
 

User Guide 

Fiorano eStudio® 
Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any 
form without prior written permission is forbidden. The information contained herein has been obtained from 
sources believed to be reliable. Fiorano disclaims all warranties as to the accuracy, completeness or 
adequacy of such information. Fiorano shall have no liability for errors, omissions or inadequacies in the 
information contained herein or for interpretations thereof. The opinions expressed herein are subject to 
change without prior notice. 



FIORANO END-USER LICENSE AGREEMENT 
 

 

This Fiorano end-user license agreement (the “Agreement”) is a legal agreement between you (hereinafter “Customer”), 
either an individual or a corporate entity, and Fiorano Software, Inc., having a place of business at 718 University Ave, 
Suite 212 Los Gatos, CA 95032, USA, or its affiliated companies (hereinafter “Fiorano”) for certain software 
developed and marketed by Fiorano as defined in greater detail below. By opening this package, installing, copying, 
downloading, extracting and/or otherwise using the software, you are consenting to be bound by and are becoming 
party to this agreement on the date of installation, copying, download or extraction of the software (the “Effective 
Date”). If you do not agree with any of the terms of this Agreement, please stop installing and/or using the software and 
promptly return the unused software to the place of purchase. By default, the Software is made available to Customers 
in online, downloadable form. The terms of this Agreement shall apply to each Software license granted by Fiorano 
under this Agreement. 

1. Definitions.  

"Affiliate" means, in relation to Fiorano, another person firm or company which directly or 
indirectly controls, is controlled by or is under common control with Fiorano and the 
expression 'control' shall mean the power to direct or cause the direction of the general 
management and policies of the person firm or company in question. 

“Commencement Date” means the date on which Fiorano delivers the Software to 
Customer, or if no delivery is necessary, the Effective Date set forth in this Agreement or on 
the relevant Order Form. 

“Designated Center” means the computer hardware, operating system, customer-specific 
application and Customer Geographic Location at which the Software is deployed as 
designated on the corresponding Order Form. 

“Designated Contact” shall mean the contact person or group designated by Customer and 
agreed to by Fiorano who will coordinate all Support requests to Fiorano. 

“Documentation” means the user guides and manuals for installation and use of the 
Software. Documentation is provided in CD-ROM or bound form, whichever is generally 
available.  

“Error” shall mean a reproducible defect in the Supported Program or Documentation when 
operated on a Supported Environment which causes the Supported Program not to operate 
substantially in accordance with the Documentation. 

“Excluded Components” shall mean such components as are listed in Exhibit B. Such 
Excluded Components do not constitute Software under this Agreement and are third party 
components supplied subject to the corresponding license agreements specified in Exhibit B.  

“Excluded License” shall mean and include any license that requires any portion of any 
materials or software supplied under such license to be disclosed or made available to any 
party either in source code or object code form.  In particular, all versions and derivatives of 
the GNU GPL and LGPL  shall be considered Excluded Licenses for the purposes of this 
Agreement.  



“Resolution” shall mean a modification or workaround to the Supported Program and/or 
Documentation and/or other information provided by Fiorano to Customer intended to resolve 
an Error. 

 “Residuals” shall mean information in non-tangible form which may be retained by persons 
who have had access to the Confidential Information, including ideas, concepts, know-how or 
techniques contained therein.    

“Order Form” means the document in hard copy form by which Customer orders Software 
licenses and services, and which is agreed to in writing by the parties. The Order Form shall 
reference the Effective Date and be governed by the terms of this Agreement. Customer 
understands that any document in the nature of a purchase order originating from Customer 
shall not constitute a contractual offer and that the terms thereof shall not govern any 
contract to be entered into between Fiorano and Customer. The Order Form herein shall 
constitute an offer to purchase made by the Customer under the terms of the said Order Form 
and this Agreement.  

 “Software” means each of the individual Products, as further outlined in Exhibit-A, in object 
code form distributed by Fiorano for which Customer is granted a license pursuant to this 
Agreement, and the media, Documentation and any Updates thereto. 

“Support” shall mean ongoing support provided by Fiorano pursuant to the terms of this 
Agreement and Fiorano’s current support policies. “Supported Program” or “Supported 
Software” shall mean the then current version of the Software in use at the Designated 
Center for which the Customer has paid the then-current support fee (“Support Fee”). 

“Support Hours” shall mean 9 AM to 5 PM, Pacific Standard Time, Monday through Friday, 
for Standard Support. 

“Support Period” shall mean the period during which Customer is entitled to receive Support 
on a particular Supported Program, which shall be a period of twelve (12) months beginning 
from the Commencement Date, or if applicable, twelve (12) months from the expiration of the 
preceding Support Period. Should Fiorano withdraw support pursuant to section 1 (q), the 
Support Period shall be automatically reduced to the expiration date of the appropriate 
Software. 

“Supported Environment” shall mean any hardware and operating system platform which 
Fiorano provides Support for use with the Supported Program. 

“Update” means a subsequent release of the Software that Fiorano generally makes available 
for Supported Software licensees at no additional license fee other than shipping and handling 
charges. Update shall not include any release, option, feature or future product that Fiorano 
licenses separately.  Fiorano will provide Updates for the Supported Programs as and when 
developed for general release in Fiorano’s sole discretion. Fiorano may withdraw support for 
any particular version of the Software, including without limitation the most current Update 
and any preceding release with a notice of three (3) months to Customer.  

2. Software License. 

(a) Rights Granted, subject to the receipt by Fiorano of appropriate license fees. 



(i) The Software is Licensed to Customer for use under the terms of this Agreement and 
NOT SOLD. Fiorano grants to Customer a limited, non-exclusive, world wide license to use the 
Software as specified on an Order Form and subject to the licensing restrictions in Exhibit C 
under this Agreement, as follows: 

(1) to use the Software solely for Customer’s operations at the Designated Center 
consistent with the use limitations specified or referenced in this Agreement, the 
Documentation for such Software or any Order Form accepted by Fiorano pursuant to this 
Agreement. Customer may not relicense, rent or lease the Software or use the Software for 
third party training, commercial timesharing or service bureau use;   

(2) to use the Documentation provided with the Software in support of Customer’s 
authorized use of the Software; 

(3) to make a single copy for back-up or archival purposes and/or temporarily transfer the 
Software in the event of a computer malfunction. All titles, trademarks and copyright or other 
restricted rights notices shall be reproduced in any such copies; 

(4) to allow third parties to use the Software for Customer’s operations, so long as 
Customer ensures that use of the Software is in accordance with the terms of this Agreement. 

(ii) Customer shall not copy or use the Software (including the Documentation) except as 
specified in this Agreement and applicable Order Form. Customer shall have no right to use 
other third party software or Excluded Components that are included within the Software 
except in connection and within the scope of Customer’s use of Fiorano’s Software product. 

Customer agrees not to cause or permit the reverse engineering, disassembly, decompilation, 
or any other attempt to derive source code from the Software, except to the extent expressly 
provided for by applicable law. 

Customer hereby warrants that it shall not, by any act or omission, cause or permit the 
Products or any part thereof to become expressly or impliedly subject to any Excluded License.  

(v) Fiorano and its Affiliates shall retain all title, copyright and other proprietary rights in 
the Software. Customer does not acquire any rights, express or implied, in the Software, other 
than those specified in this Agreement. 

(vi) Customer agrees that it will not publish or cause or permit to be published any results 
of benchmark tests run on the Software. 

(vii)  If the Software is licensed for a specific term, as noted on the Order Form, then the 
license shall expire at the end of the term and the termination conditions in section 4(d) shall 
automatically become applicable. 

(b) Transfer.  Customer may transfer a Software license within its organization upon 
notice to Fiorano; transfers are subject to the terms and fees specified in Fiorano’s transfer 
policy in effect at the time of the transfer. If the Software is licensed for a specific term, then 
it may not be transferred by Customer. 



(c) Verification.  At Fiorano’s written request, Customer shall furnish Fiorano with a 
signed certification verifying that the Software is being used pursuant to the provisions of this 
Agreement and applicable /Order Form. Fiorano (or Fiorano’s designee) may audit Customer's 
use of the Software. Any such audit shall be conducted during regular business hours at 
Customer's facilities and shall not unreasonably interfere with Customer's business activities. 
If an audit reveals that Customer has underpaid fees to Fiorano, Customer shall be invoiced 
directly for such underpaid fees based on the Fiorano Price List in effect at the time the audit 
is completed. If the underpaid fees are in excess of five percent (5%) of the aggregate license 
fees paid to Fiorano pursuant to this Agreement, the Customer shall pay Fiorano’s reasonable 
costs of conducting the audit. Audits shall be conducted no more than once annually. 

(d) Customer Specific Objects. 

(i) The parties agree and acknowledge, subject to Fiorano’s underlying proprietary rights, 
that Customer may create certain software objects applicable to Customer’s internal business 
(“Customer Specific Objects”). Any Customer Specific Object developed solely by Customer 
shall be the property of Customer. To the extent that Customer desires to have Fiorano 
incorporate such Customer Specific Objects into Fiorano’s Software (and Fiorano agrees, in its 
sole discretion, to incorporate such Customer Specific Objects), Customer will promptly deliver 
to Fiorano the source and object code versions (including documentation) of such Customer 
Specific Objects, and any updates or modifications thereto, and hereby grants Fiorano a 
perpetual, irrevocable, worldwide, fully-paid, royalty-free, exclusive, transferable license to 
reproduce, modify, use, perform, display, distribute and sublicense, directly and indirectly, 
through one or more tiers of sublicensees, such Customer Specific Objects. 

(ii) Any objects, including without limitation Customer Specific Objects, developed solely 
or jointly with Customer by Fiorano shall be the property of Fiorano. 

(e) Additional Restrictions on Use of Source Code. 

Customer acknowledges that the Software, its structure, organization and any human-
readable versions of a software program (“Source Code”) constitute valuable trade secrets 
that belong to Fiorano and/or its suppliers Source Code Software, if and when supplied to 
Customer shall constitute Software licensed under the terms of this Agreement and the Order 
Form.    Customer agrees not to translate the Software into another computer language, in 
whole or in part. 

(i) Customer agrees that it will not disclose all or any portion of the Software’s Source 
Code to any third parties, with the exception of authorized employees (“Authorized 
Employees”) and authorized contractors (“Authorized Contractors”) of Customer who (i) 
require access thereto for a purpose authorized by this Agreement, and (ii) have signed an 
employee or contractor agreement in which such employee or contractor agrees to protect 
third party confidential information.  Customer agrees that any breach by any Authorized 
Employees or Authorized Contractors of their obligations under such confidentiality 
agreements shall also constitute a breach by Customer hereunder. 



(ii)  Customer shall ensure that the same degree of care is used to prevent the unauthorized 
use, dissemination, or publication of the Software’s Source Code as Customer uses to protect 
its own confidential information of a like nature, but in no event shall the safeguards for 
protecting such Source Code be less than a reasonably prudent business would exercise under 
similar circumstances.  Customer shall take prompt and appropriate action to prevent 
unauthorized use or disclosure of such Source Code, including, without limitation, storing such 
Source Code only on secure central processing units or networks and requiring passwords and 
other reasonable physical controls on access to such Source Code. 

(iii) Customer shall instruct Authorized Employees and Authorized Contractors not to copy 
the Software’s Source Code on their own, and not to disclose such Source Code to anyone not 
authorized to receive it. 

(iv) Customer shall handle, use and store the Software’s Source Code solely at the 
Customer Designated Center. 

(f) Acceptance tested Software 

Customer acknowledges that it has, prior to the date of this Agreement, carried out adequate 
acceptance tests in respect of the Software.  Customer's acceptance of delivery of the 
Software under this Agreement shall be conclusive evidence that Customer has examined the 
Software and found it to be complete, and in accordance with the Documentation, in good 
order and condition and fit for the purpose for which it is required. 

 

3. Technical Services. 

(a) Maintenance and Support Services. Maintenance and Support services will be 
provided under the terms of this Agreement and Fiorano’s support policies in effect on the 
date Support is ordered by Customer. Support services shall be provided from Fiorano’s 
principal place of business or at the Designated Center, as determined in Fiorano’s sole 
discretion. If Fiorano sends personnel to the Designated Center to resolve any Error in the 
Supported Program, Customer shall pay Fiorano’s reasonable travel, meals and lodging 
expenses. 

(b) Consulting and Training Services. Fiorano will, upon Customer’s request, provide 
consulting and training services agreed to by the parties pursuant to the terms of a separate 
written agreement. 

(c) Incidental Expenses.   For any on-site services requested by Customer, Customer 
shall reimburse Fiorano for actual, reasonable travel and out-of-pocket expenses incurred 
(separate from then current Support Fees).  

(d) Reinstatement.   Once Support has been terminated by Customer or Fiorano for a 
particular Supported Program, it can be reinstated only by prior approval from Fiorano and 
then only upon payment of the reinstatement fee applicable at the time of reinstatement. 



(e) Supervision and Management.  Customer is responsible for undertaking the proper 
supervision, implementation and management of its use of the Supported Programs, including, 
but not limited to: (i) assuring proper Supported Environment configuration, Supported 
Programs installation and operating methods; and (ii) following industry standard procedures 
for the security of data, accuracy of input and output, and back-up plans, including restart and 
recovery in the event of hardware or software error or malfunction. Fiorano does not warrant 
(i) the performance of, or combination of, Software with any third party software, (ii) any 
implementation of the Software that does not follow Fiorano’s delivery methodology, or (iii) 
any components not supplied by Fiorano. 

(f) Training.  Customer is responsible for proper training of all appropriate personnel in 
the operation and use of the Supported Programs and associated equipment. 

(g) Access to Personnel and Equipment. Customer shall provide Fiorano with access to 
Customer’s personnel and its equipment during Support Hours. This access must include the 
ability to dial-in from Fiorano facilities to the equipment on which the Supported Programs are 
operating and to obtain the same access to the equipment as those of Customer’s employees 
having the highest privilege or clearance level. Fiorano will inform Customer of the 
specifications of the modem equipment and associated software needed, and Customer will be 
responsible for the costs and use of said equipment. 

(h)  Support Term. Upon expiration of an existing Support Period for a particular 
Supported Program, a new Support Period shall automatically begin for a consecutive twelve 
(12) month term (“Renewal Period”) so long as (i) Customer pays the Support Fee within 
thirty (30) days of invoice by Fiorano; and (ii) Fiorano is still offering Support on such 
Supported Program. 

(i)  Annual Support Fees.  Annual Support Fees shall be at the rates set forth in the 
applicable Order Form. 

4.  Term and Termination. 

(a) Term.  This Agreement and each Software license granted under this Agreement shall 
continue unless terminated under this Section 4 (“Term and Termination”). 

(b) Termination by Customer.  If the Software is licensed for a specific term as noted 
on an Order Form, Customer may terminate any Software license at the end of the term; 
however, any such termination shall not relieve Customer’s obligations specified in Section 
4(d) (“Effect of Termination”). 

(c) Termination by Fiorano.   Fiorano may terminate this Agreement or any license 
upon written notice if Customer breaches this Agreement and fails to correct the breach within 
thirty (30) days of notice from Fiorano. 



(d) Effect of Termination.  Termination of this Agreement or any license shall not limit 
Fiorano from pursuing other remedies available to it, including injunctive relief, nor shall such 
termination relieve Customer’s obligation to pay all fees that have accrued or are otherwise 
owed by Customer under any Order Form. Such rights and obligations of the parties’ which, by 
their nature, are intended to survive the termination of this agreement shall survive such 
termination. Without limitation to the foregoing, these shall include rights and liabilities arising 
under Sections 2 (a)(iii), 2(a)(iv) (“Rights Granted”), 2(d) (“Customer Specific Objects”), 4 
(“Term and Termination”), 5 (“Indemnity, Warranties, Remedies”), 6 (“Limitation of Liability”), 
7 (“Payment Provisions”), 8 (“Confidentiality”) and 9 (“Miscellaneous”) Upon termination, 
Customer shall cease using, and shall return or at Fiorano’s request destroy, all copies of the 
Software and Documentation and upon Fiorano’s request certify the same to Fiorano in writing 
within thirty (30) days of termination. In case of termination of this Agreement or any license 
for any reason by either party, Fiorano shall have no obligation to refund any amounts paid to 
Fiorano by Customer under this Agreement. Further, if Customer terminates the agreement 
before the expiry of a term for a term-license, then Customer shall be obliged to pay the 
entire license fee for the entire licensed term. 

5. Indemnity, Warranties, Remedies. 

(a) Infringement Indemnity.  Fiorano agrees to indemnify Customer against a third 
party claim that any Product infringes a U.S. copyright or patent and pay any damages finally 
awarded,  provided that: (i) Customer notifies Fiorano in writing within ten (10) days of the 
claim; (ii) Fiorano has sole control of the defense and all related settlement negotiations; and 
(iii) Customer provides Fiorano with the assistance, information and authority at no cost to 
Fiorano, necessary to perform Fiorano’s obligations under this Section 5 (“Indemnities, 
Warranties, Remedies”). Fiorano shall have no liability for any third party claims of 
infringement based upon (i) use of a version of a Product other than the most current version 
made available to the Customer, (ii) the use, operation or combination of any Product with 
programs, data, equipment or documentation if such infringement would have been avoided 
but for such use, operation or combination; or (iii) any third party software, except as the 
same may be integrated, incorporated or bundled by Fiorano, or its third party licensors, in 
the Product licensed to Customer hereunder. 

If any Product is held or claimed to infringe, Fiorano shall have the option, at its expense, to 
(i) modify the Product to be non-infringing or (ii) obtain for Customer a license to continue 
using the Software. If it is not commercially reasonable to perform either of the above options, 
then Fiorano may terminate the license for the infringing Product and refund the pro rated 
amount of license fees paid for the applicable Product using a twelve (12) month straight-line 
amortization schedule starting on the Commencement Date. This Section 5(a) (“Infringement 
Indemnity”) states Fiorano’s entire liability and Customer’s sole and exclusive remedy for 
infringement. 

(B) WARRANTIES AND DISCLAIMERS. 



(i) Software Warranty.  Except FOR EXCLUDED COMPONENTS WHICH ARE PROVIDED “AS 
IS” WITHOUT WARRANTY OF ANY KIND, For each Supported Software license which Customer 
acquires hereunder, Fiorano warrants that for a period of thirty (30) days from the 
Commencement Date the Software, as delivered by Fiorano to Customer, will substantially 
perform the functions described in the associated Documentation in all material respects when 
operated on a system which meets the requirements specified by Fiorano in the 
Documentation. Provided that Customer gives Fiorano written notice of a breach of the 
foregoing warranty during the warranty period, Fiorano shall, as Customer’s sole and exclusive 
remedy and Fiorano’s sole liability, use its reasonable efforts, during the warranty period only, 
to correct any reproducible Errors that cause the breach of the warranty in accordance with its 
technical support policies. If Customer does not obtain a Supported Software license, the 
Software is provided “AS IS.”  any implied warranty or condition applicable to the software, 
documentation or any part thereof by operation of any law or regulation shall operate only for 
defects discovered during the above warranty period of thirty (30) days unless temporal 
limitation on such warranty or condition is expressly prohibited by applicable law. Any 
supplements or updates to the Software, including without limitation, bug fixes or error 
corrections supplied after the expiration of the thirty-day Limited Warranty period SHALL NOT 
be covered by any warranty or condition, express, implied or statutory. 

(ii) Media Warranty.  Fiorano warrants the tapes, diskettes or any other media on which 
the Software is supplied to be free of defects in materials and workmanship under normal use 
for thirty (30) days from the Commencement Date. Customer’s sole and exclusive remedy and 
Fiorano’s sole liability for breach of the media warranty shall be for Fiorano to replace 
defective media returned within thirty (30) days of the Commencement Date. 

(iii) Services Warranty.  Fiorano warrants any services provided hereunder shall be 
performed in a professional and workmanlike manner in accordance with generally accepted 
industry practices. This warranty shall be valid for a period of thirty (30) days from 
performance. Fiorano’s sole and exclusive liability and Customer’s sole and exclusive remedy 
pursuant to this warranty shall be use by Fiorano of reasonable efforts for re-performance of 
any services not in compliance with this warranty which are brought to Fiorano’s attention by 
written notice within fifteen (15) days after they are performed. 

(IV) DISCLAIMER OF WARRANTIES.    SUBJECT TO LIMITED WARRANTIES PROVIDED FOR HEREINABOVE, 
AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE SOFTWARE, 
DOCUMENTATION AND SERVICES (IF ANY) ARE PROVIDED AS IS AND WITH ALL FAULTS, 
FIORANO HEREBY DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS, WHETHER 
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED 
WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A 
PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY, OF ACCURACY OR 
COMPLETENESS OF RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF 
VIRUSES, AND OF LACK OF NEGLIGENCE, ALL WITH REGARD TO THE SOFTWARE, AND THE 
PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, 
SOFTWARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHERWISE ARISING 
OUT OF THE USE OF THE SOFTWARE.  ALSO, THERE IS NO WARRANTY OR CONDITION OF 
TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-
INFRINGEMENT WITH REGARD TO THE SOFTWARE. 

 



6. Limitation of liability. To the maximum extent permitted by applicable law, in no event shall fiorano be 
liable for any special, incidental, punitive, indirect, or consequential damages whatsoever (including, but 
not limited to, damages for loss of profits or confidential or other information, for business interruption, 
for personal injury, for loss of privacy, for failure to meet any duty of good faith or of reasonable care, for 
negligence, and for any other pecuniary or other loss whatsoever) arising out of or in any way related to 
the use of or inability to use the software, the provision of or failure to provide support or other services, 
information, software, and related content through the software, or otherwise under or in connection 
with any provision of this eula, even in the event of the fault, tort (including negligence), 
misrepresentation, strict liability, breach of contract or breach of warranty of fiorano, and even if fiorano 
or any supplier has been advised of the possibility of such damages.   

Notwithstanding any damages that may be incurred for any reason and under any circumstances 
(including, without limitation, all damages and liabilities referenced herein and all direct or general 
damages in law, contract or anything else), the entire liability of fiorano under any provision of this eula 
and the exclusive remedy of the customer hereunder (except for any remedy of repair or replacement if 
so elected by fiorano with respect to any breach of the limited warranty) shall be limited to the pro-rated 
amount of fees paid by customer under this agreement for the  product, using a twelve (12) month 
straight-line amortization schedule starting on the Commencement Date. Further, if such damages result 
from customer's use of the software or services, such liability shall be limited to the prorated amount of 
fees paid for the relevant software or services giving rise to the liability till the date when such liability 
arose, using a twelve (12) month straight-line amortization schedule starting on the Commencement 
Date. Notwithstanding anything in this agreement, the foregoing limitations, exclusions and disclaimers 
shall apply to the maximum extent permitted by applicable law, even if any remedy fails its essential 
purpose. 

The provisions of this Agreement allocate the risks between Fiorano and Customer. Fiorano’s 
pricing reflects this allocation of risk and the limitation of liability specified herein.  

7. Payment Provisions. 

(a) Invoicing.  All fees shall be due and payable thirty (30) days from receipt of an 
invoice and shall be made without deductions based on any taxes or withholdings. Any 
amounts not paid within thirty (30) days will be subject to an immediately due and payable 
late payment fee equivalent to: the sum of $50.00 plus an interest equal to the lower of (a) 
the maximum applicable legal interest rate, or (b) one percent (1%) per month. 

(b) Payments.  All payments made by Customer shall be in United States Dollars for 
purchases made in all countries except the United Kingdom or the European Union, in which 
case the payments shall be made in British Pounds Sterling or Euros respectively. Payments 
shall be directed to: 

Fiorano Software, Inc. 

718 University Ave. 

Suite 212, Los Gatos, CA 95032 

Attn: Accounts Receivable. 

If the product is purchased outside the United States, payments may have to be made to an 
Affiliate as directed by Fiorano Software, Inc. 



(c) Taxes.  The fees listed in this Agreement or the applicable Order Form does not 
include Taxes. In addition to any other payments due under this Agreement, Customer agrees 
to pay, indemnify and hold Fiorano harmless from, any sales, use, excise, import or export, 
value added or similar tax or duty, and any other tax not based on Fiorano’s net income, 
including penalties and interest and all government permit fees, license fees, customs fees and 
similar fees levied upon the delivery of the Software or other deliverables which Fiorano may 
incur in respect of this Agreement, and any costs associated with the collection or withholding 
of any of the foregoing items (the “Taxes”). 

8. Confidentiality. 

(a) Confidential Information. “Confidential Information” shall refer to and include, without 
limitation, (i) the source and binary code  of Products, and (ii) the business and technical 
information of either party, including but not limited to any information relating to product 
plans, designs, costs, product prices and names, finances, marketing plans, business 
opportunities, personnel, research, development or know-how;  

 

Exclusions of Confidential Information. Notwithstanding the foregoing, “Confidential 
Information” shall not include: (i) Information that is not marked confidential or otherwise 
expressly designated confidential prior to its disclosure, (ii) Information that is or becomes 
generally known or available by publication, commercial use or otherwise through no fault of 
the receiving party, (iii) Information that is known to the receiving party at the time of 
disclosure without violation of any confidentiality restriction and without any restriction on the 
receiving party’s further use or disclosure; (iv) Information that is independently developed by 
the receiving party without use of the disclosing party’s confidential information, or (v) Any 
Residuals arising out of this Agreement. Notwithstanding, any Residuals belonging to Source 
Code shall belong exclusively to Fiorano and Customer shall not have any right whatsoever to 
any Residuals relating to Source Code hereunder. 

 

Use and Disclosure Restrictions. During the term of this Agreement, each party shall 
refrain from using the other party’s Confidential Information except as specifically permitted 
herein, and from disclosing such Confidential Information to any third party except to its 
employees and consultants as is reasonably required in connection with the exercise of its 
rights and obligations under this Agreement (and only subject to binding use and disclosure 
restrictions at least as protective as those set forth herein executed in writing by such 
employees).  

 

Continuing Obligation. The confidentiality obligation described in this section shall survive 
for three (3) years following any termination of this Agreement.Notwithstanding the foregoing, 
Fiorano shall have the right to disclose Customer’s Confidential Information to the extent that 
it is required to be disclosed pursuant to any statutory or regulatory provision or court order, 
provided that Fiorano provides notice thereof to Customer, together with the statutory or 
regulatory provision, or court order, on which such disclosure is based, as soon as practicable 
prior to such disclosure so that Customer has the opportunity to obtain a protective order or 
take other protective measures as it may deem necessary with respect to such information. 

