Visual representationt

Description: This function returns the hour of the day as a number. If no argument is
given, then the current local date/time is used as the default argument.

Input: A date string in any one of the following formats:

CCYY-MM-DDThh:mm:ss
hh:mm:ss

If the date/time string is not in one of these formats, then NaN is returned.
Output: The hour of the day or NaN if the argument is not valid.

LeapYear

Visual representation

Description: This function returns TRUE if the year given in a date is a leap year. If no
argument is given, then the current local date/time is used as the default argument.

Input: Date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

CCYY-MM

CCYy

If the date/time string is not in one of these formats, then NaN is returned.

Output: Boolean value (TRUE/FALSE)

Chapter 10: eMapper Page 121

Fiorano eStudio User Guide

MinutelnHour

Visual representation|

Description: This function returns the minute of the hour as a number. If no argument is
given, then the current local date/time is used as the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
hh:mm:ss

Output: The minute of the hour or NaN if the argument is not valid.

MonthAbbreviation

e

dHIM

Visual representation!

Description: This function returns the abbreviation of the month of a date. If no
argument is given, then the current local date/time is used as the default argument.

Input: Date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

CCYY-MM

——MM——

OutputThree-letter English month abbreviation: '‘Jan”, "Feb’, 'Mar’, ‘Apr’, 'May', ‘Jun*®, 'Jul ",
'Aug’, 'Sep’, "Oct”, "Nov" or "Dec”.If the date/time string argument is not in valid, then an

empty string (') is returned.

MonthiInYear

Visual representation!

Description: This function returns the month of a date as a number. The counting of the
month starts from 0. If no argument is given, the current local date/time is used as the
default argument.

Input: Date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

CCYY-MM

——MM--

—-MM-DD

If the date/time string is not valid, then NaN is returned.
Output: A number representing the month in a year.

Example: O for January, 1 for February, 2 for March and so on.

Chapter 10: eMapper Page 122

Fiorano eStudio User Guide

MonthName

Visual representationLt

Description: This function returns the full name of the month of a date. If no argument is
given, then the current local date/time is used as the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

CCYY-MM

——MM—-

Output: The English month name: "January', "February', "March', "April*, ‘May®, "June*,
"July”, 'August”, 'September’, "October’, "November' or '‘December'.If the date/time string is

not valid, then an empty string (*") is returned.

SecondInMinute

Visual representation

Description: This function returns the second of the minute as a number. If no argument
is given, then the current local date/time is used as the default argument.

Input: Optionally, a date string in any of the following formats:

CCYY-MM-DDThh:mm:ss
hh:mm:ss

Output: The second in a minute as a number. If the date/time string is not valid, then NaN
is returned.

Time

Visual representation

Description: This function returns the time specified in the date/time string that is passed
as an argument. If no argument is given, the current local date/time is used as the default
argument. The date/time format is basically CCYY-MM-DDThh:mm:ss.

If no argument is given or the argument date/time specifies a time zone, then the time
string format must include a time zone, either a Z to indicate Coordinated Universal Time
or a + or - followed by the difference between the difference from UTC represented as
hhzmm. If an argument is specified and it does not specify a time zone, then the time string
format must not include a time zone.

Input: Optionally, a date/time string in the following format:

CCYY-MM-DDThh:mm:ss

Output: The time from the given date/time string in the following format:

hh:mm:ss

If the argument string is not in this format, this function returns an empty string (*").

Chapter 10: eMapper Page 123

Fiorano eStudio User Guide

WeeklInYear

Visual representation|

Description: This function returns the week of the year as a number. If no argument is
given, then the current local date/time is used as the default argument. Counting follows
1SO 8601 standards for numbering: week 1 in a year is the week containing the first
Thursday of the year, with new weeks beginning on a Monday.

Input: Optionally, a date/time string in any of the following format:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

Output: The week of the year as a number. If the date/time string is not in one of these
formats, then NaN is returned.

Year

Visual representation

Description: This function returns the year of a date as a number. If no argument is
given, then the current local date/time is used as a default argument.

Input: Optionally, a date/time string in any of the following format:

CCYY-MM-DDThh:mm:ss
CCYY-MM-DD

CCYY-MM

CCYy

Output If the date/time string is not in one of these formats, then NaN is returned.

10.4.1.8 NodeSet Functions

SUM

Visual representationJ
Description: The Sum function sums all numbers in selected nodes.
Input: A nodes that has numerical values only.

Output: The sum of all the nodes. If any of the input nodes is not valid, a NaN value is
returned.

DIFFERENCE

Visual representationJ
Description: The difference function returns the difference between the two node sets
that are, in the node set passed as the first argument and the node that are not in the

node set passed as the second argument.

Input: Two node sets

Chapter 10: eMapper Page 124

Fiorano eStudio User Guide

Output: Node set

DISTINCT

Visual representationJ
Description: The distinct function returns a subset of the nodes contained in the node-set
passed as the first argument. Specifically, it selects a node N if there is no node in a given
node-set that has the same string value as N, and that precedes N in the document order.
Input: A node set

Output: A node

HAS SAME NODE

Visual representationJ
Description: The has-same-node function returns TRUE if the node set passed as the first
argument shares any nodes with the node set passed as the second argument. If there are
no nodes that are in both node sets, then it returns FALSE.
Input: Two node sets

Output: Boolean value (TRUE or FALSE)

INTERSECTION

Visual representationJ

Description The intersection function returns a node set containing the nodes that are
within both the node sets passed as arguments to it.

Input: Two node sets
Output: Node set

LEADING

Visual representationJ

Description: The leading function returns the nodes in the node set passed as the first
argument that precede, in document order, the first node in the node set passed as the
second argument. If the first node in the second node set is not contained in the first node
set, then an empty node set is returned. If the second node set is empty, then the first
node set is returned.

Input: Two node sets

Output: Node Set

Chapter 10: eMapper Page 125

Fiorano eStudio User Guide

TRAILING

Visual representationJ

Description: The trailing function returns the nodes in the node set passed as the first
argument that follow, in document order, the first node in the node set passed as the
second argument. If the first node in the second node set is not contained in the first node
set, then an empty node set is returned. If the second node set is empty, then the first
node set is returned.

Input: Two node sets
Output: Node set

HIGHEST

Visual representationJ
Description: The highest function returns the nodes in the node set whose value is the
maximum (numerical) value for the node set.

e A node has this maximum value if the result of converting its string value
to a number as if by the number function is equal to the maximum value,
where the equality comparison is defined as a numerical comparison using
the = operator.

. If any of the nodes in the node set has a non-numeric value, this function
returns an empty node set.

Input: A node set
Output: A node set

LOWEST

Visual representationJ
Description: The lowest function returns the nodes in the node set whose value is the
minimum (numerical) value for the node set.

e A node has this minimum value if the result of converting its string value
to a number as if by the number function is equal to the minimum value,
where the equality comparison is defined as a numerical comparison using
the = operator.

e If any of the nodes in the node set has a hon-numeric value, this function
returns an empty node set.

Input: A node set

Output: A node set

Chapter 10: eMapper Page 126

Fiorano eStudio User Guide

MINIMUM

Visual representationJ
Description: The minimum function returns the node with the minimum numerical value
within the given node-set. If the node set is empty, or if any of the nodes in the node set
has a non-numeric value, then NaN is returned.
Input: A node set

Output: A numerical value

MAXIMUM

Visual representationJ
Description: The maximum function returns the node with the maximum numerical value
within the given node set. If the node set is empty, or if any of the nodes in the node set
has a non-numeric value, then NaN is returned.

Input: A node set

Output: A numerical value

10.4.1.9 Boolean functions

The following boolean (logical) functions are available in eMapper Tool:

Chapter 10: eMapper Page 127

Fiorano eStudio User Guide

Symbol Function Description
= Equal True if both inputs are equal.
1= Not Equal True if both inputs are not equal
> Greater than True if the first input is greater than the second input.
< Less than True if the first input is less than the second input.
>= Greater than or True if the first input is greater than or equal to the second
Equal input.
<= Less than or True if the first input is less than or equal to the second
Equal input.
AND AND Logical AND of the two inputs (the inputs must be outputs of
logical building blocks only).
OR OR Logical OR of the two inputs (the inputs must be outputs of
logical building blocks only).
NOT NOT Logical inverse of the input (the input must be the output of
logical building block only).
BOOL boolean(object) Converts its argument to a boolean according to the XPath
specifications, as follows:
- a number is true if and only if it is neither positive or
negative zero nor NaN.
— anode-set is true if and only if it is non-empty
— astring is true if and only if its length is non-zero an
object of a type other than the four basic types is
converted to a boolean in a way that is dependent on
that type.
— = IsNumber-IsNumber()-Returns a boolean (true/ false)
indicating if the input value is a number

AND function
Symbol: AND

Description: This function accepts two boolean expressions as arguments and performs a
logical conjunction on them. If both expressions evaluate to TRUE, the function returns
TRUE. If either or both expressions evaluate to FALSE, the function returns FALSE.

Input: AND (boolean AND boolean)
Output: Boolean value (TRUE/FALSE)
Example:

Consider the example of Chat.dtd as Input Structure and Valid.dtd as Output Structure.
Suppose we want to filter out mails that do not have a message body and the email
address is not equal to admin@nobody.com. That is, we want that the isValid node of the
Output Structure takes the value true if the length of the Message node of the Input
Structure is not equal to zero and the value of the Email node is equal to
admin@nobody.com. Therefore,

1. Load Input Structure and Output Structure.

Chapter 10: eMapper Page 128

Fiorano eStudio User Guide

2. Map the Message node and Email node of Input Structure to the isValid node of
the Output Structure.

Invoke the Function Wizard by Right-clicking on the isValid node.
4. The Function Easel opens with the existing mappings.
5. Place the BOOL node on the Function Easel.

Link the output of the Message node to the input of the BOOL node, as shown in
Figure 10.4.1.

@Message 1st(_l[)—)-- 1 é] BOOL R

Figure 10.4.1: Linking Message and BOOL nodes

6. Place a Constant node on the Function Easel, and set its value equal to
admin@nobody.com.

7. Place a = node on the Function Easel.

Link the outputs of the Email node and Constant node to the inputs of the = node,
as shown in Figure 10.4.2.

I

|g admin@nobody.com | Hef»—l_,.z

Figure 10.4.2: Linking the Email and Constant node outputs
8. Place an AND node on the Function Easel.
9. Link the outputs of the BOOL node and = node to the inputs of the AND node.

Also, link the output of the AND node to the input of the isValid node, as shown
in Figure 10.4.3.

e A U e [filEee

[&| admin@nobody.com | R 3 I
| |

Figure 10.4.3: Linking the AND and = node outputs

10. This completes the desired mappings.
BOOL
Symbol: BOOL
Description:

This function converts its argument to a boolean according to the XPath specifications
which are as follows:

- A number is TRUE if and only if it is neither positive or negative zero nor NaN.
- A node-set is TRUE if and only if it is non-empty.

- A string is TRUE if and only if its length is non-zero.

Chapter 10: eMapper Page 129

Fiorano eStudio User Guide

- An object of a type other than the four basic types is converted to a boolean in a way
that is dependent on that type.

Input: BOOL (Object)
Output: Boolean value (TRUE/FALSE)
Example:

Consider the example of Chat.dtd as Input Structure and Valid.dtd as Output Structure.
Suppose we want to filter out mails that do not have message body. That is, we want that
the isMessageExist node of the Output Structure takes the value true if the length of the
Message node of the Input Structure is not equal to zero. The BOOL function returns true
for a string of length non-zero. Therefore,

1. Load Input Structure and Output Structure.

2. Map the Message node of Input Structure to the isMessageExist node of the
Output Structure.

3. Invoke the Function Wizard by right-clicking on the isMessageEXxist node.
4. The Function Easel opens with the existing mappings.
Place the BOOL node on the Function Easel.

Link the output of the Message node to the input of the BOOL node, as shown in
Figure 10.4.4.

Message 1st¢>—)- 1 g BOOL E

Figure 10.4.4: Linking Message and BOOI nodes

Link the output of the BOOL node to the input of the isMessageExist node, as
shown in Figure 10.4.5.

[E]Message 1st¢»—)- 1 | & BooOL R#)—)-- 1 |[E] isMessageExist

Figure 10.4.5: Linking BOOL and IsMessageExist nodes

6. This completes the desired mappings.
Equal
Symbol: =
Description: This function returns TRUE if both the inputs are equal.
Input: = (Object = Object)
Output: Boolean value (TRUE/FALSE)

Example:

Consider the example of Chat.dtd as Input Structure and Valid.dtd as Output Structure.
Suppose we want to filter mails coming from a particular email address. That is, we want
that the isFromAdmin node of the Output Structure takes the value true if the Email
node of the Input Structure has the email address as admin@nobody.com. Then,

1. Load Input Structure and Output Structure.

Chapter 10: eMapper Page 130

Fiorano eStudio User Guide

2. Map the Email node of Input Structure to the isFromAdmin node of the Output
Structure.

Invoke the Function Wizard by right-clicking on the isFromAdmin node.
4. The Function Easel opens with the existing mappings.

Now place a Constant building block on the Function Easel and set its value equal
to admin@nobody.com, as shown in Figure 10.4.6.

(E]Email | 1=t 115 =

#| admin@nobody.com | R

Figure 10.4.6: Setting Constant building block value to admin@nobody.com
5. Now place a = node on the Function Easel.

6. Link the outputs of the Email node and Constant node to the inputs of the =
node.

Link the output of the = node to the input of the isFromAdmin node, as shown in
Figure 10.4.7.

[ElEmail | 1st0) _
-. % g = R+—)|- 1 |[EsjisFrumAdmin
|§ admin@nobody.com | Rc#)—l—,

Figure 10.4.7: Linking = and isFromAdmin node

7. This completes the desired mappings.
Less Than
Symbol: <

Description: This function returns TRUE if the first input is less than the second input
value.

Input: < (Number < Number)
Output: Boolean value (TRUE/FALSE)
Example:

Consider the example of Numbers.dtd as Input Structure and Results.dtd as Output
Structure. Suppose we want that Result node of Output Structure should have the value
true if the value of Number1 node is less than the value of the Number2 node of the
Input Structure. Then,

1. Load Input Structure and Output Structure.

2. Map the Numberl and Number2 nodes of Input Structure to the Result node of
the Output Structure.

Invoke the Function Wizard by right-clicking on the Result node.
4. The Function Easel shows the existing mappings.

