

Concept Guide

FioranoMQ® 9

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any
form without prior written permission is forbidden. The information contained herein has been obtained from
sources believed to be reliable. Fiorano disclaims all warranties as to the accuracy, completeness or
adequacy of such information. Fiorano shall have no liability for errors, omissions or inadequacies in the
information contained herein or for interpretations thereof. The opinions expressed herein are subject to
change without prior notice.

FIORANO END-USER LICENSE AGREEMENT

THIS FIORANO END-USER LICENSE AGREEMENT (THE “AGREEMENT”) IS A LEGAL AGREEMENT BETWEEN YOU (HEREINAFTER “CUSTOMER”), EITHER AN INDIVIDUAL OR A

CORPORATE ENTITY, AND FIORANO SOFTWARE, INC., HAVING A PLACE OF BUSINESS AT 718 UNIVERSITY AVE, SUITE 212 LOS GATOS, CA 95032, USA, OR ITS AFFILIATED

COMPANIES (HEREINAFTER “FIORANO”) FOR CERTAIN SOFTWARE DEVELOPED AND MARKETED BY FIORANO AS DEFINED IN GREATER DETAIL BELOW. BY OPENING THIS

PACKAGE, INSTALLING, COPYING, DOWNLOADING, EXTRACTING AND/OR OTHERWISE USING THE SOFTWARE, YOU ARE CONSENTING TO BE BOUND BY AND ARE BECOMING

PARTY TO THIS AGREEMENT ON THE DATE OF INSTALLATION, COPYING, DOWNLOAD OR EXTRACTION OF THE SOFTWARE (THE “EFFECTIVE DATE”). IF YOU DO NOT AGREE WITH

ANY OF THE TERMS OF THIS AGREEMENT, PLEASE STOP INSTALLING AND/OR USING THE SOFTWARE AND PROMPTLY RETURN THE UNUSED SOFTWARE TO THE PLACE OF

PURCHASE. BY DEFAULT, THE SOFTWARE IS MADE AVAILABLE TO CUSTOMERS IN ONLINE, DOWNLOADABLE FORM. THE TERMS OF THIS AGREEMENT SHALL APPLY TO EACH

SOFTWARE LICENSE GRANTED BY FIORANO UNDER THIS AGREEMENT.

1. DEFINITIONS.

a. "Affiliate" means, in relation to Fiorano, another person firm or company which directly or indirectly controls, is controlled by or is
under common control with Fiorano and the expression 'control' shall mean the power to direct or cause the direction of the general
management and policies of the person firm or company in question.

b. “Commencement Date” means the date on which Fiorano delivers the Software to Customer, or if no delivery is necessary, the
Effective Date set forth in this Agreement or on the relevant Order Form.

c. “Designated Center” means the computer hardware, operating system, customer-specific application and Customer Geographic
Location at which the Software is deployed as designated on the corresponding Order Form.

d. “Designated Contact” shall mean the contact person or group designated by Customer and agreed to by Fiorano who will coordinate
all Support requests to Fiorano.

e. “Documentation” means the user guides and manuals for installation and use of the Software. Documentation is provided in CD-ROM
or bound form, whichever is generally available.

f. “Error” shall mean a reproducible defect in the Supported Program or Documentation when operated on a Supported Environment
which causes the Supported Program not to operate substantially in accordance with the Documentation.

g. “Excluded Components” shall mean such components as are listed in Exhibit B. Such Excluded Components do not constitute
Software under this Agreement and are third party components supplied subject to the corresponding license agreements specified in
Exhibit B.

h. “Excluded License” shall mean and include any license that requires any portion of any materials or software supplied under such
license to be disclosed or made available to any party either in source code or object code form. In particular, all versions and
derivatives of the GNU GPL and LGPL shall be considered Excluded Licenses for the purposes of this Agreement.

i. “Resolution” shall mean a modification or workaround to the Supported Program and/or Documentation and/or other information
provided by Fiorano to Customer intended to resolve an Error.

j. “Residuals” shall mean information in non-tangible form which may be retained by persons who have had access to the Confidential
Information, including ideas, concepts, know-how or techniques contained therein.

k. “Order Form” means the document in hard copy form by which Customer orders Software licenses and services, and which is agreed
to in writing by the parties. The Order Form shall reference the Effective Date and be governed by the terms of this Agreement.
Customer understands that any document in the nature of a purchase order originating from Customer shall not constitute a contractual
offer and that the terms thereof shall not govern any contract to be entered into between Fiorano and Customer. The Order Form herein
shall constitute an offer to purchase made by the Customer under the terms of the said Order Form and this Agreement.

l. “Software” means each of the individual Products, as further outlined in Exhibit-A, in object code form distributed by Fiorano for
which Customer is granted a license pursuant to this Agreement, and the media, Documentation and any Updates thereto.

m. “Support” shall mean ongoing support provided by Fiorano pursuant to the terms of this Agreement and Fiorano’s current support
policies. “Supported Program” or “Supported Software” shall mean the then current version of the Software in use at the
Designated Center for which the Customer has paid the then-current support fee (“Support Fee”).

n. “Support Hours” shall mean 9 AM to 5 PM, Pacific Standard Time, Monday through Friday, for Standard Support.

o. “Support Period” shall mean the period during which Customer is entitled to receive Support on a particular Supported Program,
which shall be a period of twelve (12) months beginning from the Commencement Date, or if applicable, twelve (12) months from the
expiration of the preceding Support Period. Should Fiorano withdraw support pursuant to section 1 (q), the Support Period shall be
automatically reduced to the expiration date of the appropriate Software.

p. “Supported Environment” shall mean any hardware and operating system platform which Fiorano provides Support for use with the
Supported Program.

q. “Update” means a subsequent release of the Software that Fiorano generally makes available for Supported Software licensees at no
additional license fee other than shipping and handling charges. Update shall not include any release, option, feature or future product
that Fiorano licenses separately. Fiorano will provide Updates for the Supported Programs as and when developed for general release in
Fiorano’s sole discretion. Fiorano may withdraw support for any particular version of the Software, including without limitation the most
current Update and any preceding release with a notice of three (3) months to Customer.

2. SOFTWARE LICENSE.

(a) Rights Granted, subject to the receipt by Fiorano of appropriate license fees.

(i) The Software is Licensed to Customer for use under the terms of this Agreement and NOT SOLD. Fiorano grants to

Customer a limited, non-exclusive, world wide license to use the Software as specified on an Order Form and subject to the

licensing restrictions in Exhibit C under this Agreement, as follows:

(1) to use the Software solely for Customer’s operations at the Designated Center consistent with the use limitations

specified or referenced in this Agreement, the Documentation for such Software or any Order Form accepted by Fiorano

pursuant to this Agreement. Customer may not relicense, rent or lease the Software or use the Software for third party

training, commercial timesharing or service bureau use;

(2) to use the Documentation provided with the Software in support of Customer’s authorized use of the Software;

(3) to make a single copy for back-up or archival purposes and/or temporarily transfer the Software in the event of a

computer malfunction. All titles, trademarks and copyright or other restricted rights notices shall be reproduced in any such

copies;

(4) to allow third parties to use the Software for Customer’s operations, so long as Customer ensures that use of the

Software is in accordance with the terms of this Agreement.

(ii) Customer shall not copy or use the Software (including the Documentation) except as specified in this Agreement and

applicable Order Form. Customer shall have no right to use other third party software or Excluded Components that are included

within the Software except in connection and within the scope of Customer’s use of Fiorano’s Software product.

(iii) Customer agrees not to cause or permit the reverse engineering, disassembly, decompilation, or any other attempt to
derive source code from the Software, except to the extent expressly provided for by applicable law.

(iv) Customer hereby warrants that it shall not, by any act or omission, cause or permit the Products or any part thereof to
become expressly or impliedly subject to any Excluded License.

(v) Fiorano and its Affiliates shall retain all title, copyright and other proprietary rights in the Software. Customer does not

acquire any rights, express or implied, in the Software, other than those specified in this Agreement.

(vi) Customer agrees that it will not publish or cause or permit to be published any results of benchmark tests run on the

Software.

(vii) If the Software is licensed for a specific term, as noted on the Order Form, then the license shall expire at the end of the

term and the termination conditions in section 4(d) shall automatically become applicable.

(b) Transfer. Customer may transfer a Software license within its organization upon notice to Fiorano; transfers are subject to the

terms and fees specified in Fiorano’s transfer policy in effect at the time of the transfer. If the Software is licensed for a specific term, then it

may not be transferred by Customer.

(c) Verification. At Fiorano’s written request, Customer shall furnish Fiorano with a signed certification verifying that the Software is

being used pursuant to the provisions of this Agreement and applicable /Order Form. Fiorano (or Fiorano’s designee) may audit Customer's

use of the Software. Any such audit shall be conducted during regular business hours at Customer's facilities and shall not unreasonably

interfere with Customer's business activities. If an audit reveals that Customer has underpaid fees to Fiorano, Customer shall be invoiced

directly for such underpaid fees based on the Fiorano Price List in effect at the time the audit is completed. If the underpaid fees are in excess

of five percent (5%) of the aggregate license fees paid to Fiorano pursuant to this Agreement, the Customer shall pay Fiorano’s reasonable

costs of conducting the audit. Audits shall be conducted no more than once annually.

(d) Customer Specific Objects.

(i) The parties agree and acknowledge, subject to Fiorano’s underlying proprietary rights, that Customer may create certain

software objects applicable to Customer’s internal business (“Customer Specific Objects”). Any Customer Specific Object developed solely by

Customer shall be the property of Customer. To the extent that Customer desires to have Fiorano incorporate such Customer Specific Objects

into Fiorano’s Software (and Fiorano agrees, in its sole discretion, to incorporate such Customer Specific Objects), Customer will promptly

deliver to Fiorano the source and object code versions (including documentation) of such Customer Specific Objects, and any updates or

modifications thereto, and hereby grants Fiorano a perpetual, irrevocable, worldwide, fully-paid, royalty-free, exclusive, transferable license to

reproduce, modify, use, perform, display, distribute and sublicense, directly and indirectly, through one or more tiers of sublicensees, such

Customer Specific Objects.

(ii) Any objects, including without limitation Customer Specific Objects, developed solely or jointly with Customer by Fiorano

shall be the property of Fiorano.

(e) Additional Restrictions on Use of Source Code.

Customer acknowledges that the Software, its structure, organization and any human-readable versions of a software program (“Source

Code”) constitute valuable trade secrets that belong to Fiorano and/or its suppliers Source Code Software, if and when supplied to Customer

shall constitute Software licensed under the terms of this Agreement and the Order Form. Customer agrees not to translate the Software

into another computer language, in whole or in part.

(i) Customer agrees that it will not disclose all or any portion of the Software’s Source Code to any third parties, with the

exception of authorized employees (“Authorized Employees”) and authorized contractors (“Authorized Contractors”) of Customer who (i)

require access thereto for a purpose authorized by this Agreement, and (ii) have signed an employee or contractor agreement in which such

employee or contractor agrees to protect third party confidential information. Customer agrees that any breach by any Authorized Employees

or Authorized Contractors of their obligations under such confidentiality agreements shall also constitute a breach by Customer hereunder.

(ii) Customer shall ensure that the same degree of care is used to prevent the unauthorized use, dissemination, or publication of

the Software’s Source Code as Customer uses to protect its own confidential information of a like nature, but in no event shall the safeguards

for protecting such Source Code be less than a reasonably prudent business would exercise under similar circumstances. Customer shall take

prompt and appropriate action to prevent unauthorized use or disclosure of such Source Code, including, without limitation, storing such

Source Code only on secure central processing units or networks and requiring passwords and other reasonable physical controls on access to

such Source Code.

(iii) Customer shall instruct Authorized Employees and Authorized Contractors not to copy the Software’s Source Code on their

own, and not to disclose such Source Code to anyone not authorized to receive it.

(iv) Customer shall handle, use and store the Software’s Source Code solely at the Customer Designated Center.

(f) Acceptance tested Software

Customer acknowledges that it has, prior to the date of this Agreement, carried out adequate acceptance tests in respect of the Software.

Customer's acceptance of delivery of the Software under this Agreement shall be conclusive evidence that Customer has examined the

Software and found it to be complete, and in accordance with the Documentation, in good order and condition and fit for the purpose for

which it is required.

3. TECHNICAL SERVICES.

(a) Maintenance and Support Services. Maintenance and Support services will be provided under the terms of this Agreement and

Fiorano’s support policies in effect on the date Support is ordered by Customer. Support services shall be provided from Fiorano’s principal

place of business or at the Designated Center, as determined in Fiorano’s sole discretion. If Fiorano sends personnel to the Designated Center

to resolve any Error in the Supported Program, Customer shall pay Fiorano’s reasonable travel, meals and lodging expenses.

(b) Consulting and Training Services. Fiorano will, upon Customer’s request, provide consulting and training services agreed to by

the parties pursuant to the terms of a separate written agreement.

(c) Incidental Expenses. For any on-site services requested by Customer, Customer shall reimburse Fiorano for actual, reasonable

travel and out-of-pocket expenses incurred (separate from then current Support Fees).

(d) Reinstatement. Once Support has been terminated by Customer or Fiorano for a particular Supported Program, it can be

reinstated only by prior approval from Fiorano and then only upon payment of the reinstatement fee applicable at the time of reinstatement.

(e) Supervision and Management. Customer is responsible for undertaking the proper supervision, implementation and

management of its use of the Supported Programs, including, but not limited to: (i) assuring proper Supported Environment configuration,

Supported Programs installation and operating methods; and (ii) following industry standard procedures for the security of data, accuracy of

input and output, and back-up plans, including restart and recovery in the event of hardware or software error or malfunction. Fiorano does

not warrant (i) the performance of, or combination of, Software with any third party software, (ii) any implementation of the Software that

does not follow Fiorano’s delivery methodology, or (iii) any components not supplied by Fiorano.

(f) Training. Customer is responsible for proper training of all appropriate personnel in the operation and use of the Supported

Programs and associated equipment.

(g) Access to Personnel and Equipment. Customer shall provide Fiorano with access to Customer’s personnel and its equipment

during Support Hours. This access must include the ability to dial-in from Fiorano facilities to the equipment on which the Supported Programs

are operating and to obtain the same access to the equipment as those of Customer’s employees having the highest privilege or clearance

level. Fiorano will inform Customer of the specifications of the modem equipment and associated software needed, and Customer will be

responsible for the costs and use of said equipment.

(h) Support Term. Upon expiration of an existing Support Period for a particular Supported Program, a new Support Period shall

automatically begin for a consecutive twelve (12) month term (“Renewal Period”) so long as (i) Customer pays the Support Fee within thirty

(30) days of invoice by Fiorano; and (ii) Fiorano is still offering Support on such Supported Program.

(i) Annual Support Fees. Annual Support Fees shall be at the rates set forth in the applicable Order Form.

4. TERM AND TERMINATION.

(a) Term. This Agreement and each Software license granted under this Agreement shall continue unless terminated under this

Section 4 (“Term and Termination”).

(b) Termination by Customer. If the Software is licensed for a specific term as noted on an Order Form, Customer may terminate

any Software license at the end of the term; however, any such termination shall not relieve Customer’s obligations specified in Section 4(d)

(“Effect of Termination”).

(c) Termination by Fiorano. Fiorano may terminate this Agreement or any license upon written notice if Customer breaches this

Agreement and fails to correct the breach within thirty (30) days of notice from Fiorano.