 



9. Miscellaneous. 

(a) Export Administration. Customer agrees to comply fully with all applicable relevant 
export laws and regulations including without limitation, those of the United States (“Export 
Laws”) to assure that neither the Software nor any direct product thereof are (i) exported, 
directly or indirectly, in violation of Export Laws; or (ii) are intended to be used for any 
purposes prohibited by the Export Laws, including, without limitation, nuclear, chemical, or 
biological weapons proliferation. 

(b) U. S. Government Customers.  The Software is “commercial items,” as that term is 
defined at 48 C.F.R. 2.101 (OCT 1995), consisting of “commercial computer software” and 
“commercial computer software documentation” as such terms are used in 48 C.F.R. 12.212 
(SEPT 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 
(JUNE 1995), all U.S. Government Customers acquire the Software with only those rights set 
forth herein. 

(c) Notices.  All notices under this Agreement shall be in writing and shall be deemed to 
have been given when mailed by first class mail five (5) days after deposit in the mail. Notices 
shall be sent to the addresses set forth at the beginning of this Agreement or such other 
address as either party may specify in writing. 

(d) Force Majeure.  Neither party shall be liable hereunder by reason of any failure or 
delay in the performance of its obligations hereunder (except for the payment of money) on 
account of strikes, shortages, riots, insurrection, fires, flood, storm, explosions, acts of God, 
war, governmental action, labor conditions, earthquakes, material shortages or any other 
cause which is beyond the reasonable control of such party. 

(e) Assignment.  Neither this Agreement nor any rights or obligations of Customer 
hereunder may be assigned by Customer in whole or in part without the prior written approval 
of Fiorano. For the avoidance of doubt, any reorganization, change in ownership or a sale of all 
or substantially all of Customer’s assets shall be deemed to trigger an assignment. Fiorano’s 
rights and obligations, in whole or in part, under this Agreement may be assigned by Fiorano. 

(f) Waiver.  The failure of either party to require performance by the other party of any 
provision hereof shall not affect the right to require such performance at any time thereafter; 
nor shall the waiver by either party of a breach of any provision hereof be taken or held to be 
a waiver of the provision itself. 

(g) Severability.  In the event that any provision of this Agreement shall be 
unenforceable or invalid under any applicable law or court decision, such unenforceability or 
invalidity shall not render this Agreement unenforceable or invalid as a whole and, in such 
event, any such provision shall be changed and interpreted so as to best accomplish the 
objectives of such unenforceable or intended provision within the limits of applicable law or 
applicable court decisions. 

(h) Injunctive Relief.  Notwithstanding any other provisions of this Agreement, a breach 
by Customer of the provisions of this Agreement regarding proprietary rights will cause 
Fiorano irreparable damage for which recovery of money damages would be inadequate, and 
that, in addition to any and all remedies available at law, Fiorano shall be entitled to seek 
timely injunctive relief to protect Fiorano’s rights under this Agreement. 



(i) Controlling Law and Jurisdiction.  If this Software has been acquired in the United 
States, this Agreement shall be governed in all respects by the laws of the United States of 
America and the State of California as such laws are applied to agreements entered into and 
to be performed entirely within California between California residents. All disputes arising 
under this Agreement may be brought in Superior Court of the State of California in Santa 
Clara County or the United States District Court for the Northern District of California as 
permitted by law. If this Software has been acquired in any other jurisdiction, the laws of the 
Republic of Singapore shall apply and any disputes arising hereunder shall be subject to the 
jurisdiction of the courts of Singapore, Singapore. Customer hereby consents to personal 
jurisdiction of the above courts. The parties agree that the United Nations Convention on 
Contracts for the International Sale of Goods is specifically excluded from application to this 
Agreement. 

(j) No Agency.  Nothing contained herein shall be construed as creating any agency, 
partnership or other form of joint enterprise or liability between the parties. 

(k) Headings.  The section headings appearing in this Agreement are inserted only as a 
matter of convenience and in no way define, limit, construe or describe the scope or extent of 
such section or in any way affect such section. 

(l) Counterparts.  This Agreement may be executed simultaneously in two or more 
counterparts, each of which will be considered an original, but all of which together will 
constitute one and the same instrument. 

(m) Disclaimer.  The Software is not specifically developed or licensed for use in any 
nuclear, aviation, mass transit or medical application or in any other inherently dangerous 
applications. Customer agrees that Fiorano and its suppliers shall not be liable for any claims 
or damages arising from Customer’s use of the Software for such applications. Customer 
agrees to indemnify and hold Fiorano harmless from any claims for losses, costs, damages or 
liability arising out of or in connection with the use of the Software in such applications. 

(n) Customer Reference.  Fiorano may refer to Customer as a customer in sales 
presentations, marketing vehicles and activities.  Such activities may include, but are not 
limited to; a press release, a Customer user story completed by Fiorano upon implementation 
of the Software, use by Fiorano of Customer’s name, logo and other marks, together with a 
reasonable number of technical or executive level Customer reference calls for Fiorano. 

(o) Entire Agreement.  This Agreement, together with any exhibits, completely and 
exclusively states the agreement of the parties. In the event of any conflict between the terms 
of this Agreement and any exhibit hereto, the terms of this Agreement shall control. In the 
event of any conflict between the terms of this Agreement and any purchase order or Order 
Form, this Agreement will control, and any pre-printed terms on Customer’s purchase order or 
equivalent document will be of no effect. This Agreement supersedes, and its terms govern, all 
prior proposals, agreements or other communications between the parties, oral or written, 
regarding the subject matter of this Agreement. This Agreement shall not be modified except 
by a subsequently dated written amendment signed by the parties, and shall prevail over any 
conflicting “pre-printed” terms on a Customer purchase order or other document purporting to 
supplement the provisions hereof. 

 



Exhibit A 

Fiorano Product List 

Each of the individual items below is a separate Fiorano product (the “Product”).  The Products 
in this list collectively constitute the Software. Fiorano reserves the right to modify this list at 
any time in its sole discretion. In particular, Product versions might change from time to time 
without notice. 

 

Fiorano SOA Enterprise Server  

Fiorano ESB Server 

FioranoMQ Server Peer /  FioranoMQ (standalone version)  

Fiorano Peer Server 

Fiorano SOA Tools  

Fiorano Mapper Tool  

Fiorano Database Business Component  

Fiorano HTTP Business Component  

Fiorano SMTP Business Component  

Fiorano FTP Business Component  

Fiorano File Business Component  

Fiorano MOM Business Components (MQSeries, MSMQ, JMS) 

NOTE: Other business components may be added to or removed from this list from time to 
time at Fiorano’s sole discretion. 



 

Exhibit B 

  

EXCLUDED COMPONENTS 

(a) Any third party or open source library included within the Software 

 



Exhibit C 

Licensing Restrictions. The Software licensed hereunder is subject to the following licensing 
restrictions. 

 

The parties understand that the modules of the Software are licensed as noted in this section. 
The term “Target System” means any computer system containing one or more Processors 
based upon any architecture, running any operating system, excluding computers running IBM 
MV-S, OS/390 and related  “mainframe” operating systems. The Term “Processor” means a 
computation hardware unit such as a Microprocessor that serves as the main arithmetic and 
logic unit of a computer. A Processor might consist of multiple “Cores”, in which case licenses 
shall have to be purchased on a per-Core basis. A Target System may have one or more 
Processors, each of which may have one or more Cores. In the sections below, Cores may 
replace Processors as applicable. 

If the Software is Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA  server or 
FioranoMQ Server (JMS), then the Software is licensed on a per Processor basis on a single 
Target System, where the total number of Processors on the Target System may not exceed 
the total number of Processors licensed, with the additional restriction that only a single 
instance of the Fiorano ESB Enterprise Server may run on a single Target System and that a 
separate license must be purchased for each instance of the Fiorano ESB Enterprise Server, 
Fiorano ESB Peer Server or FioranoMQ Server (JMS) Server for each Processor; 

 

If the Software is Fiorano SOA  Tools or Fiorano Mapper Tool , or any Fiorano Test and/or 
Development license, then the Software is licensed on a per-named-user basis, where the 
total number of named users may not exceed the total number of named users licensed; 

 

If the Software is a Fiorano Business Component of any kind (including but not limited to 
Fiorano HTTP, File, SMTP, File, Database, and other Business Components, etc.), then the 
Software is licensed on the basis of the number of CPUs of the Target System on which the 
FioranoMQ Peer (to which the Business Component connects runs). A separate license needs 
to be purchased for each CPU of each Target System of each FioranoMQ Peer instance to 
which any Business Component connects.  

 

Evaluations. Licenses used for evaluation cannot be used for any purposes other than an 
evaluation of the product. Existing customers must purchase new licenses to use additional 
copies of any Product and may not use evaluation keys in any form.  All evaluation keys are 
restricted to 45-days and extensions need to be applied for explicitly. Any misuse of 
evaluation keys shall be subject to a charge of 125% (one hundred and twenty-five percent) 
of the license fee plus 20% support. 

 



Non-Production Environments. For all non-production environments referenced on the 
Order Form (including all HA (high-availability), QA, Staging and Development environments), 
the following is understood: each non-production environment is an exact replica of the 
Production Environment from the standpoint of the number of copies of the Fiorano ESB 
Enterprise Server, FioranoMQ Peer, Fiorano SOA  server and/or FioranoMQ Server (JMS) 
licensed. Each non-production environment is licensed on the exact same number and 
configuration of CPUs and/or Cores as the corresponding Production Environment. 

 

Run-Time Libraries. The Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA  server 
and FioranoMQ Server (JMS) products are “server” products, each of which has a runtime 
library associated with it. The runtime library may be freely bundled with and/or used for 
internal development purposes by all Users who have licensed at least one production copy of 
the corresponding Server Software. 

 

Copyright (c) 2008-2010, Fiorano Software Pte Ltd. and Affiliates 



 

 

Contents 
 

Chapter 1: Introduction to Fiorano eStudio............................23 

1.1 Key Features.................................................................................................................. 23 
1.2 Getting started with Fiorano eStudio.................................................................................. 24 

Chapter 2: Offline Event Process Development Perspective27 

2.1 Fiorano Views................................................................................................................. 28 
2.1.1 Event Process Repository......................................................................................... 28 
2.1.2 Fiorano Orchestration.............................................................................................. 28 
2.1.3 Service Palette ....................................................................................................... 29 
2.1.4 Properties.............................................................................................................. 30 
2.1.5 Problems............................................................................................................... 30 
2.1.6 Error Log............................................................................................................... 31 
2.1.7 Service Repository (Offline) ..................................................................................... 31 
2.1.8 Project Explorer ..................................................................................................... 32 

2.2 Event Processes ............................................................................................................. 34 
2.2.1 Creating New Event Process ..................................................................................... 34 
2.2.2 Opening Sample Event Process................................................................................. 36 
2.2.3 Import and Export Event Processes ........................................................................... 37 

2.2.3.1 Exporting an Event Process.............................................................................. 37 
2.2.3.2 Importing an Event Process ............................................................................. 39 

2.2.4 Importing nStudio Event Processes ........................................................................... 41 
2.3 Service Repository (Offline Event Process Development) ...................................................... 43 

2.3.1 Deploying Services to Server.................................................................................... 44 
2.3.2 Fetching Services from Server .................................................................................. 45 
2.3.3 Exporting Services to Local Disk ............................................................................... 46 
2.3.4 Importing Services from Local disk............................................................................ 46 

Chapter 3: Online Event Process Development Perspective
...................................................................................................48 

3.1 Fiorano Views................................................................................................................. 49 
3.1.1 Server Explorer ...................................................................................................... 49 
3.1.2 Fiorano Debugger ................................................................................................... 50 

3.2 Service Repository (Online Event Process Development)....................................................... 51 
3.2.1 Exporting Services to Local Disk ............................................................................... 51 



 

 

3.2.2 Importing Services from Local disk............................................................................ 52 

Chapter 4: Mapper Perspective .............................................55 

Chapter 5: Composing Event Processes ................................56 

5.1 Adding Components ........................................................................................................ 56 
5.2 Connecting Routes .......................................................................................................... 57 
5.3 Configuring Components.................................................................................................. 57 
5.4 Configuring Component Properties .................................................................................... 58 
5.5 Adding Remote Service Instance....................................................................................... 61 
5.6 Adding External Event Process (Subflow) ........................................................................... 63 
5.7 Document Tracking......................................................................................................... 65 
5.8 Defining Route Transformations ........................................................................................ 67 
5.9 Configuring Selectors on Routes........................................................................................ 69 
5.10 Configuring Application Context ...................................................................................... 70 
5.11 Check Resource and Connectivity .................................................................................... 72 
5.12 Running Event Process................................................................................................... 73 
5.13 Stopping an Event Process ............................................................................................. 73 
5.14 Synchronizing an Event Process ...................................................................................... 74 

Chapter 6: Event Process Life Cycle Management ..............75 

6.1 Setting Properties of Service Instances for Different Environments......................................... 75 
6.2 Running Event Process on an Environment ......................................................................... 76 

Chapter 7: Debugging Event Process ....................................77 

7.1 Adding Breakpoint .......................................................................................................... 77 
7.1.1 Context Menu option............................................................................................... 77 
7.1.2 Debugger View....................................................................................................... 78 

7.2 Viewing Messages at Breakpoint ....................................................................................... 79 
7.3 Editing Messages at Breakpoint......................................................................................... 79 
7.4 Inserting Messages into Breakpoint ................................................................................... 80 
7.5 Releasing Messages from Breakpoint ................................................................................. 81 
7.6 Discard Messages from Breakpoint .................................................................................... 82 
7.7 Remove Breakpoint......................................................................................................... 83 



 

 

Chapter 8: Services ..................................................................85 

8.1 Service Descriptor Editor ................................................................................................. 85 
8.1.1 Overview Section.................................................................................................... 87 
8.1.2 Execution Section ................................................................................................... 88 

8.1.2.1 Port Information............................................................................................. 89 
8.1.2.2 Support ........................................................................................................ 89 
8.1.2.3 Launch Configuration ...................................................................................... 90 
8.1.2.4 Log Modules .................................................................................................. 90 
8.1.2.4 Runtime........................................................................................................ 91 

8.1.3 Deployment Section................................................................................................ 92 
8.1.3.1 Resource....................................................................................................... 92 
8.1.3.2 Service Dependencies ..................................................................................... 92 

Chapter 9: Service Creation....................................................94 

9.1 Service Generation ......................................................................................................... 94 
9.1.1 Service Location ..................................................................................................... 94 
9.1.2 Basic Details .......................................................................................................... 95 
9.1.3 Ports Information ................................................................................................... 96 
9.1.4 Resources ............................................................................................................. 97 
9.1.5 Dependencies ........................................................................................................ 98 

9.2 Building and Deploying Services........................................................................................ 98 

Chapter 10: eMapper ............................................................100 

10.1 Key Features of Fiorano eMapper ...................................................................................100 
10.2 Fiorano eMapper Environment........................................................................................100 

10.2.1 eMapper Projects. ................................................................................................101 
10.2.2 eMapper Editor....................................................................................................102 

10.2.2.1 Map View ...................................................................................................102 
10.2.2.2 MetaData tab ..............................................................................................103 

10.2.3 Funclet View .......................................................................................................103 
10.2.4 eMapper Console .................................................................................................104 
10.2.5 MetaData Messages View ......................................................................................104 
10.2.6 Node Info View....................................................................................................105 

10.3 Working with Input and Output Structures.......................................................................106 
10.3.1 Loading Input/Output Structure .............................................................................106 

10.3.1.1 Load Input/Output Structure From an XSD document .......................................106 
10.3.1.2 Load Input/Output Structure from a DTD document..........................................109 
10.3.1.3 Load Input/Output Structure from an XML document ........................................110 

10.3.2 Delete Structure ..................................................................................................111 



 

 

10.3.3 Edit Structure......................................................................................................111 
10.4 Working with the Visual Expression Builder ......................................................................112 

10.4.1 Function Palette...................................................................................................113 
10.4.1.2 Math Functions............................................................................................116 
10.4.1.3 String Functions ..........................................................................................118 
10.4.1.4 Control Function ..........................................................................................121 
10.4.1.5 Conversion Functions ...................................................................................122 
10.4.1.6 Advanced Functions .....................................................................................123 
10.4.1.7 Date-Time Functions ....................................................................................126 
10.4.1.8 NodeSet Functions.......................................................................................132 
10.4.1.9 Boolean functions ........................................................................................135 
10.4.1.10 Lookup functions .......................................................................................146 
10.4.1.11 JMS Message Functions...............................................................................148 
10.4.1.12 User Defined functions................................................................................149 

10.4.2 Funclet Easel.......................................................................................................151 
10.4.2.1 Source Node ...............................................................................................152 
10.4.2.2 Destination Node .........................................................................................152 

10.5 Creating Mappings .......................................................................................................156 
10.5.1 Understanding Types of Nodes...............................................................................156 
10.5.2 Types of Mappings ...............................................................................................158 

10.5.2.1 Name-to-Name Mapping...............................................................................158 
10.5.2.2 For-Each Mapping........................................................................................159 

10.5.3 Duplicating a For-Each Mapping .............................................................................159 
10.5.4 Linking Nodes to Define Mappings ..........................................................................161 

10.5.4.1 Using the Automatic Mapping option to Define Mappings ...................................161 
10.5.4.2 Using the Visual Expression Builder to Define Mappings.....................................162 

10.5.5 Mapping XML Formats ..........................................................................................165 
10.6 Adding User XSLT ........................................................................................................165 
10.7 Working with derived types ...........................................................................................168 
10.8 Create/Edit User Defined Function(s) ..............................................................................170 
10.9 Testing the Transformation............................................................................................174 
10.10 Managing Mappings ....................................................................................................179 

10.10.1 Exporting eMapper Project...................................................................................179 
10.10.2 Importing Project from the File ............................................................................180 
10.10.3 Copying functions in a Mapping ............................................................................180 
10.10.4 Clearing All Mappings .........................................................................................181 
10.10.5 Managing XSLT Properties ...................................................................................181 



 

 

Chapter 11: Working With Multiple Servers And Perspectives
.................................................................................................184 

11.1 Active Server Node ......................................................................................................184 
11.2 Switching of Active Server.............................................................................................185 
11.3 Switching Between Perspectives.....................................................................................188 

Chapter 12: Fiorano Preferences ..........................................192 
12.1 ESB Connection Preferences ......................................................................................192 
12.2 SOA Orchestration .......................................................................................................193 

12.2.1 General Options...................................................................................................193 
12.2.2 Workflow Options ................................................................................................193 
12.2.3 Service Options ...................................................................................................194 

12.2.3.1 Default JVM Configurations ...........................................................................194 
12.2.3.2 Connection Factory Preferences .....................................................................195 

12.2.4 CPS Options........................................................................................................196 
12.3 SOA Orchestration Online..............................................................................................197 

12.3.1 General Options...................................................................................................197 
12.3.2 Application Options ..............................................................................................198 
12.3.3 Service Options ...................................................................................................198 
12.3.4 Peer Options .......................................................................................................198 

12.4 Key Board Short Cut Preferences....................................................................................199 

Chapter 13: Schema Repository ...........................................202 

Chapter 14: SCM Integration.................................................205 

14.1 Downloading and integrating SCM plugins in Fiorano eStudio..............................................205 
14.2 Specifying SCM repository .............................................................................................205 
14.3 Creating a project for version control ..............................................................................206 
14.4 Adding the Project to Repository ....................................................................................209 
14.5 Updating the project into the Repository..........................................................................211 
14.6 Updating an Event Process with older version from Repository............................................211 



Fiorano eStudio User Guide 

Chapter 1: Introduction to Fiorano eStudio Page 23 

Chapter 1: Introduction to Fiorano 
eStudio  
 

1.1 Key Features 

This section outlines some of the key new features added to the Fiorano eStudio:  

1. Offline Event Process Development  

In Offline Event Process development mode, Event Processes development can be done 
without connecting to any server. Offline perspective maintains its own repository of event 
processes and services. Event Processes can be developed in Offline mode and can be 
deployed to any Enterprise Server. A server connection is required only when deploying an 
Event Process.  

2. EPLCM (Event Process Life Cycle Management)  

EPLCM allows a user to move an Event Process in different labeled environments that is, 
Testing, Staging, QA, and Production at the click of a button. Pre-created profiles for each 
environment are automatically picked up by the Server at the deployment time. This allows 
the user to specify properties for service instances in an event process for various 
environments, rather than creating new event processes for each environment. With the new 
EPLCM functionality, migration from one environment to another is simple. 

3. Sub Flows  

A powerful new Sub-flow concept has been added. Sub-flow allows the user to insert an event 
process into another event process, easing composition of large applications. 

4. Improved Debugger Implementation  

Message injection is added, together with a better set of views to simplify debugging.  

5. Split File Development for Services and Application  

The ServiceDescriptor.xml and Application.xml are changed to split files, which makes them 
more readable and reduces the memory footprint of eStudio.  

To reduce the memory footprints, internally the application object now contains just details of 
service instances but it no longer holds any information of their configurations and schemas 
associated. These are picked up on demand. 

6. Service Descriptor Editor  

An editor to edit the ServiceDescriptor.xml file. It makes the edit easy as compared to a 
Text/Xml editor.  



Fiorano eStudio User Guide 

Chapter 1: Introduction to Fiorano eStudio Page 24 

7. Quicker Custom Property Sheet (CPS) launch  

The CPS associated with a given component now launches significantly faster than previous 
versions of the Studio.  

Save and Close option has also been provided in the CPS which allows the user to save the 
CPS in the middle of the configuration and revisit it at a later point of time. 

8. Dynamic Validations while Editing and Creating Services and Applications  

The Dynamic validations point out errors at development time while Event Processes are being 
composed, or Services created; errors that had to previously wait until compile or run-time 
can now be detected earlier in the development/composition cycle. 

9. UI crafted for Rich User Experience  

Significant user feedback has been incorporated within eStudio to provide a rich user-
experience. Most common operations can now be performed with a single click, with much less 
navigation than in previous versions.  

10. Support for Version Control Systems  

Users can now store applications into any version control system (SVN, CVS, or VSS) using 
Fiorano eStudio.  

11. New Mapping Tool: eMapper  

The eStudio incorporates a brand new mapping tool developed ground-up in Eclipse. This new 
version fixes many bugs over past versions and has several other enhancements. 

12. Customization Possible as an Advantage of Eclipse Based Product  

Since eStudio is developed over the Eclipse platform, users can now write their own plug-ins 
and use existing ones and can also customize the eStudio the way they want. For instance, a 
user can add a version control plug-in.  

1.2 Getting started with Fiorano eStudio  

To start Fiorano eStudio: 

1. Navigate to $FIORANO_HOME/eStudio and run the eStudio executable file. 

2. Workspace Selection dialog is shown prompting for the workspace directory. 
Workspace is a directory where all the repositories (Event Processes, Services and 
other metadata) are stored. 

3. The default workspace is set to 
$FIORANO_HOME/runtimedata/eStudio/workspace. It is recommended to use 
the default workspace, but the user can change the workspace if required. The 
Remember workspace option can be selected to save the workspace used and not to 
show the dialog next time when eStudio is launched. 

Note: The workspace preferences are stored at 
FIORANO_HOME/runtimedata/eStudio/WSprefs.properties 



Fiorano eStudio User Guide 

Chapter 1: Introduction to Fiorano eStudio Page 25 

The following preferences are stored in workspace preferences: 
wsLastUsedWorkspaces, wsRemember and wsRootDir. 

If the user chooses a workspace and selects the Remember workspace option and later if 
Workspace Selection dialog has to be shown, then this can be done by changing the 
value of wsRemember to false in the workspace preferences. 

Once the Fiorano eStudio is completely launched, the user can switch between 
different workspaces. Option to switch workspace is present at File -> Switch 
Workspace. 

The current workspace selected is shown in Fiorano eStudio title bar. 

4. By default, eStudio is launched in Offline Event Process Development Perspective 
mode and the offline repository is populated when eStudio is launched for the first 
time. 

5. In Case, eStudio is not loading properly, install XULRunner on your machine. Follow 
the guide lines available at 
https://developer.mozilla.org/en/Getting_started_with_XULRunner to install and add 
following   

-Dorg.eclipse.swt.browser.XULRunnerPath=$XULRunnerHome/xulrunner to 
$FIORANO_HOME/eStudio/eStudio.ini and restart eStudio. 

Note: In Windows Server 2008, there are certain permissions settings that do not allow 
standard eclipse to function normally if eStudio is not run as administrator. This will be 
resolved if eStudio is run as administrator. 

Fiorano eStudio has three perspectives: 

1. Offline Event Process Development Perspective 

2. Online Event Process Development Perspective 

3. Mapper Perspective 

A perspective defines the initial set and layout of views in the Workbench window. Within the 
window, each perspective has a set of views and editors. Each perspective provides a set of 
functionality aimed at accomplishing a specific type of task or works with specific types of 
resources. 

For example, the Java perspective contains views that are commonly used while editing Java 
source files, while the Debug perspective contains the views used while debugging Java 
programs. User can switch from one perspective to another. 

An icon is added to the shortcut bar, allowing you to switch to other perspectives. 

 

Figure 1.2.1: Perspective switch 

https://developer.mozilla.org/en/Getting_started_with_XULRunner


Fiorano eStudio User Guide 

Chapter 1: Introduction to Fiorano eStudio Page 26 

 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 27 

Chapter 2: Offline Event Process 
Development Perspective 
 

Offline Event Process Development Perspective contains all the views and the editors required 
for the offline event process development. Offline Event Process Development perspective 
maintains its own repository of Event Processes and Services and no server connection is 
required to create Event processes. This offline repository is populated when the user launches 
the Fiorano eStudio for the first time. The default location of Offline repository is 
$FIORANO_HOME/runtimedata/eStudio/workspace/.repositories/Offline. 

Server connection is required only to export the developed Event Processes into the Server 
and similarly Event Processes present in the Server can also be imported into the eStudio. 
Figure 2.1 illustrates the Offline Event Process Development perspective. 

 

Figure 2.1: Offline Event Process Development perspective 

The Offline Event Process Development perspective is comprised of various Views as explained 
in the following section. 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 28 

2.1 Fiorano Views 

2.1.1 Event Process Repository 

The Event Process repository view is one of the views of Offline Application Development 
Perspective, which is available under Window > Show View > Fiorano > Event Process 
Repository. 