Place the < node on the Function Easel, as shown in Figure 10.4.8.

Chapter 10: eMapper Page 131

Fiorano eStudio User Guide

6.

Ezj Mumberl | st

@ Mumber2 | 1zt

Figure 10.4.8: Placing a node on the Function Easel

Link the outputs of the Numberl node and Number2 node to the inputs of the <
node.

Also, link the output of the < node to the input of the Result node, as shown in
Figure 10.4.8.

@Humherl 1ﬁ¢)—|_.
k1 @{ RH

[(E]Number2 1st¢ i

-

(E]Result

Figure 10.4.9: Linking < and Result node

This completes the desired mappings.

Greater than

Symbol: >

Description: This function returns TRUE if the first input is greater than the second input

value.

Input: > (Number > Number)

Output: Boolean value (TRUE/FALSE)

Example:

Consider the example of TotalMarks.dtd as Input Structure and Result.dtd as Output
Structure. Suppose we want that the value of the PassStatus node is true if the value of
the TotalMarks node of the Input Structure is greater than a constant value 150. Then,

1.
2.

Load Input Structure and Output Structure.

Map the TotalMarks node of Input Structure to the PassStatus node of the
Output Structure.

Invoke the Function Wizard by right-clicking on the PassStatus node.
The Function Easel opens with the existing mappings.

Now place a Constant building block on the Function Easel and set its value equal
to 150, as shown in Figure 10.4.10.

|@ TotalMarks | 1st |

EIERD

Figure 10.4.10: Setting the Constant building block to 150

| 1 |E§]Passﬁtatus

Chapter 10: eMapper Page 132

Fiorano eStudio User Guide

8.

Place a > node on the Function Easel.

Link the outputs of TotalMarks node and Constant node to the input of the >
node.

Also, link the output of the > node to the input of the PassStatus node, as shown
in Figure 10.4.11.

[is] TotalMarks ‘1st(,l[)—|_,
i % = Rt#)—)- 1 PassStatus

& 150 m#—'_)"z

Figure 10.4.11: Linking the > and PassStatus node

This completes the desired mappings.

Greater than or Equal function

Function: >=

Input: >= (Number >= Number)

Description: True if the first input is greater than or equal to the second input.
Output: True/False

Example:

Consider the example of TotalMarks.dtd as Input Structure and Result.dtd as Output
Structure. Suppose we want that the value of the PassStatus node as true if the value of
the TotalMarks node of the Input Structure is greater than or equal to a constant value

150. Then,
1. Load Input Structure and Output Structure.
2. Map the TotalMarks node of Input Structure to the PassStatus node of the
Output Structure.
3. Invoke the Function Wizard by right-clicking on the PassStatus node.
4. The Function Easel opens with the existing mappings.
Now place a Constant building block on the Function Easel and set its value equal
to 150, as shown in Figure 10.4.12.
Ez] TotalMarks | 1=t
1 @Passﬁtatus
& 150 | R
Figure 10.4.12: Setting the Constant building block to 150
5. Place a >= node on the Function Easel.
6. Link the outputs of TotalMarks node and Constant node to the input of the >=

node.

Also, link the output of the >= node to the input of the PassStatus node, as
shown in Figure 10.4.13.

Chapter 10: eMapper Page 133

Fiorano eStudio User Guide

E;j TotalMarks 1=t 4)—‘_,
% Zg = B (‘l[)_, 1 @ PassStatus
& 150 [#»—'_,

Figure 10.4.13: Linking the >= and PassStatus nodes

7. This completes the desired mappings.
OR
Symbol: OR

Description: This function accepts two boolean expressions as arguments and performs
logical disjunction on them. If either expression evaluates to TRUE, the function returns
TRUE. If neither expression evaluates to True, the function returns FALSE.

Input: OR (boolean OR boolean)
Output: Boolean value (TRUE/FALSE)
Example:

Consider the example of Chat.dtd as Input Structure and Valid.dtdas Output Structure.
Suppose we want to receive mails that are sent either from the address
admin@nobody.com or aryton@nobody.com that is, we want that the isValid node of the
Output Structure takes the value true if the Email node of the Input Structure has the
value admin@nobody.com or aryton@nobody.com. Then,

1. Load Input Structure and Output Structure.

2. Map the Email node of Input Structure to the isValid node of the Output
Structure.

3. Invoke the Function Wizard by right-clicking on the isValid node.
4. The Function Easel opens with the existing mappings.

5. Place a Constant node on the Function Easel and set its value equal to
admin@nobody.com.

Place another Constant node and set its value equal to aryton@nobody.com, as
shown in Figure 10.4.14.

[:i_;] Email 1=t

g] admin@nobhody.com R

g aryton@nobody.com R

Figure 10.4.14: Setting the Constant node value to aryton@nobody.com

Now place two = nodes on the Function Easel, and make links as shown in Figure
10.4.15.

Chapter 10: eMapper Page 134

Fiorano eStudio User Guide

& admin@nobody.com H(%)—l_,._ 15 =

(E]Email m#}—z.i e

#| aryton@nobody.com H(_l[)—l_" =

Figure 10.4.15: Placing two = nodes on the Function Easel
6. Place a OR node on the Function Easel.
7. Link the outputs of the two = nodes to the inputs of the OR node.

Also, link the output of the OR node to the input of the isValid node, as shown in
Figure 10.4.16.

#| admin@nobody.com RI%)—|_,.. 1]& =

(E]Email 1st¢_z.z1 o J]::% & or R%»—)- 1 |[Eisvalid

Q aryton@nobody.com Rel)—l_" =

Figure 10.4.16: Linking the OR and isValid nodes

8. This completes the desired mappings.
Less Than or Equal

Symbol: <=

Description: This function returns TRUE if the first input is less than or equal to the
second input.

Input: <= (Number <= Number)
Output: Boolean value (TRUE/FALSE)

Example:

Consider the example of Numbers.dtd as Input Structure and Results.dtd as Output
Structure. Suppose we want that the Result node of Output Structure to have the value
true if the value of Numberl node is less than or equal to the value of the Number2
node of the Input Structure. Then,

1. Load Input Structure and Output Structure.

2. Map the Numberl and Number2 nodes of Input Structure to the Result node of
the Output Structure.

Invoke the Function Wizard by right-clicking on the Result node.
4. The Function Easel shows the existing mappings.

Place the <= node on the Function Easel, as shown in Figure 10.4.17:

Chapter 10: eMapper Page 135

Fiorano eStudio User Guide

Mumber1 1=t

ﬁz] Number? | 1t

Figure 10.4.17: Placing <= node on the Function Easel

5. Link the outputs of the Numberl node and Number2 node to the inputs of the
<= node.

Also, link the output of the <= node to the input of the Result node, as shown in
Figure 10.4.18:

(E]Numberl | 1st

#)—L*ig]a R#)—,q [E]Result
Sl

Figure 10.4.18: Linking outputs of the Numberl and Number2 nodes

Esj Mumber? | 1st

6. This completes the desired mappings.
NOT
Symbol: NOT

Description: This function accepts a boolean expression as the argument and performs
logical negation the expression. The result is a boolean value representing whether the
expression is FALSE. That is, if the expression is FALSE, the result of this function is TRUE.

Input: NOT (boolean)
Output: Boolean value (TRUE/FALSE)
Example:

Consider the example of Valid.dtd as Input and Output Structure. Suppose we want to
make mails from email address admin@nobody.com as invalid. That is, we want that if the
value of isFromAdmin node is true, then the value of isValid is set to false. Then,

1. Load Input Structure and Output Structure.

2. Map the isFromAdmin node of Input Structure to the isValid node of the Output
Structure.

3. Invoke the Function Wizard by right-clicking on the isValid node.
4. The Function Easel shows the existing mappings.

Now place a NOT node on the Function Easel, as shown in Figure 10.4.18.

isFromAdmin 1=t

1 | & NOT | R

Figure 10.4.19: placing a NOT node on the Function Easel

Chapter 10: eMapper Page 136

Fiorano eStudio User Guide

5. Link the output of the isFromAdmin node to the input of the NOT node.
Also link the output of the NOT node to the input of the isValid node, as shown in
Figure 10.4.20.
[Elisfromadmin [1st0—>t 1 | B NoT [R34 1 |(E]isvalid
Figure 10.4.20: Linking theNOT and isValid nodes
6. This completes the desired mappings.
Not Equal
Symbol | =

Description: This function returns TRUE if both the inputs are not equal.

Input != (Object = Object)

Output: Boolean value (TRUE/FALSE)

Example:

Consider the example of Chat.dtd as Input Structure and Valid.dtd as Output Structure.
Suppose we want to filter out mails that do not have a message body. That is, we want
that the isMessageExist node of the Output Structure takes the value true if the length of
the Message node of the Input Structure is not equal to zero. Then,

1.
2.

Load Input Structure and Output Structure.

Map the Message node of Input Structure to the isMessageExist node of the
Output Structure.

Invoke the Function Wizard by Right-clicking on the isMessageExist node.
The Function Easel opens with the existing mappings.

Now place a Constant building block on the Function Easel and set its value equal
to O.

Place a Length node on the Function Easel.

Link the output of the Message node to the input of the Length node, as shown
in Figure 10.4.21.

|@ Message | 1st | | str | % Length

Ho [7

Figure 10.4.21: Linking the Message and Length nodes

num |

Chapter 10: eMapper Page 137

Fiorano eStudio User Guide

7. Place a '= node on the Function Easel.

8. Link the outputs of the Length node and Constant node to the inputs of the !=
node.

Also, link the output of the '= node to the input of the isMessageExist node, as
shown in Figure 10.4.22.

|[:'_|'§] Message | 1st¢»—)+ =tr |§| Length I r-.-m.-.’J.\.].

[—)—} 1 |3'E JisMessageExist

o [

Figure 10.4.22: Linking the !=and isMessageExist nodes

9. This completes the desired mappings.
IsNumber
Symbol: IsNumber
Description: This function returns TRUE if the input value is a number.
Input: Any value

Output: Boolean value (TRUE/FALSE)

10.4.1.10 Lookup functions

The functions in this category are used to perform the lookup of keyvalue pairs in a
database and return the result in sorted fashion.

10.4.1.10.1 Lookup with Default Connection Details
DB

Description: This function accepts a table name, keyvalue pairs and column names as
arguments and does the lookup in the database and returns the result in sorted form.

Input: Table name, Key value pairs, Columns names.
Output: String containing the lookup result in sorted order.

Points to note

1. Lookup functions take key columns name value pairs as
<columnl>=<valuel>,<column2>=<value2> etc.

For Example: dvSendDept=100, dvSendCode=BLK

2. Lookup functions can return the values of multiple columns. To get multiple
columns, use the format <column3>,<column4=.
For Example: dvValueDA, dvDescription

3. Dates are expected in MM/dd/yyyy HH:mm:ss format

4. Make sure the input value match the column length defined in the database. For
example, if the dvSendCode is defined as char(10) in the database, the input value
should be BLK followed by seven spaces.

Note: Spaces are not required if you are using MSSQL 2005.

Chapter 10: eMapper Page 138

Fiorano eStudio User Guide

Prerequisites
1. Add required database drivers in the eMapper classpath.

For example, if the lookup tables are in HSQL, include the path of hsgldb.jar in
<java.classpath> of eMapper.conf present at
{FIORANOHOME}/esb/tools/eMapper/bin.

2. To use this function in the eMapper tool, a system property
eMapper.lookup.dbconfig has to be defined in eMapper.conf and it should
point to the path of db.properties file which contains the url, driverName, user
and password.

Sample db properties file is shown below which contains the data for oracle data
base.

HDE PORPS

Hoat Jun 03 1:26:53 15T 2006
url=jdbc:oracle:thin:@192.168.2.92:1521:fiorano
driverName=oracle. jdbe.driver. Oraclelriver
USer=scott

password=tiger

Figure 10.4.23: Sample db properties file

3. For use in Route transformations, eMapper.lookup.dbconfig property has to be
set in {FIORANOHOME}/fps/bin/fps.conf.

4. For use in XSLT component, eMapper.lookup.dbconfig property has to be
included in JVM_PARAMS
For example: -DeMapper.lookup.dbconfig=<path of db.properties>

10.4.1.10.2 Lookup with Connection Details

DB

Description: This function accepts a table name, keyvalue pairs, column names, url,
driver name, user name and password as arguments and does the lookup in the database
and returns the result in sorted form.

Input: Table name, Key value pairs, Columns names, URL, driver name, user name and
password.

Output: String containing the lookup result in sorted order.

Points to note

1. Lookup functions take key columns name value pairs as
<columnl>=<valuel>,<column2>=<value2> etc.

For example, dvSendDept=100, dvSendCode=BLK

Lookup functions can return value of multiple columns. To get multiple columns,
use the format <column3>,<column4=>.

For example, dvValueDA, dvDescription
2. Dates are expected in MM/dd/yyyy HH:mm:ss format

3. Make sure the input value match the column length defined in the database. For
example, if the dvSendCode is defined as char(10) in the database,
the input value should be BLK followed by 7 spaces.

Chapter 10: eMapper Page 139

Fiorano eStudio User Guide

Prerequisites
1. Add required database drivers in the eMapper classpath.
For example, if the lookup tables are in HSQL, include the path of hsgldb.jar in
<java.classpath> of eMapper.conf present at
{FIORANOHOME}/esb/tools/eMapper/bin.
10.4.1.11 JMS Message Functions
The various functions in this category extract specific information from a JMS Message and

output to the same. The input for these functions is a JMS Message. The following are the
available JMS Message Functions:

= Byte Content
= Text Content
= Header

= Attachment
10.4.1.11.1 Byte Content
Function: Byte Content
Description: The Byte Content function returns the byte content of a Fiorano document.
Output: Base64 encoded string value
10.4.1.11.2 Text Content
Function: Text Content

Description: The Text Content function returns content which is in text format from a
Fiorano document.

Output: String value
10.4.1.11.3 Header
Function: Header

Description: The Header function returns the value of the name that is passed as a
property to the function.