(d) Effect of Termination. Termination of this Agreement or any license shall not limit Fiorano from pursuing other remedies

available to it, including injunctive relief, nor shall such termination relieve Customer’s obligation to pay all fees that have accrued or are

otherwise owed by Customer under any Order Form. Such rights and obligations of the parties’ which, by their nature, are intended to survive

the termination of this agreement shall survive such termination. Without limitation to the foregoing, these shall include rights and liabilities

arising under Sections 2 (a)(iii), 2(a)(iv) (“Rights Granted”), 2(d) (“Customer Specific Objects”), 4 (“Term and Termination”), 5

(“Indemnity, Warranties, Remedies”), 6 (“Limitation of Liability”), 7 (“Payment Provisions”), 8 (“Confidentiality”) and 9 (“Miscellaneous”)

Upon termination, Customer shall cease using, and shall return or at Fiorano’s request destroy, all copies of the Software and Documentation

and upon Fiorano’s request certify the same to Fiorano in writing within thirty (30) days of termination. In case of termination of this

Agreement or any license for any reason by either party, Fiorano shall have no obligation to refund any amounts paid to Fiorano by Customer

under this Agreement. Further, if Customer terminates the agreement before the expiry of a term for a term-license, then Customer shall be

obliged to pay the entire license fee for the entire licensed term.

5. INDEMNITY, WARRANTIES, REMEDIES.

(a) Infringement Indemnity. Fiorano agrees to indemnify Customer against a third party claim that any Product infringes a U.S.

copyright or patent and pay any damages finally awarded, provided that: (i) Customer notifies Fiorano in writing within ten (10) days of the

claim; (ii) Fiorano has sole control of the defense and all related settlement negotiations; and (iii) Customer provides Fiorano with the

assistance, information and authority at no cost to Fiorano, necessary to perform Fiorano’s obligations under this Section 5 (“Indemnities,

Warranties, Remedies”). Fiorano shall have no liability for any third party claims of infringement based upon (i) use of a version of a Product

other than the most current version made available to the Customer, (ii) the use, operation or combination of any Product with programs,

data, equipment or documentation if such infringement would have been avoided but for such use, operation or combination; or (iii) any third

party software, except as the same may be integrated, incorporated or bundled by Fiorano, or its third party licensors, in the Product licensed

to Customer hereunder.

If any Product is held or claimed to infringe, Fiorano shall have the option, at its expense, to (i) modify the Product to be non-infringing or

(ii) obtain for Customer a license to continue using the Software. If it is not commercially reasonable to perform either of the above options,

then Fiorano may terminate the license for the infringing Product and refund the pro rated amount of license fees paid for the applicable

Product using a twelve (12) month straight-line amortization schedule starting on the Commencement Date. This Section 5(a)

(“Infringement Indemnity”) states Fiorano’s entire liability and Customer’s sole and exclusive remedy for infringement.

(B) WARRANTIES AND DISCLAIMERS.

(I) SOFTWARE WARRANTY. EXCEPT FOR EXCLUDED COMPONENTS WHICH ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY

KIND, FOR EACH SUPPORTED SOFTWARE LICENSE WHICH CUSTOMER ACQUIRES HEREUNDER, FIORANO WARRANTS THAT FOR A PERIOD OF THIRTY (30) DAYS

FROM THE COMMENCEMENT DATE THE SOFTWARE, AS DELIVERED BY FIORANO TO CUSTOMER, WILL SUBSTANTIALLY PERFORM THE FUNCTIONS DESCRIBED IN THE

ASSOCIATED DOCUMENTATION IN ALL MATERIAL RESPECTS WHEN OPERATED ON A SYSTEM WHICH MEETS THE REQUIREMENTS SPECIFIED BY FIORANO IN THE

DOCUMENTATION. PROVIDED THAT CUSTOMER GIVES FIORANO WRITTEN NOTICE OF A BREACH OF THE FOREGOING WARRANTY DURING THE WARRANTY PERIOD,

FIORANO SHALL, AS CUSTOMER’S SOLE AND EXCLUSIVE REMEDY AND FIORANO’S SOLE LIABILITY, USE ITS REASONABLE EFFORTS, DURING THE WARRANTY PERIOD

ONLY, TO CORRECT ANY REPRODUCIBLE ERRORS THAT CAUSE THE BREACH OF THE WARRANTY IN ACCORDANCE WITH ITS TECHNICAL SUPPORT POLICIES. IF

CUSTOMER DOES NOT OBTAIN A SUPPORTED SOFTWARE LICENSE, THE SOFTWARE IS PROVIDED “AS IS.” ANY IMPLIED WARRANTY OR CONDITION APPLICABLE TO

THE SOFTWARE, DOCUMENTATION OR ANY PART THEREOF BY OPERATION OF ANY LAW OR REGULATION SHALL OPERATE ONLY FOR DEFECTS DISCOVERED DURING

THE ABOVE WARRANTY PERIOD OF THIRTY (30) DAYS UNLESS TEMPORAL LIMITATION ON SUCH WARRANTY OR CONDITION IS EXPRESSLY PROHIBITED BY

APPLICABLE LAW. ANY SUPPLEMENTS OR UPDATES TO THE SOFTWARE, INCLUDING WITHOUT LIMITATION, BUG FIXES OR ERROR CORRECTIONS SUPPLIED AFTER THE

EXPIRATION OF THE THIRTY-DAY LIMITED WARRANTY PERIOD SHALL NOT BE COVERED BY ANY WARRANTY OR CONDITION, EXPRESS, IMPLIED OR STATUTORY.

(II) MEDIA WARRANTY. FIORANO WARRANTS THE TAPES, DISKETTES OR ANY OTHER MEDIA ON WHICH THE SOFTWARE IS SUPPLIED TO BE FREE OF

DEFECTS IN MATERIALS AND WORKMANSHIP UNDER NORMAL USE FOR THIRTY (30) DAYS FROM THE COMMENCEMENT DATE. CUSTOMER’S SOLE AND EXCLUSIVE

REMEDY AND FIORANO’S SOLE LIABILITY FOR BREACH OF THE MEDIA WARRANTY SHALL BE FOR FIORANO TO REPLACE DEFECTIVE MEDIA RETURNED WITHIN THIRTY

(30) DAYS OF THE COMMENCEMENT DATE.

(III) SERVICES WARRANTY. FIORANO WARRANTS ANY SERVICES PROVIDED HEREUNDER SHALL BE PERFORMED IN A PROFESSIONAL AND

WORKMANLIKE MANNER IN ACCORDANCE WITH GENERALLY ACCEPTED INDUSTRY PRACTICES. THIS WARRANTY SHALL BE VALID FOR A PERIOD OF THIRTY (30) DAYS

FROM PERFORMANCE. FIORANO’S SOLE AND EXCLUSIVE LIABILITY AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY PURSUANT TO THIS WARRANTY SHALL BE USE BY

FIORANO OF REASONABLE EFFORTS FOR RE-PERFORMANCE OF ANY SERVICES NOT IN COMPLIANCE WITH THIS WARRANTY WHICH ARE BROUGHT TO FIORANO’S

ATTENTION BY WRITTEN NOTICE WITHIN FIFTEEN (15) DAYS AFTER THEY ARE PERFORMED.

(IV) DISCLAIMER OF WARRANTIES. SUBJECT TO LIMITED WARRANTIES PROVIDED FOR HEREINABOVE, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW, THE SOFTWARE, DOCUMENTATION AND SERVICES (IF ANY) ARE PROVIDED AS IS AND WITH ALL FAULTS,

FIORANO HEREBY DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING,

BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A

PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY, OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF

WORKMANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE, ALL WITH REGARD TO THE SOFTWARE, AND THE

PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFTWARE, AND RELATED CONTENT THROUGH

THE SOFTWARE OR OTHERWISE ARISING OUT OF THE USE OF THE SOFTWARE. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE,

QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE SOFTWARE.

6. LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL FIORANO BE LIABLE FOR ANY SPECIAL,

INCIDENTAL, PUNITIVE, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFITS OR CONFIDENTIAL

OR OTHER INFORMATION, FOR BUSINESS INTERRUPTION, FOR PERSONAL INJURY, FOR LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY OF GOOD FAITH OR OF

REASONABLE CARE, FOR NEGLIGENCE, AND FOR ANY OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF OR IN ANY WAY RELATED TO THE USE OF OR

INABILITY TO USE THE SOFTWARE, THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFTWARE, AND RELATED CONTENT

THROUGH THE SOFTWARE, OR OTHERWISE UNDER OR IN CONNECTION WITH ANY PROVISION OF THIS EULA, EVEN IN THE EVENT OF THE FAULT, TORT (INCLUDING

NEGLIGENCE), MISREPRESENTATION, STRICT LIABILITY, BREACH OF CONTRACT OR BREACH OF WARRANTY OF FIORANO, AND EVEN IF FIORANO OR ANY SUPPLIER HAS

BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

NOTWITHSTANDING ANY DAMAGES THAT MAY BE INCURRED FOR ANY REASON AND UNDER ANY CIRCUMSTANCES (INCLUDING, WITHOUT LIMITATION, ALL DAMAGES

AND LIABILITIES REFERENCED HEREIN AND ALL DIRECT OR GENERAL DAMAGES IN LAW, CONTRACT OR ANYTHING ELSE), THE ENTIRE LIABILITY OF FIORANO UNDER

ANY PROVISION OF THIS EULA AND THE EXCLUSIVE REMEDY OF THE CUSTOMER HEREUNDER (EXCEPT FOR ANY REMEDY OF REPAIR OR REPLACEMENT IF SO ELECTED

BY FIORANO WITH RESPECT TO ANY BREACH OF THE LIMITED WARRANTY) SHALL BE LIMITED TO THE PRO-RATED AMOUNT OF FEES PAID BY CUSTOMER UNDER THIS

AGREEMENT FOR THE PRODUCT, USING A TWELVE (12) MONTH STRAIGHT-LINE AMORTIZATION SCHEDULE STARTING ON THE COMMENCEMENT DATE. FURTHER, IF

SUCH DAMAGES RESULT FROM CUSTOMER'S USE OF THE SOFTWARE OR SERVICES, SUCH LIABILITY SHALL BE LIMITED TO THE PRORATED AMOUNT OF FEES PAID FOR

THE RELEVANT SOFTWARE OR SERVICES GIVING RISE TO THE LIABILITY TILL THE DATE WHEN SUCH LIABILITY AROSE, USING A TWELVE (12) MONTH STRAIGHT-LINE

AMORTIZATION SCHEDULE STARTING ON THE COMMENCEMENT DATE. NOTWITHSTANDING ANYTHING IN THIS AGREEMENT, THE FOREGOING LIMITATIONS,

EXCLUSIONS AND DISCLAIMERS SHALL APPLY TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, EVEN IF ANY REMEDY FAILS ITS ESSENTIAL PURPOSE.

The provisions of this Agreement allocate the risks between Fiorano and Customer. Fiorano’s pricing reflects this allocation of risk and the

limitation of liability specified herein.

7. PAYMENT PROVISIONS.

(a) Invoicing. All fees shall be due and payable thirty (30) days from receipt of an invoice and shall be made without deductions

based on any taxes or withholdings. Any amounts not paid within thirty (30) days will be subject to an immediately due and payable late

payment fee equivalent to: the sum of $50.00 plus an interest equal to the lower of (a) the maximum applicable legal interest rate, or (b) one

percent (1%) per month.

(b) Payments. All payments made by Customer shall be in United States Dollars for purchases made in all countries except the

United Kingdom or the European Union, in which case the payments shall be made in British Pounds Sterling or Euros respectively. Payments

shall be directed to:

Fiorano Software, Inc.

718 University Ave.

Suite 212, Los Gatos, CA 95032

Attn: Accounts Receivable.

If the product is purchased outside the United States, payments may have to be made to an Affiliate as directed by Fiorano

Software, Inc.

(c) Taxes. The fees listed in this Agreement or the applicable Order Form does not include Taxes. In addition to any other payments

due under this Agreement, Customer agrees to pay, indemnify and hold Fiorano harmless from, any sales, use, excise, import or export,

value added or similar tax or duty, and any other tax not based on Fiorano’s net income, including penalties and interest and all government

permit fees, license fees, customs fees and similar fees levied upon the delivery of the Software or other deliverables which Fiorano may incur

in respect of this Agreement, and any costs associated with the collection or withholding of any of the foregoing items (the “Taxes”).

8. CONFIDENTIALITY.

(a) Confidential Information. “Confidential Information” shall refer to and include, without limitation, (i) the source and binary

code of Products, and (ii) the business and technical information of either party, including but not limited to any information

relating to product plans, designs, costs, product prices and names, finances, marketing plans, business opportunities, personnel,

research, development or know-how;

(b) Exclusions of Confidential Information. Notwithstanding the foregoing, “Confidential Information” shall not include: (i)
Information that is not marked confidential or otherwise expressly designated confidential prior to its disclosure, (ii)
Information that is or becomes generally known or available by publication, commercial use or otherwise through no fault of
the receiving party, (iii) Information that is known to the receiving party at the time of disclosure without violation of any
confidentiality restriction and without any restriction on the receiving party’s further use or disclosure; (iv) Information that
is independently developed by the receiving party without use of the disclosing party’s confidential information, or (v) Any
Residuals arising out of this Agreement. Notwithstanding, any Residuals belonging to Source Code shall belong exclusively
to Fiorano and Customer shall not have any right whatsoever to any Residuals relating to Source Code hereunder.

(c) Use and Disclosure Restrictions. During the term of this Agreement, each party shall refrain from using the other party’s
Confidential Information except as specifically permitted herein, and from disclosing such Confidential Information to any
third party except to its employees and consultants as is reasonably required in connection with the exercise of its rights
and obligations under this Agreement (and only subject to binding use and disclosure restrictions at least as protective as
those set forth herein executed in writing by such employees).

(d) Continuing Obligation. The confidentiality obligation described in this section shall survive for three (3) years following
any termination of this Agreement.Notwithstanding the foregoing, Fiorano shall have the right to disclose Customer’s
Confidential Information to the extent that it is required to be disclosed pursuant to any statutory or regulatory provision or
court order, provided that Fiorano provides notice thereof to Customer, together with the statutory or regulatory provision,
or court order, on which such disclosure is based, as soon as practicable prior to such disclosure so that Customer has the
opportunity to obtain a protective order or take other protective measures as it may deem necessary with respect to such
information.

9. MISCELLANEOUS.

(a) Export Administration. Customer agrees to comply fully with all applicable relevant export laws and regulations including

without limitation, those of the United States (“Export Laws”) to assure that neither the Software nor any direct product thereof are

(i) exported, directly or indirectly, in violation of Export Laws; or (ii) are intended to be used for any purposes prohibited by the Export Laws,

including, without limitation, nuclear, chemical, or biological weapons proliferation.

(b) U. S. Government Customers. The Software is “commercial items,” as that term is defined at 48 C.F.R. 2.101 (OCT 1995),

consisting of “commercial computer software” and “commercial computer software documentation” as such terms are used in 48 C.F.R.

12.212 (SEPT 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all U.S. Government

Customers acquire the Software with only those rights set forth herein.

(c) Notices. All notices under this Agreement shall be in writing and shall be deemed to have been given when mailed by first class

mail five (5) days after deposit in the mail. Notices shall be sent to the addresses set forth at the beginning of this Agreement or such other

address as either party may specify in writing.