Event Process repository view shows all the event processes created in offline application 
development perspective, under various categories. 

 

Figure 2.1.1: Event Process Repository 

2.1.2 Fiorano Orchestration  

Offline and Online Event Process Development perspectives are comprised of an editor area 
Fiorano Orchestrator.  

When an Event Process is opened, the design of the event process will be shown in Fiorano 
Orchestrator.  



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 29 

 

Figure 2.1.2: Orchestration Editor 

2.1.3 Service Palette  

The Service Palette shows the services that are present in the eStudio repository. The Service 
Palette contains all the Fiorano services grouped into various categories like Bridges, 
Collaboration, DB, Error, File, and so on as shown in figure 2.1.3. 

 

Figure 2.1.3: Fiorano Service Palette 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 30 

2.1.4 Properties  

The Properties view displays all the property names and values for any selected item such as, 
a service instance, route, port etc. The Properties view is available under Window > Show 
View > Other > General > Properties. 

Placing the cursor on a property shows the property description. 

 

Figure 2.1.4: Properties view 

2.1.5 Problems  

When working in Fiorano environment, the errors and warnings occurred are displayed in the 
Problems view. For example, when an Event Process containing errors is saved, the errors are 
displayed in the Problems view as shown in Figure 2.1.5.  

The Problems view is available under Window > Show View > Other > General > Problems.  

 

Figure 2.1.5: Problems view 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 31 

By default the problems are grouped by severity level. The grouping can be selected using the 
Group By menu.  

Problems view can also be configured to show the warnings and errors associated with a 
particular resource or group of resources. This is done using the Configure Contents option in 
the drop-down menu. You can also add multiple filters to the problems view and enable or 
disable them as required. Filters can either be additive (any problem that satisfies at least one 
of the enabled filters will be shown) or exclusive (only problems that satisfy all of the filters 
will be shown).  

2.1.6 Error Log  

The Error Log view captures all the warnings and errors logged in Fiorano environment. The 
underlying log file (.log) is stored in the .metadata subdirectory of the workspace. The Error 
Log view is available under Window > Show View > Error Log. 

 

Figure 2.1.6: Error Log view 

2.1.7 Service Repository (Offline)  

Fiorano eStudio provides a Service Repository view which is available under Window > Show 
View > Fiorano > Service Repository. This shows a categorized list of all available services. 
When the Fiorano eStudio is launched for the first time, the offline repository will be loaded 
from the installer.  

Services which are available only in service repository can be used for composing event 
processes in eStudio. Services can be imported from or exported to a file system or a Fiorano 
ESB Server from Service Repository. 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 32 

 

Figure 2.1.7: Service Repository 

2.1.8 Project Explorer 

Project Explorer view lists all the projects in eStudio. The Project Explorer view is available 
under Window > Show View > Project Explorer. 

All the Event Process, Service and Mapper projects are shown in Project Explorer view. 
Structure of the Event process is shown in Figure 2.1.8. 

To use version control, corresponding plugins have to be added in dropins. If the dropins are 
added, then the version control options will be available in the context menu of a project in 
this view. 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 33 

 

Figure 2.1.8: Project Explorer 

The service projects are by default shown as closed projects. User can open a project by 
Right-clicking on a project and by selecting the Open Project option. For performance reasons 
it is advised to close the service projects when they are not being used. 

2.1.9 Service Descriptor Editor 

Service can be edited using a Service Descriptor editor. To edit a service in the service 
descriptor editor, right-click on the desired service in Service Palette or in Service Repository 
and click the edit option from the context menu. 

The properties of service are divided into three categories: 

• Overview – Contains general information of the Service like Name, GUID, version, icon 
etc. 

• Execution – Contains information about service ports, runtime arguments, launch 
options and log configuration. 

• Deployment – Contains information about service resources, dependencies and 
general deployment information. 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 34 

 

Figure 2.1.9: Service Descriptor Editor 

Note: Changes made to the Service will be saved to repository only after the editor associated 
with the Service is closed. 

2.2 Event Processes 

Event Processes are composite applications created as event-driven assemblies of service 
components. They represent the orchestration of data flow across customized service-
components distributed across the ESB network. Event processes in Fiorano are designed to 
connect disparate applications in a heterogeneous distributed SOA environment. 

Fiorano eStudio enables intuitive visual configuration of all the elements of an event process 
including the components of the process, the data flow or routes between components, 
deployment and profile information and the layout. The event process metadata contains all 
required information in XML format and is stored in the repository. 

2.2.1 Creating New Event Process 

To create a new Event Process, perform the following steps:  



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 35 

1. Right-click on Event process Repository node and select Add Event Process. The 
Customize Event Process dialog box appears. 

 

Figure 2.2.1: Creating new Event Process 

 

2. Specify the name and category of the Event Process project and click Finish. The 
specified Event Process appears under Event Process Repository node of Event 
Process Repository view.  

 

Figure 2.2.2: Customize Event process 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 36 

3. To see the graphical view of an Event Process, double-click the event process 
node, which opens Fiorano Orchestration editor. For information on composing 
an Event Process, see Chapter 5: Composing an Event Process. 

2.2.2 Opening Sample Event Process  

Few pre-configured sample event processes are shipped with the Fiorano installation. To open 
a pre-configured sample event process, perform the following steps: 

1. Right-click on Event process Repository node and select Add Sample Event 
Process. The Add Sample Event Process dialog box appears. 

 

Figure 2.2.3: Add Sample Event Processes 

 

2. Select the Event Process(s) to be opened by selecting the check box against each 
entry and click Finish. The selected Event Process(s) appears under Event Process 
Repository Node.  



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 37 

 

Figure 2.2.4: Sample Event Processes 

3. To see the graphical view of an Event Process, double-click the event process node 
which opens in Fiorano Orchestration editor. 

Note: The samples that are added to the repository already will not be visible in the Add 
Sample Event Process wizard. 

2.2.3 Import and Export Event Processes  

The following sections describe the procedure for exporting and importing an event process.  

2.2.3.1 Exporting an Event Process  

Event Process can be exported to local disk or to server in offline event process development 
perspective. 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 38 

To export an Event Process onto a local disk, perform the following steps:  

1. Right-click on the Event Process to be exported from the Event Process Repository 
view and select Export from the menu (Figure 2.2.5). The Export dialog box 
appears. 

 

Figure 2.2.5: Export Event Process to local disk 

2. Specify the file name and location to save and click OK. Event Process project will 
be saved as a zip file. 

To export an Event Process to Server, perform the following steps:  

1. Click on Export Event Process to Server icon present on Event Process 
Repository view tool bar as shown in the figure 2.2.6. The Select Event Process 
To Be Exported dialog box appears listing all the Event Processes in offline 
repository and shows the Servers list specified in Fiorano Preferences. For more 
information on configuring servers please refer to section 12, Fiorano Preferences.  

 

Figure 2.2.6: Export Event Process to Server 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 39 

2. Select the event process to be exported and the Server on to which Event Process 
has to be exported and click OK. 

Select Overwrite if exists option if the Event Process with same GUID is already 
present in the Server. 

 

Figure 2.2.7: Select Event Process to be exported 

2.2.3.2 Importing an Event Process 

Event Process can be imported from local disk and from the Server. 

To import an Event Process from local disk, perform the following steps:  

1. Right-click the Event Process Repository node and select Import Event 
Process from the menu as shown in figure 2.2.8. 

 

Figure 2.2.8: Import Event Process from local disc 

2. Specify the location of Event Process zip file and click OK. Event Process project 
will be imported to Event Process Repository. 

To import an Event Process from Server, perform the following steps:  



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 40 

1. Click on Import Event Process from Server icon present on Event Process 
Repository view tool bar as shown in the figure 2.2.9. 

 

Figure 2.2.9 Import Event Process from Server 

Select a Sever dialog box appears listing all servers specified in Fiorano ESB 
Connection Preferences page. 

 

Figure 2.2.10: Select Enterprise Server 

2. Select server from which Event Process has to be imported and click OK. The 
Select Event Process To Be Imported dialog box appears which lists all the 
Event processes deployed in the server as shown in Figure 2.2.11. 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 41 

 

Figure 2.2.11: List of Event Process in server 

3. Select an Event Process to be imported and click OK. Event Process project will be 
imported to Event Process Repository. 

2.2.4 Importing nStudio Event Processes 

Event Processes that are developed and exported from nStudio can be imported into eStudio 
using the Import Event Process (nStudio) option present on the context menu of Event 
Process Repository node. 

 

Figure 2.2.12: Import nStudio Event Process 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 42 

Selecting the import option opens an Import Wizard as shown in Figure 2.2.13. 

 

Figure 2.2.13: Import nStudio Flows 

The Event Processes to be imported can be added to the table by clicking the Add button. A 
file chooser dialog opens up where the nStudio flows can be selected. Multiple files can also be 
selected at once. 

To import all the Event Processes present in a particular folder, select the Add From Folder 
option present in the drop-down button located on the right side of the add button. All the 
supported flows present in the folder and all of its sub-folders will be added to the table.  

The state of the wizard after adding the flows is shown in Figure 2.2.14: 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 43 

 

Figure 2.2.14: Select nStudio flows to import 

After adding the selected files to the table the flows which have to be imported can be 
selected using the check box against each entry present in the table. Click the Finish button 
to import the selected flows to the current. If any of the selected flows already exist in the 
repository user will be prompted with a dialog having options to overwrite/ignore/rename the 
flow. The imported flows can be viewed under the Event Process Repository Node. 

2.3 Service Repository (Offline Event Process Development) 

Fiorano eStudio has an independent service repository in Offline Event Process Development 
perspective, which enables services to be configured offline (without connecting to the 
Enterprise Server). 

The service repository can be viewed by opening the Service Repository view, which displays 
categorized services as shown in Figure 2.3.1. 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 44 

 

Figure 2.3.1: Service repository 

2.3.1 Deploying Services to Server 

A service can be deployed to an Enterprise server by right-clicking the component in service 
repository view and selecting Export Service to Server from the context menu. The Export 
Service To Server dialog box appears as shown in Figure 2.3.2. 

 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 45 

Figure 2.3.2: Export service to server 

The dependencies are shown in a tree format excluding the actual service (which gets 
exported by default). To export any dependencies of this service, select the dependency and 
click Finish.  

If Overwrite if exists checkbox is selected, the services in the server will be over written by the 
one in service repository, otherwise conflicting services will not export to the server. 

2.3.2 Fetching Services from Server 
1. The services present on server can be imported into the service repository by 

selecting the Import from Server option as shown in Figure 2.3.3. 

 

Figure 2.3.3: Import from Server option 

This opens Import Service From Server dialog box as shown in Figure 2.3.4. 

 



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 46 

Figure 2.3.4: Import service from server 

2. Select the server from where services have to be imported and press Connect 
button. This displays all the available services in that server. 

3. Select the services to be imported and click the Finish button to import the 
service. 

If the Overwrite if exists checkbox is selected, service in the service repository will be over 
written by the one in server, otherwise conflicting services are not imported from server. 

2.3.3 Exporting Services to Local Disk 

The Services in Service Repository can be exported to a local disk by right-clicking the service 
and selecting Export Service To Local Disk option from context menu. This opens Export 
service to local disk dialog box as shown in Figure 2.3.5. 

 

Figure 2.3.5: Export service to Local Disk  

You can choose the export location, by default only the selected service gets included in the 
export. Select the other services from the tree to be exported if required, and click the Finish 
button to export the service. 

2.3.4 Importing Services from Local disk 

The components can be imported from the file system. This can be done by clicking the 
Import From Local Disk button as shown in Figure 2.3.6.  



Fiorano eStudio User Guide 

Chapter 2: Offline Event Process Development Perspective Page 47 

 

Figure 2.3.6: Import from Local Disk button 

This opens Import Services file selection dialog box with which the zip file containing 
services on the disk is selected. Upon selection a dialog box is shown in which the services in 
the zip file are shown in a dependency tree as shown in Figure 2.3.7. 

 

Figure 2.3.7: Import services dialog box 

Components that are already present are labeled red, and those not present in repository are 
labeled black.  

If Overwrite if exists checkbox is selected, service in the service repository will be over written 
by the one in the zip file, otherwise conflicting services are not imported from local disk. 

 



Fiorano eStudio User Guide 

Chapter 3: Online Event Process Development Perspective Page 48 

Chapter 3: Online Event Process 
Development Perspective 
 

To open Online Event Process Development perspective, perform the following steps:  

1. Click Windows on the menu bar, select Open Perspective and click on Others.. 
option from the drop-down menu. Or click the Open Perspective button from the 
shortcut bar and select Other... from the drop-down menu. The Open Perspective 
dialog box appears.  

2. Select the Online Event Process Development to open online perspective. Click the OK 
button. 

Online perspective contains all the views and editors required for the online application 
development. During online Event Process development, event process development can be 
done after logging in to the Enterprise Server. 

After switching onto Online Event Process Development mode, select the Enterprise Server 
node, Right-click and select Login to login into an Enterprise Server.  

 

Figure 3.1.1:Enterprise Server node 

By default the configurations of the Enterprise Server running locally is set on the Enterprise 
Server node. These can be changed from the properties view if required. 

Each time during login, eStudio fetches the information of Services, Event Processes and Peer 
Servers from the Enterprise Server and populates the online repository. The default location of 
online repository for a particular Enterprise Server is 
$FIORANO_HOME/runtimedata/eStudio/workspace/.repositories/Online/<Enterprise Server 
name>. Screenshot of Online Event Process Development mode is shown in Figure 3.1.2 



Fiorano eStudio User Guide 

Chapter 3: Online Event Process Development Perspective Page 49 

 

Figure 3.1.2: Online Event Process Development perspective 

Event Process Repository node contains a tree structure of various Event Processes in the 
Enterprise Server. 

Peer Repository node contains the information of Peers connected to the Enterprise Server. 

3.1 Fiorano Views 

All the views described in Offline Event Process Development mode are available in Online 
mode. There are additional views specific to Online mode. The views are described in the 
following sections. 

3.1.1 Server Explorer 

The Server Explorer view shows the Enterprise servers, which contains Event Process 
Repository and Peer Repository nodes. 

The Server Explorer view is available under Window > Show View > Fiorano > Server 
Explorer. 

The Event Process repository is centrally stored in the Enterprise Server. The Enterprise 
Server provides API access to the event processes, to save, view, export, launch, debug, stop, 
and other actions as required. The Fiorano eStudio provides an easy-to-use GUI to manage 
event processes. Peer Repository shows the peer servers connected to the Enterprise Server. 



Fiorano eStudio User Guide 

Chapter 3: Online Event Process Development Perspective Page 50 

 

Figure 3.1.3: Server Explorer 

3.1.2 Fiorano Debugger  

The Fiorano Debugger view shows the list of routes on which debugger is enabled and 
messages trapped in each route. This gives user to take action on debug message. 

 

Figure 3.1.4: Fiorano Debugger view 



Fiorano eStudio User Guide 

Chapter 3: Online Event Process Development Perspective Page 51 

3.2 Service Repository (Online Event Process Development) 

In Online Event Process Development perspective, the services present in the connected 
enterprise server are shown in service repository. 

The service repository can be viewed by opening the Service Repository view which displays 
categorized services as shown in Figure 3.2.1. 

 

Figure 3.2.1: service repository (Online Event Process Development perspective) 

3.2.1 Exporting Services to Local Disk 

The Services in Service Repository can be exported to local disk by right-clicking the service 
and selecting Export to Local disk option from context menu. This opens a dialog box as shown 
in Figure 3.2.2. 



Fiorano eStudio User Guide 

Chapter 3: Online Event Process Development Perspective Page 52 

 

Figure 3.2.2: Export service to Local Disk  

You can choose the export location by clicking the Browse button and specifying the location 
to be exported. By default, the selected service gets included in the export. To export 
dependent services, they have to be selected from the tree as shown in Figure 3.2.2. 

3.2.2 Importing Services from Local disk 

The components can be imported from the file system. This can be done by clicking the 
Import From Local Disk button as shown in Figure 3.2.3.  



Fiorano eStudio User Guide 

Chapter 3: Online Event Process Development Perspective Page 53 

 

Figure 3.2.3: Import from Local Disk 

This opens a file selection dialog box with which the zip file containing services on the disk is 
selected. Upon selection, Import services dialog box appears in which the services in the zip 
file are shown in a dependency tree format as shown in Figure 3.2.4. 

 

Figure 3.2.4: Import services dialog 



Fiorano eStudio User Guide 

Chapter 3: Online Event Process Development Perspective Page 54 

Note: Components that are already present are labeled red, and those not present in 
repository are labeled black.  

If Overwrite if exists checkbox is selected, service in the service repository will be over written 
by the one in the zip file, otherwise conflicting services are not imported from local disk. 

 



Fiorano eStudio User Guide 

Chapter 4: Mapper Perspective Page 55 

Chapter 4: Mapper Perspective 
 

The eStudio incorporates Eclipse based Fiorano eMapper as a separate perspective. To open 
Fiorano eMapper, perform the following steps:  

1. Click the Open Perspective  button from the shortcut bar on the left-hand side of 
the Workbench window.   

2. Select Other... from the drop-down menu.  

3. Select the eMapper Perspective to open Fiorano perspective. Click OK button. The 
eMapper perspective containing Project Explorer and Funclet View appears.  

More information on eMapper is present in Chapter 10 eMapper. 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 56 

Chapter 5: Composing Event 
Processes 
 

Composition of Event Processes is based on the component-based programming model. An 
Event Process is composed of services (also known as Business Components) linked to each 
other by Data Routes.  

The Event processes are designed by drag-drop-connect of service components. The 
components are customized by configuration rather than custom code. The routes between 
components are drawn by visually connecting the component ports. Every component instance 
in the flow can be configured to be deployed on different nodes of the ESB network.  

The following sections describe how to compose an Event Process, adding remote service 
instances, and adding external Event Processes. The sample Event Process illustrated below 
connects Fiorano Chat Business Components with bidirectional Event Routes. The two 
instances will be configured to run on different nodes in the network. 

5.1 Adding Components  

To add components, perform the following steps:  

1. Open the Service Palette and click the Category tab (Collaboration) corresponding 
to the service.   

2. Drag and drop the business component icon (Chat) onto the Event Process editor.  

Each icon in the Event Process editor represents an instance of the service. By default, the 
name of each instance of the service is the service GUID followed by the instance ID count. 
Service instance can be renamed if required. 

 

Figure 5.1.1: Adding components 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 57 

5.2 Connecting Routes  

For data to flow between two service instances, they need to be linked through Event Routes. 
The Route represents the Brokered Peer to Peer data Route.  

The Event Routes are unidirectional and always originate from output Event Port of the source 
service and end at input Event Port of the target service.  

Connect the Route from the output channel (OUT_PORT) of Chat1 service icon to the input 
channel (IN_PORT) of the Chat2 service icon and vice versa, as shown in the Figure 5.2.1. By 
default, each Route is identified by an Event Route name such as, Route1 and Route2. The 
suffix represents the instance count of the Route. You can edit the Route name using the 
Properties window. 

 

Figure 5.2.1: Connecting components through routes 

5.3 Configuring Components 
 

All the services contain configuration information that can be provided in the Custom Property 
Sheet (CPS) dialog.  

To review the custom property sheet associated with any component, simply double click the 
component in the event process editor. 

Sample Database component CPS is shown below which contains all the details of Database 
connection, SQL etc. Sample CPS is shown in Figure 5.3.1. 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 58 

 

Figure 5.3.1: DB Custom Property Sheet (CPS) 

During configuration time, clicking the Test button provided in the CPS can also test the 
configuration. 

Components configurations are saved in EventProcess.xml file, which is in a simple XML 
format. 

Service instances contain configuration information that is used for execution at runtime. The 
data flows from service instances through the connected routes. 

5.4 Configuring Component Properties 

Apart from the component specific properties that can be configured using the CPS, there is a 
set of properties associated with every component. These properties are shown in properties 
view when an component is selected. The properties are categorized into various sections as 
shown in Figure 5.4.1 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 59 

 

Figure 5.4.1: Component properties 

General: Contains the general information of the service like Service name, GUID, version 
etc. 

Deployment: Contains the deployment information of the component. The Peer server node 
on which the component has to be launched can be configured here. 

Clicking on ellipsis button against the Nodes property opens a dialog where the Peer server 
can be selected. 

 

Figure 5.4.2: Component ports 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 60 

Based on the Peer server selected, the component color is changed to give a visual clue on 
which Peer the component is configured to launch. As shown in Figure 5.4.3 Feeder 
component is configured to launch on Peer fps and CBR is configured to launch on peer fps1. 

 

Figure 5.4.3: Components configured to launch on different Peer servers 

By default, when a Peer server is added in an Enterprise server, a unique color is chosen. User 
can customize the color from Peer properties by selecting the Peer server in Peer Repository. 

A property called Cache component specifies whether a component resources have to be re-
fetched each time when Connectivity and Resource Check (CRC) is done. When Cache 
Component is set to yes, the resources are fetched for the first time when CRC is done. This 
property has to be set to No only when the component resources have been updated. 

This property is also available at the Event Process level. 

Execution: Execution section contains information about the type of launch, connection 
factory properties etc. Components can be launched in Separate Process (separate JVM for 
each service instance), inMemory (launches in Peer server JVM), Manual (manual launch mode 
where the user has to launch the service instance manually) and None (no launch mode). 

Log Manager: Contains logging information like the type of Logger Handler, log directory etc. 

Log Module Instances: Log levels for various loggers available for the service can be 
configured in this section. 

By default the log level is set to SEVERE. This can be changed to desired level. For example, 
the log level can be set to CONFIG when working on Development environment. 

Runtime Arguments: Contains the information about the runtime arguments for the service. 

JVM_PARAMS section contains the JVM parameters that are used while launching the 
component. Whenever a change is made in JVM PARAMS section, a dialog box will be shown 
asking whether the change has to be updated for all the service instances in all event process 
having the same JVM PARAMS value. 

 

Figure 5.4.4: Update all Service Instances dialog 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 61 

If user selects No then it has to be updated only to the current service instance. If user selects 
Yes, a dialog listing the service instances with same JVM PARAMS value will be shown and the 
required service instances can be selected for update. 

 

Figure 5.4.5: Select Service Instances 

5.5 Adding Remote Service Instance  

The Fiorano SOA Platform allows the user to compose an Event Process with Business 
Component instances from other Event Processes. Remote Service instance is one of the 
available options for communication between different event processes. If a producer 
component in a calling event process needs to send messages to consumer component in a 
called event process, then a remote instance of the consumer component can be used in the 
calling event process.  

The imported service instance is the reference to the service instance in parent Event Process. 
Any changes made to the imported service instance in parent Event Process are reflected in 
the current Event Process. Current Event process is launchable only when the Event Process of 
remote service instance is running.  

To add a remote service instance, perform the following steps:  

1. Click the Insert Element into Event Process  icon (or) Right-click on 
orchestration editor and select Insert -> Remote Service instance.  

 

Figure 5.5.1: Insert Remote Service Instance option 

2. Click the Insert Remote Service Instance option from the drop-down list. The 
Select Remote Service Instance wizard starts, as shown in Figure 5.5.2. 

This dialog lists all the Event Processes and their service instances. 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 62 

 

Figure 5.5.2: Select Remote Service Instance dialog 

3. Select the service instance you want to add as Remote Service Instance and click the 
OK button.  

The Remote service is added to your Event Process with a satellite like icon in the 
component as shown in the Figure 5.5.3.  

 

Figure 5.5.3: Remote service added 

Remote Service instance can be used similar to normal service instance. Routes can be 
created between other service instances in the Event Process and the ports of the Remote 
service instance.  

Note: While using Remote Service instance with Event Process Life Cycle Management 
(EPLCM), if a component is running in a configured mode (say Testing) in the parent Event 
Process and if this component is used as a Remote Service instance in a caller Event Process, 
then changing the mode in caller Event Process doesn’t have any effect. It still uses the mode 
used in parent Event Process. 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 63 

5.6 Adding External Event Process (Subflow) 

Subflow concept is used to ease the Event Process development when composing large Event 
Processes. When an Event Process B is copied into another Event Process A, all the data 
(service instances, routes etc) in B is copied and shown as a single entity (icon) in A. By 
default the icon takes the name of the added Event Process (i.e. B). When we double click on 
the icon it shows all the service instances/routes etc. The ports of the inserted Event Process B 
can be exposed for communication with Event Process A. 

External Event Process is explained with an example. Steps to add EAI_DEMO Event Process in 
Simple Chat Event Process are explained below:  

1. Open an Event process (Simple Chat) and click the Insert Element into Event 

Process  icon and select the Insert Event Process option from the drop-down 
list (or) Right-click on the Orchestration Editor and select Insert -> Event Process.  

 

Figure 5.6.1: Insert Event Process option 

2. The Select Event Process dialog box appears as shown in Figure 5.6.2. Select the 
Event Process from the list and click the OK button.  

 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 64 

Figure 5.6.2: Select Event Process dialog 

3. The Event process instance representation appears on the Event Process editor, as shown 
in Figure 5.6.3.  

 

Figure 5.6.3: Inserted Event process 

Note: This concept is different compared to Remote Service Instance. In Remote Service 
Instance, remote instance will refer to the original instance but in this case a copy of selected 
Event Process is made and used in the Event Process. This is basically a visual representation 
that makes the composition easier when working with large event process. 

Double clicking the EAI Demo icon shows all the service instances and routes inside as shown 
in Figure 5.6.4.  

  

Figure 5.6.4: Component ports 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 65 

By default, no input and output ports are shown for an inserted Event Process instance. The 
user can expose the required input and output ports of service instances present in the Event 
Process instance from the Properties tab as shown in Figure 5.6.5. 

 

Figure 5.6.5: Properties tab 

5. Routes can be connected between other service instances in the Event process and inserted 
Event Process and both the Event Processes can communicate with each other. 

5.7 Document Tracking  

A workflow in Fiorano terminology consists of an entry point, intermediary points and an end 
point. The entry and intermediary points are defined as Workflow Items and the end point is 
defined as a Workflow End. 

To track the documents going through Service Instances, document tracking can be enabled 
on service instance ports. If tracking is enabled, the documents that pass through that port 
are stored in a database. By default these documents are stored in H2 database that runs 
inside the Enterprise Server. It is recommended to use an external database for document 
tracking purposes. External database can be configured for document tracking by providing 
the database configuration details in sbwdb.cfg file located in the Enterprise Server profile.  