Output: String value
10.4.1.11.4 Attachment
Function: Attachment

Description: The Attachment function returns any attachments attached to a Fiorano
document. The name of the attachment needs to be passed as a property to the function.

Output: Base64 encoded string value

Chapter 10: eMapper Page 140

Fiorano eStudio User Guide

10.4.1.12 User Defined functions

The various functions in this category are user defined and perform various functionalities.
The following User Defined functions are available:

= dateConversion
= compute

= nextMillenium

= replace

10.4.1.12.1 myExt:dateConversion

Description: Converts the date from one format to the other. For example, date can be
converted from MM-dd-yyyy to dd-MM-yy function convertDate (dateString, inFormat,

outFormat)
Field Full Form Short Form
Year yyyy (4 digits) yy (2 digits), y (2 or 4 digits)
Month MMM (name or abbr.) MM (2 digits), M (1 or 2 digits)
NNN (abbr.)
Day of Month dd (2 digits) d (1 or 2 digits)
Day of Week EE (name) E (abbr)
Hour (1-12) hh (2 digits) h (1 or 2 digits)
Hour (0-23) HH (2 digits) H (1 or 2 digits)
Hour (0-11) KK (2 digits) K (1 or 2 digits)
Hour (1-24) kk (2 digits) k (1 or 2 digits)
Minute mm (2 digits) m (1 or 2 digits)
Second ss (2 digits) s (1 or 2 digits)
AM/PM a

Input: Accepts three arguments. The first argument is the date passed as a string to the
function. The second argument is the input format and the third argument is the required
output format for the date.

Output: The date string

Examples:

MMM d, y matches: January 01, 2000, Dec 1, 1900, Nov 20, 00
M/d/yy matches: 01/20/00, 9/2/00
MMM dd, yyyy hh:mm:ssa matches: January 01, 2000 12:30:45AM

10.4.1.12.2 myExt: replace

Description: This user-defined function replaces parts of a string that match a regular
expression with another string.

string regexp:replace(string, string, string, string)

Chapter 10: eMapper Page 141

Fiorano eStudio User Guide

Input: The function accepts four arguments. The first argument is the string to be
matched and replaced. The second argument is a regular expression that follows the
Javascript regular expression syntax. The fourth argument is the string to replace the
matched parts of the string.

The third argument is a string consisting of character flags to be used by the match. If a
character is present then that flag is true. The flags are:

e g: global replace - all occurrences of the regular expression in the string are
replaced. If this character is not present, then only the first occurrence of the
regular expression is replaced.

e i: case insensitive - the regular expression is treated as case insensitive. If this
character is not present, then the regular expression is case sensitive.

Output: String

10.4.1.12.3 myExt:compute

Description: This user-defined function can be used to compute all mathematical
operations such as Addition, Subtraction, Multiplication and division of numbers. The
function does not compute mathematical operations such as cos, sin, etc.

Input: A valid javascript expression

Output: A number

10.4.1.12.4 myExt: nextMillenium

Description: This user-defined function returns the number of days in the next millenium.

Input: There is no input for this function

Output: Number

10.4.2 Funclet Easel
This panel is the basic work area for creating expression based mappings. The user can
place the Function nodes as well as the Source or Destination nodes on this area and make

the required mappings.

The Funclet easel appears as shown in Figure 10.4.24.

:]-ﬂ Funclet Yiew =3 5-| Messages |] Mapper Console = O

Arithmetic Funckions w

s
[:3 Select |15t ||1| Marks |15t¢>—
B3+
J B —— 2| Marks
J div
J rmod
J "

| Elame

h
—

Chapter 10: eMapper Page 142

Fiorano eStudio User Guide

Figure 10.4.24: Funclet easel

10.4.2.1 Source Node

The Source node corresponds to a node in the Input Structure Panel. A Source node is
shown in Figure 10.4.25.

|15I: ||1| Marks |15t¢

Figure 10.4.25: Source Node

10.4.2.2 Destination Node

The Destination node corresponds to a node in the Output Structure Panel. A Destination
node is shown in Figure 10.4.26.

% (| Marks

Figure 10.4.26: Destination Node
Add Link between two Nodes

To make a link between two nodes placed on the Funclet easel, follow the steps below:

1. Click on the gray box on the source building block. A small circle appears, as
shown in Figure 10.4.27. This represents the starting point of the link and the
output box of the building block.

|15I: ||1| Marks |15t¢>

Figure 10.4.27: Source node

2. Now drag-and-drop the mouse to the Destination node’s input point, which is again
represented by a gray box. A big circle appears on the destination node, as shown
in Figure 10.4.28.

|15t||5| Marks |15t|—|— 1
:|2 ilil Marks

Figure 10.4.28: Linking the Source and the Destination node

3. Release the mouse. A link between the two nodes is created.
Add Source node to Funclet easel

Drag-and-drop the source node from the Input Structure Panel to the Funclet easel, as
shown in Figure 10.4.28.

Chapter 10: eMapper Page 143

Fiorano eStudio User Guide

:]-l Funclet Yiew &3 Messages | | Mapper Console

':'-tr'iru;l Funickions W |

[}3 Select

= Concak

& Length —

“ Conskankt

2] #PaTH

B SubSkring-Before

>

W
3 = kSvimno fiFrar —

Figure 10.4.29: Adding Source node to Funclet easel
Add Function node to Funclet easel

Click the Function node on the Function palette that is to be placed on the Funclet easel, as
shown in Figure 10.4.30.

|Striru;| Functions b

[‘% Select

= Concak

E Length __

ﬂ Conskankt

e
[Substring-Before

3 = kSkvimn- AiFFar

[

W

Figure 10.4.30: Selecting the Function node

1. Now, move the mouse onto the Funclet easel. This changes the mouse to a?+? ‘+’
sign, representing that the corresponding function node is selected.

2. Now click on the Funclet easel.

3. This places the corresponding function node building block on the Funclet easel.

Alternatively,

1. Drag-and-Drop the function node from Function palette to the Funclet easel, as shown
in Figure 10.4.31.

Chapter 10: eMapper Page 144

Fiorano eStudio User Guide

1=k

(2] Mail

Coog—
TEh

1st | 2] Attachment Lioo

MR

Figure 10.4.31: Funclet easel

Add Link between two nodes

¥

nEdels JFiIter Loy
B 1 | =0 [2ERO MANY]

To make a link between two nodes placed on the Funclet easel, follow the steps below:

Click on the gray box on the source building block. A small circle appears, as shown in
Figure 10.4.32. This represents the starting point of the link and the output box of the

building block.

|1st ||1| Marks |1st4}

Figure 10.4.32: Source node

1. Now drag-and-drop the mouse to the destination node’s input point, which is again
represented by a gray box. A big circle appears on the destination node, as shown in

Figure 10.4

.33.

|15t | el Marks [1st]——7

:'; ilﬂ Marks

Figure 10.4.33: Linking the Source and the destination node

2. Release the mouse. A link between the two nodes is created, as shown in Figure
10.4.34.
:]-ﬂ Funclet Yiew &2 5| Messages |] Mapper Console = O
Arithmetic Functions w
[Select L |
1st|[¢] Marks [1sth———
B+
i w1
—| En (2] Marks
[div
E rmed
J *
| Elame b’
Figure 10.4.34: Linking Source and Destination nodes
Chapter 10: eMapper Page 145

Fiorano eStudio User Guide

Delete link between two nodes
To delete a link between two building blocks,

Click on the ending point of the link and drag it to an empty area in the Funclet easel, as
shown in Figure 10.4.35.

|15t |IE| Marks |15tsjli—|_ P i E—
:]1 Clear Funclet

EET—

(7) Help

Figure 10.4.35: Deleting link

2. Now, release the mouse. This removes the link between the corresponding nodes.
Delete node from Funclet easel

Select the corresponding building block and right-click on it. The shortcut menu appears as
shown in Figure 10.4.36.

15t | (2] Markes [12t]

:]! Clear Funclet
= Copy

(7) Help

Figure 10.4.36: Pop-up menu

e Click Delete to delete the selected building block.
Open Function Help

The description for a predefined function can be viewed by clicking Help in the right-click
menu of a Function node.

10.5 Creating Mappings

Mappings are defined between nodes of the Input and Output structures. The Structure is
displayed in a tree form.

10.5.1 Understanding Types of Nodes
Mappings are defined between nodes of the Input and Output structures. These nodes can
be divided into four types:

1. Element Node: This type of node contains an XML element.

2. Text Node: This type of node contains an XML element only.

3. Attribute Node: This type of node contains an attribute of the XML element that
contains it.

Chapter 10: eMapper Page 146

Fiorano eStudio User Guide

4. Control Node: The control node is a pseudo node that depicts the cardinality of
the elements in an XML structure. The Control node is displayed in red color and is
surrounded by square brackets.

The control node serves as a useful indicator while creating mappings between the Input
and Output Structures. For example, an Output structure node that has a cardinality of one
or more requires that at least one element should be added to that XML structure.

Control Node[ZERO-MANYT]: This Control node specifies that zero to many occurrences
of a node can exist in its parent node. For example, in Figure 10.5.1 the Mail-List element
can contain zero or many Mail nodes.

B 4 - %

= <R> Oukputl
- IEI Mai!: i

= [&] Mail
from
ka
[B] Body
= =1 [OME MARY]
[B] attachment

Figure 10.5.1: Example of Zero to Many control node

Control Node [ONE-MANY]: This Control node specifies that one to many occurrences of
a node can exist in its parent node. For example, in Figure 10.5.2 the Mail node can
contain one or many occurrences of the Attachment node.

B &+~ x

= <R Cukputl
=[] mail-List

= [&] Mail
From
ka
[e] Body
=-{5=1 [OME MakyY]
(2] Attachment

Figure 10.5.2: Example of One to Many control node

Control Node [Choice]: This Control node specifies that only one of the descendant
nodes can exist in the parent node. For example in Figure 10.5.3 TifosiService node can
have either Java node or Win32 node, but not both.

Chapter 10: eMapper Page 147

Fiorano eStudio User Guide

EH &+~ %

= <R Output2
= [£] TifosiService
(el GUID
[€] DisplayMName
¥ OR [Choice]
[g] Java

[2] win32

Figure 10.5.3: Example of Choice Control Node

A structure can also contain optional nodes. This type of node specifies that either zero or
one occurrence of this node can exist in its parent node. For examples, in Figure 10.5.4,
Student node can have either zero or one occurrence of the Nick-Name node. An Optional
node (element/attribute) is displayed in green color.

B - %
= <[

= [8] STUDEMT

id
= =0 [ZERC MARY]
=- (8] ins
[&] sTHOD
[E] STHAME
[E] arEA
[B] Mick-Mame

Figure 10.5.4: Example of Optional Node

10.5.2 Types of Mappings

Mappings from an Input Structure node to an Output Structure node can be singular or
iterative. Singular mappings, known as Name-to-Name mappings in Fiorano SOA Platform,
create only one output element from the first instance of the mapped element in the Input
Structure.

On the other hand, iterative mappings, known as For-Each mappings in Fiorano SOA
Platform, iterate through all instances of the mapped Input Structure element and create
corresponding Output Structure elements.

For Input Structure nodes that contain only single instances of child elements, only Name-
to-Name mappings can be defined.

10.5.2.1 Name-to-Name Mapping

Now create mapping from Name-to-Name, as shown in Figure 10.5.6.

Chapter 10: eMapper Page 148

Fiorano eStudio User Guide

sl ProductDemo friap &3

B +-x B +-x
= <R Inpukl = <F¥ Cukpukl
= [&] Order = (8] order
= »=0 [ZERC MANY] =0 [ZERD MANY]
= [8] ManuFacturer = [&] Product
name name
= »=0 [ZERC MARNY] [] Manufacturer
= (€] Product ———— [&] DiscountPrice
narme
[e] Cast
El Discounk

E Map Yiew E MetaData

Figure 10.5.6: Name-to-name Mapping

The Funclet Wizard shows a link starting from the output of the name input node to name
output node. The Name-to-Name mapping defines how elements and attributes in the
Input Structure map on to elements and attributes in the Output Structure. A Name-to-
Name mapping on its own (without a For-Each mapping context) creates a single instance
of the mapped Input Structure node to the Output Structure.

If the Name-to-Name mapping exists within a For-Each mapping context and there are
multiple elements and attributes in the Input Structure then each of those elements and
attributes is mapped on to an Output Structure node.

10.5.2.2 For-Each Mapping

When an Input Structure node can have multiple instances and the user wants to define a
mapping for each one of them, then For-Each mapping should be used. A necessary
condition for this type of mapping is that the Output Structure node to which For-Each
Mapping is being defined should be of[ZERO-MANY] or [ONE-MANY] cardinality. Figure 10.5.7
shows an instance of a For-Each mapping.

Chapter 10: eMapper Page 149

Fiorano eStudio User Guide

=l ProductDemo.fmap 53

B +-x B +-x
= <R>Inputl = <R¥ Qutputi
= [&] Order = [8] order
=) =0 [ZERD MARY] »=0 [ZERD MANY]
=[] Manufacturer = [&] Product
narme narme
= 2= [FERD MANY] [8] Marwfacturer
= [] piscountPrice
@) namg —————
[&] cost ————8 8
[e] piscount

E Map Yiew E Metalata

Figure 10.5.7: For-Each Mapping

This mapping specifies that for each Product element in the input XML, the output XML
contains a Product element. For-Each mapping can be applied only to [ZERO-MANY] or [ONE-
MANY] control nodes in the Output Structure.

To create a For-each mapping in the Funclet Wizard, you need to link the Loop output label
of the Input Structure node to a [ZERO MANY] or [ONE-MANY] control node in the Output
Structure. These control nodes signify the cardinality of contained elements and attributes.

All value mappings for the attributes and child elements of a [ZERO MANY] or [ONE-MANY]
node with For-Each mapping are carried out within the For-Each context.

So, in Figure 10.5.7 the mapping defined creates multiple instances of the Product element
from the Product elements in the Input Structure. The Output element, Product, is created
as per the mappings defined for its attributes and child elements by the respective Name-

to-Name mappings.

10.5.3 Duplicating a For-Each Mapping

There may be situations in which one may want to specify different input values for
different iterations of a For-Each loop. This can be accomplished by duplicating a [Zero
Many] or [One Many] control node in the output structure.