(d) Force Majeure. Neither party shall be liable hereunder by reason of any failure or delay in the performance of its obligations

hereunder (except for the payment of money) on account of strikes, shortages, riots, insurrection, fires, flood, storm, explosions, acts of God,

war, governmental action, labor conditions, earthquakes, material shortages or any other cause which is beyond the reasonable control of

such party.

(e) Assignment. Neither this Agreement nor any rights or obligations of Customer hereunder may be assigned by Customer in

whole or in part without the prior written approval of Fiorano. For the avoidance of doubt, any reorganization, change in ownership or a sale

of all or substantially all of Customer’s assets shall be deemed to trigger an assignment. Fiorano’s rights and obligations, in whole or in part,

under this Agreement may be assigned by Fiorano.

(f) Waiver. The failure of either party to require performance by the other party of any provision hereof shall not affect the right to

require such performance at any time thereafter; nor shall the waiver by either party of a breach of any provision hereof be taken or held to

be a waiver of the provision itself.

(g) Severability. In the event that any provision of this Agreement shall be unenforceable or invalid under any applicable law or

court decision, such unenforceability or invalidity shall not render this Agreement unenforceable or invalid as a whole and, in such event, any

such provision shall be changed and interpreted so as to best accomplish the objectives of such unenforceable or intended provision within

the limits of applicable law or applicable court decisions.

(h) Injunctive Relief. Notwithstanding any other provisions of this Agreement, a breach by Customer of the provisions of this

Agreement regarding proprietary rights will cause Fiorano irreparable damage for which recovery of money damages would be inadequate,

and that, in addition to any and all remedies available at law, Fiorano shall be entitled to seek timely injunctive relief to protect Fiorano’s

rights under this Agreement.

(i) Controlling Law and Jurisdiction. If this Software has been acquired in the United States, this Agreement shall be governed in

all respects by the laws of the United States of America and the State of California as such laws are applied to agreements entered into and to

be performed entirely within California between California residents. All disputes arising under this Agreement may be brought in Superior

Court of the State of California in Santa Clara County or the United States District Court for the Northern District of California as permitted by

law. If this Software has been acquired in any other jurisdiction, the laws of the Republic of Singapore shall apply and any disputes arising

hereunder shall be subject to the jurisdiction of the courts of Singapore, Singapore. Customer hereby consents to personal jurisdiction of the

above courts. The parties agree that the United Nations Convention on Contracts for the International Sale of Goods is specifically excluded

from application to this Agreement.

(j) No Agency. Nothing contained herein shall be construed as creating any agency, partnership or other form of joint enterprise or

liability between the parties.

(k) Headings. The section headings appearing in this Agreement are inserted only as a matter of convenience and in no way define,

limit, construe or describe the scope or extent of such section or in any way affect such section.

(l) Counterparts. This Agreement may be executed simultaneously in two or more counterparts, each of which will be considered

an original, but all of which together will constitute one and the same instrument.

(m) DISCLAIMER. THE SOFTWARE IS NOT SPECIFICALLY DEVELOPED OR LICENSED FOR USE IN ANY NUCLEAR, AVIATION, MASS TRANSIT OR MEDICAL

APPLICATION OR IN ANY OTHER INHERENTLY DANGEROUS APPLICATIONS. CUSTOMER AGREES THAT FIORANO AND ITS SUPPLIERS SHALL NOT BE LIABLE FOR ANY

CLAIMS OR DAMAGES ARISING FROM CUSTOMER’S USE OF THE SOFTWARE FOR SUCH APPLICATIONS. CUSTOMER AGREES TO INDEMNIFY AND HOLD FIORANO

HARMLESS FROM ANY CLAIMS FOR LOSSES, COSTS, DAMAGES OR LIABILITY ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE IN SUCH

APPLICATIONS.

(n) Customer Reference. Fiorano may refer to Customer as a customer in sales presentations, marketing vehicles and activities.

Such activities may include, but are not limited to; a press release, a Customer user story completed by Fiorano upon implementation of the

Software, use by Fiorano of Customer’s name, logo and other marks, together with a reasonable number of technical or executive level

Customer reference calls for Fiorano.

(o) Entire Agreement. This Agreement, together with any exhibits, completely and exclusively states the agreement of the parties.

In the event of any conflict between the terms of this Agreement and any exhibit hereto, the terms of this Agreement shall control. In the

event of any conflict between the terms of this Agreement and any purchase order or Order Form, this Agreement will control, and any pre-

printed terms on Customer’s purchase order or equivalent document will be of no effect. This Agreement supersedes, and its terms govern, all

prior proposals, agreements or other communications between the parties, oral or written, regarding the subject matter of this Agreement.

This Agreement shall not be modified except by a subsequently dated written amendment signed by the parties, and shall prevail over any

conflicting “pre-printed” terms on a Customer purchase order or other document purporting to supplement the provisions hereof.

Exhibit A

Fiorano Product List

Each of the individual items below is a separate Fiorano product (the “Product”). The Products in this list collectively constitute the Software.

Fiorano reserves the right to modify this list at any time in its sole discretion. In particular, Product versions might change from time to time

without notice.

1. Fiorano SOA Enterprise Server

2. Fiorano ESB Server

3. FioranoMQ Server Peer / FioranoMQ (standalone version)

4. Fiorano Peer Server

5. Fiorano SOA Tools

6. Fiorano Mapper Tool

7. Fiorano Database Business Component

8. Fiorano HTTP Business Component

9. Fiorano SMTP Business Component

10. Fiorano FTP Business Component

11. Fiorano File Business Component

12. Fiorano MOM Business Components (MQSeries, MSMQ, JMS)

NOTE: Other business components may be added to or removed from this list from time to time at Fiorano’s sole discretion.

Exhibit B

EXCLUDED COMPONENTS

(a) Any third party or open source library included within the Software

Exhibit C

Licensing Restrictions. The Software licensed hereunder is subject to the following licensing restrictions.

The parties understand that the modules of the Software are licensed as noted in this section. The term “Target System” means any computer

system containing one or more Processors based upon any architecture, running any operating system, excluding computers running IBM MV-

S, OS/390 and related “mainframe” operating systems. The Term “Processor” means a computation hardware unit such as a Microprocessor

that serves as the main arithmetic and logic unit of a computer. A Processor might consist of multiple “Cores”, in which case licenses shall

have to be purchased on a per-Core basis. A Target System may have one or more Processors, each of which may have one or more Cores.

In the sections below, Cores may replace Processors as applicable.

(a) If the Software is Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA server or FioranoMQ Server (JMS),
then the Software is licensed on a per Processor basis on a single Target System, where the total number of
Processors on the Target System may not exceed the total number of Processors licensed, with the additional
restriction that only a single instance of the Fiorano ESB Enterprise Server may run on a single Target System
and that a separate license must be purchased for each instance of the Fiorano ESB Enterprise Server, Fiorano
ESB Peer Server or FioranoMQ Server (JMS) Server for each Processor;

(b) If the Software is Fiorano SOA Tools or Fiorano Mapper Tool , or any Fiorano Test and/or Development license,
then the Software is licensed on a per-named-user basis, where the total number of named users may not
exceed the total number of named users licensed;

(c) If the Software is a Fiorano Business Component of any kind (including but not limited to Fiorano HTTP, File,
SMTP, File, Database, and other Business Components, etc.), then the Software is licensed on the basis of the
number of CPUs of the Target System on which the FioranoMQ Peer (to which the Business Component connects
runs). A separate license needs to be purchased for each CPU of each Target System of each FioranoMQ Peer
instance to which any Business Component connects.

Evaluations. Licenses used for evaluation cannot be used for any purposes other than an evaluation of the product. Existing customers must

purchase new licenses to use additional copies of any Product and may not use evaluation keys in any form. All evaluation keys are restricted

to 45-days and extensions need to be applied for explicitly. Any misuse of evaluation keys shall be subject to a charge of 125% (one hundred

and twenty-five percent) of the license fee plus 20% support.

Non-Production Environments. For all non-production environments referenced on the Order Form (including all HA (high-availability), QA,

Staging and Development environments), the following is understood: each non-production environment is an exact replica of the Production

Environment from the standpoint of the number of copies of the Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA server and/or

FioranoMQ Server (JMS) licensed. Each non-production environment is licensed on the exact same number and configuration of CPUs and/or

Cores as the corresponding Production Environment.

Run-Time Libraries. The Fiorano ESB Enterprise Server, FioranoMQ Peer, Fiorano SOA server and FioranoMQ Server (JMS) products are

“server” products, each of which has a runtime library associated with it. The runtime library may be freely bundled with and/or used for

internal development purposes by all Users who have licensed at least one production copy of the corresponding Server Software.

Copyright (c) 1999-2008, Fiorano Software Private Limited. and Affiliates

Copyright (c) 2008-2011, Fiorano Software Pte Ltd. and Affiliates

Contents

Chapter 1: Introduction... 18

Messaging Fundamentals.. 18
JMS Provider ... 19
Loosely Coupled Nature of Messaging Systems... 19
Reliable Delivery of Messages .. 19
Messaging Domains.. 19
Mode of Consumption of Messages ... 19
Administered Objects ... 20
Sessions ... 20
JMS Message... 20

Salient Features of FioranoMQ... 20
High Availability... 20
Clustering ... 21
XA Support ... 21
Scalability... 21
Application Server Integration.. 21
Native Runtime Support.. 21
Security.. 21
Durable Connections .. 22
Large Message Support... 22
Hierarchical Topics ... 22
HTTP Support .. 22
Logging Facilities ... 22
Message Snooping ... 22
Dead Message Queue ... 22
Encryption, Compression Support... 23

Samples... 23

Chapter 2: Configuration Concepts 24

Fiorano Component Model .. 24
Allows the invocation of operations and displays changes in exposed configuration parameters
of a component... 25
Deployment Profile .. 26
Default Profiles ... 27
Configuration Tools.. 28

Chapter 3: Connection Management........................... 29

Socket Acceptors... 29
Port Number ... 29
Protocol.. 29
Thread Management... 29
Security Parameters ... 30
Configuration .. 30

Connection Factory .. 30
Obtaining a Connection Factory Instance ... 31
JNDI Lookup ... 31
Creating a new instance.. 31

Lookup .. 31
JMX... 32

RMI Connector... 32
JMS Connector .. 32
Pinging .. 32

When to Enable Pinging .. 32
Salient Features... 33

Chapter 4: HTTP Support .. 34

Client Side Changes... 34
Using Proxies.. 34

Proxy Authentication .. 34
Tunneling through Firewalls .. 35

Tunneling through SOCKS Proxy Server .. 35
Enabling JMS Applets to Tunnel through SOCKS Proxy Server..................................... 36
Additional Notes on SOCKS ... 36

HTTP Pinging .. 36

Chapter 5: FioranoMQ Security...................................... 37

User Identification and Authentication .. 37
Data Protection ... 38
Authentication Based on Digital Certificates... 38
Security Realms .. 38
FioranoMQ User Management.. 39

Access Control Management .. 39
Default Realm... 40
NT Realm ... 40

Salient Features... 40
Limitations.. 41
Troubleshooting... 41

RDBMS Realm... 42

LDAP Realm.. 42
Configuring the LDAP Security Realm.. 43
Miscellaneous Features ... 43

XML Realm ... 44
Caching Realm.. 44
FioranoMQ Security - Salient Features & Advantages .. 44

Design Advantages... 44
Effective Protection of JMS Destinations .. 44
Centralized Control... 45
Destination-based Security.. 45
Authorization and Access Control.. 45

Default Users, Groups and ACLs .. 46

Chapter 6: FioranoMQ Data Stores 47

Storage type... 47
File-based store versus JDBC-compliant RDBMS store... 47
Default Destinations for sample applications.. 48
Creating a Default Database ... 49
Clearing a Database... 49

Chapter 7: Managing Administrated Objects 50

Naming Services ... 50
File.. 50
XML... 50
LDAP ... 51
RDBMS .. 51
Cache .. 51

Salient Features... 52

Chapter 8: Message Expiry... 53

Point of Checking of Message Expiry ... 53
On Detection of an Expired Message ... 53
Dead Message Queue ... 53
DMQ Configuration... 54
Selectively disabling DMQ for a message ... 54
Message Expired Notifications .. 54
Configuration .. 54
Additional points .. 55

Chapter 9: Snooper ... 56

Snooper Configuration ... 56
Working of Snooper ... 57
Security Settings... 57
Miscellaneous Features... 57

Chapter 10: Durable Connections 58

Overview ... 58
Working of Durable Connection ... 59
Producer on a Durable Connection ... 59
Consumer on a Durable Connection.. 59
Advantages .. 60

Network Reliability ... 60
Store and Forward Capabilities... 60
Transparent Reconnection Code ... 60
Message Browsing of Persisted Messages... 60
No Vendor Lock-in.. 60

Enabling Durable Connections Support ... 60
Client side Message Cache .. 61
Serverless Environment.. 62

Sample Application... 62
Relationship with Revalidate.. 63
Relationship with CSP .. 63
Constraints in Durable Connections .. 64

Chapter 11: Hierarchical Topics..................................... 65

Need For Hierarchical Name-Spaces ... 65
Name Space Notation .. 65
Creating Hierarchical Topics .. 66

Case Insensitive .. 66
Spaces in Names ... 66
Empty String... 66
Unlimited Length of Topic Names ... 66
Unlimited Depth of Topic Hierarchy... 66
Wild Card Support.. 66

Dynamic Creation of Topics in Hierarchy ... 67
Looking up Hierarchical Topics... 67
Publishing on Node(s) in Topic Hierarchy .. 67
Subscribing to Node(s) in Topic Hierarchy ... 67

Template Characters Used in Subscription ... 68
Deleting a Hierarchical Topic ... 70
Publish/Subscribe Across Servers... 71

Security Considerations on Hierarchical Topics ... 71
Limitations ... 71

Chapter 12: Message Encryption................................... 72

Base Implementation ... 72
Message Encryption Characteristics.. 73

Chapter 13: Message Compression 74

Base Implementation ... 74
Message Compression Characteristics... 75

Chapter 14: FioranoMQ Clustering 76

Common Problems of Real-World Systems .. 76
Client Unable to Connect... 76
Connection if the Server is Lost.. 76
The Server Runs Out of Resources.. 76
The Server Goes Down Altogether .. 77

FioranoMQ: The Solution .. 77
Automatic Failover Protection .. 77
Transparency and Code Portability.. 77
Configurability ... 77
Admin System... 78
Connection if the Server is lost .. 78
Server Runs Out of Resources.. 78
Server's Connection if a Client is Lost.. 79
Server-to-Server Communication ... 79
Scalability... 79

Clustering Components .. 79
Dispatcher .. 80
Preferred Server .. 80
Configuration Parameters.. 81
Repeater .. 82
Salient Features... 82
No Changes in the Client Application... 83
Robustness in Handling Network Failures... 83
Subscription Mode and Choice of Selectors .. 83
Request/Reply Across Repeater.. 84
Dynamic Replication Links ... 84
Repeater with Load Balancing .. 84
Repeater Link.. 84
Connection Information .. 84
Link Topic Information .. 85

Configuration Parameters.. 85
Wild Character Support... 86
Dynamic Link Propagation ... 86
Bridge .. 87
Bridge Architecture [.. 87

Forwarding Messages to Remote Queues .. 88
Bridge Features ... 89
Bridge Configuration... 90