A workflow starts with Workflow Items and ends at Workflow End. A workflow is defined in an 
Event Process scope within which a large number of documents pass. Whenever a new 
document enters into the workflow, a new workflow instance is generated. Each workflow 
instance has a unique ID assigned by the Fiorano SOA environment. In a state enabled 
workflow, all the states that these workflow instances traverse are stored for tracking 
purposes.  



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 66 

Each workflow instance contains information about documents that flow through. Each time a 
document passes through a trackable state, a state event is generated and the document is 
given a new Document ID by that trackable state. Information related to documents can be 
viewed in Fiorano Web Console.  

EStudio provides a state-based workflow view that enables tracking and monitoring of 
documents from one state to another. 

To enable document tracking in an Event Process, perform the following steps:  

1. Select the Service Instance Port on which document tracking has to be enabled. The 
Properties pane appears (if the Properties pane does not appear, go to Window->Show 
View-> Others-> and select Properties).   

2. To enable the Enable Document Tracking, select Workflow Item/Workflow End 
option against the Workflow property as shown in Figure 5.7.1.  

 

Figure 5.7.1: Enabling Document Tracking 

3. In the sample Event Process shown below, the workflow starts at Feeder Output port. 
SMTP Output port is marked as intermediary point and the workflow ends at Display 
Input port.  

 

Figure 5.7.2: Event Process with Document Tracking enabled 

4. Workflow items are filled with green color and Workflow End is shown in red color.  

In the Event Process, the state tracking is enabled for Feeder1 Output port, SMTP output port 
and Display Input port and all the messages which pass through these are tracked. 

The default Workflow data type is set to Message Body. This implies only the JMS message 
body is tracked. This can be configured by clicking on ellipsis button against the Workflow 
Data Type property to track Message Header, Message Body, Attachments, Application 
Context or all of these items. 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 67 

 

Figure 5.7.3: Document Tracking Properties 

5.8 Defining Route Transformations  

In addition to XSLT component, transformations can also be defined on routes having schema 
mismatch. In the example shown below, there is a schema mismatch between Feeder output 
port and CBR input port and hence the route is shown as dotted line. 

To define the transformation, perform the following steps 

1. Right-click on the route and select Transformation option. 

 

 

Figure 5.8.1: Route Transformation 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 68 

2. Route transformation editor will be opened which automatically picks up the schemas 
on connected ports. 

Transformations can be defined on the schemas by connecting elements from input 
structure with output structure elements. Additional computations on elements can 
also be made by using functions present in Funclet view. 

 

Figure 5.8.2: Route transformation editor 

Note: While the editor is open for defining transformations, the Event Process editor 
will be in non-editable state to prevent further changes till the transformation editor is 
closed. This becomes editable when the transformation editor is closed. 

3. Once the transformation is defined and closed, transformation will be set on the route 
and the route is shown as bold. 

 

Figure 5.8.3: Route with transformation set 

The transformation defined on route is executed inside the Peer server. So it is advised to not 
to define complex mappings (involving huge schemas and mappings) using Route 
Transformations since it may affect the Peer server performance. For complex transformations 
XSLT component can be used. 

The transformation defined on route can be cleared by selecting Clear Transformation option 
in the Right-click menu option on the route.  

Route transformation can be changed on the route at both configuration time and runtime. 
During runtime if the transformation is changed, the changes are automatically deployed to 
the server. User need not explicitly synchronize the event process for the changes to take 
effect. 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 69 

5.9 Configuring Selectors on Routes  

eStudio allows you to define Selectors for the flow of data through an event route. Take the 
example of an Event Process containing two instances of a Chat service and an instance of a 
Display connected through routes as shown in Figure 5.9.1.  

 

Figure 5.9.1: Out-port of chat1 and chat 2 to display in-port, out-port of display to in-port of Chat1 
and chat2 

In the above event process, the event routes exist as defined below:  

• Route1: Connects OUT_PORT of Display1 to IN_PORT of Chat2  

• Route2: Connects OUT_PORT of Display1 to IN_PORT of Chat1  

• Route3: Connects OUT_PORT of Chat1 to IN_PORT of Display1  

• Route4: Connects OUT_PORT of Chat2 to IN_PORT of Display1  

When the Event Process is launched, if a message is sent from Chat1 component, it is received 
by Display component and the message is sent back to both Chat1 and Chat2 components 
from Display output port.  

Now, lets define conditional data flow from the Display business component instance. Assume 
that Display1 has to send only those messages on Route1, which have originated from Chat2. 
Similar conditions should also apply to Chat1. It should also receive only those messages that 
it sends to Display1.  

To define conditional flow of data through route1, perform the following steps:  

1. Select Route 1, the properties of this route are displayed in the Properties tab.  

2. In Selectors tab, choose the option chat2 from Sender properties as shown in Figure 
5.9.2.  

 

Figure 5.9.2: Configuring Selectors on route 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 70 

This ensures that data sent only by Chat2 will travel through this route. Similarly, set this 
value to Chat1 for Route2. This ascertains conditional flow of data. After the changes, if the 
event process is launched, messages sent by Chat1 are received only by Chat1 and messages 
sent by Chat2 are received only by Chat2. 

Apart from Sender selector, JMS selector can also be defined which checks for a particular 
value for a JMS message property and routes the message. 

5.10 Configuring Application Context  

There are times when a target Event Port needs information that was produced by a service 
instance that occurred before in the workflow. Consider an event process representing a ten-
step business process. Each step is implemented using a service instance. By using application 
context, a service instance representing the tenth step in the process can use the information 
generated by the service instance in the second step. 

Application context is set as a JMS Message Property on the message and is available 
throughout. 

Defining Application Context for an application:  

1. In the Event Process project, click on the Orchestration Editor and open the 
Properties view.  

2. Click the Application Context tab in the Properties view.  

3. To define an Application Context for the Event Process, enable the Application 
Context option.  

4. Select DTD/XSD option and provide the schema content.   

5. Click the Save Content button to save the changes.  

6. Select root element from the list of available roots in the Root drop-down list. Now 
the application context schema is defined for the Event Process.  

 

Figure 5.10.1: Application Context option 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 71 

7. The default value of Application Context defined can be provided in the Value section. 
If not provided here, this can be defined in the context menu on the Output port of a 
component or using an XSLT component. 

8. To define from Output port option, Right-click on the Output port and select 
Application Context option. 

 

Figure 5.10.2: Application Context on output port 

9. The Mapper editor opens up where the mapping for the Application context can be 
defined. Save the mappings. The port figure will be shown in bold font to give a visual 
representation. 

 

Figure 5.10.3: Mapper editor 

10. Once Application Context is configured at one of the out ports, the value is propagated 
in the message flow. 

11. The application context can be used anywhere in the event process using Xslt 
component or Route Transformation. 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 72 

5.11 Check Resource and Connectivity 

Fiorano enables the deployment of an event processes over a distributed peer-to-peer grid of 
infrastructure servers (known as “peer servers”) at the click of a button. A developed event 
process contains a set of configured components connected via routes. The configuration for 
these components also includes the names of the grid-nodes (Fiorano Peers) on which the 
components are to be deployed. 

To do connectivity and resource check: 

• Select the Event Process. Click the Check Resource Connectivity  button from the 
tool bar as shown in Figure 5.11.1. 

• All the resources required by the component at the runtime will be deployed to the 
configured peer server. 

 

Figure 5.11.1: Check Resources and Connectivity 

During the process of development, some components might have external resources added. 
Also, for custom built components the source files might be updated from time to time. To 
reflect the changes for such components across the peers at runtime, eStudio has an option 
Cache Component in its Properties view, a deployment configuration at both the Event Process 
as well Component levels, that optionally forces the resources of the component to be re-
fetched each time Connectivity and Resource Check is done. 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 73 

5.12 Running Event Process 

To run the event process, perform the following steps: 

• Select the Event Process. Click the Launch Event Process  button as shown in 
Figure 5.12.1. 

 

Figure 5.12.1: Launching an Event Process 

When the Event Process is launched successfully, all the service instances label names 
turns to green color. 

5.13 Stopping an Event Process 

To stop the event process, perform the following steps: 

• Select the Event Process. Click the Stop  button on the toolbar; all running 
component instances in the Event Process are stopped and the Event Process is 
stopped. 

 

Figure 5.13.1: Stopping an Event Process 



Fiorano eStudio User Guide 

Chapter 5: Composing Event Processes Page 74 

Stop button can also be used to stop selected service instances or all service instances without 
stopping the Event Process. When a component is stopped, its name turns to red in the 
orchestration editor. 

5.14 Synchronizing an Event Process 

Fiorano has the capability to modify existing running applications on the fly. For example, 
launch the Simple Chat event process and once the event process is successfully launched, 
add another component-instance to the event process from the component palette. Configure 
the component and connect the routes. The application then needs to be synchronized to 
reflect the changes. 

To synchronize event process, perform the following steps: 

• Select the Event Process. Click the Synchronize Event Process button. Now the 
newly added component starts and turns to green color and the synchronize button is 
in disabled state. 

 

Figure 5.14.1: Event Process Synchronization 



Fiorano eStudio User Guide 

Chapter 6: Event Process Life Cycle Management Page 75 

Chapter 6: Event Process Life Cycle 
Management 
 

The Event Process Life Cycle Management refers to deployment of an Event Process in various 
environments like Development, Testing, Staging, and Production. The user does not have to 
create different Event Processes for different environments; instead the user can simply 
specify the properties for service instances comprising Event Process for various environments 
in a single Event Process. 

6.1 Setting Properties of Service Instances for Different Environments 

When a Service instance is drag and dropped in Orchestration editor, the default environment 
is set to development. To configure a different environment, select the Target Environment 
in the Environment Properties tab of the Event Process comprising the service instance. 
Hereafter, environment dependent service properties will be written to the corresponding 
env.xml file and will be picked up from that file when Event Process is launched in that 
particular environment. 

You can specify these properties for more than one environment by switching the Target 
Environment label in properties of an event process. Configuring service instances for different 
environments made easy, as the configuration properties of service instance in a new 
environment will be picked up from the previously configured environment when the CPS is 
opened. 

This way service instances can have different set of properties while running on different 
environments. For example a File Reader instance can be configured to read from a dev.txt file 
in Development environment and from a test.txt file in Testing environment. 

 

Figure 6.1.1: Environment Properties Tab 



Fiorano eStudio User Guide 

Chapter 6: Event Process Life Cycle Management Page 76 

6.2 Running Event Process on an Environment 

To run an Event Process on a particular environment, follow the steps as mentioned in the 
below example: 

1. Take a flow containing file reader and display. Configure the file reader providing 
different inputs in different environments as mentioned in the above section. Select 
the Target Environment in the Environment Properties tab of the Event Process. 
The environment specific properties for the service instances in the flow can be viewed 
from the Environment Properties table view present below the Target Environment 
section. 

2. Do the CRC and launch the flow. When the flow is launched in development 
environment the contents from the dev.txt will be read and these messages can be 
viewed in the display. Similarly when launched in testing environment the contents 
from the test.txt will be read and these messages can be viewed in the display. 

 

Figure 6.2.1: Display showing messages received from file reader in different environments 

Note: These properties cannot be edited from the table provided. But they can be edited from 
the CPS of the specific service instance and form the deployment tab of the service instance in 
the properties view. 

 



Fiorano eStudio User Guide 

Chapter 7: Debugging Event Process Page 77 

Chapter 7: Debugging Event Process 
 

Fiorano’s unique Event Process orchestration model enables the debugging of live Event 
Processes in real time. The debugging model gives a view of the current state of executing 
service instances within Event Processes and also provides a mechanism to setup event 
interceptors to capture, view, modify and discard messages flowing between service instances 
on the same or different machines across the network. 

Note: Breakpoint can be added in Online Event Process Development perspective only. 

7.1 Adding Breakpoint 

Breakpoint can be added from context menu present on the route or from Fiorano Debugger 
view. 

7.1.1 Context Menu option  

Right-click on the route on which breakpoint has to be added and select Add Breakpoint 
option. 

When the breakpoint is added, the route color changes to Red. 

 

Figure 7.1.1: Adding breakpoint from context menu 



Fiorano eStudio User Guide 

Chapter 7: Debugging Event Process Page 78 

7.1.2 Debugger View 

To add a breakpoint to a route, perform the following steps in Fiorano Debugger View: 

1. Go to Fiorano Debugger pane and click the Add BreakPoint button as shown in 
Figure 7.1.1. All the available routes in the Event Process are listed as shown in Figure 
7.1.2.  

 

Figure 7.1.2: Adding break point from debugger view 

 

Figure 7.1.3: Select route to add breakpoint 

2. Select the route on which the breakpoint has to be added and the click OK to add the 
breakpoint. 

When a breakpoint is added on a route, at runtime the messages passing through the route 
are intercepted by the breakpoint. The intercepted messages can be viewed, edited or 
forwarded to the next service instance. 



Fiorano eStudio User Guide 

Chapter 7: Debugging Event Process Page 79 

Message body, message properties and application context can be viewed in debugger view. 
When an intercepted message is selected, the properties are shown in the Properties view. 

Application context is shown in the Application Context tab. 

7.2 Viewing Messages at Breakpoint 

All the messages sent to a route having breakpoint set on it are visible in the breakpoint view 
when clicked on that particular route as shown in Figure 7.2.1. 

When the messages are intercepted on the route, the route blinks and the message count will 
be appended to the route name. 

 

Figure 7.2.1: Message at breakpoint in Fiorano Debugger 

7.3 Editing Messages at Breakpoint 

To edit a message at debug time, perform the following steps: 

• Select the message to be edit and edit it in Text section as shown in Figure 7.3.1. 

• The message is saved. 



Fiorano eStudio User Guide 

Chapter 7: Debugging Event Process Page 80 

 

Figure 7.3.1: Edit message in Fiorano debugger 

7.4 Inserting Messages into Breakpoint 

New messages can be inserted into breakpoint at debug time without the message being sent 
by the source component.  

To insert messages into breakpoint, perform the following steps: 

1. Click the Create button in the Messages pane as shown in Figure 7.4.1. 

 

Figure 7.4.1: Create message in Fiorano debugger 

2. Choose the type of message to be created (either XML or Text message) as shown in 
Figure 5.4.2 and click OK .For Text type a default message is inserted, which can be 
edited in the Text section. For XML type, the XML schema of the message is shown 
and the user can click on Generate Sample button to generate a sample XML data 
and can edit the data in the Text section.  



Fiorano eStudio User Guide 

Chapter 7: Debugging Event Process Page 81 

 

Figure 7.4.2 select type of new message 

7.5 Releasing Messages from Breakpoint 

The messages present on a breakpoint can be released anytime so that they reach their 
destination.  

To release messages from the breakpoint, perform the following:  

1. Select the message to be released and click the Send button shown in Figure 7.5.1. 
The message will be sent to the next service instance in the event process. 

 

Figure 7.5.1: Send message in Fiorano debugger 

2. All messages on Breakpoint can be released at a time by clicking on Send All button 
as shown in Figure 7.5.2. 



Fiorano eStudio User Guide 

Chapter 7: Debugging Event Process Page 82 

 

Figure 7.5.2: Send all messages in Fiorano debugger 

All the messages can also be sent at a time from route context menu by Right-clicking on the 
route and by selecting Send All option. 

7.6 Discard Messages from Breakpoint  

To discard the messages from the breakpoint, perform the following:  

1. Select the message to be discarded and click the Discard button shown in Figure 
7.6.1. The discarded message will be removed from Breakpoint. 

 

Figure 7.6.1: Discard message in Fiorano debugger 



Fiorano eStudio User Guide 

Chapter 7: Debugging Event Process Page 83 

2. All messages on Breakpoint can be discarded all at a time by clicking on Discard All 
button as shown in Figure 7.6.2. 

 

Figure 7.6.2: Discard All messages in Fiorano debugger 

All the messages can also be discarded at a time from route context menu by Right-clicking on 
the route and by selecting Discard All option. 

7.7 Remove Breakpoint  

To remove the breakpoint set on a route, perform the following:  

1. Select the route, on which the breakpoint has to be removed and click the Remove 
Breakpoint button shown in Figure 7.7.1. The breakpoint will be removed on the 
route. 

 

Figure 7.7.1: Remove Breakpoint in Fiorano debugger 

Note: When removing a breakpoint an input dialog comes up asking whether to send 
the messages or discard the messages. The user can choose appropriate option. 

Breakpoint can also be removed from context menu options on the route. 



Fiorano eStudio User Guide 

Chapter 7: Debugging Event Process Page 84 

2. Breakpoints on all the routes can be removed by clicking on Remove All Breakpoints 
button as shown in Figure 7.7.2. 

 

Figure 7.7.2: Remove All BreakPoints in Fiorano debugger 

All the messages can also be discarded at a time from route context menu by Right-clicking on 
the route and by selecting Discard All option. 



Fiorano eStudio User Guide 

Chapter 8: Services Page 85 

Chapter 8: Services 
 

8.1 Service Descriptor Editor 

A service can be customized using the Service Descriptor Editor. To customize a service, 
perform the following steps:  

1. Right-click the service in the Service Palette or in Service Repository view and 
select the Edit.... option as shown in Figure 8.1.1. 

 

Figure 8.1.1: Edit option 

2. The ServiceDescriptor.xml of the selected service is opened in the Service 
Descriptor Editor as shown in Figure 8.1.2. 



Fiorano eStudio User Guide 

Chapter 8: Services Page 86 

 

Figure 8.1.2: ServiceDescriptor.editor 

Service Descriptor Editor has three sections: 

• Overview 

• Execution  

• Deployment  

These sections are further divided into sub-sections. A brief explanation of these sections and 
subsections is provided below. 

The sections can be accessed using the tabs provided at the bottom left corner of the editor as 
shown in Figure 8.1.3. 



Fiorano eStudio User Guide 

Chapter 8: Services Page 87 

 

Figure 8.1.3: Sections under Service Descriptor 

8.1.1 Overview Section 

The Overview section has three sub-sections – General Information, Display, and Metadata. 

The information used to identify the service is shown under General Information section. The 
user can change the Name, Version, GUID, Tool Tip, and Description of the component in this 
section. Figure 8.1.4 illustrates the General Information section.  



Fiorano eStudio User Guide 

Chapter 8: Services Page 88 

 

Figure 8.1.4: General Information 

In the Display section, the icons used to represent the service and the categories under which 
the service are provided. Categories can be selected using the Category Selection dialog box, 
which is similar to the one used during Service Creation (Figure 8.1.5).  

In the Metadata section, the information about authors of the service, creation date and time 
of the service and licensing mode are provided (Figure 8.1.5). 

Note: The Creation Date field cannot be manually changed. 

 

Figure 8.1.5: Display and Metadata sections 

8.1.2 Execution Section 

The Execution section has following subsections – Port Information, Support, Launch 
Configuration, Log Modules, and Runtime. A brief explanation of these subsections is provided 
below. 



Fiorano eStudio User Guide 

Chapter 8: Services Page 89 

8.1.2.1 Port Information 

Each Asynchronous Service Component (also referred as Event Driven Business Component) 
can have any number of inputs and outputs as determined by the developer of the 
component. The input and output ports can be added or removed in the Service Descriptor 
Editor as applicable to the component in Port Information section (Figure 8.1.6). 

The Add, Remove and Edit Schema buttons can be used to add, remove and to edit the ports 
of services. Name and Description of any port can be modified from the respective columns in 
each table. 

 

Figure 8.1.6: Port Information section 

8.1.2.2 Support 

In the Support section, Failover Supported and Transaction Supported options are available as 
shown in Figure 8.1.7. 

 

Figure 8.1.7: Support section 



Fiorano eStudio User Guide 

Chapter 8: Services Page 90 

Failover Supported 

If the Failover Supported option is selected, during component's runtime if the Peer Server on 
which component is running goes down, the component keeps running on the next available 
Peer Server. 

If this option is not selected, at component's runtime, if the Peer Server on which component 
is running goes down, the component stops. 

Transaction Supported 

Transaction Supported is used to specify whether the service allows transacted session or not. 

Component Control Protocol 

Checked – Component listens, understands and responds to control events from Peer Server. 
Using this option allows components launched as separate process to cleanup when stopping 

Unchecked – Component does not handle control events from the Peer Server. The Peer 
Server will not send any control event to component. Component launched in separate process 
is issued a destroy command to stop and the component process will be killed instantly 
without any cleanup. 

8.1.2.3 Launch Configuration 

In the Launch Configuration section, information about type of the component and the 
different launch type supports (None, Separate Process, In Memory, and Manual) are 
provided. 

 

Figure 8.1.8: Launch Configuration section 

8.1.2.4 Log Modules 

In the Log Modules section, logging options of the service are provided. Loggers which are 
used to log messages during service runtime can be added or removed.  

To add a new logger click the Add button and specify log module name and the log level at 
which logging has to be performed. Messages logged at level which are lower than the 
selected log level will not be written to log files. 



Fiorano eStudio User Guide 

Chapter 8: Services Page 91 

 

Figure 8.1.9: Log Modules section 

8.1.2.4 Runtime 

In the Runtime section, configurations required to launch services are provided. Executable 
specifies the Java class to be used to launch the service when it is launched in a Separate 
Process. 

In Memory Executable specifies the Java class to be used when the service is launched in in-
memory mode. 

Working directory specifies the directory which will be the service's runtime directory when 
launched in separate process. 

A component while executing, might require parameters to execute different requests or 
details for handling different request. There are two ways of passing this information to the 
component by configuring the details in the Configuration Property Sheet of the panel or by 
defining the command line arguments that can be passed to the component during the launch 
of the component. These command line arguments are captured as runtime arguments in this 
panel. 

 

Figure 8.1.10: Runtime section 



Fiorano eStudio User Guide 

Chapter 8: Services Page 92 

8.1.3 Deployment Section 

The Deployment section contains subsections related to deployment information of the 
component. The Resource/Service Dependencies required by the component can be configured 
in this section. 

 

Figure 8.1.11: Deployment page 

8.1.3.1 Resource 

The resources required by the service (either during configuration time or runtime) can be 
added in this wizard. Resources can be any files which are used by the component. Typically 
resource files are – dll, zip, jar, so, and exe.  

• To add a resource click on Add... and select required resource for the service. 

• To remove a resource, select the resource and click Remove. 

• To change the order of resources, select the resource and click the Up or Down 
button. The order is used to determine the classpath of the service 

8.1.3.2 Service Dependencies 

Dependencies are predefined. Each component or system library registered can be added as a 
dependency. 

Click the Add/Remove button to open Add Dependencies dialog box. This contains a list of all 
available dependencies. 



Fiorano eStudio User Guide 

Chapter 8: Services Page 93 

 

Figure 8.1.12: Service Dependencies section 

• To Add: Select the dependency on left side table and move it to the right side table. 

• To Remove: Select the dependency on right side table and move it to the left side 
table. 



Fiorano eStudio User Guide 

Chapter 9: Service Creation Page 94 

Chapter 9: Service Creation 
 

Apart from the exhaustive list of pre-built services, custom services can be written, built, and 
deployed into Fiorano SOA Platform by developers. To aid developers in service creation, the 
platform provides a template engine to generate the skeleton code for custom services in 
Java, C, C++, C# (.Net). User can create a component in any language, add the business 
logic and deploy it in Fiorano environment. 

9.1 Service Generation 

To create a new service - Tools -> Create Service Component to open the Service Creation 
Wizard. All the details related to the creation of a new service must be specified in this wizard. 
Various steps in service creation are illustrated below. 

9.1.1 Service Location 

The destination folder in which the component source code and other required files to be 
generated has to be specified.  

Note: A new folder name has to be specified here. If the folder name provided already exists, 
then the wizard does not allow proceeding to the next page. 

 

Figure 9.1.1: Specific Service Location 



Fiorano eStudio User Guide 

Chapter 9: Service Creation Page 95 

9.1.2 Basic Details 

The Basic Details of the service like Service Guid, Name, Version, and so on have to be 
provided here. 

 

Figure 9.1.2: Service creation wizard 

In the Category field, a new Category name can be provided for the component or an existing 
Category can be selected from the available categories. Existing Categories can be viewed by 
clicking the ellipsis button against the Category field. On clicking ellipsis, the Category 
Selection dialog box appears as shown in Figure 9.1.3. Multiple Categories can also be 
selected in the Category Selection dialog box. 



Fiorano eStudio User Guide 

Chapter 9: Service Creation Page 96 

 

Figure 9.1.3: Category Selection dialog box 

The option Generate Source is used to generate sources for various languages and the 
option Assemble From Binary is used to create System Libraries. 

Is CCP Enabled 

Yes – Component listens, understands and responds to control events from Peer Server. Using 
this option allows components launched as separate process to cleanup when stopping 

No – Component does not handle control events from the Peer Server. The Peer Server will 
not send any control event to component. Component launched in separate process is issued a 
destroy command to stop and the component process will be killed instantly without any 
cleanup. 

This property will not editable while editing the service from Studio. 

For additional details on Component Control Protocol refer to section 3.12 in Fiorano SOA User 
Guide 

9.1.3 Ports Information 

The input and output ports of the service can be configured here. 

A new port can be added by clicking the Add button. By default Port Type is Input Port. The 
Port Type and other port properties can be changed in the Service Creation Wizard as 
required. 



Fiorano eStudio User Guide 

Chapter 9: Service Creation Page 97 

 

Figure 9.1.4: Ports Information 

9.1.4 Resources 

The resources required by the service (either during configuration time or runtime) can be 
added in Service Creation Wizard. Resources can be any file types which are used by the 
component. Typically resource files are of types – dll, zip, jar, so, exe. However, there is no 
strict restriction on this; a file of any type can be added as a resource. 

The server makes a local copy of these files in the component’s folder. Resources can be 
added or removed using Add and Remove buttons. 

 

Figure 9.1.5: Resources section 



Fiorano eStudio User Guide 

Chapter 9: Service Creation Page 98 

9.1.5 Dependencies 

Dependencies are predefined. Every component or system library registered can be added as a 
dependency. The dependencies are referenced from the existing location and are not copied 
locally into the component's folder.  

Note: Dependencies are loaded only once when the components are launched in-memory of 
same peer server, there by reducing the memory footprint. 

• To Add: Select the dependency on left-hand side of the page and move to the right-
hand side. 

• To Remove: Select the dependency on right-hand side of the page and move to the 
left-hand side. 