The following example illustrates this situation. A Student DTD has two types of child
elements: male and female. These need to be mapped to the student element in the
output structure DTD, as shown in Figure 10.5.8.

Chapter 10: eMapper Page 150

Fiorano eStudio User Guide

=l Duplicates.fmap 52 =g
. af 1Duplicates,l’DupIicates.Fmaph . &+ - W
= <R Inputl = <R Cutput1
= [E] schoal = [E] schonl
= >=1 [OME MANY] S = R [CE MANY]
= @ male = @ student
: e IE‘ nanme El name
= =1 [OME MANY] [v [B] sex
= [E] Female - >=1 [OME MANY]
o [E] name = @ student
El name
[o (8] sex
ols Map view | MetaData|
Figure 10.5.8: Mapping a node to One Many control node
The same mapping has to be defined for the female elements. To do this, drag the female
node from the input structure to the output structure. A message dialog box is displayed
as shown in Figure 10.5.9.

= [&] femalg
BEN = Fiorano Mapper

b] Duplicate the node '[OME MAMNY] 7
W)

B - B &+-x
= <R Inputl = <R Qukputi
= [] schoal = [€] school
= »=1 [OME Man] ———+- »=1 [OME ManY]
B [E] male =+ [8] student
: IEI narne 1 El name
= »=1 [OME MAaNY] FH— koo [B] sex

+l2 Map View | E" Metabata !

Figure 10.5.9: A shortcut menu prompts you to duplicate the node

Click OK in the message dialog box to create a duplicate node. A mapping is created as

shown in Figure 10.5.10.

Chapter 10: eMapper

Page 151

Fiorano eStudio User Guide

sl= #Duplicate frmp &3

H 4~ X B 4~ X
= <R> Inputl = <{f> Qutputl
= [£] school = [£] schoaol
< =1 [ONE MANY] ¥ »=1[ONE MANY]
= [E] male B = [E] student
[e] name [e] name
+ =1 [ONE MANY] fa——7 —— [€] sex
- [&] female = »=1 [ONE MANY]
[&] name = [&] student
[E] name
[E] sex

L= Map View | %, MetaData

Figure 10.5.10: The One Many Node is Duplicated

10.5.4 Linking Nodes to Define Mappings

A Mapping is defined in the Fiorano eMapper tool by visually linking the Input Structure
nodes to the Output Structure nodes. This linking can be defined using any of the following
techniques:

1. Drag and drop the node from the Input Structure Panel to the Output Structure
Panel

2. Or, create an automatic mapping between child nodes of the selected Input
Structure node and child nodes of the selected Output Structure node

3. Or, by using the Visual Expression Builder

10.5.4.1 Using the Automatic Mapping option to Define Mappings
To create automatic mappings between the selected Input and Output Structure nodes:

Select the nodes in the Input and Output Structure whose child nodes are mapped. Click
the Child to Child option in the tool bar, as shown in Figure 10.5.11.

Chapter 10: eMapper Page 152

Fiorano eStudio User Guide

& Mapper Perspective - MapperDemo/MapperDemo.fmap - Eclipse Platform

File Edit Mavigate Search Project Tools Run Window Help
3 [mif |?E?E|§él"3ﬂ§$'0'%' = L FERL R I | 1 Mapper Persp... |
{Er Mapper Projects 3 child to Child Recursively apperDemo.fmap i3 =0
<:=» =
52 |8 - % B +- %
= = MapperDema
Ebpfesources = <R>Inputi = <RX outputl
I3 MapperDemo fnap - [E] admissions B [E] admissions
' - =0 [ZERO MANY] - =0 [ZERO MANY]
= [&] Applicant = [&] ppplicant
name name
[e] Age [e] Age
[&] Marks [&] Marks
+L2 Map View | %] MetaData
:]-l Funclet Yiew 3 Messages | [Mapper Console =
A
|String Funckions ~ | =
| [Salact — | E
. . . L. b
: 0 @)

Figure 10.5.11: Creating Automatic Mapping between child nodes

10.5.4.2 Using the Visual Expression Builder to Define Mappings

The Visual Expression Builder (VEB) is a useful feature of the eMapper tool. It allows you
to visually link nodes and insert functions to define complex mapping expressions. As an
example, we define a mapping for the DiscountPrice output node. This node should have
a value that is generated by subtracting the value of the Discount input node from the
Cost input node. To use the VEB to define the mapping perform the following steps:

Chapter 10: eMapper Page 153

Fiorano eStudio User Guide

1. Select the DiscountPrice output node, the Funclet View of the eMapper Perspective
is displayed as shown in Figure 10.5.12.

& Mapper Perspective - Demo/Demo.fmap - Eclipse Platform

File Edit Mavigate Search Project Tools Run ‘Window Help

An il EEBEE’%*;'O'%' =1 L= §|EMapperPersp...|
{Er Mapper Projects &2 =g EMapperDemo.Fmap E*Demo.Fmap g =0
= v
5958 &% B o4~ %
[=1=F Demo
RS = <R Inputl = <F> Qutputl
resources 5 [ord 5 [& ord
[=-{= schemas roer raer
B =0 [ZEROD MANY] B =0 [ZERD MANY]
D] Input!.nTD
& = [&] Marufacturer = [&] Marwfacturer
Cutpuk1,DTL
L2 Dema fmap name name
' B =0 [ZERD MANY] - 30 [ZERC MaNY]
1= MapperDemo
we =[] Product = [E] Product
name name
[€] Cost [8] Cost
(€] Discourt E‘
ﬁ Map View E.‘“ IMetaData
:]-l Funclet Yiew &5 Messages [Mapper Cansole =0
|Str\ng Functions b3 |
h Select =
] Length
[Constant v
v @)

Figure 10.5.12: Selecting the Output Node for Mapping

2. The selected Output node is automatically displayed in the Function easel, as
shown in the Figure 10.5.12. To add an input structure node to the mapping, drag
it to the Funclet easel of the Visual Expression Builder. Here, drag the Cost input
node from the Input Structure Panel to the Funclet easel. The Cost input node is
added to the Funclet easel as shown in Figure 10.5.13.

ot Funclet View &2

Messages O Mapper Consale

|String Functions L |
% Select Al
25| Concat
J Length
[Constant v

1]

Figure 10.5.13: Dragging an Input node

3. To subtract the value of Discount input node, the subtract function from the
Funclet Palette can be used. The subtract function is available in the Arithmetic
functions. To add the subtract function, first select the Arithmetic function category
from the Function palette. Click on the drop-down list in the Funclet palette. The
drop-down list is displayed in the Funclet palette, as shown in Figure 10.5.14.

Chapter 10: eMapper

Page 154

Fiorano eStudio User Guide

4. Select Arithmetic Functions from the list. The Arithmetic functions are displayed
in the Funclet palette. Drag the subtract function from the Function palette to the
Funclet easel. The subtract function is added to the Funclet easel as shown in

Figure 10.5.15.

oha Furnclet Yiew 53

Messages [Mapper Console

Advanced Functions

Advanced Functions

Arithmetic Functions
Boolean Functions
Control Functions
Conversion Functions

Deep-Copy

u Pasition

14

— [&| Discount

Figure 10.5.14: Selecting the Arithmetic Function Category in the Funclet palette

ok Funclet Wiew 53

Messages 0 Mapper Console

‘F'.rithmetiu: Functions

vl

[} Select
+

= -

dive

h

-

(] Discount

nunl

nurnz

rirn

Figure 10.5.15: Adding the Subtract function

5. Next, add the Discount input node to the Funclet easel.

ot Funclet Yiew 52

Messages O Mapper Console

‘.ﬂ.rithmetic Functions

v)

[:E Select
+

= -

II div

F

|lst | (€] Discount ‘15t|

b

numl

nums

ML

|&| Discount

Figure 10.5.16: Adding another input node

Chapter 10: eMapper

Page 155

Fiorano eStudio User Guide

6. To define a mapping, links should be defined between these nodes. The Discount
output is the difference between the Cost and Discount input nodes. To achieve
this, the Cost and Discount nodes should be connected to the input pins (num1,
num?2 respectively) of the subtract function and its output pin should be connected
to the input pin of the Discount output node.

:]-ﬂ Funclet Yiew &3 &= Messages |] Mapper Console

frithmetic Functions W

[Select W 0

+ il 1 _
=] |
o= nun%)—l > Discount

j;"\.- 3 |lst | || Discount |lstJ

Figure 10.5.17: The final mapping is defined

7. The required mapping is defined as shown in Figure 10.5.17.

10.5.5 Mapping XML Formats

Mapping one XML format to another is a common requirement. The steps for mapping
XML, formats to each other are as follows:

1. Load the XML, DTD, or XSD input structure or structures.
2. Load the XML, DTD, or XSD output structure.

3. Link the Input XML Structure node(s) to the Output XML Structure node.
The following restrictions and conditions apply when mapping one XML format to another:

Nodes that do not have any content cannot be mapped. However, the child nodes of these
nodes can be mapped provided they can contain content.

The SQL and advanced function categories are not available for XML to XML mapping

10.6 Adding User XSLT

eMapper also allows the user to customize the output of the transformation by adding
custom xslt code to the generated XSLT. XSLT code shippets can be added before and
after the beginning tag<> of an element and before and after the end tag </> of an
element in the XSLT. By enabling this, eMapper allows further refinement on the auto-
generated output.

As an example, consider a case where the eMapper generates an output that contains
elements not required by the user. In this example, the eMapper generates an output
which contains elements that is not mapped. The mapping has an output structure in
which the parent element is not mapped but the child elements are mapped, Fiorano
eMapper does not generate the if conditions around this unmapped parent element as a
result of which this element is generated in the output.

To avoid the generation of unmapped elements in the output, there should be an if
condition around <unmapped=> element in XSLT whose condition is OR of both the child
nodes' if conditions.

Chapter 10: eMapper Page 156

Fiorano eStudio User Guide

Under such conditions, the User XSL feature can be used to customize the output and
avoid the generation of unmapped tags. To provide a user defined xsl

Right-click the <unmapped element> in the output structure and select the User XSL
option from the shortcut menu as shown in Figure 10.6.1.

B & - X
= <RF Qutputl
= [&] Admissions
—— & =0 [FERC MANY]
=RNE] Applicant,
narme ggg Edit Structure
[8] Age | & Add Struckure]

[&] Mark ¥ Delete structure

B Test x5l

;;:; Clear Child Maps

Expand Al
=] Collapse &l

Figure 10.6.1: Selecting the User XSL option from the context menu

Chapter 10: eMapper Page 157

Fiorano eStudio User Guide

1. A dialog box appears which contains the xslt script. The xslt script displayed in this
dialog box is partially editable. The editable regions, as shown in Figure 10.6.2, are
marked by comments <!--User code starts here--> and <!--User code ends here--
> at the beginning and ending respectively.

& User X5L for Applicant @

<f-- Liger rogs starts fera --> A

i~ Usay code ands fere >

<Applicant =
<f-- Uiger rogls starts fera -->

- \l\ Editable \
& Regions

<t User code ends here >

«xsliattribute name="name">
<xslivalug-of select=", f@name" > < fxslvalus-of =
< fxsl:attribute =
<Marks>
<xsliwalue-of select=", Marks"><fxslvalue-of =
“[Marks=
- LUgar code starts here >

Clear User XSL] [Ok l [Cancel

Figure 10.6.2: Editing the user xsl
As shown in Figure 10.6.2, XSL snippets can be added in the following four places:
e just above <element>
e just below <element>
e just above </element>
e just below </element>
2. Add the required if code snippet in these regions.

3. Click the OK button and the User XSL is saved for the element. It is denoted by
the ﬁ' icon next to the element/node in the structure as shown in Figure 10.6.3.

e[| Applicant

Figure 10.6.3: Node with User XSL defined

4. The XSL can be tested it using Test option as described in the section 10.9 Testing
the Transformation

Chapter 10: eMapper Page 158

Fiorano eStudio User Guide

10.7 Working with derived types

When a complex type in an output/input structure has derived types, either by extension
or restriction, the user can choose a derived type and the mappings can be defined using
elements of selected derived type.

This is explained with an example. Screenshot of the sample schema used is shown below.

<7xml version="1.0"7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLS5chema"
targetNamespace="http://ww.books.org"
xmlns="http://www.books.org"
elementFormDefault="gualified">
<xsd:complexType name="Publication"s
<xsd:sequences
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd:element name="Date" type="xsd:gYear"/>
</ %5d: sequences
</%xsd:complexTypes>
<xsd:element name="SamplePublication" type="Publication"/>
<xsd:complexType name="BookPublication"s
<xsd:complexContents>
<xsd:extension base="Publication" =
=x5d:sequences
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string"/>
=/ %sd:sequences
</%s5d:extension>
</¥sd:complexContents>
</%sd:complexType>
<xsd:complexType name= "PaperPublication”s
<xsd:complexContents]
=xsd:restriction base="Publication"=>
<x5d:sequencex
<xsd:element name="Date" type="xsd:gYear"/>
<xsd:element name="Location" type="xsd:string"/>
</ xsd:sequences
</%sd:restrictions
</ ¥sd: complexContents>
</%sd:complexType>
</ %5d: schema>

Figure 10.7.1: Schema with derived types
The schema provided in Figure 10.7.1 contains an element SamplePublication of type
Publication. The type Publication has two derived types: BookPublication(extension)

and PaperPublication(restriction).

When the schema is loaded in Mapper, the element SamplePublication is shown in Mapper.

Chapter 10: eMapper Page 159

Fiorano eStudio User Guide

i mestimp £

B &~ X

¥ <F* Inputl
v [2] samplePublication
(2] Title
[e] Author
(2] Date

Figure 10.7.2: Sample Publication with default type

Since the type Publication has derived types, user can change the type of the element
SamplePublication. All the derived types will be shown when Right-clicked on the
SamplePublication element and the user can select the required derived type as shown in
Figure 10.7.3.

i estimp

B - %
¥ <R Inputl
[e] samplePublica :
v é":::l; g & Edit Structure

[&] Author = Add Structure >
[e] Date ¥ Delete Structure

. nnkPuincation
PaperPublication
Publication

%2 Clear Child Maps
Expand All

= Collapse All
T

Figure 10.7.3: Available derived types

When a different type is selected, the structure will be refreshed to show the selected type.

i st 5%

B - X

¥ “F¥ Inputl
v [2] samplePublication
(8] Title
[e] Author
(2] Date
[e] 1sBN
[e] publisher

Figure 10.7.1: SamplePublication element when BookPublication type is chosen

Chapter 10: eMapper Page 160

Fiorano eStudio User Guide

Mappings can be defined assuming that the element SamplePublication is of type
BookPublication.