Property Name Description ... 90
Link Properties.. 91

SourceServer .. 91
TargetServer ... 91

Connection Info Properties.. 91

Chapter 15: Large Message Support 93

Salient Features .. 93
Reliable transfer of large messages .. 93
No increase in cache/JVM heap size required.. 93
The Large message transfer is not restricted to any queue or topic.............................. 93
Resume function at both sender and receiver end].. 93
Minimal changes in the application code .. 93

Using Fiorano LMS to Transfer Large Files ... 94
Message Creation... 94
Starting the Message Transfer ... 94
Tracking the Message Transfer... 94
Handling Exceptions During Message Transfer .. 94
Resuming the Message Transfer ... 95

Salient Features .. 95
Consumer Discovery... 95
Fragment Size ... 95
Window Size ... 95
Sequencing ... 96
Handling Duplication .. 96
Handling lost fragments .. 96

Optimizing Large Message Transfer .. 96
Fragment Size ... 96
Window Size ... 97
Status message frequency .. 97

Chapter 16: High Availability.. 98

FioranoMQ's HA - An overview... 98
HA Components .. 99

Backup Server... 99

Server States .. 99
Intra-Enterprise Server Communication... 100
Common Persistent Message Store ... 100
Common Admin and Security... 100
Gateway Machine... 100

FioranoMQ HA Salient Features.. 101
Shared and Replication of Databases .. 101
Application Failover .. 101
Data Store Consistency (maintained between server switches) 101
Expensive HA Hardware Not Required ... 101
Implementing a Cluster .. 102

HA Example Scenario... 102
State - 1 (Normal Operation State)... 102
State - 2 (Active Server goes down) ... 103
State - 3 (Backup Server resumes operations) ... 104

Limitations of HA... 105

Chapter 17: Distributed Transactions 106

Introduction ... 106
Use Case.. 107
Transactions and the Distributed Transaction Processing (DTP) System 108
Components of a Distributed Transaction .. 108
FioranoMQ as a Distributed Transaction Resource Manager .. 109

Transactions with J2EE ... 110
FioranoMQ XA Implementation Notes ... 111
Limitations of XA Implementation of FioranoMQ ... 112

Chapter 18: FioranoMQ Content Based Routing 116

FioranoMQ Content Based Routing ... 116
Using FioranoMQ Content Based Routing... 118

Setting up the FioranoMQ Server for CBR .. 118
FioranoMQ CBR XPath Support... 118

Publishing XML Messages.. 119
Subscribing to XML Messages .. 121

CreateDurableSubscriber... 121
CreateSubscriber ... 122
Handling Massive Number of Subscribers... 125

XML Support... 126
FioranoMQ Content - Based Message Selector Language ... 128

General Form .. 128
Subset of Supported XPath Queries .. 129
Identifiers... 130
Operators ... 130

Literals... 131
Example XMLs .. 132

Elements Only XML .. 132
Attributes Only .. 133
Elements and Attributes XML ... 134

Limitations of FioranoMQ Content Based Routing.. 135

FioranoMQ® Concept Guide

Chapter 1: Introduction Page 18

Chapter 1: Introduction

The exchange of events based messaging data is an important function of business
enterprises. Messaging comprises of communication between software applications or between
objects in distributed system.

Fiorano's messaging solution is based on JMS 1.1 standards for enterprise messaging.

FioranoMQ® (FMQ) is a high-performance, stable, and secure Java implementation of JMS.
Fiorano’s messaging solution reduces the development time of applications requiring a
messaging infrastructure. The automatic store-and-forward capability of Fiorano’s messaging
solution across multiple servers ensures high scalability, high availability as well as high
performance of message delivery which is across the faulty networks.

Distributed transaction support within FioranoMQ ensures high levels of consistency and
reliability of message delivery; this aids the process of developing and deploying internet,
intranet and extranet applications.

FioranoMQ is JMX-enabled making it easy for administrators to manage and monitor its server.
FioranoMQ includes libraries written in C, C++ and C# for all major platforms. These native
runtime libraries allow non-java clients to talk directly to the java server and exchange
information with JMS-compliant clients.

FioranoMQ security includes integrated JSSE support. The Java Secure Socket Extension
(JSSE) enables secure internet communication using Java SSL (Secure Sockets Layer) and TLS
(Transport Layer Security) protocols. Developers can, therefore, enable secure data transfer
between client and server.

Messaging Fundamentals

This section gives an overview of terminologies and processes within messaging systems: JMS
Provider

 Loosely coupled nature of Messaging Systems

 Reliable Delivery of Messages

 Messaging Domains

 Mode of Consumption of Messages

 Administered Objects

 Sessions

 JMS Message

FioranoMQ® Concept Guide

Chapter 1: Introduction Page 19

JMS Provider

In messaging systems, clients connects to message providers. Each message has a specific
destination which is maintained by the provider. Functions of client applications include
producing messages for specific destinations and receiving messages from specific
destinations. The provider is responsible for the routing of messages.

Loosely Coupled Nature of Messaging Systems

Senders and receivers remain anonymous to each other since they connect via the provider.
The producer and the consumer of messages require the provider to specify the destination of
messages so that the producer can send messages to this destination and the consumer can
collect messages from this destination

Reliable Delivery of Messages

The sender and the receiver do not have to be available at the same time. The provider
delivers the message when the client becomes available.

Messaging Domains

There are two kinds of messaging domains:

 Point-to-Point (PTP)

 Publish-Subscribe(Pub/Sub)

In PTP domains, messages are sent to a particular destination where they queue. A client
application is delivers messages from this queue to the destination specified by the provider.
Though there can be several messages in the queue, each messages is intended for only one
destination/receiver. The Pub/Sub domain, on the other hand, allows a message to be
distributed to more than one subscriber via the provider.

Both these domains can be deployed by FioranoMQ. In addition, FioranoMQ can handle the
unified domains introduced by JMS 1.1.

Mode of Consumption of Messages

A message can be consumed synchronously or asynchronously.

In the synchronous mode, the client application requests the next message. The client can
receive the message in more than one way.

In the asynchronous mode, the client application identifies a message listener. Whenever a
message arrives for the destination defined, the provider delivers the message to the
subscriber by invoking the OnMessage method.

FioranoMQ® Concept Guide

Chapter 1: Introduction Page 20

Administered Objects

JMS providers can employ different methods of delivering messages. To make JMS clients
portable proprietary parts are encapsulated within JMS objects and are created by the
message provider's administrator. These objects are stored in JNDI namespace and can be
used by clients through JMS interfaces.

There are two types of JMS administered objects:

 ConnectionFactory – is the object used by a client to connect with a provider

 Destination – is the object used by a client to specify the destination from which it is
receiving messages and to which it is sending messages.

Sessions

A session is the single-thread context for producing and consuming messages. It can create
and serve multiple producers and consumers.

A session can be either transacted or non-transacted. Each session supports a single series of
transactions and treats them as a unit. Messages produced and consumed within a transaction
become the content of that particular transaction. A commit method indicates that message
processing can occur. A rollback method disables the processing of messages. In both cases a
transaction is considered to have been completed. A non-transacted session receives message
in a mode specified by JMS 1.1: This mode could be one of the following modes:
AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and DUPS_OK. The DUPS_OK is used in applications
where messages delivery can be duplicated.

JMS Message

A JMS message consists of a header property which allows adding an optional header fields in
a message and a body. There are five kinds of messages: StreamMessage, MapMessage,
TextMessage, BytesMessage, and ObjectMessage. FioranoMQ extends the TextMessage by
providing an additional message type: XMLMessage.

Salient Features of FioranoMQ

High Availability

Financial systems that require near-zero downtime require high availability solutions.
FioranoMQ HA deployment allows JMS clients to switch to a secondary MQ Server upon failure
of a Primary Server.

Client applications have the capability to store and forward messages with automatic re-
connection to the backup server. In the event of fault or failure, entire information in the
primary server is made available on the backup server so that applications can continue to
access this information. This provides applications with automatic fault-tolerance capabilities.

FioranoMQ® Concept Guide

Chapter 1: Introduction Page 21

Clustering

Clustering consists of multiple server instances, running concurrently, to provide increased
scalability and reliability. The clustering function enables clients connected on different
FioranoMQ Servers to exchange information without limiting one client to connect to server at
any given point of time. FioranoMQ provides clustering support with the help of three
components: the Dispatcher, the Repeater, and the Bridge.

Fiorano's load balancing architecture involves the use of a Dispatcher-enabled server, to route
the incoming client connections to the least loaded server within a cluster. The dispatcher
component is connected to multiple FioranoMQ Servers. All these servers become part of the
cluster that is served by the dispatcher. The repeater and the bridge components are used for
Server-to-Server Communication.

XA Support

Real-world applications require transactions involving multiple resource managers. Such
transactions are known as distributed or global transactions. Implementation of distributed
transactions involves following the JTA standards. FioranoMQ supports both local and global
transactions. If a global transaction is active, all activities performed become part of this
transaction, or else they operate locally.

Scalability

The load balancing and failover protection architecture allows high scalability in terms of the
number of concurrent client connections allowed by a FioranoMQ Server.

Application Server Integration

FioranoMQ integrates seamlessly with several popular J2EE application servers including,
WebsphereMQ, JBoss, and WebLogic among others.

Native Runtime Support

FioranoMQ includes client libraries written in C, C++ and C#. These native runtime libraries
allow non-java clients to talk directly to the java server as well as exchange information with
other JMS clients.

Security

The security implementation includes integrated JSSE support. The Java Secure Socket
Extension (JSSE) enables secure internet communications. It implements a Java version of
SSL (Secure Sockets Layer) and TLS (Transport Layer Security) protocols and includes
functionality for data encryption, server authentication, message integrity, and optional client
authentication. Developers can, therefore, provide secure channels for data transfer between
clients and servers.

FioranoMQ® Concept Guide

Chapter 1: Introduction Page 22

Durable Connections

Durable Connection support provides client applications with a fault-tolerant connection
mechanism. If an application creates a durable connection, it needs not to worry about re-
connecting back to the server in case of fault or failure. This is automatically handled by
FioranoMQ's runtime library. If a message is sent during the disconnected phase, it is stored in
a local repository of the client machine.

Large Message Support

FioranoMQ enables applications to transfer large messages employing the point-to-point model
or the publish-subscribe model. The implementation takes care of resuming data transfer from
the point of failure, if any, during the transmission process.

Hierarchical Topics

Destinations with hierarchical dotted naming convention are supported. For instance, a Topic
or Queue can be named as enterprise.finance.admin or enterprise.finance.analysts. Users
can then address multiple destinations using wildcards after a ‘.’ in the hierarchy. Topics can
thus be broken down into parent and child hierarchies.

HTTP Support

To provide users secure access, FioranoMQ provides Hypertext Transfer Protocol (HTTP) over
Secure Sockets Layer (SSL).

Logging Facilities

FioranoMQ has tracing and logging facilities for easy detection of location of errors in the
messaging system. The FioranoMQ Administrator has the option of setting different tracing
levels for each individual FioranoMQ component.

Message Snooping

Administrators can view messages published on topics as well as on queues. The ability to
snoop about/around messages allows the administration, management, testing, and
debugging of JMS applications.

Dead Message Queue

A message can be associated with a timeout period within which it is to be received. A dead
message queue stores messages that have timed out.

FioranoMQ® Concept Guide

Chapter 1: Introduction Page 23

Encryption, Compression Support

Encryption and compression support can be applied for a single message or for all messages
to be sent to a particular destination. The default encryption of a message is based on DES.
The default implementation of compression is based on Zlib implementation.

Note: In addition message browsing is provided.

Samples

FioranoMQ comes bundled with sample applications that display its features. Experimenting
with these applications gives the user a working perspective of the product.

FioranoMQ® Concept Guide

Chapter 2: Configuration Concepts Page 24

Chapter 2: Configuration Concepts

This section serves as an introduction to the configuration and component model used by
FioranoMQ.

FioranoMQ's component model:

 Deployment Profile

 Configuration Modes

 Off-line

 On-line

 JMX

 API’s

This chapter explains FioranoMQ’s component model. It also introduces the reader to the
"Deployment Profile" while explaining the profiles pre-bundled with the FioranoMQ installer.
The user is then shown how to choose the right options for configuring the server.

Fiorano Component Model

The FioranoMQ Server implements a componentized model for various internal modules.
Components can be clubbed together to form a deployment profile. Each deployment profile
can be separately configured both in offline and online mode.

The FioranoMQ Server comprises of a number of components that implement functions
independently.

A component:

 Has a well-defined interface through which its life-cycle is controlled.

 Is associated with a unique profile configuration object that defines its configuration
needs.

 Can expose configuration attributes and/or operations to the external world via JMX.

 Defines dependencies upon other components.

FioranoMQ® Concept Guide

Chapter 2: Configuration Concepts Page 25

A component is not a standalone executable application but can be hosted only within a
Container.

A container:

 Is an executable Java program.

 Requires a list of components as input.

 Resolves component dependencies by launching components in the correct order.

 Provides access to a component's configuration upon its launch.

 Encapsulates a JMX MBean Server to which all deployed components are bound.

Allows the invocation of operations and displays changes in exposed
configuration parameters of a component.

FioranoMQ® Concept Guide

Chapter 2: Configuration Concepts Page 26

Deployment Profile

A component only provides a set of services without knowing much about its surroundings. A
component is not aware of the application that it encapsulates. Similarly a container is
unaware of the content of the "application". The container views components working together
in harmony without value judgments. An "application" is defined via the list of components
(deployment.lst) accepted as input by the container. Modifying this list modifies the behavior
of the application hosted in the container. This list along with the configuration for components
makes up a "deployment profile". In other words, a deployment profile consists of a list of files
(meant for deployment and configuration) organized in a pre-defined directory structure. A
typical profile structure (on which the server hasn't been run) is shown below:

Directory Description

certs Certificate indicating that the server is running in SSL.

conf Database Configuration Files (*.properties and *.cfg).

Confix.xml (Signifying configuration of components).

deploy *.lst files –comprises the list of components to be deployed in the
container when this profile is in use. .

deploy/services XML files defining dependencies and object names.

run Directory created when profile is run initially. This becomes the
default file-based database storage location of a profile.

In other words, the FioranoMQ Server is an "application" that runs within a Container. The
FioranoMQ Server consists of a number of components that provide varied functions such as:
pubsub, ptp, admin, and so on. Modifying the deployment profile can alter the behavior of the
server. It is possible to run a bridge or a repeater component along with the FioranoMQ Server
within the same JVM. This is made possible by the compartmentalization of the components of
bridge and repeater. FioranoMQ features such as the XA, can be turned Off or On by removing
the corresponding components from the deployment profile.

Each Profile can be thought of as a separate and independent ‘work-areas’. The data store and
logs stored in the "run" folder are created when the server is launched for the first time.

FioranoMQ® Concept Guide

Chapter 2: Configuration Concepts Page 27

Default Profiles

The FioranoMQ Server is installed with pre-created profiles that are configured for certain
server functions. These profiles are located in "profiles" directory of the server and are
summarized in the table below:

Profile Description

FioranoMQ Default FioranoMQ profile

FioranoMQ_ClusterManager Pre-configured profile for running fmq server with
Cluster Manager enabled

FioranoMQ_Dispatcher Pre-configured profile for running fmq server with
Dispatcher enabled

FioranoMQ_HA_rpl/HAPrimary

FioranoMQ_HA_rpl/HASecondary

Pre-configured profile for running primary fmq
server with HA (replication) enabled

Pre-configured profile for running secondary fmq
server with HA (replication) enabled

FioranoMQ_HA_shared/HAPrimary

FioranoMQ_HA_shared/HASecondary

Pre-configured profile for running primary fmq
server with HA (shared) enabled

Pre-configured profile for running secondary fmq
server with HA (shared) enabled

FioranoMQ_XA Pre-configured profile for running fmq server with
XA enabled

StandAloneBridge Pre-configured profile for running bridge on an
independent JVM

StandAloneRepeater Pre-configured profile for running repeater on an
independent JVM

By default, the Container runs on the ‘FioranoMQ’ profile. To choose another profile for the
container, specify the profile name along with the -fmq.profile parameter in the command
line when launching the container.