 

Figure 9.1.6: Dependencies 

• Click the Finish button after adding the dependencies. 

When the wizard is finished, sources are generated under src directory in the directory 
specified in the Service Location Page. It also creates necessary files to build and deploy the 
components.  

9.2 Building and Deploying Services 

By default, the build.properties file contains the URL of the Enterprise Server running on the 
machine on which the sources are generated. If the service has to be deployed to an 
Enterprise Server running on a different machine, then the property server has to be changed 
in the build.properties file. 

To register the service, perform the following steps: 



Fiorano eStudio User Guide 

Chapter 9: Service Creation Page 99 

1. Open the command prompt at the location where the sources are generated and 
execute the command ant register.  

 

Figure 9.2.1: Registering the service 

2. This builds the service's sources and registers the service with the Enterprise Server. 

3. The service is now available in eStudio Service Palette and can be used in composing 
Event Processes. 

 

Figure 9.2.2: Service Palette 

 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 100 

Chapter 10: eMapper 
 

The Fiorano eMapper is a high-end graphical tool that presents the user with both source 
document structure and target document structure side-by-side and lets the user define 
semantic transformation of data by simply drawing lines between nodes, elements, and 
functions.  

The Fiorano eMapper uses standards based XSLT (Extensible Stylesheet Language for 
Transformations), which is a language for transforming documents from one XML structure to 
another.  

Additionally, Fiorano eMapper ensures that the source and target document structures 
conform to the DTD (Document Type Definition) standards. 

10.1 Key Features of Fiorano eMapper 

The Fiorano eMapper performs a variety of operations including: 

• Transforming one or more XML, XSD or DTD files. 

• Generating XML, XSD or DTD as output of the transformation. 

• Using Funclets to define complex mapping expressions. 

• Validate the transformation. 

• Define the transformation (mapping) with simple drag-and-drop actions. 

10.2 Fiorano eMapper Environment 

The Fiorano eMapper tool consists of the following interface elements: 

• eMapper Projects Explorer 

• eMapper Editor 

o Map View 

o MetaData 

• Funclet View 

• MetaData Messages View 

• eMapper Console 

• Node Info View 

The interface of the Fiorano eMapper tool is displayed in Figure 10.2.1. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 101 

 

Figure 10.2.1: eMapper Perspective 

10.2.1 eMapper Projects. 

This view serves as an explorer for the eMapper Projects created by the User. 

To create a new eMapper project, perform the following steps: 

1. Right-click on the eMapper Projects view and select New > Fiorano Map. The New 
eMapper Project Wizard is opened.  

2. Provide a valid name for the project and click Finish.  A new eMapper project is 
created. Figure 10.2.2 shows a sample eMapper project as shown in the eMapper 
Projects Explorer. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 102 

 

Figure 10.2.2: eMapper Projects 

A eMapper Project contains a resources folder which holds the .fmp file. The .fmp stores the 
mappings defined between the input and output structures. The schemas provided for all the 
input and output structures are stored in the PROJECT_HOME/resources/schemas folder. The 
names of these schema files are of the form <Structure_Name>.<Mime_type>. 

10.2.2 eMapper Editor 

The eMapper Editor is a tabbed editor containing two tabs, Map View and MetaData.  

10.2.2.1 Map View 

The Map View shows the Input and Output Structures and the mappings defined in the pane. 
This view allows users to load the input and output structures and create mappings between 
them. 

This view consists of the following panels: 

• Input Structure Panel 

• Graph Panel 

• Output Structure Panel 

Input Structure Panel 

This panel shows the input specification structure in a tree format.  

Graph Panel 

The middle panel in Map View is the Graph panel. It shows the mappings defined by lines 
(called Mapping lines). A Mapping can be selected by selecting one of the mapping lines in the 
line panel.  

A Function icon at the end of a mapping line indicates that mapping uses function(s) as shown 
in Figure 10.2.3.  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 103 

 

Figure 10.2.3: Map View 

Output Structure Panel 

This panel shows the output document structure in a tree format. 

10.2.2.2 MetaData tab 

The MetaData tab shows the transformation XSL generated from the mappings defined in the 
Map View for the selected output structure.  

10.2.3 Funclet View 

The Funclet view contains the Visual Expression Builder that provides a graphical view for the 
mappings defined in the Map View, as shown in Figure 10.2.4. It also shows the functions and 
their linkage with the input and target nodes/elements.  

Note: The Funclet view is explained in detail in the Visual Expression Builder section later in 
this chapter. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 104 

 

Figure 10.2.4: Funclet VIew 

10.2.4 eMapper Console 

The eMapper Console is used to display the various error and warning messages generated by 
the tool while parsing the input and output structures and while testing the generated XSL. 

10.2.5 MetaData Messages View 

Error or Warning Messages (if any) thrown while generating the transformation XSL are 
displayed in the MetaData Messages View. The view appears, as shown in Figure 10.2.5. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 105 

 

Figure 10.2.5: Meta Data and MetaData Messages view 

10.2.6 Node Info View 

The Node Info View shows the information about nodes in the Input and Output Structures. 
The view is shown in Figure 10.2.6. It has two panels that provide the data type and 
cardinality information about the selected input and output structure node/element. 

 

Figure 10.2.6: Node Info View 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 106 

10.3 Working with Input and Output Structures 

10.3.1 Loading Input/Output Structure 
1. An Input/Output Structure can be loaded in one of the following ways: 

• Click the Add Structure button from the tool bar in the Input/Output Structure 
Panel and choose the structure type from the drop down list. Or,  

• Right-click on the Input/Output Structure Panel and select Add Structure and 
choose the structure type from the sub-menu. 

2. The drop down list or the sub-menu has the following options 

• XSD For loading an XSD document 

• DTD For loading a DTD document 

• XML For loading an XML document 

10.3.1.1 Load Input/Output Structure From an XSD document 

Select XSD from the Add Structure menu. The Load Input/Output XSD Structure Wizard would 
appear as shown in the Figure 10.3.1. The wizard contains two pages, Structure Selection 
page and External XSDs page. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 107 

 

Figure 10.3.1: Structure Selection Page 

Structure Selection Page 

The name of the structure can be specified in the Structure Name text field at the top of the 
page.  

Note: The structure name cannot contain special characters. Only alphabets, numbers and '_' 
are allowed in a structure name. Two structures with same name are not allowed. 

The XSD content can be defined in the text area provided in this page.  

The schema can also be loaded from an existing file using the Load from File button. Clicking 
this button will open a file dialog using which one can browse through the file system to 
choose an existing file. Modifications, if any, to the schema loaded from the file from this 
page. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 108 

External XSDs Page 

 

Figure 10.3.2: Adding External XSDs 

Any external XSDs used by a structure can be added from this page. Figure 10.3.2 shows the 
External XSDs Page. External XSDs can be added by performing the following steps: 

Click the New button to add a new external schema. A context menu will appear as shown in 
the Figure 10.3.2. The user can either add a New XSD or use an Existing Schema that is 
already present in the eMapper Project.  

Adding a new XSD 

• Click New XSD. This will enable the Schema Content Area where the content of the 
schema can be entered. 

• A valid file name should be provided in the Schema File field. The provided XSD shall 
be saved with this name in the PROJECT_HOME/resources/schemas directory. 

• The content can also be loaded from a file using the Browse button. Click this button 
and browse through the file system and select the required file. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 109 

• After providing the XSD, it can be saved as an external XSD for the structure by 
clicking the Save button. As specified earlier, the XSD will saved in the 
PROJECT_HOME/resources/schemas folder with the name specified in the Schema File 
field. 

• The target name space of the schema is added to the list of Referenced URIs 
present on the left end of the page.  

Adding an existing schema 

• To use an XSD which is already present in the eMapper Project, click Existing Schema 
in the New context Menu. A list of all the XSD present in the 
PROJECT_HOME/resources/schemas directory is shown. Choose an XSD and it will be 
saved as an external schema to the current structure. 

Note: As target name space is used to refer these schemas, saving an XSD without a 
target name space is not allowed. Two schemas with same target name space cannot 
be added. 

• External schemas can be removed by selecting the namespace of the structure to be 
deleted and clicking the Delete button.  

10.3.1.2 Load Input/Output Structure from a DTD document 

Select DTD from the Add Structure menu. The Load Input/Output DTD Structure Wizard would 
appear as shown in the Figure 10.3.3. The DTD content can be specified from the Structure 
Selection Page present in this wizard. Similar to the Structure Selection Page in Load 
Input/Output XSD Structure Wizard, this page allows the user to enter the structure content 
directly or by loading it from an existing file. To load content from an existing DTD document 
click the Load From File button. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 110 

 

Figure 10.3.3: Load Input DTD Structure 

10.3.1.3 Load Input/Output Structure from an XML document 

Select XML from the Add Structure menu. The Load Input/Output XML Structure Wizard would 
appear as shown in the Figure 10.3.4. The dialog contains two panes viz. XML Content and 
Generated DTD.  

The name of the structure can be specified in the Structure Name field. The structure name 
cannot contain special characters. Only alphabets, numbers and '_' are allowed in a structure 
name. Two structures with same name are not allowed. 

The XML can be provided in the text area present in the XML Content pane. This text area has 
a tool bar with two buttons, Load From File and Generate DTD. The content can be loaded 
from an existing file by clicking the Load From File button. Click the Generate DTD button to 
generate a DTD from this XML document. The DTD is shown in the text area present in the 
Generated DTD pane. This DTD document is used to load the structure. Modifications, if 
needed, can be made to this DTD. 

The structure can be saved and loaded in the Input/Output Structure Panel by clicking the 
finish button. The content is saved in a file with name <Structure_Name>.<Mime_Type> in 
the PROJECT_HOME/resources/schemas directory. If the schema is not valid an exception is 
logged to the Error Log view. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 111 

 

Figure 10.3.4: Load Input XML Structure 

10.3.2 Delete Structure 

A structure can be deleted from the Input/Output Structure Panel by clicking the Delete 
Structure panel present in the structure panel's tool bar. This will delete the selected structure 
and will clear all the mappings associated with this structure. 

10.3.3 Edit Structure 

To edit Input/Output Structure: 

1. Right-click the structure and click the Edit Structure option. The Edit Structure dialog 
is opened as shown in the Figure 10.3.5.  

2. The selected structure is shown in the text area. Modifications to the structure can be 
done here. The Load From File button can be used to load structure from a file.  

3. Click OK button to save the modifications done. 

If the new structure is valid, it gets saved and loaded in its corresponding panel. Otherwise, an 
error dialog is shown and the modifications are ignored. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 112 

On editing a structure, mappings defined to the affected elements/attributes are discarded. 

 

Figure 10.3.5: Edit Structure Dialog 

10.4 Working with the Visual Expression Builder 

Fiorano eMapper provides an easy to use graphical user interface – the Visual Expression 
Builder, for building simple or complex expressions using several predefined functions. All this 
can be done by performing simple drag-n-drop of required functions, input nodes and 
connecting them visually. 

The Funclet View provided in the Fiorano eMapper Perspective consists of the Visual 
Expression Builder. The Visual Expression Builder is shown automatically on clicking on any 
node in the Output Structure. 

The Visual Expression Builder consists of two areas: 

Function palette 

Funclet easel 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 113 

 

Figure 10.4 Funclet View 

10.4.1 Function Palette 

The Function palette contains all the functions logically grouped into different categories: 

• Arithmetic Functions 

• String Functions 

• Boolean Functions 

• Control Functions 

• Advanced Functions 

• JMS Message Functions 

• Date-Time Functions  

• NodeSet Functions 

• Math Functions 

• Conversion Functions 

• Look-up Functions 

• User defined functions 

Fiorano eMapper provides several Arithmetic functions to work with numbers and nodes. 
This section describes these functions. 

Addition 

Visual representation  

Description: This function calculates and returns the sum of two nodes or numbers. 

Input: Two number constants or input structure nodes. 

Output: Number 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 114 

Subtraction  

Visual representation   

Description: This function subtracts the values of two numbers or nodes.  

Input: Two number constants or input structure nodes. 

Output: Number  

Division  

Visual representation   

Description: This function obtains and returns the quotient after dividing the values of two 
nodes or numbers. 

Input: Two number constants or input structure nodes. 

Output: Number  

Modulo  

Visual representation   

Description: This function returns the remainder after dividing the values of the two nodes or 
numbers. 

Input: Two number constants or input structure nodes. 

Output: Number  

Multiplication  

Visual representation   

Description: This function multiplies the values of two nodes or numbers. 

Input: Two number constants or input structure nodes. 

Output: Number 

Floor  

Visual representation  

Description: This function rounds off the value of the node or number to the nearest lower 
integer. 

Input: A number constant or an input structure node. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 115 

Output: Number  

Example: The number 3.3 is floored to 3. 

Ceiling  

Visual representation  

Description: This function rounds off the value of the node or number to the nearest higher 
integer.  

Input: A number constant or an input structure node. 

Output: Number 

Example: The number 25.6 is ceiled to 26. 

Round  

Visual representation  

Description: This function rounds off the value of the preceding node or a number to the 
nearest integer. 

Input: A number constant or an input structure node. 

Output: Number  

Example: The number 4.8 is rounded off to 5 and 4.2 is rounded off to 4. 

Number Function  

Visual representation   

Description: This function converts the input to a number according to the XPath 
specifications. 

Input: A number constant or an input structure node. 

Output: Number based on the following rules: 

• Boolean true is converted to 1, and false is converted to 0. 

• A node-set is first converted to a string and then converted in the same way 
as a string argument. 

• A string that consists of optional whitespace followed by an optional minus 
sign followed by a number followed by whitespace is converted to the IEEE 
754 number that is nearest to the mathematical value represented by the 
string; any other string is converted to NaN. 

• An object of a type other than the four basic types is converted to a number in 
a way that is dependent on that type. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 116 

10.4.1.2 Math Functions 

Absolute 

Visual representation  

Description: This function returns the absolute (non-negative) value of a number. 

Input: Number 

Output: The absolute value of the input 

Sin 

Visual representation   

Description: This function returns the Sine value of the input. The input is in radians. 

Input: A number in radians. 

Output: The Sine value of the input. 

Cos 

Visual representation   

Description: This function returns the Cosine value of the input. The input is in radians. 

Input: A number in radians 

Output: The Cosine value of the input 

Tan 

Visual representation   

Description: This function returns the Tan value of the input. The input is in radians. 

Input: A number in radians. 

Output: The Tan value of the input. 

Arc sine 

Visual representation  

Description: This function returns the Arc Sine value or the Sine Inverse value of the input. 
The output is in radians. 

Input: Number 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 117 

Output: The Sine Inverse value of the input in radians. 

Arc cos 

Visual representation  

Description: This function returns the Arc Cosine value or the Cosine Inverse value of the 
input. The output is in radians. 

Input: Number 

Output: The Cosine Inverse value of the input in radians. 

Arc tan 

Visual representation  

Description: This function returns the Arc Tan value or the Tan Inverse value of the input. The 
output is in radians. 

Input: Number  

Output: The Tan Inverse value of the input in radians. 

Exponential 

Visual representation  

Description: This function returns the exponential value of the input. 

Input: Any number 

Output: The exponential value the input. 

Power 

Visual representation  

Description: This function returns the value of a first input raised to the power of a second 
number.  

Input: Two numbers: the first number is the base, and the second number is the power. 

Output: A number that is the result of the above described calculation or NaN in case the value 
could not be calculated.  

Random 

Visual representation  

Description: This function returns a random number between 0 and 1. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 118 

Input: No input 

Output: A number between 0 and 1. 

Sqrt 

Visual representation  

Description: This function returns the square root of the input value 

Input: A number 

Output: A number that is the square root of the input value. 

Log 

Visual representation   

Description: This function returns the natural logarithm (base e) of a numerical (double) 
value. 

Input: A positive numerical value. 

Output: The natural logarithm (base e) of the input - a numerical (double) value. 

Special cases:  

• If the argument is NaN or less than zero, the result is NaN.  

• If the argument is positive infinity, the result is positive infinity.  

• If the argument is positive zero or negative zero, the result is negative infinity. 

10.4.1.3 String Functions 

Fiorano eMapper has several string functions. All the functions accept Unicode strings and are 
case-sensitive. This section covers the string functions. 

XPath  

Visual representation  

Description: This function evaluates the specified XPath expression and returns the result. 

Input: For elements within the first structure of the document, specify the XPath as: 

/<root element>/<child element> 

Example/school/student 

For elements within the second structure onwards, specify the XPath as: 

document('<structure name>')/<root element>/<child element> 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 119 

Example:document('input2')/school/student 

Output: Result of the XPath expression. 

Concat  

Visual representation  

Description: This function accepts two or more string arguments and joins them in a specified 
sequence to a form a single concatenated string.  

Input: Two or more string constants or input structure nodes. 

Output: A concatenated string. 

Example:Concat ("abc", "xyz") returns "abcxyz". 

Constant 

Visual representation  

Description; This function creates a constant building block with a string literal. 

Input: String 

Output: String 

Length  

Visual representation  

Description: This function returns the length of a string. 

Input: A string constant or an input structure node. 

Output: Number 

Example: Length ("abcd") returns 4 

Normalize_Space 

Visual representation  

Description: This function accepts a string as an argument and removes leading, trailing, and 
enclosed spaces in the specified string. The unnecessary white spaces within the string are 
replaced by a single white space character.  

Input: A string or an input structure node. 

Output: String with no whitespace before, after, or within it.  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 120 

Example: Normalize_Space(" eMapperTool ") returns "eMapper Tool". 

White spaces before and after the string is removed and the white spaces between "eMapper" 
and "Tool" are replaced by a single blank space.  

SubString-After 

Visual representation  

Description This function accepts two strings as arguments. The first string is the source and 
the second input string is the string pattern. It returns that part of the first input string that 
follows the string pattern.  

Input: Two string constants or input structure nodes. 

Output: String  

Example: SubString-After(‘abcde’,‘bc’) returns "de" 

SubString-Before 

Visual representation   

Description: This function accepts two strings as arguments. The first string is the source and 
the second is the string pattern. The function returns that part of the first input string that 
precedes the string pattern specified as the second argument to the function.  

Input: Two string constants or input structure nodes. 

Output: String  

Example: SubString-Before(‘abcde’, ‘cd’) returns ‘ab’  

SubString-Offset 

Visual representation  

Description: This function accepts two string constants as argument. The first string is the 
source and the second string is a numerical value that specifies the offset. The output is that 
part of the source string which starts from the offset specified as the second argument to the 
function. 

Input: Two string constants or input structure nodes. 

Output: String 

Example: SubString-Offset(‘abcde’, 3) returns "cde"  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 121 

SubString-Offset-Length 

Visual representation   

Description: This function accepts three arguments. The first argument is the source string, 
the second and third arguments are numerical that specify the offset and the size of the 
output substring respectively. The output is a substring which starts from the offset specified 
as the second argument to the function. The number of characters that need to be obtained is 
specified as the third argument. 

Input: Two string constants or input structure nodes and a number. 

Output: String 

Example: SubString-Offset-Length(‘abcde’, 2, 3) returns "bcd" 

10.4.1.4 Control Function 

The following Control functions are available in Fiorano eMapper: 

If-Then-Else  

Visual representation   

Description: This function accepts an input value. The first input is a Boolean value and the 
second and third are string constants. Based on the Boolean value, the function returns the 
output. If the Boolean value specified in the first input is TRUE, then the function returns the 
second input string else it returns the third input string. 

Input: Boolean value and a string, an optional string in the same sequence. 

Output: The second input string or third input string (if present) depending on the first input 
Boolean value. 

Sort Function  

Visual representation   

Description: This function accepts two inputs. The first input is a set of nodes and the second 
input is the value of the nodes. The function sorts the nodes in its first input based on the 
second input.  

Input: Sort (nodes, value) 

Output: Sorted nodes as Loop Source  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 122 

Filter Function 

Visual representation   

Description: This function accepts two arguments. The first argument is a set of node and the 
second argument is a Boolean value. It filters out and returns the nodes for which the second 
input value is TRUE.  

Input: Filter (node set, bool) 

Output: Nodes for which the second input value is true as Loop Source. 

10.4.1.5 Conversion Functions 

Fiorano eMapper consists of several Conversion functions to convert numerical from one 
format to the other. These functions are covered in this section. 

Decimal 

Visual representation  

Description: Converts the first input value having a base that is specified by the second input 
value to a decimal number. 

Input: Two numbers: The first input value is the number to be converted to decimal, and the 
second input value specifies the base of the first input value. 

Output: Number in base 10. 

Hex 

Visual representation  

Description: Converts a decimal number to a hexadecimal (base 16) number. 

Input: Decimal number 

Output: Hexadecimal (base 16) number 

Octal 

Visual representation  

Description: Converts a decimal number to an octal (base 8) number. 

Input: Decimal number 

Output: Octal (base 8) number 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 123 

Binary 

Visual representation  

Description: Converts a decimal number to a binary (base 2) number. 

Input: Decimal number 

Output: Binary (base 2) number 

Radians 

Visual representation  

Description: Converts a value in Degrees to a value in Radians. 

Input: Number 

Output: Number 

Degrees 

Visual representation  

Description: Converts a value in Radians to a value in Degrees.  

Input: Number  

Output: Number  

ChangeBase 

Visual representation  

Description: The ChangeBase function is used to change a number from one base to another. 
This function accepts three arguments. 

1. num- the number to be changed 

2. fromBase- base of the given number 

3. toBase- base to which number should be converted 

Input: Number 

Output: Number 

10.4.1.6 Advanced Functions 

Fiorano eMapper provides a number of advanced functions. This section explains all these 
functions.  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 124 

CDATA Function 

Visual representation  

Description: This function accepts a string as an argument and specifies the character data 
within the string.  

Input: String argument or input structure node. 

Output: Input string or node text enclosed within the CDATA tag.  

Example: CDATA ("string") returns <![CDATA[ string]]> 

Position  

Visual representation  

Description: This function is available for the RDBMS-Update or RDBMS-Delete Output 
structures only and returns the current looping position. 

Input: None  

Output: The position of the element in the parent tree. 

Example: In an XML tree that has three elements, Position() returns 

0 for the first element 

1 for the second, and  

2 for the third. 

Format-Number 

Visual representation  

Description: This function converts the first argument to a string, in the format specified by 
the second argument. The first argument can be a real number or an integer, and can be 
positive or negative.  

Input: Two values: The first input is a number, and the second, a string of special characters 
that specifies the format. These special characters are listed in the following table: 

Representation Signifies Example 

#  a digit [0-9] ### 

.  the decimal point ###.## 

,  digit separator ###, ###.## 

0  leading and trailing zeros 000.0000 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 125 

%  inserts a percentage sign at the end ###.00% 

;  a pattern separator ##.00;##.00 

The format string is created by using these characters in any order.  

Output: String with the number in the specified format.  

Node-Name 

Visual representation  

Description: This function accepts an element or attribute and returns the name of the 
particular element or attribute. 

Input: A single element or attribute of any type 

Output: A string 

Count 

Visual representation  

Description: This function accepts an element or attribute and returns the number of instances 
of a particular element or attribute. 

Input: A single element or attribute of any type 

Output: A number  

Deep-Copy  

Visual representation  

Description: Copies the current node completely including the attributes and sub-elements.  

Input: An Input structure node 

Output: All the contents of the Input structure node – including its attributes and sub-
elements. 

Param 

Visual representation  

Description: This function is used to access the runtime parameters by its name. Various 
properties of Tifosi Document (such as header, message, and attachments) are available as 
runtime parameters at runtime. The names of these parameters follow the convention given 
below: 

Header Properties 
_TIF_HEADER_<HEADERNAME> 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 126 

Message (text) 
_TIF_BODY_TEXT_ 

Message (byte) 
_TIF_BODY_BYTE_ 

Attachment 
_TIF_ATTACH_<NAME> 

Input: Name of the parameter 

Output: Value of the parameter specified 

10.4.1.7 Date-Time Functions 

Date-Time functions include: 

Date 

Visual representation  

Description: The Date function returns the date part in the input date-time string or the 
current date if no input is given. The date returned format is: CCYY-MM-DD 

If no argument is given or the argument date/time specifies a time zone, then the date string 
format must include a time zone, either a Z to indicate Coordinated Universal Time or a + or - 
followed by the difference between the difference from UTC represented as hh:mm. If an 
argument is specified and it does not specify a time zone, then the date string format must 
not include a time zone. 

Input: Optionally, a string that can be converted to a date (the string should have the date 
specified in the following format: CCYY-MM-DD) 

Output: A date in the format: CCYY-MM-DD 

DateTime 

Visual representation  

Description: This function returns the current date and time as a date/time string in the 
following format: 

CCYY-MM-DDThh:mm:ss 

Where, 

CC is the century 

YY is the year of the century 

MM is the month in two digits 

DD is the day of the month in two digits 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 127 

T is the separator between the Date and Time part of the string 

hh is the hour of the day in 24-hour format 

mm is the minutes of the hour 

ss is the seconds of the minute 

The output format includes a time zone, either a Z to indicate Coordinated Universal Time or a 
+ or - followed by the difference between the localtime from UTC represented as hh:mm. 

Input: This function has no input. 

Output: The current date-time in the following format: CCYY-MM-DDThh:mm:ss as described 
above.  

DayAbbreviation 

Visual representation  

Description: This function returns the abbreviated day of the week from the input date string. 
If no argument is given, then the current local date/time is used as the default argument. 

Input: Optionally, a date-time string 

Output: The English day of the week as a three-letter abbreviation: 'Sun', 'Mon', "Tue', 'Wed', 
'Thu', 'Fri', or 'Sat'.  

DayInMonth 

Visual representation  

Description: This function returns the day of a date as a number. If no argument is given, then 
the current local date/time is used as the default argument. 

Input: A date-time string in any of the following formats: 

CCYY-MM-DDThh:mm:ss  

CCYY-MM-DD  

--MM-DD  

---DD  

If no input is given, then the current local date/time is used.  

Output: A number which is the day of the month in the input string. 

DayInWeek 

Visual representation  

Description: This function returns the day of the week given in a date as a number. If no 
argument is given, then the current local date/time is used the default argument. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 128 

Input: A date string in any of the following formats: 

CCYY-MM-DDThh:mm:ss 

CCYY-MM-DD 

Output: The day of the week as a number - starting with 1 for Sunday, 2 for Monday and so 
on up to 7 for Saturday. If the date/time input string is not in a valid format, then NaN is 
returned. 