Note: When derived types are used, the input/output must comply with the type used.

10.8 Create/Edit User Defined Function(s)

Custom Functions can be added to the User Defined Functions category of the Function
Palette. Functions can be created by performing the following steps.

Go to Tools menu in the eMapper perspective and click Create/Edit User Defined

Function(s). The Extensions Dialog is shown as shown in the Figure 10.8.1.

Defined Extensions

m'exl
strings

Exkension Marme | ryexk |

[Ok H Cancel]

Figure 10.8.1 Extensions Dialog

This dialog has a list of all extensions that are defined.

To create a new extension, type the name of the extension to be created in the
text area provided in this dialog and click OK.

To edit one of the existing extension, click on the extension and then press OK.

The Script Function Wizard will appear as shown in Figure 10.8.2. The wizard
has two pages viz Script Information Page and Function Page.

Chapter 10: eMapper Page 161

Fiorano eStudio User Guide

Script Information Page:

e Extensions can be defined either in Javascript or Java language. The language of
the extension being added can be specified from the Language combo present in
the Script Information Page

e The Javascript or the qualified name of the Java class, depending on the language
of the extension, needs to be provided in this page.

e To add Javascript functions, provide the Javascript and click Next. The script will
be processed and the list of functions will be populated in the Function Page.

e To add Java Functions, provide the qualified name of the Java class and click Next.
The list in the Function Page will be populated with all the public static functions
defined in this class.

& New Script Function |:|@@

Script Information

Specify the script conkaining definitionis) of extension functions(s)

Script Information
Mame | myexk Language |jawvascript

[]include jar ko classpath

Type in the script here

Function computedexpr)d
return esall exprl;

h

Funckion nesxckMilleniom
d = new Date) [ftoday's date
mill=new Date3000, 00, 01, 00, 00, 00) JfMext millenniom skark date
diff = mill-d [{difference in milliseconds
mkg = new String{diff/S6400000) [ffcalculate davs and convert bo string
point=rmkq.indexof"," jfind the decimal poink
days=mtg.substring{0,point) ffget just the whole days
return "There are anly " + days + " davys remaining to the start of the next millennionm, "

h

Function replacedinput, pattern, flags, str)d
return input. replace(new RegExp(pattern, Flags), str);

'

Script

7 Mexk =] [Finish l [Cancel

Figure 10.8.2 Script Information Page

Function Page:

e The Function Page shows the list of functions that were defined in the Script
Information Page. The user can select the desired functions and the selected
functions will be added to the Function palette under the User Defined Functions
category.

Chapter 10: eMapper Page 162

Fiorano eStudio User Guide

£ Mew Script Function

Function List

Select the function that needs to appear in function palletke

Function Type
= compuke Skring
expr Skring
[nextMillenium Skring
= replace Skring
inpuk Skring
pakkern Skring
Flags Skring

skr Skring W |

@ ' Mexk = L Finish J[Cancel]

Figure 10.8.3 Function Page

Note: While adding Java functions, the user might have to add a .jar file to the classpath in
order to fetch the list of functions. This can be done through the Include jar to classpath
option provided in the Script Information Page. Click the browse button and add the
required jar file.

Chapter 10: eMapper Page 163

Fiorano eStudio User Guide

& New Script Function |Z| E|E|

Script Information

specify the script containing definition{s) of extension functionsis)

Script Information

Mame | samplelavaExk Language

Include jar ko classpath

Select jar file : "%

Type in the Fully classified class here

com.fiarano, ext, SampleExtension

(2) < Back. Mext =] [Finish] [Cancel

Figure 10.8.4 Adding Jar to classpath

10.9 Testing the Transformation

The transformation created in a eMapper project can be tested by performing the following
steps:

Click Tools > Test Mapping in the Fiorano eMapper's menu bar, as shown in Figure
10.9.1 or click the Test button in the tool bar

& Mapper Perspective - MapperDemo/MapperDemo.fmap - Eclipse Platfq

File Edit Mavigate Search Project WEEEN Fun Window Help

= : o_p oo . “5LT Properties
T E] = é‘ B P
@ Mapper Projects 53 ¥ Walidate Mappings
[=-T=F Dema i
== resources Eft Create Edit User Defined Functionis)

- - B

Figure 10.9.1: Invoking the Test option

The Test XSL wizard is displayed, as shown in Figure 10.9.2. The Transformation can be
tested by following these steps:
Providing MetaData

e This wizard has two pages, the MetaData page and the Test Mappings
page.

e The output structure for which the transformation is being tested can be
chosen from the combo provided at the top of the MetaData page.

Chapter 10: eMapper Page 164

Fiorano eStudio User Guide

e The text area, by default shows the transformation generated
automatically by the eMapper for the specified output structure. This
transformation can also be modified by deselecting the Always Load
From eMapper button.

e This allows the user to modify the XSL. Specify the XSL and move to the
next page to perform the transformation.

Input XMLs

e The Test Mappings page has two tabs, Input XML tab and Output XML
tab.

e The Input XML tab, as the name suggests, is used to provide the input
XMLs. This tab in turn has sub tabs for each input structure loaded in the
eMapper.

e A sample XML can be generated from the corresponding structure by
clicking the Generate Sample XML button present in the tool bar of an
input tab.

Chapter 10: eMapper Page 165

Fiorano eStudio User Guide

& Test XSL M =3

MetaData

YWalidation Successful

Always load From Mapper

Select Oukput Struckure:

Oukputl
«7xml wersion="1.0" enl:
welistyleshest version=C0mt Ec="wvalan java lxslt"
exkension-element- preﬁxes—"datetlme sef math dateCaonversion myext strings"
wemnlns pesl="http: | frava w3, orgf 1999250 Transform® xmins:java="http: f=ml. apache. orgfxslkfjava"
wmins:daketime="http:/fexsl. orgfdates-and-times" xmins:set="http:/exslt, orgfsets"
wminsimath="htkp:ffexslt, orgfmath” xmins:kslk="http: ffxml, apache. orgfxsk"
wmins:xalan="htkp:/xml.apache.orgfxslt" xmins:dateConversion="ext1" xmins:myext="gxt="
wmins: skrings="ext3" =
<xslioutput method="xml" indent="yes" encoding="UTF-8" xalan:indent-amount="2"
arnit-xrl-declaration="nao" = < sl oukput =
<ywslivariable name="document" seleck="[" = «fxslvariable =
<xsl:kemplate match=";"=
<0rder =
«xsliFor-each select="0OrderiManuf acturer/Product” =
<Product =
<xsliattribute name="name" =
<xslvalue-of select=", j@name" = </xsl:value-of =
< fwslatkribube =
<Manufacturer =
<xslvalue-of select="}../@name" > </xsl:value-of =
< [Manufacturer =
= DiscountPrice =
<wslivalug-of select="cancat{cancat(, f[Cask,"@", , [Discount) = < fxslvalug-of =
< DiscountPrice =
</Product=
«fuslifor-eachs=
</ Order =
<fwslikemplate =
< uslskylesheet =

(7 Mext =] [Close

Figure 10.9.2: Metadata Page

e The Generate Sample XML dialog box is displayed, as shown in Figure 10.9.3.
The default values are appropriate in most situations. Provide the desired values
and click OK to generate a sample XML.

Chapter 10: eMapper Page 166

Fiorano eStudio User Guide

& Generate Sample XML

x)

Rook Element Srder
Generate Optional elements | always -

Generate Optional attributes | abways w

Mo, af repeatable elements to be generated

g S
F.S

Fill elements and attributes with data

(04 [Zancel]

Figure 10.9.3: Selecting the sample Input XML generation options

e The sample XML is generated in the Input XML tab as shown in Figure 10.9.4.

Chapter 10: eMapper Page 167

Fiorano eStudio User Guide

& Test XSL

Test Mappings

Input XML | Qubput %ML

CED

E? (HNI}

=7l VerJGenerate Samnple WML |TE-5"7
<Order =
<Manufacturer name="namel"=
<Product name="name1">
<Cask=Coskl < /Cask s
<Discount =Discountl </Discount
«/Product=
<Produck name="namez" >
<Cnsk=Cosk? < Cosk =
<Discount =Discount2 =/ Discount =
< /Productk =
<Product name="namez">
<Cask=Cosk3<Cask s
< Discount =Discount3 </ Discount =
«/Product= W
< Manufacturer =
<Manufacturer name="namesz">
«<Produck name="name4" =
<Cosk=Coskd < Cosk =
<Discount =Discount4 =/ Discount =
«/Produck =
«<Produck name="name5" =
< Cost>CostS<Cosk >
< Discount =Discounts < /Discount =
«/Product=

~Demdiirk marna—"rmarnaE" -

[

||

Inpukl |F‘arameters Swskem Properties

[]Filker Mamespaces | apply Transformation

®

Figure 10.9.4: A Sample Input XML

e Options to load input XML from a file and validate the input XML are provided in
the tool bar. Validation errors if any will be displayed at the top of the wizard.

e The Input XML tab also contains a Parameters tab that can be used to define
parameters to be used while transformation. The required parameters can be
added to the table provided in this tab.

e System Properties, if needed, can be defined from the System Properties tab.
For example, while using Lookup Functions, a system property needs to defined
pointing to the db.properties file which holds data for oracle data base

Testing the transformation

e Click the Apply Transformations button to test the defined transformation.

e The output XML is displayed in the Output XML tab, as shown in Figure 10.9.5.

Chapter 10: eMapper Page 168

Fiorano eStudio User Guide

& Test XSL M =3

Test Mappings

TransFormation successtul

Tnput %ML | Output XML |

< 7xml version="1.0" encoding="JTF-3"? = ~
“0rder = =
«<Produck name="name1"=
<Manufacturer =namel </Manufacturer =
=DiscountPrice =Cost Li@Discount 1 </ DiscountPrice =
< /Product =
«<Produck name="name2"=
<Manufacturer =namel </Manufacturer > Transformed
<DiscountPrice =Cost2@Discount2 </DiscountPrice = B
«/Produck = DUtpUt
«<Produck name="name3"=
<Manufacturer =namel </Manufacturer =
<DiscountPrice =Cost 3@Discount3 < DiscountPrice =
«/Product=
«<Produck name="name4" =
<Manufacturer =namez < /Manufackurer =
<DiscountPrice =Cost4@Discountd </ DiscountPrice =

< Produck = bl
|'-.-'a|i|:|ati|:|n of Input ®MLs has completed with errors, Please refer Mapper Console For dekails, |
"“—-..___‘-‘-\-\-‘-
Errar MESSBQE ' []Filter Mamespaces | Apply Transfurmatiunl

@

Figure 10.8.5: The Output XML resulting from the Transformation

10.10 Managing Mappings

Creating mappings is as simple as dragging an input node and dropping it on a target
structure node. The eMapper also provides few other options to manage mappings.

10.10.1 Exporting eMapper Project

To export the eMapper project, perform the following steps:

1. Click File = Export or Right-click on the project to be exported in the eMapper
Projects explorer and choose Export.

2. To export the project as an archive file select General > Archive File as the export
destination.

3. Enter the file name in which you want to export the project and click on OK
button.

4. The project gets as an archive file.

5. The project folders can also be exported as it is to the local file system by selecting
General > File System in the Export wizard

Chapter 10: eMapper Page 169

Fiorano eStudio User Guide

10.10.2 Importing Project from the File

A eMapper project an be imported either from an existing .tmf file or from another
eMapper project.

To import the project from an existing project:

1. Click File = Import. The Import wizard is shown.

2. Choose the appropriate import source. (Archive File or Existing Projects into

Workspace depending on the source of import).

3. Provide the location of the source and the project is imported to the workspace.

To import mappings from a .tmf file:

1. Click File > New > Fiorano Map

2. In the New eMapper Project wizard, provide a valid project name and select the

Load from tmf file option.

Load the tmf file using the browse button provided and click Finish.

4. The new eMapper project with the Mappings from the provided .tmf is created in

the workspace.

10.10.3 Copying functions in a Mapping

You can copy functions within a mapping project and across mapping projects. To copy a

function

Select the function in the funclet view and click Copy from the right-click menu as shown

below in Figure 10.10.1.

:]-ﬂ Funclet Yiew &2 5= Messages |] Mapper Console

arithmetic Functions v
~
k o 15t | (2] Applicant lLoop
£+
Jggrr |
—| - ohe Clear Funclet
J div e
d
g E
J* ¥ Delete
3| Floor (2) Help

1wl

Figure 10.10.1: Copying a function

Click Paste and the function is pasted in the funclet view and can be reused within or even

across mappings.

10.10.4 Clearing All Mappings

To clear all the mappings between the Input and the Output Structure,

1. Right-click on the line panel and select Clear Mappings.

2. A warning dialog box is displayed showing a confirmation message. Click Yes to
remove all the existing mappings between the input and output structures.

Chapter 10: eMapper

Page 170

50 [ZERD MANY]

Fiorano eStudio User Guide

10.10.5 Managing XSLT Properties
You can also manage the XSLT properties of the output XSLT. To do this:

Click Tools= XSLT Properties. The XSLT Properties dialog box is displayed as shown in
Figure 10.10.2.

& XSLT Properties @

¥SLT Engine |¥alan % | ¥SLT Encoding | UTF-8 » [inchude DTD

<xsloutput > attributes

Oukput Method unspecified w indent

Qutput Encoding UTF-3 w |] omit ¥ML declarations
|:| Suppress Optional empty Tkems

Suppress Pattern

Result prefixes to be excluded (space separated)

Mamespace Prefixes

Prefix LRI

[0K H Cancel]

Figure 10.10.2: Viewing XSLT Properties

This dialog box contains the following components:
1. XSLT Encoding: Specifies the encoding of the generated XSL.

2. Include DTD: Select this option to include the internal specified DTD in the
transformation output. This option is disabled by default.

e <xsl output: attributes>

a. Output Method: Select the method of output after transformation from
the drop-down list. The method of output can be HTML, XML, or text.

b. Indent: Select this option to indent the output XSLT.
c. Output Encoding: Specifies the encoding of the generated output XSL.