For example, in order to use "FioranoMQ_XA" profile, launch the container using the
command: fmq.bat -fmq.profile FioranoMQ_XA

FioranoMQ® Concept Guide

Chapter 2: Configuration Concepts Page 28

Configuration Tools

FioranoMQ can be configured in several ways:

 FioranoMQ provides a graphical tool, called Fiorano Studio, to configure and manage
one or more FioranoMQ Servers.

 Configuration information can be accessed and modified using Fiorano Studio in an
offline mode if the server is not available.

 Fiorano Studio allows a user to manage a FioranoMQ server in ‘run’ mode through
online configuration.

 FioranoMQ provides comprehensive support for JMX. Any standard JMX-compliant tool
can be used to administer FioranoMQ server. Fiorano ships a JMX-compliant
administrative tool, called Fiorano JMX explorer, along with FioranoMQ.

 Administration is undertaken using the FioranoMQ proprietary administration API.

FioranoMQ® Concept Guide

Chapter 3: Connection Management Page 29

Chapter 3: Connection Management

FioranoMQ Server modules include a transport layer which interface with underlying network
protocols and accepts incoming connections. This layer reads requests sent by applications
over the network. .

The responsibilities of the transport layer include:

 Listening for incoming client connections on pre-defined protocols (HTTP/TCP).

 Management of threads.

 Analyzing incoming data and passing it onto core FioranoMQ services.

 Detecting any loss of connectivity and taking remedial actions.

Socket Acceptors

Socket Acceptors represent input ports through which the server monitors incoming
connections. Each socket acceptor is associated with a port number, a transport protocol, a
connection manager, and an optional security parameter.

Port Number

Refers to the physical TCP/IP port through which the server monitors incoming connections.
Once a connection is established, the socket acceptor handles all requests coming from the
client application. This includes JMS, Admin, Lookup, and internal asynchronous requests
coming from the FioranoMQ runtime library.

Note: Since a port cannot be shared between two applications, the port number used by the
FioranoMQ Server is unique to its server instance. If two instances of the FioranoMQ Server
are to run simultaneously on a machine, then both servers listen on different ports. JMX
Requests reach the server via the plugged-in JMX Connector, independent of the
SocketAcceptor being used.

Protocol

Protocol refers to the physical transport required by a client to connect to the server. By
default, the server is configured to use TCP with the option of using HTTP. SSL can also be
enabled over TCP and HTTP.

Thread Management

FioranoMQ Server offers different thread management schemes that differ in their handling of
new connections. The default thread management scheme associated with a socket acceptor is
configured in a manner to create a new thread for each connection to the server. Other
schemes allow the configuration of a fixed-size thread pool to service requests from all the
connections.

FioranoMQ® Concept Guide

Chapter 3: Connection Management Page 30

Security Parameters

The socket acceptor can be configured to enable security via SSL. This can be done both on
TCP as well as on HTTP protocols. FioranoMQ provides the implementation of SSL over TCP via
Sun's JSSE.

Configuration

By default, the FioranoMQ Server is configured for one Socket Acceptor. This socket acceptor
is configured to listen through port 1856 using the TCP protocol. The FioranoMQ Administrator
has the following privileges with respect to socket acceptors:

 Can edit the default socket acceptor configuration.

 Can create additional socket acceptor(s).

Note: An additional Socket Acceptor in the server which opens another port for
communication over the specified protocol.

Connection Factory

As per JMS specifications, an application uses a connection factory to fetch the details of a
Connection instance to connect to the server. The connection factory instance encapsulates all
the parameters (like URL, protocol, and so on) required to connect to the server. These
parameters are configured to use the default socket acceptor settings and must be modified if
the server uses a socket acceptor with a non-default configuration. The server creates the
default connection to factories when it is launched for the first time. These connection
factories are automatically created based on the configuration of the socket acceptor being
used.

Note: If multiple Socket Acceptors are used, the default connection factories use the
parameters of any one Acceptor. The server can be forced to re-create default connection
factories at any point. Connection Factory Configuration Parameters:

Parameter Name Description Default Value

ConnectURL The server URL format.

Note: The protocol to be used is
not part of the URL.

http://localhost:1856

BackupURLs Semi-colon separates lists of URLs
that should be tried when creating
connections (or when revalidating
a connection) in those cases
where a connection with the
server specified in the connectURL
cannot be established (fails).

http://localhost:1856/�

FioranoMQ® Concept Guide

Chapter 3: Connection Management Page 31

IsForLPC

isConnectURLUpdationAllowed If set to true, the connection
factory will record the IP address
and port of the server through
which it is looked up. This is
useful for machines where IP
address or port is changed.

Note: This flag is turned ON for
default factory connection.

False

ConnectionClientID If not null, represents a client ID
that is automatically set on a
connection created through this
connection factory.

Null

PingDisabled If set to true, a connection
created will not be pinged even if
pinging is turned ON at the
server.

False

Obtaining a Connection Factory Instance

A connection factory is a stateless object that encapsulates information on how to connect to
the server.

JNDI Lookup

A connection factory instance is a serializable object that can be stored and later looked up
through any JNDI-compliant directory server. FioranoMQ provides the JNDI interface to lookup
all admin objects.

Creating a new instance

An application can create a new instance of connection factory and use it after setting various
configurable parameters.

Lookup

FioranoMQ applications can lookup objects (destinations and connection factories) when using
the JNDI interface. A single socket acceptor can service lookup requests as well as JMS
requests. Therefore, in order to send the request to the server, its connection parameters
have to be specified as environment variables to JNDI. Server URL, Transport protocol, and
security parameters can be specified in the environment forwarded to the JNDI layer.

FioranoMQ® Concept Guide

Chapter 3: Connection Management Page 32

JMX

FioranoMQ 8.0 and later versions provide extensive support for JMX. This allows any third
party JMX-compliant applications to connect to the server remotely and access/modify the
configuration at runtime. This requires a JMX Connector to be plugged into service incoming
JMX requests. There are two options for JMX Connectors:

1. RMI Connector

2. JMS Connector

RMI Connector

Is the default connector shipped with the FioranoMQ Server. It uses RMI as the underlying
transport protocol to establish communication with the server and with a JMX-compliant
application. This connector uses a dedicated socket that accepts connections and services
requests. By default, the Connector is configured for port 1858 but can be configured to work
with another port.

JMS Connector

This connector uses JMS Bus for establishing communication with the JMX Application and with
FioranoMQ Server. All connection parameters are treated as configurable parameters. The
JMS connector is configured to connect to the FioranoMQ Server running with the default
socket acceptor configuration. If this configuration is modified, corresponding changes must be
made to the JMS Connector configuration.

Pinging

The transport layer detects loss of connectivity between an application and the server and
performs the necessary server cleanup. Loss of connectivity is detected via a ping mechanism
between the Server and the Client. By default Pinging is disabled. When enabled, it instructs
the FioranoMQ client library to send ping packets periodically to the FioranoMQ Server. The
server on its part monitors ping requests on all connections and if it does not receive ping
packets for any connection within a configured timeout, it assumes the connection is dead and
shuts it down.

When to Enable Pinging

In some operating systems, the absence of any activity over a client socket for a period of
time leads to its forceful shutdown by the OS. Enabling Pinging avoids this shutdown.

A network failure can not be detected for applications not sending requests to the server. With
Pinging enabled, the application is notified of a network failure prior to the configured timeout.

FioranoMQ® Concept Guide

Chapter 3: Connection Management Page 33

Salient Features

The Configurable Parameter for Pinging includes the Ping Timeout Interval. This parameter
specifies the time within which the client application is notified of a problem with connectivity.
By default, this parameter is set to 4 minutes or 240,000 milliseconds. The lowest allowed
value for this parameter is 30,000 milliseconds.

Pinging is automatically turned ON when the Socket Acceptor uses the HTTP protocol.

Since a connectivity problem is detected asynchronously for the application, an error is relayed
through an exception set on the connection as per JMS Specifications.

Note - In other words, it is mandate to set an exception listener on the connection if the
application is to be notified of connectivity problems.

FioranoMQ® Concept Guide

Chapter 4: HTTP Support Page 34

Chapter 4: HTTP Support

FioranoMQ supports HTTP as the transport protocol between JMS clients and MQ Servers. This
allows JMS communications to flow through corporate firewalls/proxies. Implementing this
feature insulates the protocol layer from JMS application development. The client side
environment is responsible for determining the protocol to be used for communication. All
protocols - TCP, Secure TCP (JSSE), and HTTP behave in a similar manner. Selecting the
protocol to be used is based on the configuration of the application developer. Synchronous
and asynchronous communications are available regardless of protocol choice.

HTTP is typically used to communicate across the internet. If the FioranoMQ Server is to
directly process messages received from clients over the internet, it must be deployed in a
manner similar to a web-server. The HTTP support in FioranoMQ provides the necessary
features that make it function as a web server enabling it to handle HTTP requests. Using
HTTP Tunneling a direct connection between client and server can be established.

Client Side Changes

While switching protocol from TCP to HTTP, the following changes are required:

 All additional parameters need to be marked as JNDI.

 If jndi.properties file is used to specify parameters, the application code need not be
modified. In such ases, an HTTP Enabled Connection factory needs to be used.

 Including of HTTPClient.zip file in classpath.

Using Proxies

HTTP support of FioranoMQ provides seamless communication via proxy servers. Most proxy
servers including- Microsoft ISA server, Wingate, and WinProxy among others – can be used
to connect to the FioranoMQ Server. FioranoMQ Client libraries allow developers to set the
Proxy Address and Port in the client applications. These can also be set as Java VM Properties.

Proxy Authentication

FioranoMQ supports both "Basic" and "Digest" authentication for communication through
proxies. Various Proxy Authentication parameters such as the Authentication Realm, username
and password can be specified through client applications using the environment variables.

Authentication is required within the instance of a VM. FioranoMQ caches the authentication
information and uses it for other connections.

FioranoMQ® Concept Guide

Chapter 4: HTTP Support Page 35

Tunneling through Firewalls

This section discusses how JMS Clients operate in networks where firewalls are present.
FioranoMQ allows enterprise clients to extend beyond corporate firewalls by providing both
HTTP Tunneling and tunneling through SOCKS enabled Proxy servers. FioranoMQ provides
Tunneling support for clients along with all JMS functionalities.

Tunneling through SOCKS Proxy Server

Tunneling through client as well as server side firewalls can be achieved through the SOCKS
Proxy Server. The SOCKS protocol is an open internet standard for performing network
proxying at the transport layer. SOCKS creates proxy, which serves as a data channel
between TCP or UDP (User Datagram Protocol) based clients and servers. The proxy between
the client and server, created by SOCKS is transparent to both the parties.

Java runtime 1.1.8 and above provide SOCKS support. The Java.net socket instance has the
ability to connect to a remote host through the SOCKS proxy server. If the System property
socksProxyHost and optionally socksProxyPort is set, the Socket implementation redirects the
connection through the SOCKS proxy Server. Tunneling through proxies, using SOCKS,
presents a more generic and viable solution for JMS Applets. Since socksProxyPort and
socksProxyHost are set as a system property, the Client Applet burrows through the SOCKS
server. A single version of an applet can now be downloaded by the client, despite the
presence of a firewall. There are slight variations in the applet and application code used to
tunnel through the SOCKS Proxy. Using HTTP Tunneling requires that the applet sets the
proxy Address and proxy Port. The code snippets provided in this document illustrate proxy
tunneling in applications and applets.

The above features do not work with JDK versions below 1.4 and 1.5. Complete samples can
be found in the Tunneling Samples folder located at: %FMQ_DIR%\fmq\samples\ directory.

FioranoMQ® Concept Guide

Chapter 4: HTTP Support Page 36

Enabling JMS Applets to Tunnel through SOCKS Proxy Server

Browsers allow users to manually set the Proxy Server/SOCKS Server Host and port or users
can use a script to automatically set the browser configuration. Applets access Java for SOCKS
proxy server settings by conveying the settings effectively to the Java VM, used by the
browser.

Microsoft Internet Explorer 4.0 and above provide complete SOCKS proxy support. They do
not require changes to run Applets behind client firewalls.

Note: Netscape Communicator does not convey its proxy server settings to Java VM. This can
be achieved by using digital certificates. A digital certificate allows the client Applet to set
System properties for Java VM. (For more information, refer to the SockPubSub samples
directory in the FioranoMQ installation directory.)

Additional Notes on SOCKS

JDK implements SOCKS Version 4. SOCKS Version 4 accepts remote host addresses in
numeric IP form (and not alphanumeric form which would allow the use domain names such
as www.fiorano.com). Tunneling does not work if issues of domain name and IP address are
not resolved. To resolve the issue the Applet needs to be downloaded from a known IP
address and used instead of domain names. Another solution is to provide the Server IP
Address as Applet parameters.

HTTP Pinging

To get the server to detect the clients that have been disconnected from the server pinging
needs to be implemented over HTTP as well. This enables a ‘clean up’ of resources used by
clients that have been disconnected or timed out. To implement this feature, the client library
must continuously ping the server at predefined intervals. The server can be configured to
perform this action. Pinging is essential for the HTTP support of FioranoMQ and is set as the
default feature in the case of HTTP connections. Due to attributes of HTTP, there are
limitations in detecting control-C (or terminating the application abruptly) related issues from
the client. It is expected that the JMS client application programmers perform an explicit
connection.close() operation to enable the server to detect client disconnections. Not doing
an explicit close can result in inconsistent message reception and delivery.

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 37

Chapter 5: FioranoMQ Security

FioranoMQ provides a comprehensive security model. The key benefits of FioranoMQ are:

 Complete implementation of Java 2 Security APIs.

 Design and implementation of JMS Applications, independent of security policy.

 Configuration of security and user privileges through a central administration tool.

To use the internet as a platform for business applications, organizations need to protect
access to corporate assets, such as databases. Each class of users (such as employees,
customers, partners, and suppliers) requires different levels of access.

Information can travel to many locations over the network; yet confidential messages must
remain private. This is achieved through:

 Authentication: Determination of user identity

 Authorization: Definition and control of user activity

User Identification and Authentication

The FioranoMQ security subsystem provides user identification and authentication using
standard JMS APIs. The integrity and privacy of data (discussed in the next section) is
protected using MD5 (Message Digest 5) checksums and 40-bit and 128-bit encryption.
FioranoMQ supports destination-based security which allows altering access permissions for
Topics and Queues stored on the FioranoMQ Server.

To implement the username/password model specified by the JMS API, set up users following
the instruction below:

 Set up users through FioranoMQ Administration API/GUI tools. Usernames are stored in
the FioranoMQ offline database, together with their passwords and descriptions.

 When a client application tries to connect to the FioranoMQ server using the API
TopicConnectionFactory.createTopicConnection (String username, String passwd), the
FioranoMQ runtime library (embedded within the client) sends a connection request to the
server, with the username and password. The server searches for the username in its
repository. If the username is found, the server compares the supplied password with the
existing password in the repository. If the password matches, the connection request is
accepted, otherwise it is rejected and the client throws an exception.