DayInYear 

Visual representation  

Description: This function returns the day of a date as a day number in a year starting from 1.  

If no argument is given, then the current local date/time, as returned by date-time is used the 
default argument. 

Input: Optionally, a date string in any of the following formats: 

CCYY-MM-DDThh:mm:ss 

CCYY-MM-DD 

Output: A number representing the day in a year. 

Example: The DayInYear for 2003-01-01 returns 1, where as for 2003-02-01 it returns 32.  

DayName 

Visual representation  

Description: This function returns the full day of the week for a date. If no argument is given, 
then the current local date/time is used the default argument. 

Input: Optionally, a date string in any of the following formats: 

CCYY-MM-DDThh:mm:ss 

CCYY-MM-DD 

Output: An English day name: 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday' or 
'Friday'. 

DayOfWeekInMonth 

Visual representation  

Description: This function returns the occurrence of that day of the week in a month for a 
given date as a number. If no argument is given, then the current local date/time is used as 
the default argument. 

Input: Optionally, a date string in any of the following formats: 

CCYY-MM-DDThh:mm:ss 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 129 

CCYY-MM-DD 

Output: A number that represents the occurrence of that day-of-the-week in a month.  

Example: DayOfWeekInMonth returns 3 for the 3rd Tuesday in May.  

HourInDay 

Visual representation  

Description: This function returns the hour of the day as a number. If no argument is given, 
then the current local date/time is used as the default argument.  

Input: A date string in any one of the following formats: 

CCYY-MM-DDThh:mm:ss 

hh:mm:ss 

If the date/time string is not in one of these formats, then NaN is returned. 

Output: The hour of the day or NaN if the argument is not valid. 

LeapYear 

Visual representation  

Description: This function returns TRUE if the year given in a date is a leap year. If no 
argument is given, then the current local date/time is used as the default argument.  

Input: Date string in any of the following formats:  

CCYY-MM-DDThh:mm:ss 

CCYY-MM-DD 

CCYY-MM 

CCYY 

If the date/time string is not in one of these formats, then NaN is returned.  

Output: Boolean value (TRUE/FALSE) 

MinuteInHour 

Visual representation  

Description: This function returns the minute of the hour as a number. If no argument is 
given, then the current local date/time is used as the default argument.  

Input: Optionally, a date string in any of the following formats:  

CCYY-MM-DDThh:mm:ss 

hh:mm:ss 

Output: The minute of the hour or NaN if the argument is not valid. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 130 

MonthAbbreviation 

Visual representation  

Description: This function returns the abbreviation of the month of a date. If no argument is 
given, then the current local date/time is used as the default argument.  

Input: Date string in any of the following formats:  

CCYY-MM-DDThh:mm:ss  

CCYY-MM-DD  

CCYY-MM  

--MM--  

OutputThree-letter English month abbreviation: 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 
'Aug', 'Sep', 'Oct', 'Nov' or 'Dec'.If the date/time string argument is not in valid, then an 
empty string ('') is returned. 

MonthInYear 

Visual representation  

Description: This function returns the month of a date as a number. The counting of the 
month starts from 0. If no argument is given, the current local date/time is used as the 
default argument. 

Input: Date string in any of the following formats: 

CCYY-MM-DDThh:mm:ss 

CCYY-MM-DD 

CCYY-MM 

--MM-- 

--MM-DD 

If the date/time string is not valid, then NaN is returned. 

Output: A number representing the month in a year. 

Example: 0 for January, 1 for February, 2 for March and so on. 

MonthName 

Visual representation  

Description: This function returns the full name of the month of a date. If no argument is 
given, then the current local date/time is used as the default argument.  

Input: Optionally, a date string in any of the following formats: 

CCYY-MM-DDThh:mm:ss  

CCYY-MM-DD  

CCYY-MM  

--MM--  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 131 

OutputThe English month name: 'January', 'February', 'March', 'April', 'May', 'June', 
'July', 'August', 'September', 'October', 'November' or 'December'.If the date/time string is not 
valid, then an empty string ('') is returned.  

SecondInMinute 

Visual representation  

Description: This function returns the second of the minute as a number. If no argument is 
given, then the current local date/time is used as the default argument.  

Input: Optionally, a date string in any of the following formats:  

CCYY-MM-DDThh:mm:ss 

hh:mm:ss 

Output: The second in a minute as a number. If the date/time string is not valid, then NaN is 
returned.  

Time 

Visual representation  

Description: This function returns the time specified in the date/time string that is passed as 
an argument. If no argument is given, the current local date/time is used as the default 
argument. The date/time format is basically CCYY-MM-DDThh:mm:ss. 

If no argument is given or the argument date/time specifies a time zone, then the time string 
format must include a time zone, either a Z to indicate Coordinated Universal Time or a + or - 
followed by the difference between the difference from UTC represented as hh:mm. If an 
argument is specified and it does not specify a time zone, then the time string format must 
not include a time zone. 

Input: Optionally, a date/time string in the following format:  

CCYY-MM-DDThh:mm:ss  

Output: The time from the given date/time string in the following format: 

hh:mm:ss 

If the argument string is not in this format, this function returns an empty string ('').  

WeekInYear 

Visual representation  

Description: This function returns the week of the year as a number. If no argument is given, 
then the current local date/time is used as the default argument. Counting follows ISO 8601 
standards for numbering: week 1 in a year is the week containing the first Thursday of the 
year, with new weeks beginning on a Monday.  

Input: Optionally, a date/time string in any of the following format:  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 132 

CCYY-MM-DDThh:mm:ss 

CCYY-MM-DD 

Output: The week of the year as a number. If the date/time string is not in one of these 
formats, then NaN is returned.  

Year 

Visual representation  

Description: This function returns the year of a date as a number. If no argument is given, 
then the current local date/time is used as a default argument.  

Input: Optionally, a date/time string in any of the following format:  

CCYY-MM-DDThh:mm:ss  

CCYY-MM-DD  

CCYY-MM  

CCYY  

Output If the date/time string is not in one of these formats, then NaN is returned.  

10.4.1.8 NodeSet Functions 

SUM  

Visual representation  

Description: The Sum function sums all numbers in selected nodes. 

Input: A nodes that has numerical values only. 

Output: The sum of all the nodes. If any of the input nodes is not valid, a NaN value is 
returned.  

DIFFERENCE 

Visual representation  

Description: The difference function returns the difference between the two node sets that are, 
in the node set passed as the first argument and the node that are not in the node set passed 
as the second argument. 

Input: Two node sets 

Output: Node set 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 133 

DISTINCT 

Visual representation  

Description: The distinct function returns a subset of the nodes contained in the node-set 
passed as the first argument. Specifically, it selects a node N if there is no node in a given 
node-set that has the same string value as N, and that precedes N in the document order.  

Input: A node set 

Output: A node  

HAS SAME NODE 

Visual representation  

Description: The has-same-node function returns TRUE if the node set passed as the first 
argument shares any nodes with the node set passed as the second argument. If there are no 
nodes that are in both node sets, then it returns FALSE. 

Input: Two node sets  

Output: Boolean value (TRUE or FALSE) 

INTERSECTION 

Visual representation  

Description The intersection function returns a node set containing the nodes that are within 
both the node sets passed as arguments to it. 

Input: Two node sets 

Output: Node set 

LEADING 

Visual representation  

Description: The leading function returns the nodes in the node set passed as the first 
argument that precede, in document order, the first node in the node set passed as the 
second argument. If the first node in the second node set is not contained in the first node 
set, then an empty node set is returned. If the second node set is empty, then the first node 
set is returned. 

Input: Two node sets 

Output: Node Set 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 134 

TRAILING 

Visual representation   

Description: The trailing function returns the nodes in the node set passed as the first 
argument that follow, in document order, the first node in the node set passed as the second 
argument. If the first node in the second node set is not contained in the first node set, then 
an empty node set is returned. If the second node set is empty, then the first node set is 
returned.  

Input: Two node sets 

Output: Node set 

HIGHEST 

Visual representation  

Description: The highest function returns the nodes in the node set whose value is the 
maximum (numerical) value for the node set.  

• A node has this maximum value if the result of converting its string value to a 
number as if by the number function is equal to the maximum value, where 
the equality comparison is defined as a numerical comparison using the = 
operator.  

• If any of the nodes in the node set has a non-numeric value, this function 
returns an empty node set.  

Input: A node set 

Output: A node set 

LOWEST 

Visual representation  

Description: The lowest function returns the nodes in the node set whose value is the 
minimum (numerical) value for the node set.  

• A node has this minimum value if the result of converting its string value to a 
number as if by the number function is equal to the minimum value, where the 
equality comparison is defined as a numerical comparison using the = 
operator. 

• If any of the nodes in the node set has a non-numeric value, this function 
returns an empty node set.  

Input: A node set 

Output: A node set 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 135 

MINIMUM 

Visual representation  

Description: The minimum function returns the node with the minimum numerical value within 
the given node-set. If the node set is empty, or if any of the nodes in the node set has non-
numeric value, then NaN is returned. 

Input: A node set 

Output: A numerical value 

MAXIMUM 

Visual representation  

Description: The maximum function returns the node with the maximum numerical value 
within the given node set. If the node set is empty, or if any of the nodes in the node set has 
non-numeric value, then NaN is returned. 

Input: A node set 

Output: A numerical value 

10.4.1.9 Boolean functions 

The following boolean (logical) functions are available in eMapper Tool: 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 136 

Symbol Function Description  

= Equal True if both inputs are equal. 

!= Not Equal True if both inputs are not equal 

> Greater than True if the first input is greater than the second input. 

< Less than True if the first input is less than the second input. 

>= Greater than or 
Equal 

True if the first input is greater than or equal to the second 
input. 

<=  Less than or 
Equal 

True if the first input is less than or equal to the second 
input. 

AND AND Logical AND of the two inputs (the inputs must be outputs of 
logical building blocks only). 

OR OR Logical OR of the two inputs (the inputs must be outputs of 
logical building blocks only). 

NOT NOT Logical inverse of the input (the input must be the output of 
logical building block only). 

BOOL boolean(object) Converts its argument to a boolean according to the XPath 
specifications, as follows: 

− a number is true if and only if it is neither positive or 
negative zero nor NaN. 

− a node-set is true if and only if it is non-empty 

− a string is true if and only if its length is non-zero an 
object of a type other than the four basic types is 
converted to a boolean in a way that is dependent on 
that type. 

− − IsNumber-IsNumber( )-Returns a boolean (true/ false) 
indicating if the input value is a number 

AND function 

Symbol: AND 

Description: This function accepts two boolean expressions as arguments and performs a 
logical conjunction on them. If both expressions evaluate to TRUE, the function returns TRUE. 
If either or both expressions evaluate to FALSE, the function returns FALSE.  

Input: AND (boolean AND boolean) 

Output: Boolean value (TRUE/FALSE) 

Example: 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 137 

Consider example of Chat.dtd as Input Structure and Valid.dtd as Output Structure. Suppose 
we want to filter out mails that do not have message body and the email address is not equal 
to admin@nobody.com. That is, we want that the isValid node of the Output Structure takes 
the value true if the length of the Message node of the Input Structure is not equal to zero 
and the value of the Email node is equal to admin@nobody.com. Therefore, 

1. Load Input Structure and Output Structure. 

2. Map the Message node and Email node of Input Structure to the isValid node of the 
Output Structure. 

3. Invoke the Function Wizard by Right-clicking on the isValid node. 

4. The Function Easel opens with the existing mappings. 

5. Place the BOOL node on the Function Easel. 

Link the output of the Message node to the input of the BOOL node, as shown in 
Figure 10.4.1. 
 

 

Figure 10.4.1: Linking Message and BOOL nodes 

6. Place a Constant node on the Function Easel, and set its value equal to 
admin@nobody.com. 

7. Place a = node on the Function Easel. 

Link the outputs of the Email node and Constant node to the inputs of the = node, as 
shown in Figure 10.4.2. 

 

Figure 10.4.2: Linking the Email and Constant node outputs 

8. Place an AND node on the Function Easel. 

9. Link the outputs of the BOOL node and = node to the inputs of the AND node. 

Also, link the output of the AND node to the input of the isValid node, as shown in 
Figure 10.4.3. 

 

Figure 10.4.3: Linking the AND and = node outputs 

10. This completes the desired mappings. 

BOOL  

Symbol: BOOL  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 138 

Description: 

This function converts its argument to a boolean according to the XPath specifications which 
are as follows: 

- A number is TRUE if and only if it is neither positive or negative zero nor NaN. 

- A node-set is TRUE if and only if it is non-empty. 

- A string is TRUE if and only if its length is non-zero. 

- An object of a type other than the four basic types is converted to a boolean in a way that is 
dependent on that type.  

Input: BOOL (Object)  

Output: Boolean value (TRUE/FALSE) 

Example: 

Consider example of Chat.dtd as Input Structure and Valid.dtd as Output Structure. Suppose 
we want to filter out mails that do not have message body. That is, we want that the 
isMessageExist node of the Output Structure takes the value true if the length of the 
Message node of the Input Structure is not equal to zero. The BOOL function returns true for 
a string of length non-zero. Therefore, 

1. Load Input Structure and Output Structure. 

2. Map the Message node of Input Structure to the isMessageExist node of the Output 
Structure. 

3. Invoke the Function Wizard by Right-clicking on the isMessageExist node. 

4. The Function Easel opens with the existing mappings. 

5. Place the BOOL node on the Function Easel. 

Link the output of the Message node to the input of the BOOL node, as shown in 
Figure 10.4.4. 

 

Figure 10.4.4: Linking Message and BOOl nodes 

Link the output of the BOOL node to the input of the isMessageExist node, as shown 
in Figure 10.4.5. 

 

Figure 10.4.5: Linking BOOL and IsMessageExist nodes 

6. This completes the desired mappings. 

Equal  

Symbol: =  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 139 

Description: This function returns TRUE if both the inputs are equal. 

Input: = (Object = Object)  

Output: Boolean value (TRUE/FALSE) 

Example: 

Consider example of Chat.dtd as Input Structure and Valid.dtd as Output Structure. Suppose 
we want to filter mails coming from a particular email address. That is, we want that the 
isFromAdmin node of the Output Structure takes the value true if the Email node of the 
Input Structure has the email address as admin@nobody.com. Then, 

1. Load Input Structure and Output Structure. 

2. Map the Email node of Input Structure to the isFromAdmin node of the Output 
Structure. 

3. Invoke the Function Wizard by Right-clicking on the isFromAdmin node. 

4. The Function Easel opens with the existing mappings. 

Now place a Constant building block on the Function Easel and set its value equal to 
admin@nobody.com, as shown in Figure 10.4.6. 

 

Figure 10.4.6: Setting Constant building block value to admin@nobody.com 

5. Now place a = node on the Function Easel. 

6. Link the outputs of the Email node and Constant node to the inputs of the = node. 

Link the output of the = node to the input of the isFromAdmin node, as shown in 
Figure 10.4.7. 

 

Figure 10.4.7: Linking = and isFromAdmin node 

7. This completes the desired mappings. 

Less Than  

Symbol: <  

Description: This function returns TRUE if the first input is less than the second input value.  

Input: < (Number < Number) 

Output: Boolean value (TRUE/FALSE) 

Example: 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 140 

Consider example of Numbers.dtd as Input Structure and Results.dtd as Output Structure. 
Suppose we want that Result node of Output Structure should have the value true if the value 
of Number1 node is less than the value of the Number2 node of the Input Structure. Then, 

1. Load Input Structure and Output Structure. 

2. Map the Number1 and Number2 nodes of Input Structure to the Result node of the 
Output Structure. 

3. Invoke the Function Wizard by Right-clicking on the Result node. 

4. The Function Easel shows the existing mappings. 

Place the < node on the Function Easel, as shown in Figure 10.4.8. 

 

Figure 10.4.8: Placing a node on the Function Easel 

5. Link the outputs of the Number1 node and Number2 node to the inputs of the < 
node. 

Also, link the output of the < node to the input of the Result node, as shown in Figure 
10.4.8. 

 

Figure 10.4.9: Linking < and Result node 

6. This completes the desired mappings. 

Greater than  

Symbol: > 

Description: This function returns TRUE if the first input is greater than the second input 
value. 

Input: > (Number > Number) 

Output: Boolean value (TRUE/FALSE) 

Example: 

Consider example of TotalMarks.dtd as Input Structure and Result.dtd as Output Structure. 
Suppose we want that the value of the PassStatus node is true if the value of the TotalMarks 
node of the Input Structure is greater than a constant value 150. Then, 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 141 

1. Load Input Structure and Output Structure. 

2. Map the TotalMarks node of Input Structure to the PassStatus node of the Output 
Structure. 

3. Invoke the Function Wizard by right-clicking on the PassStatus node. 

4. The Function Easel opens with the existing mappings. 

5. Now place a Constant building block on the Function Easel and set its value equal to 
150, as shown in Figure 10.4.10. 

 

Figure 10.4.10: Setting the Constant building block to 150 

6. Place a > node on the Function Easel. 

7. Link the outputs of TotalMarks node and Constant node to the input of the > node. 

Also, link the output of the > node to the input of the PassStatus node, as shown in 
Figure 10.4.11. 

 

Figure 10.4.11: Linking the > and PassStatus node 

8. This completes the desired mappings. 

Greater than or Equal function 

Function: >=  

Input: >= (Number >= Number) 

Description: True if the first input is greater than or equal to the second input. 
Output: True/False  

Example: 

Consider example of TotalMarks.dtd as Input Structure and Result.dtd as Output Structure. 
Suppose we want that the value of the PassStatus node is true if the value of the 
TotalMarks node of the Input Structure is greater than or equal to a constant value 
150.Then, 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 142 

1. Load Input Structure and Output Structure. 

2. Map the TotalMarks node of Input Structure to the PassStatus node of the Output 
Structure. 

3. Invoke the Function Wizard by right-clicking on the PassStatus node. 

4. The Function Easel opens with the existing mappings. 

Now place a Constant building block on the Function Easel and set its value equal to 
150, as shown in Figure 10.4.12. 

 

Figure 10.4.12: Setting the Constant building block to 150 

 

5. Place a >= node on the Function Easel. 

6. Link the outputs of TotalMarks node and Constant node to the input of the >= node. 

Also, link the output of the >= node to the input of the PassStatus node, as shown in 
Figure 10.4.13. 

 

Figure 10.4.13: Linking the >= and PassStatus nodes 

7. This completes the desired mappings. 

OR 

Symbol: OR 

Description: This function accepts two boolean expressions as arguments and performs 
logical disjunction on them. If either expression evaluates to TRUE, the function returns TRUE. 
If neither expression evaluates to True, the function returns FALSE. 

Input: OR ( boolean OR boolean ) 

Output: Boolean value (TRUE/FALSE) 

Example: 

Consider example of Chat.dtd as Input Structure and Valid.dtdas Output Structure. Suppose 
we want to receive mails that are sent either from the address admin@nobody.com or 
aryton@nobody.com that is, we want that the isValid node of the Output Structure takes the 
value true if the Email node of the Input Structure has the value admin@nobody.com or 
aryton@nobody.com. Then, 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 143 

1. Load Input Structure and Output Structure. 

2. Map the Email node of Input Structure to the isValid node of the Output Structure. 

3. Invoke the Function Wizard by Right-clicking on the isValid node. 

4. The Function Easel opens with the existing mappings. 

5. Place a Constant node on the Function Easel and set its value equal to 
admin@nobody.com. 

Place another Constant node and set its value equal to aryton@nobody.com, as 
shown in Figure 10.4.14. 

 

Figure 10.4.14: Setting the Constant node value to aryton@nobody.com 

Now place two = nodes on the Function Easel, and make links as shown in Figure 
10.4.15. 

 

Figure 10.4.15: Placing two = nodes on the Function Easel 

6. Place a OR node on the Function Easel. 

7. Link the outputs of the two = nodes to the inputs of the OR node. 

Also, link the output of the OR node to the input of the isValid node, as shown in 
Figure 10.4.16. 

 

Figure 10.4.16: Linking the OR and isValid nodes 

8. This completes the desired mappings. 

Less Than or Equal  

Symbol: <= 

Description: This function returns TRUE if the first input is less than or equal to the second 
input. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 144 

Input: <= (Number <= Number) 

Output: Boolean value (TRUE/FALSE) 

Example: 

Consider example of Numbers.dtd as Input Structure and Results.dtd as Output Structure. 
Suppose we want that Result node of Output Structure should have the value true if the value 
of Number1 node is less than or equal to the value of the Number2 node of the Input 
Structure. Then, 

1. Load Input Structure and Output Structure. 

2. Map the Number1 and Number2 nodes of Input Structure to the Result node of the 
Output Structure. 

3. Invoke the Function Wizard by right-clicking on the Result node. 

4. The Function Easel shows the existing mappings. 

Place the <= node on the Function Easel, as shown in Figure 10.4.17: 

 

Figure 10.4.17: Placing <= node on the Function Easel 

5. Link the outputs of the Number1 node and Number2 node to the inputs of the <= 
node. 

Also, link the output of the <= node to the input of the Result node, as shown in 
Figure 10.4.18: 

 

Figure 10.4.18: Linking outputs of the Number1 and Number2 nodes 

6. This completes the desired mappings. 

NOT  

Symbol: NOT 

Description: This function accepts a boolean expression as the argument and performs 
logical negation the expression. The result is a boolean value representing whether the 
expression is FALSE. That is, if the expression is FALSE, the result of this function is TRUE. 

Input: NOT (boolean) 

Output: Boolean value (TRUE/FALSE) 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 145 

Example: 

Consider example of Valid.dtd as Input and Output Structure. Suppose we want to make mails 
from email address admin@nobody.com as invalid. That is, we want that if the value of 
isFromAdmin node is true, then the value of isValid is set to false. Then, 

1. Load Input Structure and Output Structure. 

2. Map the isFromAdmin node of Input Structure to the isValid node of the Output 
Structure. 

3. Invoke the Function Wizard by right-clicking on the isValid node. 

4. The Function Easel shows the existing mappings. 

Now place a NOT node on the Function Easel, as shown in Figure 10.4.18. 

 

Figure 10.4.19: placing a NOT node on the Function Easel 

5. Link the output of the isFromAdmin node to the input of the NOT node. 

Also link the output of the NOT node to the input of the isValid node, as shown in 
Figure 10.4.20. 

 

Figure 10.4.20: Linking theNOT and isValid nodes 

6. This completes the desired mappings. 

Not Equal  

Symbol ! =  

Description: This function returns TRUE if both the inputs are not equal. 

Input != (Object = Object) 

Output: Boolean value (TRUE/FALSE) 

Example: 

Consider example of Chat.dtd as Input Structure and Valid.dtd as Output Structure. Suppose 
we want to filter out mails that do not have message body. That is, we want that the 
isMessageExist node of the Output Structure takes the value true if the length of the 
Message node of the Input Structure is not equal to zero. Then, 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 146 

1. Load Input Structure and Output Structure. 

2. Map the Message node of Input Structure to the isMessageExist node of the Output 
Structure. 

3. Invoke the Function Wizard by Right-clicking on the isMessageExist node. 

4. The Function Easel opens with the existing mappings. 

5. Now place a Constant building block on the Function Easel and set its value equal to 
0. 

6. Place a Length node on the Function Easel. 

Link the output of the Message node to the input of the Length node, as shown in 
Figure 10.4.21. 

 

Figure 10.4.21: Linking the Message and Length nodes 

7. Place a != node on the Function Easel. 

8. Link the outputs of the Length node and Constant node to the inputs of the != node. 

Also, link the output of the != node to the input of the isMessageExist node, as 
shown in Figure 10.4.22. 

 

Figure 10.4.22: Linking the !=and isMessageExist nodes  

9. This completes the desired mappings. 

IsNumber  

Symbol: IsNumber 

Description: This function returns TRUE if the input value is a number. 

Input: Any value 

Output: Boolean value (TRUE/FALSE) 

10.4.1.10 Lookup functions 

The functions in this category are used to perform the lookup of keyvalue pairs in a database 
and return the result in sorted fashion.  
 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 147 

10.4.1.10.1 Lookup with Default Connection Details 

DB  

Description: This function accepts a table name, keyvalue pairs and column names as 
arguments and does the lookup in the database and returns the result in sorted form. 

Input: Table name, Key value pairs, Columns names. 

Output: String containing the lookup result in sorted order.  

Points to note 

1. Lookup functions take key columns name value pairs as 
<column1>=<value1>,<column2>=<value2> etc. 

For example: dvSendDept=100, dvSendCode=BLK  

2. Lookup functions can return value of multiple columns. To get multiple columns, use 
the format <column3>,<column4>. 
For example: dvValueDA, dvDescription 

3. Dates are expected in MM/dd/yyyy HH:mm:ss format 

4. Make sure the input value match the column length defined in the database. For 
example, if the dvSendCode is defined as char(10) in the database, the input value 
should be BLK followed by seven spaces. 

Note: Spaces are not required if you are using MSSQL 2005.  

Prerequisites 

1. Add required database drivers in the eMapper classpath. 

For example, if the lookup tables are in HSQL, include the path of hsqldb.jar in 
<java.classpath> of eMapper.conf present at 
{FIORANOHOME}/esb/tools/eMapper/bin.  

2. To use this function in eMapper tool, a system property eMapper.lookup.dbconfig 
has to be defined in eMapper.conf and it should point to the path of db.properties 
file which contains the url, driverName, user and password.  
Sample db properties file is shown below which contains the data for oracle data base. 

 

Figure 10.4.23: Sample db properties file 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 148 

3. For use in Route transformations, eMapper.lookup.dbconfig property has to be set 
in {FIORANOHOME}/fps/bin/fps.conf. 

4. For use in XSLT component, eMapper.lookup.dbconfig property has to be included 
in JVM_PARAMS  
For example: -DeMapper.lookup.dbconfig=<path of db.properties>  

10.4.1.10.2 Lookup with Connection Details 

DB  

Description: This function accepts a table name, keyvalue pairs, column names, url, driver 
name, user name and password as arguments and does the lookup in the database and 
returns the result in sorted form. 

Input: Table name, Key value pairs, Columns names, url, driver name, user name and 
password.  

Output: String containing the lookup result in sorted order.  

Points to note 

1. Lookup functions take key columns name value pairs as 
<column1>=<value1>,<column2>=<value2> etc. 

For example, dvSendDept=100, dvSendCode=BLK  

Lookup functions can return value of multiple columns. To get multiple columns, use 
the format <column3>,<column4>. 