¢ Omit-xml-declaration: Specifies whether the output XML generated should
contain XML declarations or not.

e Suppress optional empty items: Select this option for defining a mapping to an
output node, always generate the output nodes in output xml since event input
xml has no matching nodes. It is sometimes desirable not to generate optional
output nodes if no input matching node is found in input xml. This requires using
conditional mapping. You can specify such conditional mapping by using "User
XSL" feature. eMapper can generate such conditions automatically for optional
elements if this option is selected.

Chapter 10: eMapper Page 171

Fiorano eStudio User Guide

Chapter 11: Working With Multiple
Servers And Perspectives

11.1 Active Server Node

In Online Event Process Development perspective, the user can add as many Enterprise
Servers and Log into them and create, deploy, and run Event Processes on them.

Active Enterprise Server in context of eStudio means that states of Event Processes and
other repositories will be shown corresponding to this particular server. Only one server is
shown as an active server at any point of time but user can still work on all other servers
by switching the active server. An active server switch can be made explicitly by selecting
Activate option from the Enterprise Server node context menu or an inactive server will be
automatically made active whenever the user wants to perform any action (Open Event
Process, delete Event Process, CRC, Launch, Import, Export, and so on) on the inactive
Enterprise Server.

The active server is displayed in Green color and the inactive servers are displayed in the
default black color.

For instance, in the Figure 11.1.1 the server EnterpriseServer_1 is Active and
EnterpriseServer is inactive. All other views will be in accordance to the Active Enterprise
Server (that is, EnterpriseServer_1). For example, Service repository and Service palette
will show the services present in EnterpriseServer_1.

E\ Server Explorer EEI i ¥ = O ||=3 Event Processl W

v jf‘_. EnterpriseServer
v B‘E Event Process Repository (1/19)
b (= Samples (1/17)
B (= User Processes (2)
b i Peer Repository o
v jﬁ EnterpriseServer_1 Feederl
v ﬁ Event Process Repository (20)
b = Samples (17)
b= TR
¥ [= User Processes (2)
"[2 Event Processl “
A
v

"[‘: Event Process2
b i Peer Repository
3 IE RN

@ service Repository 52 £33
> P Bridges m
» 2 Collaboration

» O DB

"

[3_-, Problems @ Error Log &3 l = Cons-ole| *‘ Fiorano Dehugger| =] Prop

v

Workspace Log
General

type filter text Applica

Figure 11.1.1: Multiple Enterprise Server login

Chapter 11: Working With Multiple Servers And Perspectives Page 172

Fiorano eStudio User Guide

If the user tries to perform any action on inactive server, a confirmation dialog is shown
(user can set a preference to avoid the dialog each and every time) saying that the active
server will be switched. When the switch happens, all the editors belonging to
EnterpriseServer_1 are closed and editors corresponding to Enterprise Server are restored.

11.2 Switching of Active Server

With multiple servers alive there can be application deployed on different Enterprise
Servers. But only event processes deployed on the Active Enterprise Server will be shown

to the user.

On changing the Active Enterprise Server, editors for all the event processes deployed on
to the previous Active Enterprise Server will be closed and these editors will be restored
when that server becomes active (when the user selects any node in that server).

The following steps describe the active server switch:

1. Login into the two servers. The Service Palette and Service Repository shows the
services present in the server to which the user has logged in recently (Enterprise
Server_1 in this case). Create some event processes in Enterprise Server_1,
and keep the created event process editors open.

E\ Server Explorer &3 l ".'. =08 "[E Event Processl |"[E Event Process2 I"[E Event Process3 &3 L

v _’f‘_ EnterpriseServer o~
v 'EE Event Process Repository (1/13)
b = Samples (1/17)
B (= User Processes (2)
» i Peer Repository
v _‘f‘_ EnterpriseServer_1
v 'KE Event Process Repository (21)
p [= Samples (17)
> = TR
¥ [User Processes [3) O @ o
"[:Event Processl o
o] Event Process2 i

"[: Event Process3 Y
| = 3 RN
@ service Repository &2 ot =
> Pa m
» O Bridges

A

v

» P Collaboration

Figure 11.2.1: Active Enterprise Server

2. Now try to perform any action (say Open Event Process) on the inactive server
(i.e. Enterprise Server). A confirmation dialog box is shown saying that the
action requires the active server switch.

Chapter 11: Working With Multiple Servers And Perspectives Page 173

Fiorano eStudio User Guide

E\ Server Explorer 23 l 'm ¥ =0 "[E Event Processl ["[2 Event Process2 &4 l"[‘: Event Process3
_’fS EnterpriseServer
'EE Event Process Repository (1/19)
[Samples (1/17)

= User Processes (2)
'ftest @ Q

"[:testl

- Feederl
¢ Peer Repository
_‘fi EnterpriseServer_1
BE Event Process Repository (21) 6 oy Switch active server
(= samples (17)
= TEJ(L) 1 This action requires switching the current active server. Do you wish to proceed?
.

== User Processes (3}
"[E Event Processl
"[E Ewent Process2
"[E Event Process3

7 Peer Repository [: Cancel :) G—en—)

(4) R R

") Don't ask this next time for the similar kind of actions.

Figure 11.2.2: Switch Active Server

3. When the user clicks the Ok button, the editors related to Enterprise Server_1
will be closed and the editors corresponding to Enterprise Server will be opened.
Also the service palette and service repository show the services present in the
Enterprise Server. The Active server can be identified by the color green.

E\ Server Explorer E@l ¥ =0 M'{ﬁtﬂtl

v _‘ﬁ EnterpriseServer
v 'EE Event Process Repository (1719)
b = Samples (1/17)
¥ [= User Processes (2]
=g test
'ﬁtestl
B ¢ Peer Repository
v _‘ﬁ EnterpriseServer_1

v #8 Event Process Repository (21) o= |©
b = Samples (17)
CEL
b = TKI(L)

¥ [= User Processes (3)
"[2 Event Processl
"[2 Event Process2
"[2 Event Process3
B ¢ Peer Repository

Figure 11.2.3: Event Processes present in Enterprise Server

4. To switch back to Enterprise Server_1, perform any action on the Enterprise
Server_1 node or right-click and select the Activate option. All the editors which
are opened previously are restored and the editors corresponding to previously
active server are closed.

Chapter 11: Working With Multiple Servers And Perspectives Page 174

Fiorano eStudio User Guide

E\Ser\rerExplorer EEI 1™ ¥ = O||™g Event Processl W'{E Event Process3

v &i EnterpriseServer
v 'EE Event Process Repository (1/19)
b = samples (1/17)

¥ = User Processes (2)
B test ﬂ ©

t
- .{‘: estl Feederl
B & Peer Repository
T 1
v % EnterpriseServer_1
v 'EE Event Process Repository (21)
b = Samples (17)
B = TR
¥ [= User Processes (3)
"[': Event Processl
"[E Event Process2
"[‘: Event Process3
b i Peer Repository

& 3 JAalw

Figure 11.2.4: Services restored in Enterprise Server_1

During the active server switch, if the user tries to switch from a server containing any
unsaved editors, a dialog box containing the unsaved editors will be prompted where the
user can select the editors to be saved.

Note: The User can select appropriate option to save or discard changes in editors but
there is no option to veto the switch.

"[2 *Eyent Processl &4 l"[ﬂ *Event Process2 |"[2 *Event Process3

Save..

There are a few editors with unsaved changes. Save changes before closing?

ES:Elect the editors you want to save:

E Event Processl
E Event Process2
E Event Process3

l,i Close without saving :'J (Sav)

Figure 11.2.5: Unsaved editors dialog

11.3 Switching Between Perspectives

eStudio has three perspectives; Offline Event Process development, Online Event Process
development and Mapper

To change the perspective, perform the following steps:

Chapter 11: Working With Multiple Servers And Perspectives Page 175

Fiorano eStudio User Guide

1. Click the Open Perspective option from Window -> Open Perspective -> Other or
from the shortcut bar on the left-hand side of the Workbench window.

ﬁ @Dnline Event Process Development _@-ﬂfﬂine Ev
&) Java i

@) Online Event Process Development

|

"[E Event Processl ‘

Figure 11.3.1: Selecting the Other.. option from perspective button

2. Select the Online Event Process Development to open the online perspective.

®MNe Open Perspective

ﬁ Debug

%J Java

E,J Java Browsing

?31 Java Type Hierarchy

E Mapper

@ Offline Event Process Development (default)
@ Online Event Process Development

== Plug-in Development

ED Team Synchronizing

P

Figure 11.3.2: Selecting Online Application Development perspective

The Online perspective shows all the views and editors customized for the online
application development as shown in the figure. During online application development,
application development takes place after logging in to the server.

Chapter 11: Working With Multiple Servers And Perspectives Page 176

Fiorano eStudio User Guide

iCXE) (&) eStudle (=]
= B e] » e] Q] wom] -REELED - [EO N
1 &) Online Event Process Development | () OMine Event Process Development
[server Exptare 52|] TS T 1 servce paee 31 -0
| v 'F emterpriseserver [Select
w S Event Process Repository (181 L o
F i Samples (17
ser Pracesses (1) L= Bridges
v & -r-.’Im):;Am zf:gﬂm
= T peer Kepositary fi s
(B e
FJRAdaprerl Coupine
L MOMs
: E =
| @y Service Reposinary . S
P s 2 Inegen
» Ooe it |
» & Error =
> D File L WebService
> O Flow
F 2 MOMs
b D Performance k
b O Samples +
»_ DO Serinr L
:L‘._ Prablems | 9] Error Log |) Consale EZ]Q' Fiorana Debugger bl | ot B - "‘ [Properties £ '_ *=0
2 M“mme: TEwent Process1]
 Application Context |
Guid: EVENT _PROCESS]
Version, e
Categaries, User Processes ¥
& Cathe Componert L
Description: :
Figure 11.3.3: Online Application Development Perspective
Now, switch to Offline perspective by clicking on the Open Perspective button on the
shortcut bar on the right-hand side of the Workbench window, select Other... from the
drop-down menu. Select the Offline Event Process Development to open the Offline
perspective. (User can also switch to different perspectives like java etc.)
The Offline perspective shows all the views and editors required for the offline application
development as shown in the figure 11.3.4. During offline application development, there
will not be any interaction with the server.
‘806 eStudio o
|0 & o [i [] -] wox R -ERSTRO e
=i @ Online Event Process Development () Offline Event Process Development
Event Process Repository 52 =0 w = O || & Service Palette Eﬂ =0
(=] [; Select
w ®f Event Process Repository (1) | Route
. —
Collaberation
[=7e 8
[EAac
(e
éﬂxm’
aMOMs
[)l (= Performance
o rme—— e
» £ Collaboration asanstopmavion
» P8 il
> _: Error o Web
st oo vatsarice
» 2 Moms
b O Performance -
b O samples :
[problems | €] Error Log | Bl Console &2 [Ew BA| =% El- 09+ = O||E properties 2 =
o General Name: Event Process1
Guid: EVENT _PROCESS1
Version 1.0
Categories 'User Processes v
M cache component
Description 1

Figure 11.3.4: Offline Application Development Perspective

Chapter 11: Working With Multiple Servers And Perspectives

Page 177

4

Fiorano eStudio User Guide

Chapter 12: Fiorano Preferences

Fiorano Preferences are available under Window > Preferences -> Fiorano. Various
sections in Fiorano Preferences are explained in the following sections.

12.1 ESB Connection Preferences

Enterprise Server configurations can be defined here. List of Enterprise Servers can be
added and the server details such as IP address, port and security credentials can be
provided. These servers configuration is used in Offline Event Process Development
perspective for actions (export Event Process to server, import Event Process from server
etc.) that require a Server connection.

(@0 6

i type filter text

B Ant
¥ Fiorano
ESE Connection Prefe
¥ SOA Orchestration
Online
. b General
[» Help
1 Install/ Update
B Java
I Plug-in Development
P Run/Debug
B Team
B XML

ESB Connection Preferences

Configure Enterprise server connections.

—
e e

Local Enterprise Server
Serverl

HostMName [IP:

Port:

Username:

Password:

localhost

D)

2047

admin

(\ Restore Defaults)l (Apply)

Figure 12.1.1: Enterprise Server Configurations

k Cancel) f——ﬁl(—) .

-

#

Restore Defaults button is used to restore the preferences to default values.

Chapter 12: Fiorano Preferences

Page 178

Fiorano eStudio User Guide

12.2 SOA Orchestration

SOA orchestration preferences are grouped into General options, Workflow options, Service
options and CPS options.

12.2.1 General Options

General Options contains preferences for Error Port and Routes Color and Route Shape.
The preference chosen here will be applied in orchestration editor.

8086 Preferences

" type filter text) SOA Orchestration o=t

B Ant Settings for application orchestration.

¥ Fiorano

ESB Connection Prefe -[‘General Options | Workflow Options Service Options CPS Launch k.
¥ SOA Orchestration) .
Online General Options
p General Some services will have an error port, on which processing errors if any are sent. The error port and the routes from the error

b Help port are distinguished by this color in the designer.

Install{Update Error port and routes Color: @
P Java
P Plug-in Development
B Run/Debug
B Team Route shape: Automatic I-%]

b XML

The shape of route in application designer

Figure 12.2.1: SOA Orchestration Preferences

12.2.2 Workflow Options

Workflow options contain Workflow color information. Workflow Item color and Workflow
End color used in Document tracking can be configured here.

General Options | Workflow Options | Service Options CP5 Launch

Workflow Options

WorkFlow is a feature by which we can track the messages flowing in the process and their lifecycle.
marking ports as part of a wokflow(ltem) or end of it.

Workflow item color: @
Workflow end color: @

Figure 12.2:2: Workflow options

12.2.3 Service Options

Service instance default configurations can be provided here. These default configurations
are set on a service instance when a new service instance is created.

Chapter 12: Fiorano Preferences Page 179

Fiorano eStudio User Guide

12.2.3.1 Default JVM Configurations

JVM configurations like classpath, System properties, memory options etc. can be defined.
These options are used while launching the component in Separate Process launch mode.