If the username sent cannot be found in the repository, the server rejects the connection. A
valid connection is allowed if the anonymous user is present in the users list. (An anonymous
user is shipped with the product.) Additionally, any user can create a connection using the
following:

TopicConnectionFactory.createTopicConnection(null,null);

TopicConnectionFactory.createTopicConnection("anystring",null);

TopicConnectionFactory.createTopicConnection(null,"anystring");

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 38

All these connections are equivalent to:

TopicConnectionFactory.createTopicConnection ("anonymous","anonymous") call.

If this option is not required, then the anonymous user should be deleted through the ‘Admin’
API. These calls do not allow creation of connections. This is true for createQueueConnection()
and createConnection() calls as well.

Data Protection

The secure version of FioranoMQ Server protects the integrity and privacy of all the messages
exchanged between the client and the server.

The integrity feature verifies that message content on delivery matches the original published
form. Corruption of data can be accidental or intentional. FioranoMQ uses the cryptographic
checksum Message Digest 5 (MD5) algorithm to validate the message content integrity.

FioranoMQ ensures the privacy of a message by using encryption. Encryption scrambles the
message content before sending it over the network and restores the original form on
delivery. If the message is intercepted before delivery (if someone attempts to read it as it
travels over the network), the details are available in an unreadable form. By default,
FioranoMQ encrypts messages to provide privacy using a 40-bit encryption provided by the
Data Encryption Standard (DES) algorithm. FioranoMQ allows customization of the cipher
suite. For example, it is possible to switch from DES 40-bit encryption to 128-bit RSA
encryption (domestic version only), or to switch between various available 40-bit encryption
algorithms, by setting the SSL parameters.

FioranoMQ 7.0 onwards provides seamless integration with NT realms. The need for the
Enterprise Administrator to set up separate user realms for MQ is made obsolete. FioranoMQ
integrate seamlessly with existing NT/Solaris realms.

Authentication Based on Digital Certificates

Besides username/password authentication, FioranoMQ incorporates authentication based on
digital certificates. This feature is available only on the secure FioranoMQ Server. When
certificate based authentication is enabled, each client passes on a one way encrypted version
of its digital certificate to the server while trying to establish a connection. The server
authenticates the client certificate and, if successful, passes back its own certificate to the
client process, allowing the client to verify the identity of the server.

Security Realms

FioranoMQ supports Realm based security that allows FioranoMQ to integrate with Solaris and
NT Security realms. This eliminates the need to create MQ specific users/permissions.

A realm is an administrative entity around which basic operational security policies revolve. A
realm determines the scope of the security data and is normally used to organize the objects
used in defining access control policies.

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 39

Security realms represent a logical grouping of Users, Groups, and Access Control Lists (ACLs)
for protecting FioranoMQ Server resources. The default security realm or one of the sets of
alternative security realms can be used, which allow usage of Windows NT, UNIX, and LDAP
(Lightweight Directory Access Protocol) security stores. In addition, FioranoMQ supports
custom developed security realms.

A Realm object provides access to users and the main Principals around which a realm is
organized, and supports modifying (and extending) it according to policies defined by the
realm administrator and by each particular kind of realm. Different Realms use different
Authentication Protocols such as passwords (or pass phrases) and public key certificates.
Groups of users (and of other groups) are used to define various policies applying to many
users. ACLs are uniquely associated with entries in each realm.

FioranoMQ implements a sophisticated security engine that allows dynamic updating of
Users/Groups and their privileges. Users, Groups, and ACLs can be retrieved as needed from
an external source. FioranoMQ Realms Subsystem is divided into two services: User
Management and Access Control Management, each of which is discussed in the following
sections.

FioranoMQ User Management

FioranoMQ User Management service uses Realms to retrieve Users and Groups as Java
objects.
Any one of the following realms can be chosen for User Management:

 Default Realm

 NT Realm

 RDBMS Realm

 LDAP Realm

 Caching Realm

 XML Realm

The User Manager implementation can be specified in the profile deployed during
configuration.

Access Control Management

FioranoMQ includes a powerful and flexible access control system to control access to
applications and to backend services that clients access through the FioranoMQ Server. The
access control system is built on the Java2 security APIs.

An ACL guards an object or service in the FioranoMQ Server. ACLs can guard Topics and
Queues. Additionally, custom ACLs can be created for use in applications. An ACL holds a list
of ACL entries, each with a set of permissions for a user or group. Permission is actions that
can be performed on the protected destination, for example, publish, lookup, and subscribe.

FioranoMQ's dynamic verification engine is invoked before any service call is executed, which
checks pertinent ACLs, testing whether the user has the permission required to continue.

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 40

By default, FioranoMQ uses the file-based data store for storing ACL information. ACLs are
associated with realms in such a way that the entries in them, which identify users and
groups, are only significant within a particular realm. FioranoMQ realms are dynamic; they
retrieve Users, Groups, and ACLs as needed from an external source.

More information about Access Control Lists is available in the Java documentation of the
java.security.acl package.

Any of the following realms can be chosen for ACL management:

 Default Realm

 RDBMS Realm

 LDAP Realm

 XML Realm

The ACL Manager Implementation can be specified in the profile deployed during
configuration.

Default Realm

The default security realm is the File-based Security Storage System in which the User/Group
information and credentials are stored in the file based persistent store.

NT Realm

Using Fiorano NTRealm avoids defining Users and Groups on FioranoMQ. Windows NT Security
realm of FioranoMQ uses account information defined for a Windows NT domain, to
authenticate Users and Groups. FioranoMQ NTRealm provides authentication using the
WindowsNT security domain controller.

Salient Features

Fiorano NT Realm requires the FioranoMQ Server to be run as a Windows administrative user,
enabling it to read security-related data from the Windows NT Domain Controller. To use
Fiorano NT Realm, FioranoMQ must be run on a computer in the Windows NT domain.

To manage User and Group information, the FioranoMQ Server must be able to make system
calls on the Windows NT computer, where the FioranoMQ Server is running. In other words,
FioranoMQ needs appropriate privileges to be able to communicate with the Primary Domain
Controller to perform authentication.

NT Principal Manager, only users registered in Administrators group has rights to open/create
Admin Connection. Other users can be given these rights by adding/registering them to the
default Administrators group.

Note: User admin (used by default to create admin connections) is not a member of the
Administrators Group in FioranoMQ NT Realm. To use FioranoMQ default admin tools and APIs,
the admin user must be registered in the Administrators group.

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 41

Limitations
 A Group can not have a Group as a member.

 Password for a user can not be changed using Fiorano NT Realm API. A password can be
changed using the Windows NT Administration Tool, instead.

Note: These limitations relate to the NT implementation of realm.principal and can be over-
ridden by using any other implementation of FioranoMQ Realm.

Troubleshooting

The most common configuration problem within Fiorano NT Realm is related to Windows NT
policies and, specifically, with the user account that runs the FioranoMQ Server. The user
account that runs FioranoMQ Server requires special permissions to access the Windows NT
domain. The steps for granting these permissions are available through the configuration
instructions.

A frequently occurring problem concerns FioranoMQ Server’s difficulty in loading the file
fioranorealm.dll. If FioranoMQ is unable to load the fioranorealm.dll, it gives the following
message:

java.lang.UnsatisfiedLinkError: no fioranorealm in java.library.path

at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1312)

at java.lang.Runtime.loadLibrary0(Runtime.java:749)

at java.lang.System.loadLibrary(System.java:820)

at fiorano.jms.realm.principal.nt.FioranoNTManager.init(FioranoNTManager.java:82)

at fiorano.jms.realm.principal.nt.FioranoNTManager.(FioranoNTManager.java:51)

at

fiorano.jms.realm.principal.nt.PrincipalManagerImpl.startup(PrincipalManagerImpl.java:

61)

at fiorano.jms.realm.RealmManagerImpl.startup(RealmManagerImpl.java:77)

at fiorano.jms.ex.Executive.startup(Executive.java:647)

at fiorano.jms.ex.Kernel.startup(Kernel.java:61)

at fiorano.jms.ex.fmpmain.main(fmpmain.java:60)

fiorano.jms.common.FioranoException: REALM_NOT_SUPPORTED :: NT realm support is not

available

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 42

RDBMS Realm

The RDBMS security realm is a custom realm that stores Users, Groups and ACLs in a
relational database. It uses configuration information to obtain database connection
information. Using the connection information it connects to the database and loads Users,
Groups, Permissions, and ACLs. Since the methods for loading and saving the Realm modify
the values, the Realm is maintained in a ‘stored state’ rather than saved. Configuring the
RDBMS Security realm involves setting fields that define the JDBC driver used to connect to
the database. Additionally, it defines the schema used to store Users, Groups, and ACLs in the
database.

Directory Description

DbDriver The full class name of the JDBC driver. This class name must be in
the CLASSPATH of FioranoMQ Server.

URL The URL for the database used with the RDBMS realm, as specified
in the JDBC driver documentation.

UserName The username of the database user.

Password The password for the username.

LDAP Realm

LDAP Realm provides authentication using the Lightweight Directory Access Protocol (LDAP)
server. This enables the management of Users, Groups and ACLs from one location, the LDAP
directory. LDAP realms allow storage or usage of ACL/user information on any external LDAP
server. When the LDAP security realm is used, the LDAP server authenticates Users and
Groups.

In the case of SSL protocol (with FioranoMQ Server), the LDAP Security Realm retrieves a
common name of the User from its digital certificate and searches the LDAP directory for that
name. The LDAP Security Realm does not verify the digital certificate. This verification is
performed by the SSL protocol. The LDAP Security Realm currently supports Netscape
Directory Server, Microsoft Site Server, OpenLDAP, and Novell NDS.

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 43

Configuring the LDAP Security Realm

Configuring the LDAP Security realm involves defining the fields that enable the LDAP Security
realm, within the FioranoMQ Server, to communicate with the LDAP server. Additionally, it
involves defining the fields that describe how Users and Groups are stored in the LDAP
directory. These fields are described in the Table.

Directory Description

LdapProviderURL Location of URL server. Change the URL to the name of the
computer on which the LDAP server is running and to the
port number at which it is listening. If the FioranoMQ server
needs to connect to the LDAP server using the SSL protocol,
the LDAP server’s SSL port in the URL should be used.

Principal The distinguished name (DN) of the LDAP User is used by
the FioranoMQ server to connect to the LDAP server. The
User must be able to list the LDAP Users and Group.

Credential The password that authenticates the LDAP User, as defined
in the principal field.

LdapsecurityAuthentication Determines the method for authenticating Users.

LdapUserPasswordAttribute Password of the LDAP User.

LdapUserDN A list of attributes which combined with attributes in the
username attribute field uniquely identify a LDAP user.

LdapUserNameAttribute The loginname of the LDAP User. The value of this field can
be the common name of an LDAP user, but usually it is an
abbreviated string, such as User ID.

LdapGroupDN A list of attributes which combined with the Group name
attribute field uniquely identifies a Group in the LDAP
directory.

LdapGroupNameAttribute The name of a Group in the LDAP directory. It is usually a
common name.

LdapGroupUsernameAttribute Name of the LDAP attribute that contains a Group member
in a Group entry.

Miscellaneous Features

If caching is enabled, the Caching Realm internally caches Users and Groups to avoid frequent
lookups to the LDAP directory. Each object in the Users and Groups cache has a TTL field
(TimeToLive), which is set while configuring the Caching realm. If changes are made in the
LDAP directory, those changes are not reflected in the LDAP Security realm until the cached
object expires or is flushed from the cache. The default TTL is 60 seconds for unsuccessful
lookups and 10 seconds for successful visits. Changes in the LDAP directory should be
reflected in the LDAP Security realm within 60 seconds, unless the TTL fields for User Groups
and caches have been changed.

If server-side code has performed a lookup of the LDAP Security realm, such as a getUser()
call on the LDAP Security realm, the object returned by the realm cannot be released until it is
released by the code. Therefore, Users authenticated by FioranoMQ Server remain valid as
long as the connection persists, whether or not the User is deleted from the LDAP directory.

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 44

Schema checking is turned on by default in the directory server, and Netscape recommends
running the directory server with schema checking turned on. The schema checking is turned
off for realmLDAP.

XML Realm

FioranoMQ provides an XML based Security Storage System in which User/Group Information,
Credentials of Users and Groups, as well as ACL information is stored in an XML format.

Caching Realm

The Caching Realms works with File Alternate Security or Custom Security Realms to fulfill
client requests, given proper authentication and authorization. The Caching realm stores the
results of both successful and unsuccessful realm lookups. It manages a separate cache for
Users, Groups and authentication requests. The Caching realm improves the performance of
the FioranoMQ Server by caching lookups and reducing the number of calls to other Security
Realms.

Caching can be used with any FioranoMQ supported Security Realm. The separate lists of
resources, such as users, groups and user-passwords are cached. Caching avoids repeated
calls to the underlying security store.

FioranoMQ Security - Salient Features & Advantages

Design Advantages

FioranoMQ allows developers to focus on building the application and not on implementing a
security policy. Security operates independent of application code through an easy-to-use,
central administration interface that manages Users, Groups, and Access Control Lists (ACLs).
This design permits remote administration for all aspects of security. If security policies of an
organization change, the system administrator can manipulate security mechanisms of
FioranoMQ without requiring the application developers to rewrite any application code. By
allowing security policies to change with business needs, FioranoMQ provides the flexibility
that extends the life of an application.

Effective Protection of JMS Destinations

FioranoMQ achieves security by protecting the JMS Destination: Topics and Queues. This
enables security to be addressed through the design of Topics and Queues Existing
applications take advantage of new security features as soon as they become available in
newer versions of FioranoMQ.

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 45

Centralized Control

The identification and authentication process is the only area where the client application must
address security. The application developer is responsible for the task of soliciting and passing
the username and password to FioranoMQ. This requires that the application access sufficient
information from the User to allow FioranoMQ to authenticate the User. This is the only
information the client application code needs for security. The system administrator uses an
external Administration Tool to visually set the security policies, which FioranoMQ enforces.

FioranoMQ and its security subsystem do not require any pre-existing software to be installed
by the client. All security functions are inbuilt in FioranoMQ and provided through standards-
based Java Development Kit (JDK) interfaces. As such, security is built into each and every
application or applet that is created by FioranoMQ. Moreover, a developer need not worry
about whether the application runs locally or as a downloaded applet. The FioranoMQ security
subsystem does not require access to any local (client-side) resources. The security subsystem
uses either part of the Java runtime environment or classes downloaded with the applet to
function.

Destination-based Security

In FioranoMQ, all the information flow is based on destinations, as explained below:

 Developers organize content based on destinations.

 Applications can register their interest in consuming the information by subscribing to
a destination.

 Applications can produce information by publishing messages to destinations.

 The FioranoMQ Server routes information from publishers to subscribers based on the
destination.

 The security subsystem takes advantage of the dependency of information flows within
destinations. By protecting the destination, the flow of information can be precisely
and dynamically controlled. FioranoMQ refers to this as destination-based security.
FioranoMQ associates a security policy with every destination.

Authorization and Access Control

FioranoMQ provides the ability to control Users that can publish, subscribe, or request
guaranteed delivery on a particular destination, through the use of Access Control Lists
(ACLs). The system administrator uses the Administration Console to define ACLs for specific
destinations. FioranoMQ automatically uses these ACLs as described in the following section.