For example, dvValueDA, dvDescription 

2. Dates are expected in MM/dd/yyyy HH:mm:ss format 

3. Make sure the input value match the column length defined in the database. For 
example, if the dvSendCode is defined as char(10) in the database,  
the input value should be BLK followed by 7 spaces. 

Prerequisites 

1. Add required database drivers in the eMapper classpath. 

For example, if the lookup tables are in HSQL, include the path of hsqldb.jar in 
<java.classpath> of eMapper.conf present at 
{FIORANOHOME}/esb/tools/eMapper/bin.  

10.4.1.11 JMS Message Functions  

The various functions in this category extract specific information from a JMS Message and 
output to the same. The input for these functions is a JMS Message. The following are the 
available JMS Message Functions:  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 149 

 Byte Content  

 Text Content  

 Header  

 Attachment  

10.4.1.11.1 Byte Content  

Function: Byte Content  

Description: The Byte Content function returns the byte content of a Fiorano document.  

Output: Base64 encoded string value  

10.4.1.11.2 Text Content  

Function: Text Content  

Description: The Text Content function returns the content which is in text format from a 
Fiorano document.  

Output: String value  

10.4.1.11.3 Header  

Function: Header  

Description: The Header function returns the value of the name that is passed as a property 
to the function. 

Output: String value  

10.4.1.11.4 Attachment  

Function: Attachment  

Description: The Attachment function returns any attachments attached to a Fiorano 
document. The name of the attachment needs to be passed as a property to the function. 

Output: Base64 encoded string value  

10.4.1.12 User Defined functions 

The various functions in this category are user defined and perform various functionalities. The 
following User Defined functions are available: 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 150 

 dateConversion  

 compute 

 nextMillenium 

 replace 

10.4.1.12.1 myExt:dateConversion 

Description: Converts the date from one format to the other. For example, date can be 
converted from MM-dd-yyyy to dd-MM–yy function convertDate (dateString, inFormat, 
outFormat) 

 Field  Full Form Short Form 

Year  yyyy (4 digits) yy (2 digits), y (2 or 4 digits) 

Month MMM (name or abbr.) MM (2 digits), M (1 or 2 digits)  

  NNN (abbr.)   

Day of Month dd (2 digits) d (1 or 2 digits) 

Day of Week  EE (name) E (abbr) 

Hour (1-12) hh (2 digits) h (1 or 2 digits) 

Hour (0-23) HH (2 digits) H (1 or 2 digits) 

Hour (0-11) KK (2 digits) K (1 or 2 digits) 

Hour (1-24) kk (2 digits) k (1 or 2 digits) 

Minute mm (2 digits) m (1 or 2 digits) 

Second ss (2 digits) s (1 or 2 digits) 

AM/PM  a   

Input: Accepts three arguments. The first argument is the date passed as a string to the 
function. The second argument is the input format and the third argument is the required 
output format for the date. 

Output: The date string 

Examples:  

MMM d, y matches: January 01, 2000, Dec 1, 1900, Nov 20, 00 

M/d/yy matches: 01/20/00, 9/2/00 

MMM dd, yyyy hh:mm:ssa matches: January 01, 2000 12:30:45AM 

10.4.1.12.2 myExt: replace 

Description: This user-defined function replaces parts of a string that match a regular 
expression with another string. 

string regexp:replace(string, string, string, string) 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 151 

Input: The function accepts four arguments. The first argument is the string to be matched 
and replaced. The second argument is a regular expression that follows the Javascript regular 
expression syntax. The fourth argument is the string to replace the matched parts of the 
string.  

The third argument is a string consisting of character flags to be used by the match. If a 
character is present then that flag is true. The flags are:  

g: global replace - all occurrences of the regular expression in the string are replaced. If this 
character is not present, then only the first occurrence of the regular expression is replaced.  
i: case insensitive - the regular expression is treated as case insensitive. If this character is 
not present, then the regular expression is case sensitive. 

Output: String 

10.4.1.12.3 myExt:compute  

Description: This user-defined function can be used to compute all mathematical operations 
such as Addition, Subtraction, Multiplication and division of number. The function does not 
compute mathematical operations such as cos, sin etc.  

Input: A valid javascript expression  

Output: A number  

10.4.1.12.4 myExt: nextMillenium  

Description: This user-defined function returns the number of days in the next millenium.  

Input: There is no input for this function  

Output: Number  

10.4.2 Funclet Easel 

This panel is the basic work area for creating expression based mappings. The user can place 
the Function nodes as well as the Source or Destination nodes on this area and make the 
required mappings. 

The Funclet easel appears as shown in Figure 10.4.24.  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 152 

 

Figure 10.4.24: Funclet easel 

10.4.2.1 Source Node 

The Source node corresponds to a node in the Input Structure Panel. A Source node appears, 
as shown in Figure 10.4.25.  

 

Figure 10.4.25: Source Node 

10.4.2.2 Destination Node 

The Destination node corresponds to a node in the Output Structure Panel. A Destination node 
appears, as shown in Figure 10.4.26.  

 

Figure 10.4.26: Destination Node 

Add Link between two Nodes 

To make a link between two nodes placed on the Funclet easel, follow the steps below:  

1. Click on the gray box on the source building block. A small circle appears, as shown in 
Figure 10.4.27. This represents the starting point of the link and the output box of the 
building block. 

 

Figure 10.4.27: Source node 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 153 

2. Now drag-and-drop the mouse to the Destination node’s input point, which is again 
represented by a gray box. A big circle appears on the destination node, as shown in 
Figure 10.4.28. 

 

Figure 10.4.28: Linking the Source and the Destination node 

3. Release the mouse. A link between the two nodes is created. 

Add Source node to Funclet easel 

Drag-and-drop the source node from the Input Structure Panel to the Funclet easel, as 
shown in Figure 10.4.28. 

 

Figure 10.4.29: Adding Source node to Funclet easel 

Add Function node to Funclet easel  

Click the Function node on the Function palette that is to be placed on the Funclet easel, as 
shown in Figure 10.4.30. 

 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 154 

Figure 10.4.30: Selecting the Function node 

1. Now move mouse into the Funclet easel. This changes the mouse to a?+? ‘+’ sign, 
representing that the corresponding function node is selected. 

2. Now click on the Funclet easel. 

3. This places the corresponding function node building block on the Funclet easel. 

Alternatively, 

1. Drag-and-Drop the function node from Function palette to the Funclet easel, as shown in 
Figure 10.4.31. 

 

Figure 10.4.31: Funclet easel 

Add Link between two nodes 

To make a link between two nodes placed on the Funclet easel, follow the steps below:  

Click on the gray box on the source building block. A small circle appears, as shown in Figure 
10.4.32. This represents the starting point of the link and the output box of the building block.  

 

Figure 10.4.32: Source node 

1. Now drag-and-drop the mouse to the destination node’s input point, which is again 
represented by a gray box. A big circle appears on the destination node, as shown in 
Figure 10.4.33. 

 

Figure 10.4.33: Linking the Source and the destination node 

2. Release the mouse. A link between the two nodes is created, as shown in Figure 10.4.34. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 155 

 

Figure 10.4.34: Linking Source and Destination nodes 

Delete link between two nodes  

To delete a link between two building blocks, 

Click on the pointing arrow (ending point) of the link and drag it to an empty area in the 
Funclet easel, as shown in Figure 10.4.35.  

 

Figure 10.4.35: Deleting link 

2. Now, release the mouse. This removes the link between the corresponding nodes. 

Delete node from Funclet easel 

Select the corresponding building block and right-click on it. The shortcut menu appears as 
shown in Figure 10.4.36.  

 

Figure 10.4.36: Pop-up menu  

• Click Delete to delete the selected building block. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 156 

Open Function Help 

The description for a predefined function can be viewed by clicking Help in the right-click menu 
of a Function node. 

10.5 Creating Mappings 

Mappings are defined between nodes of the Input and Output structures. The Structure is 
displayed in a tree form. 

10.5.1 Understanding Types of Nodes 

Mappings are defined between nodes of the Input and Output structures. These nodes can be 
divided into four types:  

1. Element Node: This type of node contains an XML element.  

2. Text Node: This type of node contains an XML element only.  

3. Attribute Node: This type of node contains an attribute of the XML element that 
contains it.  

4. Control Node: The control node is a pseudo node that depicts the cardinality of the 
elements in an XML structure. The Control node is displayed in red color, and is 
surrounded by square brackets.  

The control node serves as a useful indicator while creating mappings between the Input and 
Output Structures. For example, an Output structure node that has a cardinality of one or 
more requires that at least one element should be added to that XML structure.  

Control Node[ZERO-MANY]: This Control node specifies that zero to many occurrences of a 
node can exist in its parent node. For example, in Figure 10.5.1 the Mail-List element can 
contain zero or many Mail nodes. 

 

Figure 10.5.1: Example of Zero to Many control node 

Control Node [ONE-MANY]: This Control node specifies that one to many occurrences of a 
node can exist in its parent node. For example, in Figure 10.5.2 the Mail node can contain one 
or many occurrences of the Attachment node. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 157 

 

Figure 10.5.2: Example of One to Many control node 

Control Node [Choice]: This Control node specifies that only one of the descendant nodes 
can exist in the parent node. For example in Figure 10.5.3 TifosiService node can have either 
Java node or Win32 node, but not both. 

 

Figure 10.5.3: Example of Choice Control Node 

A structure can also contain optional nodes. This type of node specifies that either zero or one 
occurrence of this node can exist in its parent node. For examples, in Figure 10.5.4, Student 
node can have zero or on occurrence of the Nick-Name node. An Optional node 
(element/attribute) is displayed in green color.  

 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 158 

Figure 10.5.4: Example of Optional Node 

10.5.2 Types of Mappings 

Mappings from an Input Structure node to an Output Structure node can be singular or 
iterative. Singular mappings, known as Name-to-Name mappings in Fiorano SOA Platform, 
create only one output element from the first instance of the mapped element in the Input 
Structure.  

On the other hand, iterative mappings, known as For-Each mappings in Fiorano SOA Platform, 
iterate through all instances of the mapped Input Structure element and create corresponding 
Output Structure elements.  

For Input Structure nodes that contain only single instances of child elements, only Name-to-
Name mappings can be defined.  

10.5.2.1 Name-to-Name Mapping 

Now create mapping from Name-to-Name, as shown in Figure 10.5.6. 

 

Figure 10.5.6: Name-to-name Mapping 

 

The Funclet Wizard shows a link starting from the output of the name input node to name 
output node. The Name-to-Name mapping defines how elements and attributes in the Input 
Structure map on to elements and attributes in the Output Structure. A Name-to-Name 
mapping on its own (without a For-Each mapping context) creates a single instance of the 
mapped Input Structure node to the Output Structure.  

If the Name-to-Name mapping exists within a For-Each mapping context and there are 
multiple elements and attributes in the Input Structure then each of those elements and 
attributes is mapped on to an Output Structure node.  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 159 

10.5.2.2 For-Each Mapping 

When an Input Structure node can have multiple instances and the user wants to define a 
mapping for each one of them, then For-Each mapping should be used. A necessary condition 
for this type of mapping is that the Output Structure node to which For Each Mapping is being 
defined should be of[ZERO-MANY] or [ONE-MANY] cardinality. Figure 10.5.7, shows an instance of 
a For-Each mapping. 

 

Figure 10.5.7: For-Each Mapping 

This mapping specifies that for each Product element in the input XML, the output XML 
contains a Product element. For-each mapping can be applied only to [ZERO-MANY] or [ONE-
MANY] control nodes in the Output Structure. 

To create a For-each mapping in the Funclet Wizard, you need to link the Loop output label of 
the Input Structure node to a [ZERO MANY] or [ONE-MANY] control node in the Output Structure. 
These control nodes signify the cardinality of contained elements and attributes. 

All value mappings for the attributes and child elements of a [ZERO MANY] or [ONE-MANY] node 
with For-Each mapping, are carried out within this For-Each context.  

So, in Figure 10.5.7 the mapping defined creates multiple instances of the Product element 
from the Product elements in the Input Structure. The Output element, Product, is created as 
per the mappings defined for its attributes and child elements by the respective Name-to-
Name mappings. 

10.5.3 Duplicating a For-Each Mapping 

There may be situations in which one may want to specify different input values for different 
iterations of a For-Each loop. This can be accomplished by duplicating a [Zero Many] or [One 
Many] control node in the output structure. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 160 

The following example illustrates this situation. A Student DTD has two types of child 
elements: male and female. These need to be mapped to student element in the output 
structure DTD, as shown in Figure 10.5.8.  

 

Figure 10.5.8: Mapping a node to One Many control node 

The same mapping has to be defined for the female elements. To do this, drag the female 
node from the input structure to the output structure. A message dialog is displayed as shown 
in Figure 10.5.9.  

 

Figure 10.5.9: A shortcut menu prompts you to duplicate the node 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 161 

Click OK in the message dialog to create a duplicate node. A mapping is created as shown in 
Figure 10.5.10. 

 

Figure 10.5.10: The One Many Node is Duplicated 

10.5.4 Linking Nodes to Define Mappings 

A Mapping is defined in the Fiorano eMapper tool by visually linking the Input Structure nodes 
to the Output Structure nodes. This linking can be defined using any of the following 
techniques:  

1. Drag and drop the node from the Input Structure Panel to the Output Structure Panel  

2. Or, create an automatic mapping between child nodes of the selected Input Structure 
node and child nodes of the selected Output Structure node 

3. Or, by using the Visual Expression Builder 

10.5.4.1 Using the Automatic Mapping option to Define Mappings 

To create automatic mappings between the selected Input and Output Structure nodes: 

Select the nodes in the Input and Output Structure whose child nodes are mapped. Click the 
Child to Child option in the tool bar, as shown in Figure 10.5.11. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 162 

 

Figure 10.5.11: Creating Automatic Mapping between child nodes 

10.5.4.2 Using the Visual Expression Builder to Define Mappings 

The Visual Expression Builder (VEB) is a useful feature of the eMapper tool. It allows you to 
visually link nodes and insert functions to define complex mapping expressions. As an 
example, we define a mapping for the DiscountPrice output node. This node should have a 
value that is generated by subtracting the value of the Discount input node from the Cost 
input node. To use the VEB to define the mapping perform the following steps: 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 163 

1. Select the DiscountPrice output node and the Funclet View of the eMapper Perspective 
is displayed as shown in Figure 10.5.12. 

 

Figure 10.5.12: Selecting the Output Node for Mapping 

2. The selected Output node is automatically displayed in the Function easel, as shown in 
the Figure 10.5.12. To add an input structure node to the mapping, drag it to the 
Funclet easel of the Visual Expression Builder. Here, drag the Cost input node from the 
Input Structure Panel to the Funclet easel. The Cost input node is added to the Funclet 
easel as shown in Figure 10.5.13.  

 

Figure 10.5.13: Dragging an Input node 

3. To subtract the value of Discount input node,  the subtract function from the Funclet 
Palette can be used. The subtract function is available in the Arithmetic functions. To 
add the subtract function; first select the Arithmetic function category from the 
Function palette. Click on the drop-down list in the Funclet palette. The drop-down list 
is displayed in the Funclet palette, as shown in Figure 10.5.14.  

 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 164 

4. Select Arithmetic Functions from the list. The Arithmetic functions are displayed in 
the Funclet palette. Drag the subtract function from the Function palette to the 
Funclet easel. The subtract function is added to the Funclet easel as shown in Figure 
10.5.15.  

 

Figure 10.5.14: Selecting the Arithmetic Function Category in the Funclet palette 

 

Figure 10.5.15: Adding the Subtract function 

5. Next, add the Discount input node to the Funclet easel. 

 

Figure 10.5.16: Adding another input node 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 165 

6. To define a mapping links should be defined between these node. The Discount 
output is the difference between the Cost and Discount input nodes. To achieve this, 
the Cost and Discount nodes should be connected to the input pins (num1, num2 
respectively) of the subtract function and its output pin should be connected to the 
input pin of the Discount output node. 

 

Figure 10.5.17: The final mapping is defined 

7. The required mapping is defined as shown in Figure 10.5.17. 

10.5.5 Mapping XML Formats 

Mapping one XML format to another is a common requirement. The steps for mapping XML, 
formats to each other are as follows: 

1. Load the XML, DTD, or XSD input structure or structures.  

2. Load an XML, DTD, or XSD output structure.  

3. Link the Input XML Structure node or nodes to the Output XML Structure node.  

The following restrictions and conditions apply when mapping one XML format to another:  

Nodes that do not have any content cannot be mapped. However, the child nodes of these 
nodes can be mapped provided they can contain content.  

The SQL and advanced function categories are not available for XML to XML mapping 

10.6 Adding User XSLT 

eMapper also allows the user to customize the output of the transformation by adding custom 
xslt code to the generated XSLT. XSLT code snippets can be added before and after the 
beginning tag<> of an element and before and after the end tag </> of an element in the 
XSLT. By enabling this, eMapper allows  further refinement on the auto-generated output.  

As an example, consider a case where the eMapper generates an output that contains 
elements not required by the user. In this example, the eMapper generates an output which 
contains elements that is not mapped. The mapping has an output structure in which the 
parent element is not mapped but the child elements are mapped, Fiorano eMapper does not 
generate the if conditions around this unmapped parent element as a result of which this 
element is generated in the output. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 166 

To avoid the generation of unmapped elements in the output, there should be an if condition 
around <unmapped> element in XSLT whose condition is OR of both the child nodes' if 
conditions. 

Under such conditions, the User XSL feature can be used to customize the output and avoid 
the generation of unmapped tags. To provide a user defined xsl 

Right-click the <unmapped element> in the output structure and select the User XSL option 
from the shortcut menu as shown in Figure 10.6.1. 

  

Figure 10.6.1: Selecting the User XSL option from the context menu 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 167 

1. A dialog box appears which contains the xslt script. The xslt script displayed in this 
dialog box is partially editable. The editable regions, as shown in Figure 10.6.2, are 
marked by comments <!--User code starts here--> and <!--User code ends here--> at 
the beginning and ending respectively. 

 

Figure 10.6.2: Editing the user xsl 

As shown in Figure 10.6.2, XSL snippets can be added in the following four places: 

• just above <element> 

• just below <element> 

• just above </element> 

• just below </element> 

2. Add the required if code snippet in these regions.  

3. Click the OK button and the User XSL is saved for the element. It is denoted by the  
icon next to the element/node in the structure as shown in Figure 10.6.3. 

 

Figure 10.6.3: Node with User XSL defined 

4. The XSL can be tested it using Test option as described in the section 10.9 Testing the 
Transformation 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 168 

10.7 Working with derived types 

When a complex type in an output/input structure has derived types, either by extension or 
restriction, the user can choose a derived type and the mappings can be defined using 
elements of selected derived type. 

This is explained with an example. Screenshot of the sample schema used is shown below. 

 

Figure 10.7.1: Schema with derived types 

The schema provided in Figure 10.7.1 contains an element SamplePublication of type 
Publication. The type Publication has two derived types: BookPublication(extension) and 
PaperPublication(restriction). 

When the schema is loaded in Mapper, the element SamplePublication is shown in Mapper. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 169 

 

Figure 10.7.2: Sample Publication with default type 

Since the type Publication has derived types, user can change the type of the element 
SamplePublication. All the derived types will be shown when Right-clicked on the 
SamplePublication element and the user can select the required derived type as shown in 
Figure 10.7.3. 

 

Figure 10.7.3: Available derived types 

When a different type is selected, the structure will be refreshed to show the selected type. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 170 

 

Figure 10.7.1: SamplePublication element when BookPublication type is chosen 

Mappings can be defined assuming that the element SamplePublication is of type 
BookPublication. 

Note: When derived types are used, the input/output must comply with the type used. 

10.8 Create/Edit User Defined Function(s) 

Custom Functions can be added to the User Defined Functions category of the Function 
Palette. Functions can be created by performing the following steps.  

• Go to Tools menu in the eMapper perspective and click Create/Edit User Defined 
Function(s). The Extensions Dialog is shown as shown in the Figure 10.8.1. 

 

Figure 10.8.1 Extensions Dialog 

• This dialog has a list of all extensions that are defined.  



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 171 

• To create a new extension, type the name of the extension to be created in the text 
area provided in this dialog and click OK. 

• To edit one of the existing extension, click on the extension and then press OK. 

• The Script Function Wizard will appear as shown in Figure 10.8.2. The wizard has 
two pages viz Script Information Page and Function Page. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 172 

Script Information Page: 

• Extensions can be defined either in Javascript or Java language. The language of the 
extension being added can be specified from the Language combo present in the 
Script Information Page 

• The Javascript or the qualified name of the Java class, depending on the language of 
the extension,  needs to be provided in this page.  

• To add Javascript functions, provide the Javascript and click Next. The script will be 
processed and the list of functions will be populated in the Function Page. 

• To add Java Functions, provide the qualified name of the Java class and click Next. 
The list in the Function Page will be populated with all the public static functions 
defined in this class. 

 

Figure 10.8.2 Script Information Page 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 173 

Function Page: 

• The Function Page shows the list of functions that were defined in the Script 
Information Page. The user can select the desired functions and the selected 
functions will be added to the Function palette under the User Defined Functions 
category. 

 

Figure 10.8.3 Function Page 

Note: While adding Java functions, the user might have to add a .jar file to the classpath in 
order to fetch the list of functions. This can be done through the Include jar to classpath 
option provided in the Script Information Page. Click the browse button and add the required 
jar file. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 174 

 

Figure 10.8.4 Adding Jar to classpath 

10.9 Testing the Transformation 

The transformation created in a eMapper project can be tested by performing the following 
steps:  

Click Tools > Test Mapping in the Fiorano eMapper's menu bar, as shown in Figure 10.9.1 or 
click the Test button in the tool bar 

 

Figure 10.9.1: Invoking the Test option 

The Test XSL wizard is displayed, as shown in Figure 10.9.2. The Transformation can be tested 
by following these steps: 

Providing MetaData 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 175 

• This wizard has two pages, the MetaData page and the Test Mappings page.   

• The output structure for which the transformation is being tested can be 
chosen from the combo provided at the top of the MetaData page.  

• The text area, by default shows the transformation generated automatically by 
the eMapper for the specified output structure. This transformation can also be 
modified by deselecting the Always Load From eMapper button. 

• This allows the user to modify the XSL. Specify the XSL and move to the next 
page to perform the transformation. 

Input XMLs 

• The Test Mappings page has two tabs, Input XML tab and Output XML tab.  

• The Input XML tab, as the name suggests, is used to provide the input XMLs. 
This tab in turn has sub tabs for each input structure loaded in the eMapper. 

• A sample XML can be generated from the corresponding structure by clicking 
the Generate Sample XML button present in the tool bar of an input tab. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 176 

 

Figure 10.9.2: Metadata Page 

• The Generate Sample XML dialog box is displayed, as shown in Figure 10.9.3. The 
default values are appropriate in most situations. Provide the desired values and click 
OK to generate a sample XML. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 177 

 

Figure 10.9.3: Selecting the sample Input XML generation options 

• The sample XML is generated in the Input XML tab as shown in Figure 10.9.4. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 178 

 

Figure 10.9.4: A Sample Input XML 

• Options to load input XML from a file and validate the input XML are provided in the 
tool bar. Validation errors if any will be displayed at the top of the wizard. 

• The Input XML tab also contains a Parameters tab that can be used to define 
parameters to be used while transformation. The required parameters can be added to 
the table provided in this tab. 

• System Properties, if needed, can be defined from the System Properties tab. For 
example, while using Lookup Functions, a system property needs to defined pointing 
to the db.properties file which holds data for oracle data base 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 179 

Testing the transformation 

• Click the Apply Transformations button to test the defined transformation.  

• The output XML is displayed in the Output XML tab, as shown in Figure 10.9.5.  

 

Figure 10.8.5: The Output XML resulting from the Transformation 

10.10 Managing Mappings 

Creating mappings is as simple as dragging an input node and dropping it on a target 
structure node. The eMapper also provides few other options to manage mappings. 

10.10.1 Exporting eMapper Project 

To export the eMapper project, perform the following steps: 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 180 

1. Click File > Export or Right-click on the project to be exported in the eMapper 
Projects explorer and choose Export.  

2. To export the project as an archive file select General > Archive File as the export 
destination. 

3. Enter the file name in which you want to export the project and click on OK button.  

4. The project gets as an archive file.  

5. The project folders can also be exported as it is to the local file system by selecting 
General > File System in the Export wizard 

10.10.2 Importing Project from the File 

A eMapper project an be imported either from an existing .tmf file or from another eMapper 
project. 

To import the project from an existing project: 

1. Click File > Import. The Import wizard is shown. 

2. Choose the appropriate import source. (Archive File or Existing Projects into 
Workspace depending on the source of import). 

3. Provide the location of the source and the project is imported to the workspace. 

To import mappings from a .tmf file: 

1. Click File > New > Fiorano Map 

2. In the New eMapper Project wizard, provide a valid project name and select the Load 
from tmf file option. 

3. Load the tmf file using the browse button provided and click Finish. 

4. The new eMapper project with the Mappings from the provided .tmf is created in the 
workspace. 

10.10.3 Copying functions in a Mapping 

You can copy functions within a mapping project and across mapping projects. To copy a 
function  

Select the function in the funclet view and click Copy from the right-click menu as shown 
below in Figure 10.10.1. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 181 

 

Figure 10.10.1: Copying a function 

Click Paste and the function is pasted in the funclet view and can be reused within or even 
across mappings.  

10.10.4 Clearing All Mappings 

To clear all the mappings between the Input and the Output Structure, 

1. Right-click on the line panel and select Clear Mappings. 

2. A warning dialog box is displayed showing a confirmation message. Click Yes to 
remove all the existing mappings between the input and output structures. 

10.10.5 Managing XSLT Properties 

You can also manage the XSLT properties of the output XSLT. To do the same: 

Click Tools> XSLT Properties. The XSLT Properties dialog box is displayed as shown in Figure 
10.10.2. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 182 

  

Figure 10.10.2: Viewing XSLT Properties 

This dialog box contains the following components: 

5. XSLT Encoding; Specifies the encoding of the generated XSL. 

6. Include DTD: Select this option to include the internal specified DTD in the 
transformation output. By default, this option is disabled. 