These are the default configurations that are applicable to all the newly created service
instances. Service Instances can also overwrite the default configurations set on them by
making modifications in properties view.

eNne Preferences
" type filter text ' | SOA Orchestration v v w
B Ant Settings for application orchestration. .
¥ Fiorano
ESB Connection Prefe I General Options |~ Workflow Options I-Sﬁw—i CPS Launch |
» SOA Orchestration
» Ceneral Default JVM Configurations
» Help The default JVM configurations set on a service instance when a new service instance is created.
Install/Update
> Java SCasspah T
P Run/Debug . — .
iy i i |
> XML ; Il
' i [=E Remove b}
. { Move Up 1
. | | Move Down |
Connection Factory Preferences:
| The parameters used by a service instance to create a connection factory
ame e
|
|
I
I l Remave |
|
| | s
| | Moveup) s
| | =—— ad
[) < [~ e . T I
(Cancel) G—Wﬁ—'g
V)

Figure 12.2.3: Service options

Configurations defined here are set on the Service Instance in Runtime Arguments section
of the properties view. For example if the user wants to change the heap memory settings,
he can provide the values for memory tuning properties as shown in Figure 12.2.4

Chapter 12: Fiorano Preferences Page 180

Fiorano eStudio User Guide

Maximum Heap Size [-Xmx] 256m

Initial Heap Size [-Xms] i2m

Minimum Free Heap Ratio [-XX:MinHeapFreeRatio]

Maximum Free Heap Ratio [-XX:MaxHeapFreeRatio]

Thread Stack Size [-Xss) |
Figure 12.2.4: Memory tuning options

After defining these configurations, the default values are set when a service instance is
drag-and-dropped in Orchestration editor and can be seen in Runtime Arguments section
as shown in Figure 12.2.5.

O o [~ Samples
- [~ Script
DEL [~ Transformation
(= Uil
[=- Web
== WehService
i m ﬁ =0
|
General | JVM_PARAMS: | -DLOG_TO_STREAM=true -Xmx256m -Xms32m -Xrs— |Reset To Defau
Deployment |
Eleaitian | Mame Value
Log Manager |
|

Log Module Instances

Runtime Arguments

Figure 12.2.5: Runtime Arguments

These properties are set on the JVM on which the service instance will be launched.

12.2.3.2 Connection Factory Preferences

Configurations used by service instances while creating Connection factories can be
defined here. The connection factories are created internally by using default configuration.
To overwrite the defaults, user can set the properties here.

The properties defined here are available in Execution section in service instances
properties view.

12.2.4 CPS Options

These options are used by external CPS launch components where the CPS is launched as
a separate JVM process. The following components CPS is launched in separate process
JVM: SapR3, XMLSplitter, SapR3Monitor, Aggregator, CBR, Join, CompositeBC, JMSIn:5.0,
JMSOut:5.0 and JMSRequestor:5.0.

Chapter 12: Fiorano Preferences Page 181

Fiorano eStudio User Guide

Apart from these prebuilt components, custom components CPS will also be launched in a

separate process JVM.

f'—{ General Options ~ Workflow Options Service Options

CPs Launch Preferences

Mame ‘Walue |

Figure 12.2.6: CPS launch options

The default JVM configurations used while launching the CPS of a service instance as a seperate process.

mowve

{NEE
{

Chapter 12: Fiorano Preferences

Page 182

Fiorano eStudio User Guide

12.3 SOA Orchestration Online

This section contains configurations for online Event Process orchestration.

ene

Preferences

 type filter text

B Ant
¥ Fiorano
ESB Connection Prefe
¥ S0A Orchestration
Online
P GCeneral
P Help
Install/Update
P Java
p Plug-in Development
B Run/Debug
B Team
B XML

Online

Settings for online application orchestration.

General Options

This option prevents a running services from being moved or dragged.

E Lock running service instances:

Options for launching services in an application.

E Launch services when application is synchronized

Service Options

Colors of service label to reflect the execution state of a launched service.

Handle created state:

Handle bound to peer state:

Handle bound to no peer state:

L

Handle unbound state:

Colors of service border to reflect the status of the peer server on which the service
is launched.

Unknown state: @

Option to display notifications when a Peer Server connects to Enterprise network or }

Dead state:

Live state:

disconnects from Enterprise network.

E Show Peer Server availability notifications

(:Restore Defaults) C Apply) }

(Cancel) f—en-—) !

P
Figure 12.3.1: Online Orchestration preferences
12.3.1 General Options
Lock running service instances: This option prevents the service instances from being
moved or dragged when an Event Process is running.
Chapter 12: Fiorano Preferences Page 183

Fiorano eStudio User Guide

12.3.2 Application Options

Launch Services when application is synchronized: If this option is enabled, in a running
Event Process, service instances in stopped state will be started if the user clicks the
Synchronize button in an Event process.

12.3.3 Service Options

The color of the Service Instance label name at different execution status can be
configured from here, that is, when a Service Instance is running, stopped and so on.

By default when a Service Instance is dragged and dropped the instance name color is
Black. The states and corresponding Service instance label name colors are explained

below.

Handle Created State: This color is shown when the service instance handle is created.
This happens before the component is launched completely.

Handle Bound to Peer state: This color is when the service instance is running.

Handle Bound to no peer state: This color is shown when the peer server on which the
component is running is stopped.

Handle unbound state: This color is shown when the component in a running Event Process
is stopped.

12.3.4 Peer Options

These are the colors applied to service instance border to reflect the status of the peer
server on which the service instance is configured to launch.

Unknown State: The peer server configured is unknown. i.e. the peer server configured is
not running and is not present in peer repository node under Enterprise Server node.

Dead State: The peer server configured is not running but it is present in peer repository
node under Enterprise Server node.

Live State: The peer server configured is present in Peer repository and is running.
Show Peer Server availability notifications: Whenever a peer server connects to the

Enterprise Server or disconnects from Enterprise network, a notification dialog will be
shown as shown in Figure 12.3.2.

Chapter 12: Fiorano Preferences Page 184

Fiorano eStudio User Guide

I| [~ WebService

£ Properties £2 l

- = [

General

Application Context

Environment Properties

Name: Simple Chat
|Guid: SIMPLECHAT
Version: 1.0
Categories Samples

g Cache Companent

Description:

Long Description:

! | fps {hitp://192.168.2.149:1867}

Pear 'fps’ available for Enterprise Server : EnterpriseServer

Figure 12.3.2: Peer server notification

This option is to enable or disable the notifications.

12.4 Key Board Short Cut Preferences

Before using Key Board shortcuts Fiorano scheme has to be set in Preferences (Window ->
Preferences -> General -> Keys).

8eNe Preferences
| type filter text Keys (=R -
P Ant
B Fiorano Scheme: | Fiorano @
¥ General
b Appearance orchestration
Compare/Patch
Content Types Ir [al Binding ‘When Category User
b Editors Add Event Process 3l In Windows Orchestration Offline Ey m
Keys Check Resource And Connectivity of App Orchestration Online Ev
Perspectives Clear Logs xC In Windows Orchestration Online Ev
Search Create Service Component 4+3EN In Windows Orchestration Comman
» Workspace Export Event Process WEXE In Windows Orchestration Offline Ex ¥
» Help Export Logs X In Windows Orchestration Online Ev v
InstallfUpdate
B Java

P Plug-in Development
P Run/Debug

b Team

P XML

C Copy Command) (Unbind Command y) (Restore Command)

MName: Export Event Process

Description:

Conflicts:

Binding: HXE

When: ['In Windows

Figure 12.4.1: Key-binding preferences

The default Key Board shortcuts for various actions are listed below.

‘Command

When

(Filters...) (Export...)

Chapter 12: Fiorano Preferences

Page 185

Fiorano eStudio User Guide

Help F1

Rename F2

Undo Ctrl + Z

Redo Ctrl + Y

Add Event Process CTRL + |

Open Event Process CTRL + O

Import Event Process CTRL + ALT + | E

Import Event Process (nStudio) CTRL + ALT + I N

Import Service (from Local Disk) CTRL + ALT + I L

Import Service (from Server) CTRL + ALT + 1 S

Export Event Process CTRL + ALT + X E

Insert
1. Service Instance CTRL + ALT + A S
2. Event Process CTRL + ALT + AE

3. Remote Service Instance CTRL + ALT + AR

CRC ALT + Shift + C
Run Application ALT + Shift + R
Synchronize ALT + Shift + S

Stop Application ALT + Shift + K

View

1.View Debugger CTRL + ALT + V D
2.View Properties CTRL + ALT + V P
3.Logs CTRL + ALT + V L

4 .View Error ports CTRL + ALT + V E

5.View Route Names CTRL + ALT + VR

Chapter 12: Fiorano Preferences

Page 186

Fiorano eStudio User Guide

Clear Logs ALT + C

Export Logs ALT + X

Toggle Lock Mode ALT + Z
Schema repository CTRL+Shift+S

Create Service component CTRL+Shift+N

The option to edit keyboard shortcuts is also available under General -> Keys section in
the preferences dialog. The list of Fiorano Orchestration commands can be viewed by
entering Orchestration in the filter box provided above the available keys. The shortcut for
any of the action/command can be changed by editing the Binding text field available
below the keys table section.

Chapter 12: Fiorano Preferences Page 187

Fiorano eStudio User Guide

Chapter 13: Schema Repository

Schema Repository is used to store schemas that are imported in schemas used by
different components/event processes. The imported schemas referred from anywhere in
an Event Process/component can be stored here so that they are resolved even when they
are not added explicitly. Hence, schemas which are imported across multiple event
processes/components can be stored in the schema repository.

To add schemas to the Schema Repository, perform the following steps.

1. Navigate to Tools -> Schema Repository. This opens a Schema Repository editor
as shown in Figure 13.1.1 using which schemas can be added to schema
repository.

enn Schema Repository

Location |

URI

E Save to Catalog folder with name

i —
| Add to Catalog)
URI Location (" Remove)

=

A
Figure 13.1.1: Schema Repository

2. Click on ellipsis button against the Location property. A file chooser dialog is
opened where the location of schema file can be selected. Select the file and click
Open.

3. URI and Save to Catalog folder with name fields are populated automatically.

Chapter 13: Schema Repository Page 188

Fiorano eStudio User Guide

® N0 Schema Repository
Location fUsers/phani/Desktop/xsds/AnyOrder.xsd =
URI hitp:/ fwww.bocks.org

@ Save to Catalog folder with name | AnyOrder.xsd

."- -\"'.
L Add to Catalog)

F 3

URI Location | Remove)

=y

Pl
Figure 13.1.2: Adding schema to Schema Repository
The URI value should not be an empty field. In case, if the schema has a target
namespace, URI should be same as the target namespace of the schema.

4. Click Add to Catalog button to add the schema to Schema Repository. The file is
added to <FIORANO_HOME=>/xml-catalog/user.

The Location field displays the absolute path of the schema file. If this dialog is
closed without clicking Add to Catalog button, the file is not copied to the location
<FIORANO_HOME=>/xml-catalog/user and will be referred from its original location.

5. A new row specifying the URI and Location of the XSD will be added in the table.
6. To remove the schema from the schema repository, select a row from the table

and click Remove.

e 0 0 Confirm Delete

| Do you want to delete URI "hitp:/ f'www.books.org'?

El Delete schema file "/Users /phanifinstaller/Fiorano/Fiorano50A9.2.0/xml-catalog fuser{AnyOrder.xsd"”

wNe)H—) '

Figure 13.1.3: Deleting schema from Schema Repository

7. The option 'Delete schema file' specifies whether to delete the file from the system
or just to remove the schema from xml-catalog. Select the check box to remove
the file completely. In case, if the file is not copied to <FIORANO_HOME=/xml-
catalog/user, the file will be deleted from its original location if this option is
selected.

Chapter 13: Schema Repository Page 189

Fiorano eStudio User Guide

Chapter 14: SCM Integration

SCM is commonly known as version control, and is achieved using tools such as SVN, CVS
etc. SCM integration support is present in eStudio. Event Processes and Services can be
stored and retrieved from a version control system. The following steps explain the
procedure to add required dependencies and work with SVN version control system.
Similar steps can be followed for other tools.

14.1 Downloading and integrating SCM plugins in Fiorano eStudio

1.

Download latest version of Subclipse for Eclipse 3.x version. This is available for
download at http://subclipse.tigris.org.

Extract the downloaded zip file. In the extracted directory, two folders plugins
and features can be found.

Copy the contents inside the plugins directory and paste them at
$FIORANO_HOME/eStudio/plugins.

Copy the contents inside the features directory and paste them at
$FIORANO_HOME/eStudio/features.

Restart eStudio. When eStudio comes back up, Subclipse is installed and ready to
go.

14.2 Specifying SCM repository

To use version control, the URL of an existing svn repository has to be added. The
following steps explain this procedure.

1.

Open SVN Repositories view (Window -> Show View -> Other -> SVN -> SVN
Repositories).

Right click and select New -> Repository Location option, specify the repository
URL and Finish the wizard.

Chapter 14: SCM Integration Page 190

http://subclipse.tigris.org/

Fiorano eStudio User Guide

3| Add SYN Repository

Add a new S¥YN Repository

Add a new SYM Repository to the SYN Repositories visw P
SVN

Location
Fskpl, camfrepo)studio/SYR. Integrakion Tesk |

Finish J [Cancel

Figure 14.2.1: Add SVN Repository

3. The repository is added and is displayed in the SVN Repositories view.

14.3 Creating a project for version control

Currently version control in eStudio is achieved using an intermediate project. Event
Processes or Services that have to be under version control have to be first exported to
this project and this project is added to the svn repository. The following steps explain the
procedure to create a project and export the Event Processes into the project.

1. Create a new project from the File menu (File -> New -> Other -> General ->
Project).

2. Specify a project name (say EStudioSvnProjects) and click Finish.
Note: By default the project is created in eStudio wok space (i.e.

FIORANO_HOME/runtimedata/eStudio/workspace). If required the user can specify
a new Location.

Chapter 14: SCM Integration Page 191

Fiorano eStudio User Guide

3| New Pro ject

Project S
Creakte a new project resaurce, B
Project name: i EStudiu:uSvnPru:ujects| |
IJse default location
Locatiar: | :j\Program FilesiFioranolFiorano 30892 Mruntimedatale st Browse, .,

Working sets
[]add project ko working sets
....... elect
+ Back] [Finish] [Cancel

Figure 14.3.1: Creating a temporary project for SVN integration

3. The created project can be seen in Project Explorer view as shown in Figure

14.3.2.