The FioranoMQ Server performs access mediation on publish and subscribe operations of a
client and on guaranteed delivery requests. For example, when the client subscribes to a
destination, the server receives the policy for the destination and checks to verify whether the
client is permitted to subscribe to that particular destination. If durable subscription is
requested on the destination, an access check is also performed for durable subscription at the
time the DurableSubscriber object is created. If either one of these checks fail, the
subscription request is rejected and the client application throws an exception.

FioranoMQ® Concept Guide

Chapter 5: FioranoMQ Security Page 46

When a client publishes a message on a destination, the server checks to verify, whether or
not the client is authorized to publish on that destination. If the client is not authorized, the
publish request is rejected and the client application throws a JMS Exception. If the client is
authorized, the server delivers the message to all the clients subscribed to the destination of
the message.

Access mediation is performed on the server side. However, a client can check for permission
to publish, to subscribe or to request a guaranteed delivery of messages to a specific
destination by retrieving the appropriate ACL object and examining its contents.

The system administrator uses the administration console to add new Users and Groups
and/or new policies for destinations.

Default Users, Groups and ACLs

By default the following users are created in FioranoMQ:

 Admin

 Anonymous

 Ayrton

Each user is a member of "EVERYONE" group. Depending on the configuration parameter
CreateDefaultAcls (where the default value is true), the ACLs are created for all the topics
and queues at the startup of the server.

FioranoMQ® Concept Guide

Chapter 6: FioranoMQ Data Stores Page 47

Chapter 6: FioranoMQ Data Stores

The messaging system uses a store to save persistent JMS messages.

Storage type

Persistent messages can be stored using:

File based store: FioranoMQ has a proprietary mechanism to store/retrieve messages from a
flat-file based store.

OR

RDBMS based store: Messages can be stored in a JDBC-compliant RDBMS. Any standard
RDBMS like Oracle, MSSQL, MySql, IBM DB2, Cloudscape, and HSQL can be used to store the
messages.

An administrator can configure the server to store messages in these message stores.

By default, FioranoMQ is configured to use a file-based message store. FioranoMQ also
provides the support for using different stores for the two messaging domains. There is one
store for messages on PTP domain and another for messages in the Pub/Sub domain.

The type of store to be used for messages associated with a particular destination can be
specified during the creation of the destination. Administrators can specify the storage type of
a destination using:

 The FioranoMQ Administrator Console

 The FioranoMQ Administration API

File-based store versus JDBC-compliant RDBMS store

The performance of FioranoMQ with an RDBMS-based message store is not as optimal as with
a file-based message store.

RDBMS based store provides higher security.

Offline Database reliability is generally higher.

Database stores generate network traffic if the database server is on a different JVM or
machine. Network traffic is not generated in case of a file-based store.

FioranoMQ® Concept Guide

Chapter 6: FioranoMQ Data Stores Page 48

Default Destinations for sample applications

FioranoMQ creates default destination objects that can be used by client applications to run
samples provided with the FioranoMQ installer. By default, FioranoMQ uses the file-based
message store.

It is possible to configure the FioranoMQ Server to use the file-based message store or an
RDBMS-based message store.

File-based default destination objects are:

 PrimaryQueue

 SecondaryQueue

 PrimaryTopic

 SecondaryTopic

The messages published on these destinations are stored in a file-based message store.

RDBMS-based default destination objects are:

 PrimaryRDBMSQueue

 SecondaryRDBMSQueue

 PrimaryRDBMSTopic

 SecondaryRDBMSTopic

Messages published on these destinations are stored in the RDBMS-based message store.

By enabling both file-based and RDBMS-based stores in a single instance of the FioranoMQ
server enables messages requiring fast retrieval to be saved in a file-based store and
messages requiring the reliability of JDBC-compliant relational databases to be saved in an
RDBMS-based file store.

FioranoMQ® Concept Guide

Chapter 6: FioranoMQ Data Stores Page 49

Creating a Default Database

FioranoMQ can be configured to store the messages in a JDBC-compliant relational database.
By default, FioranoMQ is configured to use the HSQL database. Fiorano ships the library
containing the JDBC driver for HSQL with the FioranoMQ product. If a different RDBMS is
required, administrators need to create the FioranoMQ database in their RDBMS. If FioranoMQ
needs to store messages in an Oracle database, administrators are expected to create
database tables for storing messages and related content in the Oracle database. FioranoMQ
provides scripts that can be used to create the required tables. These scripts need to be
executed before running the RDBMS enabled FioranoMQ server. These scripts accept the URL,
UserName and Password as system variables and then create the file-based or RDBMS-based
databases.

A FioranoMQ database can be created using:

 Command Line parameters

 Fiorano Studio

Clearing a Database

A script is provided for clearing both file-based and RDBMS-based databases.

FioranoMQ® Concept Guide

Chapter 7: Managing Administrated Objects Page 50

Chapter 7: Managing Administrated
Objects

JMS entities like Destinations and Connection Factories (also collectively known as
administered objects) are well defined in JMS Specifications. The roles of these objects as well
as their APIs are well defined. However JMS specifications do not state how to obtain an
instance of these objects. It is left to the JMS Provider to provide instances of these objects to
an application.

FioranoMQ allows applications to use JNDI APIs to obtain instances of Administered objects

Note: For additional information on JNDI, please refer to:
 http://java.sun.com/products/jndi/

The use of JNDI allows the application code to be Standards Based without the need to
import Fiorano specific classes. FioranoMQ provides a limited implementation of the directory
server. This is done so that an end user need not configure information from a third party
directory server for using FioranoMQ.

FioranoMQ also allows applications to store and retrieve administered objects in a third party
external LDAP server. FioranoMQ allows its applications to create a new instance of an
administered object (destination or queue) and use it in all JMS operations. This requires using
non-standard Fiorano specific APIs in the application.

Naming Services

The Naming Manager, a module within the FioranoMQ Server, provides all common Naming
Services (lookup, bind, delete, list, and so on). Naming requests, originating from a JMS
Application, are sent to the FioranoMQ server is internally forwarded to this module, which
processes the request and responds accordingly. Administrative requests leading to creation or
deletion of administered objects are also forwarded to this module.

The interface for this module is well defined and allows multiple implementations which differ
mainly in the persistent media used for storing information. A FioranoMQ Administrator is free
to plug in any implementation (or even write a new implementation and plug it in) of this
interface.

File

This is the default implementation for Naming Manager. It stores information in a proprietary
File (defaults to admin.dat in run folder of the profile).

XML

This implementation stores information in clear text format in an XML file (admin.xml in the run
folder of the profile).

http://java.sun.com/products/jndi/�

FioranoMQ® Concept Guide

Chapter 7: Managing Administrated Objects Page 51

LDAP

This implementation uses a third party JNDI compliant Naming and Directory Service to persist
information.

RDBMS

This implementation uses third party JDBC compliant RDBMS server to persist information.

Cache

This implementation creates a "cache" of admin objects in memory. The cache can be used
with any of the above implementations for storage purposes. Caching is beneficial in situations
where there aren’t frequent changes in the admin object store.

FioranoMQ® Concept Guide

Chapter 7: Managing Administrated Objects Page 52

Salient Features

FioranoMQ can be configured to use any of the above Naming Manager implementations. The
configuration here takes place off-line.

The JNDI implementation provided by FioranoMQ is limited and provides the implementation of
only basic methods. It should not be considered a standalone JNDI implementation.

FioranoMQ® Concept Guide

Chapter 8: Message Expiry Page 53

Chapter 8: Message Expiry

JMS Standards allow setting Time To Live (TTL) on a message being sent to a destination. The
JMS provider considers this message valid up to the period specified in the TTL. Once the TTL
period elapses, the message expires, ceases to be available on the destination and fails to be
delivered.

Point of Checking of Message Expiry

The server adds the current specified time of TTL to the current time and obtains the expiry
time. This is done when the message fist enters the server. The server checks for expiry when
attempting to deliver it to a consumer. If expired, the message is ignored.

Since expiry is checked just before delivering the message to a consumer; if there is no active
consumer, expired messages might continue to consume server resources (disk or memory
space). To optimize performance and server resources, the server can be configured to check
expired messages in all queues periodically. To enable this, set the value of the flag
DbCleanupEnabled to true. (By default, it is set to false.) The frequency with which the server
checks for expired messages is configured through the parameter CleanupInterval. (By
default set to 10 minutes.)

On Detection of an Expired Message

Once the server detects an expired message, it deletes this message from the destination.
Since this deletion is done automatically the following actions can be performed: A Copy of the
message is pushed into the Dead Message Queue.

A Copy of the message is published on an Admin Topic

Note: Publishing on admin topic will be discontinued in future releases. Instead, the server
fires a JMX Notification with information about the expired message.

The sections below provide more details on dead message queues and the handling of expired
messages.

Dead Message Queue

Dead Message Queue is a special system queue with the name
SYSTEM_DEADMESSAGES_QUEUE created for storing copies of messages that expire in any of
the server destinations. Any client applications can browse or receive messages from this
queue using normal JMS semantics.

FioranoMQ® Concept Guide

Chapter 8: Message Expiry Page 54

DMQ Configuration

Controls are provided to configure DMQ functionality globally for multiple queues as well as
individual queues. These controls are:

Parameter Scope Possible Values

EnableDMQOnAllQueues Global Yes and No

EnableDMQ Individual Queue Yes No and Default

By default, individual queues have enableDMQ set to True. This allows the administrator to
control DMQ configuration for all queues through global flags.

Other DMQ configuration parameters are summarized in the table below:

Parameter Description

DMQExpiryTime The time period that messages would live on DMQ.

CleanupDMQAtStartup If set to Yes, all DMQ messages would be deleted at server startup.

Selectively disabling DMQ for a message

If DMQ is enabled for a destination, by default all expired messages are added to DMQ.
However, if an application doesn't want to use the DMQ functionality, it can do so by setting
properties in the message through various APIs.

Message Expired Notifications

When a message has expired, the server (if configured) publishes a notification in the form of
a JMS Text message on a system topic named ADMINISTRATOR_TOPIC. This function can be
used to get notification of expired messages. Any application can create a subscriber, based
on JMS semantics that receive these notifications.

Configuration

Notifications can be configured globally through a flag EnableNotificationOnDeadMessage. If
this flag is set to true, the server publishes a notification when a message expires. If an
application wants to disable this function for specific messages, it can do so through APIs.

FioranoMQ® Concept Guide

Chapter 8: Message Expiry Page 55

Additional points

Notifications work only if DMQ is configured for the queue. The published Text Message has
the following attributes:

1. It has the same set of properties as the original message that expired.

2. Its body contains (as text) the destination name on which the original message was
published. The message is published to the DMQ as a non-persistent message. This
feature is discontinued in future releases. New releases fire JMX Notifications when a
message expires.

FioranoMQ® Concept Guide

Chapter 9: Snooper Page 56

Chapter 9: Snooper

Snooper is a FioranoMQ feature that allows an application or an individual to view incoming
messages. This feature is to facilitate debugging of JMS applications.

Snooper functionality can be used through Fiorano Studio (Customized GUI tool). This tool
allows the administrator to enable/disable the snooping function and can also show the
contents of a "snooped" message in a tabular manner in the GUI. A console-based application
can also be written in order to snoop messages. This application can receive the published
messages as well as inspect them.

Snooper Configuration

To snoop messages on a destination, the snooping function has to be turned ON for that
destination. This can be done through Studio as well as programmatically through a Java
Application using Admin APIs.

Besides enabling/disabling this function for a destination, the Snooper configuration on a
destination can be left set to "Default". If this configuration is not set, global flags decides
whether or not snooping is be turned on for a destination. This provides the flexibility of
setting the snooping function on all queues and/or topics at the same time.

Note: The values of global parameters are consulted only when the snooper configuration is
set to Default. For other values (on/off) the global parameters are ignored. All FioranoMQ
destinations are configured to this value.

FioranoMQ® Concept Guide

Chapter 9: Snooper Page 57

Working of Snooper

If snooping is turned on, the FioranoMQ Server sends a copy of the incoming messages to pre-
configured system topics. An application can then pick up this message and inspect the same.

The System topics used for snooping are:

 SYSTEM_MESSAGE_SNOOPER_TOPIC

 SYSTEM_MESSAGE_SNOOPER_QUEUE

A message on a topic is sent first; messages coming on a queue are sent latter.

Security Settings

Security Settings for Snooping are controlled by the ACLs of the above system topics. By
default the following restrictions apply:

 Durable subscriptions are not allowed.

 Only the FioranoMQ administrator can "snoop".

 Only FioranoMQ Administrators can edit the ACLs of these topics to modify restrictions.
The ACL name is the same as the name of the system topics described above.

Miscellaneous Features

Important points that a user should remember:

 "Snooped" messages are a copy of original messages. Making changes in snooped
messages would not affect the actual message.

 "Snooped" messages are always delivered as "Non Persistent" even if the original
incoming message was persistent.

 Snooping on system topics is not permitted.

FioranoMQ® Concept Guide

Chapter 10: Durable Connections Page 58

Chapter 10: Durable Connections

Network reliability is a common problem faced in designing a system spread over multiple
machines. Enterprises across the world spend a large amount of their time and resources on
network management, but it remains that network links cannot be 100% reliable. Mission
critical applications cannot afford to lose data in any eventuality and must always be built with
this premise of unreliability. This requires that application programmers build a ‘store and
forward’ layer in their Application infrastructures. This store and forward layer involves storing
precious data upon detecting network loss, taking corrective action and resending the
previously cached data again.

The JMS standard requires middleware to build the ‘store and forward’ mechanisms for
consumers. This is achieved by marking a consumer ‘durable’. If a consumer is unavailable,
the server holds onto the messages. These messages are delivered when the consumer
becomes available again. This standard JMS feature ensures that durable consumers always
receive messages. JMS does not provide a similar level of reliability for a producer. If the
server is unavailable the send mechanism of the producer fails, resulting in an appropriate
exception. This forces applications to implement ‘store’ on the client side and transfer this data
when connectivity is restored.

FioranoMQ enhances the capability of JMS support to provide the ‘store and forward’ function
at the client end as well (in addition to the durable consumers on the server). This function
allows JMS applications to continue all publish operations even if the server is un-available,
freeing up applications from all network related problems. A network disruption is thus not
visible for a JMS application built over FioranoMQ.

Overview

FioranoMQ introduces the concept of a ‘Durable Connection’. A Durable Connection remains
connected to the FioranoMQ Server at all time. Applications using durable connections do not
have to store, re-connect and then forward stored messages to the server. This frees up the
application from the complex task of building a ‘store and forward’ mechanism in application
code.

The reliability of the underlying JMS transport is improved by durable connections. If the
connection is lost and the application fails to transfer data, Durable Connections try to restore
the connection automatically. This ensures that data is not lost in transit and is sent as soon
as the connection is re-established. These activities are not visible to the application and are
performed automatically by Fiorano's runtime library when it detects a connection failure. This
makes the system reliable and robust even in the presence of network failures.

For example, consider a computer monitoring a steel mill. Real time steel production
information is sent every second to a main hub. The main hub uses this information to
generate the desired results. If the connection between the Process computer and the Hub
breaks, the ‘send’ mechanism will fail and an exception is thrown. Since this data is generated
only once, the application stores this data on encountering the exception and then applies its
resources to connect back to the server. This process adds a considerable load to the
application.