• <xsl output: attributes> 

a. Output Method: Select the method of output after transformation from the 
dropdown list. The method of output can be HTML, XML, or text. 

b. Indent: Select this option to indent the output XSLT. 

c. Output Encoding: Specifies the encoding of the generated output XSL 

• Omit-xml-declaration: Specifies whether the output XML generated should contain 
XML declaration or not. 



Fiorano eStudio User Guide 

Chapter 10: eMapper Page 183 

• Suppress optional empty items: Select this option for defining a mapping to an 
output node, always generate the output node in output xml, event input xml has no 
matching node. It is some times desirable not to generate optional output nodes if no 
input matching node is found in input xml. This requires using a conditional mapping. 
You can specify such conditional mapping by using "User XSL" feature. eMapper can 
generate such conditions automatically for optional elements if this option is selected. 



Fiorano eStudio User Guide 

Chapter 11: Working With Multiple Servers And Perspectives Page 184 

Chapter 11: Working With Multiple 
Servers And Perspectives 
 

11.1 Active Server Node  

In Online Event Process Development perspective, user can add as many Enterprise Servers 
and Login to them and create, deploy, and run Event Processes on them.  

Active Enterprise Server in context of eStudio means states of Event Processes and other 
repositories will be shown corresponding to this particular server. Only one server is shown as 
an active server at any point of time but user can still work on all the servers by switching the 
active server. Active server switch can be made explicitly by selecting Activate option from the 
Enterprise Server node context menu or an inactive server will be automatically made active 
whenever user wants to perform any action (Open Event Process, delete Event Process, CRC, 
Launch, Import, Export etc.) on inactive Enterprise Server. 

The active server is shown in Green color and the inactive servers are shown in default black 
color. 

For instance, in the Figure 11.1.1 the server EnterpriseServer_1 is Active and 
EnterpriseServer is inactive. All other views will be in accordance to the Active Enterprise 
Server (i.e. EnterpriseServer_1). For example, Service repository and Service palette will show 
the services present in EnterpriseServer_1. 



Fiorano eStudio User Guide 

Chapter 11: Working With Multiple Servers And Perspectives Page 185 

 

Figure 11.1.1: Multiple Enterprise Server login 

If the user tries to perform any action on inactive server, a confirmation dialog is shown (user 
can set a preference to avoid the dialog each and every time) saying that the active server will 
be switched. When the switch happens, all the editors belonging to EnterpriseServer_1 are 
closed and editors corresponding to EnterpriseServer are restored. 

11.2 Switching of Active Server 

With multiple servers alive there can be application deployed on different Enterprise Servers. 
But only event processes deployed on the Active Enterprise Server will be shown to the user.  

On changing the Active Enterprise Server, editors for all the event processes deployed on to 
the previous Active Enterprise Server will be closed and these editors will be restored when 
that server becomes active (when user selects any node in that server). 

The following steps describe the active server switch: 

1. Login into the two servers. The Service Palette and Service Repository shows the 
services present in the server to which user has logged in recently (Enterprise 
Server_1 in this case). Create some event processes in Enterprise Server_1, and 
keep the created event process editors open. 



Fiorano eStudio User Guide 

Chapter 11: Working With Multiple Servers And Perspectives Page 186 

 

Figure 11.2.1: Active Enterprise Server 

2. Now try to perform any action (say Open Event Process) on inactive server (i.e. 
EnterpriseServer).  A confirmation dialog is shown saying that the action requires 
the active server switch. 

 

Figure 11.2.2: Switch Active Server 

3. When user clicks Ok button, the editors related to Enterprise Server_1 will be closed 
and the editors corresponding to EnterpriseServer will be opened. Also the service 
palette and service repository shows the services present in the Enterprise Server. 
Active server can be identified by the green color. 



Fiorano eStudio User Guide 

Chapter 11: Working With Multiple Servers And Perspectives Page 187 

 

Figure 11.2.3: Event Processes present in Enterprise Server 

4. To switch back to Enterprise Server_1, perform any action on Enterprise Server_1 
node or Right-click and select Activate option. All the editors which are opened 
previously are restored and the editors corresponding to previously active server are 
closed. 

 

Figure 11.2.4: Services restored in Enterprise Server_1 

During active server switch, if the user tries to switch from a server containing any unsaved 
editors, a dialog containing the unsaved editors will be prompted where the user can select 
the editors to be saved.  

Note: User can select appropriate option to save or discard changes in editors but there will 
be no option to veto the switch. 



Fiorano eStudio User Guide 

Chapter 11: Working With Multiple Servers And Perspectives Page 188 

 

Figure 11.2.5: Unsaved editors dialog 

11.3 Switching Between Perspectives 

eStudio has three perspectives; Offline Event Process development, Online Event Process 
development and Mapper 

To change the perspective, perform the following steps: 

1. Click the Open Perspective option from Window -> Open Perspective -> Other or 
from the shortcut bar on the left-hand side of the Workbench window.  

 

Figure 11.3.1: Selecting the Other.. option from perspective button 

2. Select the Online Event Process Development to open the online perspective. 



Fiorano eStudio User Guide 

Chapter 11: Working With Multiple Servers And Perspectives Page 189 

 

Figure 11.3.2: Selecting Online Application Development perspective 

The Online perspective shows all the views and editors customized for the online application 
development as shown in the figure. During online application development, application 
development takes place after logging in to the server. 



Fiorano eStudio User Guide 

Chapter 11: Working With Multiple Servers And Perspectives Page 190 

 

Figure 11.3.3: Online Application Development Perspective 

Now, switch to Offline perspective by clicking on the Open Perspective button on the shortcut 
bar on the right-hand side of the Workbench window, select Other... from the drop-down 
menu. Select the Offline Event Process Development to open the Offline perspective. (User can 
also switch to different perspectives like java etc.) 

The Offline perspective shows all the views and editors required for the offline application 
development as shown in the figure 11.3.4. During offline application development, there will 
not be any interaction with the server. 



Fiorano eStudio User Guide 

Chapter 11: Working With Multiple Servers And Perspectives Page 191 

 

Figure 11.3.4: Offline Application Development Perspective 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 192 

Chapter 12: Fiorano Preferences 
 

Fiorano Preferences are available under Window > Preferences -> Fiorano. Various sections in 
Fiorano Preferences are explained in the following sections. 

12.1 ESB Connection Preferences 

Enterprise Server configurations can be defined here. List of Enterprise Servers can be added 
and the server details such as IP address, port and security credentials can be provided. These 
servers configuration is used in Offline Event Process Development perspective for actions 
(export Event Process to server, import Event Process from server etc.) that require a Server 
connection.  

 

Figure 12.1.1: Enterprise Server Configurations 

Restore Defaults button is used to restore the preferences to default values. 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 193 

12.2 SOA Orchestration 

SOA orchestration preferences are grouped into General options, Workflow options, Service 
options and CPS options. 

12.2.1 General Options 

General Options contains preferences for Error Port and Routes Color and Route Shape. The 
preference chosen here will be applied in orchestration editor. 

 

Figure 12.2.1: SOA Orchestration Preferences 

12.2.2 Workflow Options 

Workflow options contain Workflow color information. Workflow Item color and Workflow End 
color used in Document tracking can be configured here. 

 

Figure 12.2:2: Workflow options 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 194 

12.2.3 Service Options 

Service instance default configurations can be provided here. These default configurations are 
set on a service instance when a new service instance is created. 

12.2.3.1 Default JVM Configurations 

JVM configurations like classpath, System properties, memory options etc. can be defined. 
These options are used while launching the component in Separate Process launch mode. 

These are the default configurations that are applicable to all the newly created service 
instances. Service Instances can also overwrite the default configurations set on them by 
making modifications in properties view. 

 

Figure 12.2.3: Service options 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 195 

Configurations defined here are set on the Service Instance in Runtime Arguments section of 
the properties view. For example if the user wants to change the heap memory settings, he 
can provide the values for memory tuning properties as shown in Figure 12.2.4 

 

Figure 12.2.4: Memory tuning options 

After defining these configurations, the default values are set when a service instance is drag-
and-dropped in Orchestration editor and can be seen in Runtime Arguments section as shown 
in Figure 12.2.5. 

 

Figure 12.2.5: Runtime Arguments 

These properties are set on the JVM on which the service instance will be launched. 

12.2.3.2 Connection Factory Preferences 

Configurations used by service instances while creating Connection factories can be defined 
here. The connection factories are created internally by using default configuration. To 
overwrite the defaults, user can set the properties here. 

The properties defined here are available in Execution section in service instances properties 
view. 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 196 

12.2.4 CPS Options 

These options are used by external CPS launch components where the CPS is launched as a 
separate JVM process. The following components CPS is launched in separate process JVM: 
SapR3, XMLSplitter, SapR3Monitor, Aggregator, CBR, Join, CompositeBC, JMSIn:5.0, 
JMSOut:5.0 and JMSRequestor:5.0. 

Apart from these prebuilt components, custom components CPS will also be launched in a 
separate process JVM. 

 

Figure 12.2.6: CPS launch options 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 197 

12.3 SOA Orchestration Online 

This section contains configurations for online Event Process orchestration. 

 

Figure 12.3.1: Online Orchestration preferences 

12.3.1 General Options 

Lock running service instances: This option prevents the service instances from being moved 
or dragged when an Event Process is running. 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 198 

12.3.2 Application Options 

Launch Services when application is synchronized: If this option is enabled, in a running Event 
Process, service instances in stopped state will be started if the user clicks the Synchronize 
button in an Event process. 

12.3.3 Service Options 

The color of the Service Instance label name at different execution status can be configured 
from here, that is, when a Service Instance is running, stopped and so on. 

By default when a Service Instance is dragged and dropped the instance name color is Black. 
The states and corresponding Service instance label name colors are explained below. 

Handle Created State: This color is shown when the service instance handle is created. This 
happens before the component is launched completely. 

Handle Bound to Peer state: This color is when the service instance is running. 

Handle Bound to no peer state: This color is shown when the peer server on which the 
component is running is stopped. 

Handle unbound state: This color is shown when the component in a running Event Process is 
stopped. 

12.3.4 Peer Options 

These are the colors applied to service instance border to reflect the status of the peer server 
on which the service instance is configured to launch. 

Unknown State: The peer server configured is unknown. i.e. the peer server configured is 
not running and is not present in peer repository node under Enterprise Server node. 

Dead State: The peer server configured is not running but it is present in peer repository 
node under Enterprise Server node. 

Live State: The peer server configured is present in Peer repository and is running. 

Show Peer Server availability notifications: Whenever a peer server connects to the 
Enterprise Server or disconnects from Enterprise network, a notification dialog will be shown 
as shown in Figure 12.3.2.  

 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 199 

 

Figure 12.3.2: Peer server notification 

This option is to enable or disable the notifications. 

12.4 Key Board Short Cut Preferences 

Before using Key Board shortcuts Fiorano scheme has to be set in Preferences (Window -> 
Preferences -> General -> Keys). 

 

Figure 12.4.1: Key-binding preferences 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 200 

The default Key Board shortcuts for various actions are listed below. 

 

Help F1 

Rename F2 

Undo Ctrl + Z 

Redo Ctrl + Y 

Add Event Process CTRL + I 

Open Event Process CTRL + O 

 

Import Event Process CTRL + ALT + I E 

Import Event Process (nStudio) CTRL + ALT + I N 

Import Service (from Local Disk) CTRL + ALT + I L 

Import Service (from Server) CTRL + ALT + I S  

Export Event Process CTRL + ALT + X E 

 

Insert           

1. Service Instance CTRL + ALT + A S 

2. Event Process CTRL + ALT + A E 

3. Remote Service Instance CTRL + ALT + A R 

 

CRC ALT + Shift + C 

Run Application ALT + Shift + R 

Synchronize ALT + Shift + S 

Stop Application ALT + Shift + K 

 

View 

1.View Debugger CTRL + ALT + V D 



Fiorano eStudio User Guide 

Chapter 12: Fiorano Preferences Page 201 

2.View Properties CTRL + ALT + V P 

3.Logs CTRL + ALT + V L 

4.View Error ports CTRL + ALT + V E 

5.View Route Names CTRL + ALT + V R 

 

Clear Logs ALT + C 

Export Logs ALT + X 

 

Toggle Lock Mode ALT + Z 

Schema repository CTRL+Shift+S 

Create Service component CTRL+Shift+N 

The option to edit keyboard shortcuts is also available under General -> Keys section in the 
preferences dialog. The list of Fiorano Orchestration commands can be viewed by entering 
Orchestration in the filter box provided above the available keys. The shortcut for any of the 
action/command can be changed by editing the Binding text field available below the keys 
table section. 



Fiorano eStudio User Guide 

Chapter 13: Schema Repository Page 202 

Chapter 13: Schema Repository 
 

Schema Repository is used to store schemas that are imported in schemas used by different 
components/event processes. The imported schemas referred from anywhere in an Event 
Process/component can be stored here so that they are resolved even when they are not 
added explicitly. Hence, schemas which are imported across multiple event 
processes/components can be stored in the schema repository. 

To add schemas to the Schema Repository, perform the following steps. 

1. Navigate to Tools -> Schema Repository. This opens a Schema Repository editor as 
shown in Figure 13.1.1 using which schemas can be added to schema repository. 

 

Figure 13.1.1: Schema Repository 

2. Click on ellipsis button against the Location property. A file chooser dialog is opened 
where the location of schema file can be selected. Select the file and click Open. 

3. URI and Save to Catalog folder with name fields are populated automatically. 



Fiorano eStudio User Guide 

Chapter 13: Schema Repository Page 203 

 

Figure 13.1.2: Adding schema to Schema Repository 

The URI value should not be an empty field. In case, if the schema has a target namespace, 
URI should be same as the target namespace of the schema. 

4. Click Add to Catalog button to add the schema to Schema Repository. The file is 
added to <FIORANO_HOME>/xml-catalog/user. 

The Location field displays the absolute path of the schema file. If this dialog is closed 
without clicking Add to Catalog button, the file is not copied to the location 
<FIORANO_HOME>/xml-catalog/user and will be referred from its original location. 

5. A new row specifying the URI and Location of the XSD will be added in the table. 

6. To remove the schema from the schema repository, select a row from the table and 
click Remove. 

 

Figure 13.1.3: Deleting schema from Schema Repository 



Fiorano eStudio User Guide 

Chapter 13: Schema Repository Page 204 

7. The option 'Delete schema file' specifies whether to delete the file from the system or 
just to remove the schema from xml-catalog. Select the check box to remove the file 
completely. In case, if the file is not copied to <FIORANO_HOME>/xml-catalog/user, 
the file will be deleted from its original location if this option is selected. 



Fiorano eStudio User Guide 

Chapter 14: SCM Integration Page 205 

Chapter 14: SCM Integration 
 

SCM is commonly known as version control, and is achieved using tools such as SVN, CVS etc. 
SCM integration support is present in eStudio. Event Processes and Services can be stored and 
retrieved from a version control system. The following steps explain the procedure to add 
required dependencies and work with SVN version control system. Similar steps can be 
followed for other tools. 

14.1 Downloading and integrating SCM plugins in Fiorano eStudio 
1. Download latest version of Subclipse for Eclipse 3.x version. This is available for 

download at http://subclipse.tigris.org. 

2. Extract the downloaded zip file. In the extracted directory, two folders plugins and 
features can be found. 

3. Copy the contents inside the plugins directory and paste them at 
$FIORANO_HOME/eStudio/plugins. 

4. Copy the contents inside the features directory and paste them at 
$FIORANO_HOME/eStudio/features. 

5. Restart eStudio. When eStudio comes back up, Subclipse is installed and ready to go. 

14.2 Specifying SCM repository 

To use version control, the URL of an existing svn repository has to be added. The following 
steps explain this procedure. 

1. Open SVN Repositories view (Window -> Show View -> Other -> SVN -> SVN 
Repositories).  

2. Right click and select New -> Repository Location option, specify the repository 
URL and Finish the wizard. 

http://subclipse.tigris.org/


Fiorano eStudio User Guide 

Chapter 14: SCM Integration Page 206 

 

Figure 14.2.1: Add SVN Repository 

3. The repository is added and is displayed in the SVN Repositories view. 

14.3 Creating a project for version control 

Currently version control in eStudio is achieved using an intermediate project. Event Processes 
or Services that have to be under version control have to be first exported to this project and 
this project is added to the svn repository. The following steps explain the procedure to create 
a project and export the Event Processes into the project.  

1. Create a new project from the File menu (File -> New -> Other -> General -> 
Project). 

2. Specify a project name (say EStudioSvnProjects) and click Finish.  

Note: By default the project is created in eStudio wok space (i.e. 
FIORANO_HOME/runtimedata/eStudio/workspace). If required the user can specify a 
new Location. 



Fiorano eStudio User Guide 

Chapter 14: SCM Integration Page 207 

 

Figure 14.3.1: Creating a temporary project for SVN integration 

3. The created project can be seen in Project Explorer view as shown in Figure 14.3.2. 



Fiorano eStudio User Guide 

Chapter 14: SCM Integration Page 208 

 

Figure 14.3.2: Project Explorer view 

4. Select the Event Processes to be exported and choose Export option from the context 
menu. Specify the location of the EStudioSvnProjects created in step 2 and click Ok. 
The selected Event Processes are exported to EStudioSvnProjects. 

 

Figure 14.3.3: Exporting Event Processes from Event Process Repository 

5. In Project Explorer view, right click on EStudioSvnProjects and select Refresh 
option. The Event Processes exported are now visible. 



Fiorano eStudio User Guide 

Chapter 14: SCM Integration Page 209 

 

Figure 14.3.4: Project Explorer view displaying exported Event Processes 

14.4 Adding the Project to Repository 
1. Version Control options are available in the context menu of the EStudioSvnProjects. 

Select Team -> Share Project option to add this project into the repository. 

 

Figure 14.4.1: Adding the project 

2. A dialog lets you choose an existing repository location, or a new repository can be 
created. 



Fiorano eStudio User Guide 

Chapter 14: SCM Integration Page 210 

 

Figure 14.4.2: Selecting the repository 

3. Finish the wizard. A dialog will be prompted to switch to Team Synchronizing 
perspective. Select Yes. 

4. A view named Synchronize is shown in the perspective. Right click on the 
EStudioSvnProjects and select Commit option. 



Fiorano eStudio User Guide 

Chapter 14: SCM Integration Page 211 

 

Figure 14.4.3: Adding Event Processes to repository 

5. Commit dialog will be shown. Enter a comment and select Ok. 

6. A new directory with the name EStudioSvnProjects will be created in the repository. 

14.5 Updating the project into the Repository. 
1. After making changes in the Event Processes, export them to EStudioSvnProjects as 

mentioned in section 14.3. 

2. Overwrite the already existing Event Processes with the latest ones. 

3. Refresh EStudioSvnProjects from the Project Explorer view and commit into the 
repository. 

14.6 Updating an Event Process with older version from Repository 

The following steps explain the process to update an Event Process with an older version from 
the repository. 

1. Right click on the Event Process project to be updated and select Replace With -> 
Revision option as shown in Fig 14.6.1. 

 



Fiorano eStudio User Guide 

Chapter 14: SCM Integration Page 212 

 

Figure 14.6.1: Updating the project 

2. All the existing revisions are shown. Select the required revision and from the context 
menu choose Get Revision option. 

 

Figure 14.6.2: Getting the required revision. 

3. The Event Process will be updated with the revision selected. This Event Process has to 
be imported into eStudio from EStudioSvnProjects for the changes to take effect. 

4. To import, right click on Event Process Repository node and select Import Event 
Process option. Specify the location of Event Process in EStudioSvnProjects and 
select Ok. 

5. Overwrite the already existing Event Process.  

6. The Event Process will be updated in eStudio with the selected revision. 

Similarly new Event Processes added externally can be updated and added into eStudio. For 
this, EStudioSvnProjects has to be updated with the latest contents from the repository and 
the new Event Processes have to be imported into eStudio. 



Fiorano eStudio User Guide 

Chapter 14: SCM Integration Page 213 

 


	Fiorano eStudio User Guide
	Contents
	Chapter 1: Introduction to Fiorano eStudio
	1.1 Key Features
	1.2 Getting started with Fiorano eStudio

	Chapter 2: Offline Event Process Development Perspective
	2.1 Fiorano Views
	2.1.1 Event Process Repository
	2.1.2 Fiorano Orchestration
	2.1.3 Service Palette
	2.1.4 Properties
	2.1.5 Problems
	2.1.6 Error Log
	2.1.7 Service Repository (Offline)
	2.1.8 Project Explorer

	2.2 Event Processes
	2.2.1 Creating New Event Process
	2.2.2 Opening Sample Event Process
	2.2.3 Import and Export Event Processes
	2.2.3.1 Exporting an Event Process
	2.2.3.2 Importing an Event Process

	2.2.4 Importing nStudio Event Processes

	2.3 Service Repository (Offline Event Process Development)
	2.3.1 Deploying Services to Server
	2.3.2 Fetching Services from Server
	2.3.3 Exporting Services to Local Disk
	2.3.4 Importing Services from Local disk


	Chapter 3: Online Event Process Development Perspective
	3.1 Fiorano Views
	3.1.1 Server Explorer
	3.1.2 Fiorano Debugger

	3.2 Service Repository (Online Event Process Development)
	3.2.1 Exporting Services to Local Disk
	3.2.2 Importing Services from Local disk


	Chapter 4: Mapper Perspective
	Chapter 5: Composing Event Processes
	5.1 Adding Components
	5.2 Connecting Routes
	5.3 Configuring Components
	5.4 Configuring Component Properties
	5.5 Adding Remote Service Instance
	5.6 Adding External Event Process (Subflow)
	5.7 Document Tracking
	5.8 Defining Route Transformations
	5.9 Configuring Selectors on Routes
	5.10 Configuring Application Context
	5.11 Check Resource and Connectivity
	5.12 Running Event Process
	5.13 Stopping an Event Process
	5.14 Synchronizing an Event Process

	Chapter 6: Event Process Life Cycle Management
	6.1 Setting Properties of Service Instances for Different En
	6.2 Running Event Process on an Environment

	Chapter 7: Debugging Event Process
	7.1 Adding Breakpoint
	7.1.1 Context Menu option
	7.1.2 Debugger View

	7.2 Viewing Messages at Breakpoint
	7.3 Editing Messages at Breakpoint
	7.4 Inserting Messages into Breakpoint
	7.5 Releasing Messages from Breakpoint
	7.6 Discard Messages from Breakpoint
	7.7 Remove Breakpoint

	Chapter 8: Services
	8.1 Service Descriptor Editor
	8.1.1 Overview Section
	8.1.2 Execution Section
	8.1.2.1 Port Information
	8.1.2.2 Support
	8.1.2.3 Launch Configuration
	8.1.2.4 Log Modules
	8.1.2.4 Runtime

	8.1.3 Deployment Section
	8.1.3.1 Resource
	8.1.3.2 Service Dependencies



	Chapter 9: Service Creation
	9.1 Service Generation
	9.1.1 Service Location
	9.1.2 Basic Details
	9.1.3 Ports Information
	9.1.4 Resources
	9.1.5 Dependencies

	9.2 Building and Deploying Services

	Chapter 10: eMapper
	10.1 Key Features of Fiorano eMapper
	10.2 Fiorano eMapper Environment
	10.2.1 eMapper Projects.
	10.2.2 eMapper Editor
	10.2.2.1 Map View
	10.2.2.2 MetaData tab

	10.2.3 Funclet View
	10.2.4 eMapper Console
	10.2.5 MetaData Messages View
	10.2.6 Node Info View

	10.3 Working with Input and Output Structures
	10.3.1 Loading Input/Output Structure
	10.3.1.1 Load Input/Output Structure From an XSD document
	10.3.1.2 Load Input/Output Structure from a DTD document
	10.3.1.3 Load Input/Output Structure from an XML document

	10.3.2 Delete Structure
	10.3.3 Edit Structure

	10.4 Working with the Visual Expression Builder
	10.4.1 Function Palette
	10.4.1.2 Math Functions
	10.4.1.3 String Functions
	10.4.1.4 Control Function
	10.4.1.5 Conversion Functions
	10.4.1.6 Advanced Functions
	10.4.1.7 Date-Time Functions
	10.4.1.8 NodeSet Functions
	10.4.1.9 Boolean functions
	10.4.1.10 Lookup functions
	10.4.1.11 JMS Message Functions
	10.4.1.12 User Defined functions

	10.4.2 Funclet Easel
	10.4.2.1 Source Node
	10.4.2.2 Destination Node


	10.5 Creating Mappings
	10.5.1 Understanding Types of Nodes
	10.5.2 Types of Mappings
	10.5.2.1 Name-to-Name Mapping
	10.5.2.2 For-Each Mapping

	10.5.3 Duplicating a For-Each Mapping
	10.5.4 Linking Nodes to Define Mappings
	10.5.4.1 Using the Automatic Mapping option to Define Mappin
	10.5.4.2 Using the Visual Expression Builder to Define Mappi

	10.5.5 Mapping XML Formats

	10.6 Adding User XSLT
	10.7 Working with derived types
	10.8 Create/Edit User Defined Function(s)
	10.9 Testing the Transformation
	10.10 Managing Mappings
	10.10.1 Exporting eMapper Project
	10.10.2 Importing Project from the File
	10.10.3 Copying functions in a Mapping
	10.10.4 Clearing All Mappings
	10.10.5 Managing XSLT Properties


	Chapter 11: Working With Multiple Servers And Perspectives
	11.1 Active Server Node
	11.2 Switching of Active Server
	11.3 Switching Between Perspectives

	Chapter 12: Fiorano Preferences
	ESB Connection Preferences
	12.2 SOA Orchestration
	12.2.1 General Options
	12.2.2 Workflow Options
	12.2.3 Service Options
	12.2.3.1 Default JVM Configurations
	12.2.3.2 Connection Factory Preferences

	12.2.4 CPS Options

	12.3 SOA Orchestration Online
	12.3.1 General Options
	12.3.2 Application Options
	12.3.3 Service Options
	12.3.4 Peer Options

	12.4 Key Board Short Cut Preferences

	Chapter 13: Schema Repository
	Chapter 14: SCM Integration
	14.1 Downloading and integrating SCM plugins in Fiorano eStu
	14.2 Specifying SCM repository
	14.3 Creating a project for version control
	14.4 Adding the Project to Repository
	14.5 Updating the project into the Repository.
	14.6 Updating an Event Process with older version from Repos