Chapter 14: SCM Integration

Page 192

Fiorano eStudio User Guide

=1 Properties | |._|j Project Explorer &2 EJ SYM Repositaries

el E S ELdin SvnPriojects
[#-l=F event_processi-1.0
1 Service_addressing-4.0
-1 Service_Aggregator-4.0
1.7 Service_antlr-4.0
| Service_axis2-4.0
1] Service_axis-4.0
T Service_base6d4-4.0
i) Setrvice_BCCaommon-4,0
-Ta Setvice_BCEngine-4.0
T ServiceBCaateway-4.0
-] Service_Beanshell-4.0
1.1 Service_BinarvFileReader-4.0
127 Service_bouncycastle-4,0
.7 Service_bsf-4.0
T Service_bsh-4.0
=T Service_Cache-4.0
“-100 Service CBR-4.0
1.7 Service_chat-4.0
-1 Service_CommonsExec-4.0

Figure 14.3.2: Project Explorer view

4. Select the Event Processes to be exported and choose Export option from the
context menu. Specify the location of the EStudioSvnProjects created in step 2
and click Ok. The selected Event Processes are exported to EStudioSvnProjects.

B‘E Event Process Repositary 24 = "[:

(2 T

= ‘EE Event Process Repository (3
== User Processes (30

went Proce

lﬂ-[g Open
EE Delete

went Proce

L3 E::-::pljr't. e

Figure 14.3.3: Exporting Event Processes from Event Process Repository

5. In Project Explorer view, right click on EStudioSvnProjects and select Refresh
option. The Event Processes exported are now visible.

=l Properties L[’_"| Project Explarer &5

=R ESAF StudinsynFrojects
'E event_process1-1.0,zip
E event_process2-1.0,2ip

: : E event_process3-1.0.zip

[#-1=F event_process1-1.0

Figure 14.3.4: Project Explorer view displaying exported Event Processes

Chapter 14: SCM Integration Page 193

Fiorano eStudio User Guide

14.4 Adding the Project to Repository

1. Version Control options are available in the context menu of the
EStudioSvnProjects. Select Team -> Share Project option to add this project into
the repository.

=] Froperties | E’j Froject Explorer &2 . ﬁ] S¥M Repositories

SR FShudioSvnProjects
= event_procest Mew 4
i @ event_proces:
E event_proces) |
=t eventjrucessl-I: Ll Faste 2
[+ (=% event_processz-1 ¥ Delete Delete
[#1=F event_process3-1 Mo
LT Service_addressin Rename...
“1C7 Service_Agoregat|
T Service_antlr-4.0 g Impart. ..
107 Service_axisz-4.0) g3 Export. ..
T Service_axis-4.0 |
10T Service_based-4) W Refresh FS
1T Service_BCComme Close Project
17 Service BCEngine. Close Unrelated Projects
] Service_BCGakew

Copy Chel+C

¥ Ell It

| Fun As ¢

. =T Service_Eeanshell Debug As b
-l Serv?ce_ﬁinaryFile m— ¥ Apply Patch...

1T Service_bouncyca Compare With N

Share Project...

-] Service_bsf-4.0

Restore From Local History. .. -
PDE Tools r i-

Figure 14.4.1: Adding the project

2. A dialog lets you choose an existing repository location, or a new repository can be
created.

Chapter 14: SCM Integration Page 194

Fiorano eStudio User Guide

i Share Project

Share Project with S¥N Repository =
Select an existing repository location or create a new location, %‘

This wizard will help you to share vour files with the SYM repository For the First time, Your
project will automatically be imported into the SWM repository, and the Commit dialog waill
open ko allow waou ko commit your Fesources,

O Create a new repository location

@' Ilse existing repositary location:

'M_Integration_Test

Figure 14.4.2: Selecting the repository

3. Finish the wizard. A dialog will be prompted to switch to Team Synchronizing
perspective. Select Yes.

4. A view named Synchronize is shown in the perspective. Right click on the
EStudioSvnProjects and select Commit option.

Chapter 14: SCM Integration Page 195

Fiorano eStudio User Guide

E0 synchrorize 5 Ei-pt @ AL 4
S¥N (/EStudioSvnProjects)
3 = i

| Edit L

|XE* . project

@ event_f Synchronize

et L pemove From Yiew

eEns Expand All

o Show Revision Graph

Team »
Compare With k
Replace ‘With r
Restore from Local History, .

PDE Tools r

Cormit, ..
Create Patch...

Creerride and Update

Figure 14.4.3: Adding Event Processes to repository
5. Commit dialog will be shown. Enter a comment and select Ok.

6. A new directory with the name EStudioSvnProjects will be created in the
repository.

14.5 Updating the project into the Repository.

1. After making changes in the Event Processes, export them to
EStudioSvnProjects as mentioned in section 14.3.

2. Overwrite the already existing Event Processes with the latest ones.

3. Refresh EStudioSvnProjects from the Project Explorer view and commit into the
repository.

14.6 Updating an Event Process with older version from Repository
The following steps explain the process to update an Event Process with an older version
from the repository.

1. Right click on the Event Process project to be updated and select Replace With -
> Revision option as shown in Fig 14.6.1.

Chapter 14: SCM Integration Page 196

Fiorano eStudio User Guide

R=| Properties i.-|>:| Project Explorer &3 E'j WM Repl:usitl:uries. ED Synchronize |

i

event_processl- Zip 7
% event_processz-1 R
% event_processs-1
[+ f=F event_process1-1.0
[#l=F event_processz-1.0
d_-'l I=F event_process3-1.0 = Copy ChlbC
L7 Service_addressing-4.|
7| Service_Aggregator-4

Open F3
Cpen Wikh

B Delete Delete

T Service_ankl-4.0
LT Service_axis2-4.0 Move..,
T Service_axis-4.0 Rename. ..
T;[SEerce_I:uaseﬁdr-dr.D R
LT Service_BCCammon-4,

L Export...

1.0 gervice_BCEngine-4.0
LT Service BCGateway-4 &) Refresh F5
.7 Service_BeanShell-4.0) -

| Service_BinaryFileR ear Fun As

27 Service_bouncycastle- Debug As

12T Service_bsf-4.0 Team

T Saruica_hehod N Compare With

Replace With

Figure 14.6.1: Updating the project

l= EStudioSwnProjects [stl.u:hu:u,l'S'-.-'N _Inkegration Teshl'EStuu:Iu:-SvnF'ru:u]ects]

Base Revision
Latest from Fepository
Branu:h,l'Tag

Ln:n:al Hlstn:nr':.:' 1
Previous From Local History

e v v v v

2. All the existing revisions are shown. Select the required revision and from the

context menu choose Get Revision option.

"[ﬁ Ewvent Processl "[E Ewvent Processs "[ﬁ Ewvent Processs EEI Compare event_pro

| Skructure Compare

Merged Revisions Tags
*T580

Datke Author
3711710 5:47 P... saikiran

Figure 14.6.2: Getting the required revision.

et Contenks

3. The Event Process will be updated with the revision selected. This Event Process
has to be imported into eStudio from EStudioSvnProjects for the changes to take

effect.

4. To import, right click on Event Process Repository node and select Import
Event Process option. Specify the location of Event Process in

EStudioSvnProjects and select Ok.

5. Overwrite the already existing Event Process.

6. The Event Process will be updated in eStudio with the selected revision.

Similarly new Event Processes added externally can be updated and added into eStudio.
For this, EStudioSvnProjects has to be updated with the latest contents from the
repository and the new Event Processes have to be imported into eStudio.

Chapter 14: SCM Integration

Page 197

	Fiorano eStudio User Guide
	Contents
	Chapter 1: Introduction to Fiorano eStudio
	1.1 Key Features
	1.2 Getting started with Fiorano eStudio

	Chapter 2: Offline Event Process Development
	2.1 Fiorano Views
	2.1.1 Event Process Repository View
	2.1.2 Fiorano Orchestration
	2.1.3 Service Palette
	2.1.4 Properties
	2.1.5 Problems
	2.1.6 Error Log
	2.1.7 Service Repository (Offline)
	2.1.8 Project Explorer
	2.1.9 Service Descriptor Editor

	2.2 Event Processes
	2.2.1 Creating New Event Process
	2.2.2 Opening Sample Event Process
	2.2.3 Import and Export Event Processes
	2.2.3.1 Exporting an Event Process
	2.2.3.2 Importing an Event Process

	2.2.4 Importing nStudio Event Processes

	2.3 Service Repository (Offline Event Process Development)
	2.3.1 Deploying Services to Server
	2.3.2 Fetching Services from Server
	2.3.3 Exporting Services to Local Disk
	2.3.4 Importing Services from Local disk

	Chapter 3: Online Event Process Development Perspective
	3.1 Fiorano Views
	3.1.1 Server Explorer
	3.1.2 Fiorano Debugger View

	3.2 Service Repository (Online Event Process Development)
	3.2.1 Exporting Services to Local Disk
	3.2.2 Importing Services from Local disk

	Chapter 4: Mapper Perspective
	Chapter 5: Composing Event Processes
	5.1 Adding Components
	5.2 Connecting Routes
	5.3 Configuring Components
	5.4 Configuring Component Properties
	5.5 Adding Remote Service Instance
	5.6 Adding External Event Process (Subflow)
	5.7 Document Tracking
	5.8 Defining Route Transformations
	5.9 Configuring Selectors on Routes
	5.10 Configuring Application Context
	5.11 Check Resource and Connectivity
	5.12 Running Event Process
	5.13 Stopping an Event Process
	5.14 Synchronizing an Event Process

	Chapter 6: Event Process Life Cycle Management
	6.1 Setting Properties of Service Instances for Different En
	6.2 Running Event Process on an Environment

	Chapter 7: Debugging Event Process
	7.1 Adding Breakpoint
	7.1.1 Context Menu option
	7.1.2 Debugger View

	7.2 Viewing Messages at Breakpoint
	7.3 Editing Messages at Breakpoint
	7.4 Inserting Messages into Breakpoint
	7.5 Releasing Messages from Breakpoint
	7.6 Discard Messages from Breakpoint
	7.7 Remove Breakpoint

	Chapter 8: Services
	8.1 Service Descriptor Editor
	8.1.1 Overview Section
	8.1.2 Execution Section
	8.1.2.1 Port Information
	8.1.2.2 Support
	8.1.2.3 Launch Configuration
	8.1.2.4 Log Modules
	8.1.2.4 Runtime

	8.1.3 Deployment Section
	8.1.3.1 Resource
	8.1.3.2 Service Dependencies

	Chapter 9: Service Creation
	9.1 Service Generation
	9.1.1 Service Location
	9.1.2 Basic Details
	9.1.3 Ports Information
	9.1.4 Resources
	9.1.5 Dependencies

	9.2 Building and Deploying Services

	Chapter 10: eMapper
	10.1 Key Features of Fiorano eMapper
	10.2 Fiorano eMapper Environment
	10.2.1 eMapper Projects.
	10.2.2 eMapper Editor
	10.2.2.1 Map View
	10.2.2.2 MetaData tab

	10.2.3 Funclet View
	10.2.4 eMapper Console
	10.2.5 MetaData Messages View
	10.2.6 Node Info View

	10.3 Working with Input and Output Structures
	10.3.1 Loading Input/Output Structure
	10.3.1.1 Load Input/Output Structure From an XSD document
	10.3.1.2 Load Input/Output Structure from a DTD document
	10.3.1.3 Load Input/Output Structure from an XML document

	10.3.2 Delete Structure
	10.3.3 Edit Structure

	10.4 Working with the Visual Expression Builder
	10.4.1 Function Palette
	10.4.1.2 Math Functions
	10.4.1.3 String Functions
	10.4.1.4 Control Function
	10.4.1.5 Conversion Functions
	10.4.1.6 Advanced Functions
	10.4.1.7 Date-Time Functions
	10.4.1.8 NodeSet Functions
	10.4.1.9 Boolean functions
	10.4.1.10 Lookup functions
	10.4.1.11 JMS Message Functions
	10.4.1.12 User Defined functions

	10.4.2 Funclet Easel
	10.4.2.1 Source Node
	10.4.2.2 Destination Node

	10.5 Creating Mappings
	10.5.1 Understanding Types of Nodes
	10.5.2 Types of Mappings
	10.5.2.1 Name-to-Name Mapping
	10.5.2.2 For-Each Mapping

	10.5.3 Duplicating a For-Each Mapping
	10.5.4 Linking Nodes to Define Mappings
	10.5.4.1 Using the Automatic Mapping option to Define Mappin
	10.5.4.2 Using the Visual Expression Builder to Define Mappi

	10.5.5 Mapping XML Formats

	10.6 Adding User XSLT
	10.7 Working with derived types
	10.8 Create/Edit User Defined Function(s)
	10.9 Testing the Transformation
	10.10 Managing Mappings
	10.10.1 Exporting eMapper Project
	10.10.2 Importing Project from the File
	10.10.3 Copying functions in a Mapping
	10.10.4 Clearing All Mappings
	10.10.5 Managing XSLT Properties

	Chapter 11: Working With Multiple Servers And Perspectives
	11.1 Active Server Node
	11.2 Switching of Active Server
	11.3 Switching Between Perspectives

	Chapter 12: Fiorano Preferences
	ESB Connection Preferences
	12.2 SOA Orchestration
	12.2.1 General Options
	12.2.2 Workflow Options
	12.2.3 Service Options
	12.2.3.1 Default JVM Configurations
	12.2.3.2 Connection Factory Preferences

	12.2.4 CPS Options

	12.3 SOA Orchestration Online
	12.3.1 General Options
	12.3.2 Application Options
	12.3.3 Service Options
	12.3.4 Peer Options

	12.4 Key Board Short Cut Preferences

	Chapter 13: Schema Repository
	Chapter 14: SCM Integration
	14.1 Downloading and integrating SCM plugins in Fiorano eStu
	14.2 Specifying SCM repository
	14.3 Creating a project for version control
	14.4 Adding the Project to Repository
	14.5 Updating the project into the Repository.
	14.6 Updating an Event Process with older version from Repos