FioranoMQ® Concept Guide

Chapter 10: Durable Connections Page 59

In such cases, a Durable Connection comes to the rescue as it does all the hard work on
behalf of the application. It automatically tries to re-establish the connection, stores the data
in transit and sends it to the server as soon as the connection is restored.

Note: Durable Connections are a proprietary feature of FioranoMQ. Durable Subscriptions are
a part of JMS specifications.

Working of Durable Connection

A durable connection works like an ordinary connection as long as the connectivity is
maintained with the FioranoMQ Server. If the underlying socket breaks, a durable connection
performs the following activities:

 Initiates a thread that continuously tries to re-connect with the server.

 Initializes a ‘store’, on the local machine, to store (on the client side) any new
messages published.

Both these activities are not visible to the client application and are performed automatically
by FioranoMQ's runtime library. When a connection is restored, messages stored in the local
store are automatically sent to the server.

Producer on a Durable Connection

A producer creating messages over a Durable Connection can send messages whether or not
actively connected to the server. The runtime library automatically handles problems of
connectivity. If the underlying connection breaks, the runtime library establishes a local cache
of messages on the client's machine. This local cache stores messages published by the
producer when disconnected from the server. The base directory of this local cache can be
configured by the client application. A subdirectory for each connection using the cache is
created in the base directory, where messages for particular connections are stored. The client
application can use any number of Durable Connections over the same base directory. Once
connectivity has been re-established via Fiorano's runtime library, messages stored in the local
cache are transferred to the server. Messages are transferred in the same chronological order
in which they were published.

An application is free to send messages to more than one JMS Destinations over a single
Durable Connection. Producers can be created on transacted as well as non-transacted
sessions.

Note: Messages are stored in the local cache, irrespective of their Delivery Mode. Persistent
as well as Non-persistent messages are stored in the client side cache.

Consumer on a Durable Connection

Since consumers themselves can be defined as "durable" by virtue of their definition within
JMS standards, very little is required to be done to ensure messages are delivered to a
consumer, even if it that consumer is temporarily unavailable. If the consumer is created over
a Durable Connection, the Fiorano runtime library automatically manages reconnects to the
server in case of network failures. Message delivery is restored when the connection is
established again.

FioranoMQ® Concept Guide

Chapter 10: Durable Connections Page 60

Advantages

Durable Connections in FioranoMQ provide a host of advantages over standard JMS
implementations:

Network Reliability

Durable connections provide network reliability by storing messages at the client end when the
server is down – an essential feature required by most real-world systems.

Store and Forward Capabilities

Durable Connections enable ‘store and forward’ capabilities at client level.

Transparent Reconnection Code

If Durable Connections are enabled, the client application does not hold the responsibility for
reconnection. Reconnection is handled internally by FioranoMQ's runtime library.

Message Browsing of Persisted Messages

FioranoMQ provides a Message Browser which allows messages stored in the data store of the
client, to be browsed.

No Vendor Lock-in

Connection revalidation logic is transparent to the client application and is handled by
Fiorano's runtime library. Reconnection code and other details do not have to be managed at
the application level. Only the connectionfactory with AllowDurableConnection needs to be
referred to. Client side persistence and reconnection code is handled in a transparent manner
by Fiorano's runtime library.

Enabling Durable Connections Support

The ability to create a durable connection with the server can be controlled at the server and
at the application level. Durable connections can be enabled/disabled using Fiorano Studio by:

1. Creating new connections to the server

2. Adding a new connection factory

Note: Disabling Durable Connection in server configuration disables it universally for all the
clients. Disabling Durable Connection in a connection factory disables it for all the clients using
the concerned connection factory.

FioranoMQ® Concept Guide

Chapter 10: Durable Connections Page 61

Client side Message Cache

A Durable Connection creates a cache on the local machine, to allow a producer to send a
message even if the server is unavailable. Configuration of the base directory is explained in
the preceding section. Within the base directory, a subdirectory is created for each connection.
The subdirectory’s takes the name of the Client ID of the durable connection.

For example, if the base directory for Durable Connection is: c:\\temp\\db in
myConnectionFactory, any connection created through myConnectionFactory creates its cache
in c:\\temp\\db. If there are two connections on the same machine, with clientIDs "client1"
and "client2", the directory structure takes the format below:

c:\\temp\\db

 |____ client1.ptp

 |____ client2.ptp

Note: If Client ID is not set, FioranoMQ at runtime internally creates a Unique ID for that
particular connection and a directory by the same name is created for client side caching.

However, it is recommended that the Client ID should be set in all instances of use of Durable
connections because: An application cannot transfer pending messages upon restart, as a new
ID is generated for that connection. Since the ID is a complex string, it is difficult to use CSP
Message Browser to browse for client side persisted messages.

Messages sent by a client are identified by its clientID. If the client application is terminated, ,
upon restart the runtime library checks if there are any pending messages stored in the local
cache of the connection. This check is performed on the basis of the client ID set on the
connection. Pending messages are sent to the server. This operation is performed when the
clientID is set by the application. If the application wishes to ignore previously cached
messages, it needs to add the following flag in the Hash table passed as the environment to
InitialContext used for looking up operations.
"DONT_SEND_PREVIOUSLY_STORED_MESSAGES", "TRUE"

Use the following API available in the connection if the client application needs to exercise
control over the time at which pending messages are to be transmitted:

 public void sendPendingMessages ()

 throws JMSException;

When the preceding method is used on a connection, the runtime invocation sends all pending
messages for that connection to the server.

 public void purgePendingMessages ()

 throws JMSException;

The preceding method is used to purge all messages in the local cache published on the
associated connection.

Note: Both the APIs require the casting of JMS Connection into
fiorano.jms.runtime.ptp.FioranoQueueConnection or
fiorano.jms.runtime.pubsub.FioranoTopicConnection.

FioranoMQ® Concept Guide

Chapter 10: Durable Connections Page 62

Serverless Environment

It might be necessary in certain situations to run the client application in a serverless
environment. A serverless instance is when a client needs to connect to a server even if the
server is not available. This might be necessary when it is essential that a client connect with
a server in situations where there is a high probability that a server is down Consider the case
of a cellular service provider. The service provider has an SMS gateway that interacts with
mobile devices by acting as an interface between the JMS server and the mobile phone. The
JMS server routes the data ahead. A user uses his mobile phone/PDA or any other hand-held
device to send an SMS to another user. This message first reaches the gateway, which has the
responsibility of routing this message to another gateway interacting with the mobile device of
the recipient, through a JMS server. There is a possibility that the server was down at the time
the message is to be forwarded. If such a situation arises, the SMS would be lost.

Alternatively, if the gateway receiving the message from the sender is considered to be a JMS
client with Durable Connections enabled, then it stores messages locally when the server is
down. This provides a robust and reliable solution where messages are stored in the local
cache and subsequently re-routed through the server when it becomes available.

To enable a client application to run in a serverless environment, the following needs to be set
in an application:

env.put(FioranoJNDIContext.AllowDurableConnections, "true")

FioranoJNDIContext ic = new FioranoJNDIContext(env);

QueueConnectionFactory qcf = (QueueConnectionFactory)ic.lookupQCF("primaryQCF");

QueueConnection qc = qcf.createQueueConnection();

qc.setClientID("myClient");

QueueSession qs = qc.createQueueSession(false, Session.AUTO_ACKNOWL-EDGE);

Queue queue = qs.createQueue("primaryQueue");

This allows client applications to run with Durable Connections enabled in serverless
environments.

Note: Consider the case where the ‘lookup’ of the ConnectionFactory is performed using the
lookupQCF() method and a queue is created using the createQueue method in the same
session. When the server is running, the connection gets revalidated and if the
ConnectionFactory exists on the server, the actual ‘lookup’ is performed through the server
and messages are sent to the appropriate destination from the local cache. If it is found that
the server does not allow durable connections after revalidation, then the pending messages
are not sent to the server.

Sample Application

Sample applications are available in the following directories of the FioranoMQ installation:

%FMQ Home%\fmq\samples\ptp\Durable Connections

%FMQ Home%\fmq\samples\pubsub\Durable Connections

These samples can be downloaded from www.fiorano.com.

http://www.fiorano.com/�

FioranoMQ® Concept Guide

Chapter 10: Durable Connections Page 63

Relationship with Revalidate

In this model of Durable Connections, the client application does not hold the responsibility of
reconnection. If Durable Connections is enabled, the entire process is handled internally by
FioranoMQ's runtime library. If the client application has Durable Connections enabled, the
client does not have to take care of the revalidation code if the server breaks down. The
FioranoMQ runtime invocation detects network failure internally and starts a reconnection
thread that reconnects client to the server when it’s available.

Relationship with CSP

Client Side Persistence is provided in the 6.0 version and above. Proprietary APIs of FioranoMQ
are needed for CSP.

To enable durable connections, client side persistence does not need to be enabled. In CSP,
the following had to be set in the client application to enable client side persistence:

env.put(FioranoJNDIContext.ENABLE_CLIENT_SIDE_PERSISTENCE,"true")

env.put(FioranoJNDIContext.CSP_BASE_DIR,"c://myCache");

InitialContext ic = new InitialContext(env);

QueueConnectionFactory qcf = (QueueConnectionFactory)ic.lookup("primaryQCF");

QueueConnection qc = qcf.createQueueConnection();

(FioranoQueueConnection)qc.setCSPConnectionID("myClientID");

In Durable Connections these steps do not need to be performed. The client applications can
‘lookup’ a ConnectionFactory that has information on the Durable Connection. The application
proceeds to set a unique clientID for the connection upon which Durable Connections are to be
enabled. This enables messages sent by the sender to be stored in the directory structure
specified in the ConnectionFactory (or in the ".\CSPCache" directory) and sent to the server
once the connection is revalidated. Fiorano's runtime library handles the above steps,
internally.

To enable durable connections, the client application is set to allow durable Connection in the
env as a property, while setting a client ID for the connection:

env.put(FioranoJNDIContext.AllowDurableConnections, "true");

InitialContext ic = new InitialContext(env);

QueueConnectionFactory qcf = (QueueConnectionFactory)ic.lookup("primaryQCF");

QueueConnection qc = qcf.createQueueConnection();

qc.setClientID("myClientID");

Messages get stored on the client machine either in the directory specified in the env variable
or in ".\CSPCache". Calling an explicit setCSPConnectionID on the connection on which CSP
has to be enabled is not required. The only requirement entails setting a ClientID for the
connection to enable Durable Connections.

FioranoMQ® Concept Guide

Chapter 10: Durable Connections Page 64

Constraints in Durable Connections

Ensure that unique Client IDs are used if more than one application needs to use the same
local cache simultaneously.

Using the browser for Client-side persistence while an application is using the same local cache
can result in the browser behaving abnormally. The Client-side persistence browser should not
be used while an application is using the same local cache.

Messages can get redelivered with the appropriate JMSREDELIVERED flag set. Messages can
get redelivered when, for example, data reaches the MQServer and the client loses connection
before the server acknowledges the receipt of data.

The base Durable Connection directory cannot be added while creating the connection factory
through the Admin GUI.

FioranoMQ® Concept Guide

Chapter 11: Hierarchical Topics Page 65

Chapter 11: Hierarchical Topics

Developers need to organize their data based on its content. JMS accomplishes this by
funneling messages to various destinations. These destinations can not have any logical
correlation with each other.

FioranoMQ provides a way of correlating various destinations. FioranoMQ destinations can
have a parent child relationship. A topic can be created within a topic. This results in a
hierarchical tree, where each leaf represents a unique topic.

Need For Hierarchical Name-Spaces

Topic name spaces offer the ability to organize various destinations in a hierarchical manner.
An enterprise can choose to define various levels of hierarchy, depending on the organization
of the data that needs to flow on these destinations. Hierarchical topics are easier for solution
architects to visualize and design. Given there is a well-defined relationship within such
hierarchies, it results in efficient handling of destinations by the provider as well. Even when a
topic hierarchy is flat (linear), it is, typically, built from one or more root topics. This entails
adding other topics in levels of parent-child relationships to create a hierarchical naming
structure.

Name Space Notation

Hierarchical name-spaces of FioranoMQ use the same notation as qualified packages and
classes. Various levels in the hierarchy are distinguished by period-delimited strings. For
example, a topic name fiorano.sales.fmq results in the following hierarchy:

The hierarchy gets automatically defined at the time of creating the topic. The process of
creating a topic is successful only when the parent topic exists. This ensures that nodes are
added to the hierarchy tree in an orderly manner. FioranoMQ allows the hierarchy to have
unlimited number of levels and unlimited number of nodes on a particular level.

FioranoMQ® Concept Guide

Chapter 11: Hierarchical Topics Page 66

Creating Hierarchical Topics

Hierarchical topics can be created like any other topic. A topic at a particular level can be
created only if its parent exists in the hierarchy. The first node of a hierarchical topic is called
the root node of the hierarchy. Some important features with respect to hierarchical topic
names are noted below:

Case Insensitive

Topic names are not case sensitive in FioranoMQ. "ACCOUNTS" and "Accounts" are considered
the same topic.

Spaces in Names

Topic names can include a ‘space’ as a character.. For example,
"company.fiorano.comment.FioranoMQ is fast" is a valid topic name. Topic names are trimmed
before creation. As such, even though spaces are allowed in topic-names, topics that differ
only in the number of spaces they incorporate shall be considered to be duplicates. It is
therefore recommended that spaces in topic names be used with appropriate caution.

Empty String

No level in the topic hierarchy can include an empty string. A topic name cannot have two
simultaneous dots. For example, "company.GE..dept" is an invalid topic name.

Unlimited Length of Topic Names

Topic names can be arbitrary in length. A node in the topic hierarchy can have any number of
characters.

Unlimited Depth of Topic Hierarchy

FioranoMQ supports an unlimited depth in the hierarchy tree of a topic. An unlimited number
of nodes within a topic can be created.

Wild Card Support

Wildcard characters such as asterisk (*) or (#) cannot be used in topic names for creating
hierarchical topics.

FioranoMQ® Concept Guide

Chapter 11: Hierarchical Topics Page 67

Dynamic Creation of Topics in Hierarchy

If a topic matching certain topics in a hierarchy is created on a running server instance and its
name matches any subscription expression, then this topic becomes the member of the
hierarchy.

Example: Subscription expression: ABC.*

Topics existing on system: ABC, ABC.1, ABC.2, ABC.1.1

A subscriber looks up topics with expression ABC.* and it is receives messages from all
matched topics. If at runtime a new topic named ABC.3 is created, thenABC.3 becomes a part
of the hierarchy. Published messages on ABC.3 are received by the Subscriber created on
ABC.*.

Note: For this feature to function, events must be enabled at the server end.

Looking up Hierarchical Topics

Client applications can lookup a topic in the FioranoMQ Server using either JNDI APIs or a
bound object of type FioranoInitialContext.

Criteria for looking up hierarchical topics are:

The topic being looked up contains a wild-card character, either (*) or (#), along with any
number of delimiters (.). The lookup call succeeds only if the root topic is created by the
administrator earlier. If the topic being looked up contains a (*) or (#), the call is successful
only when there is at least one topic in the server whose name matches the named looked up.

For example: If the user tries to lookup "primarytopic.a.*" or "primarytopic.a.#", then the
lookup is successful only if "primarytopic.a" exists on the server.

Publishing on Node(s) in Topic Hierarchy

A Publisher can publish only on fully specified topic names. Publishing on a topic that contains
an asterisk (*) or a pound character (#) throws an exception.

Subscribing to Node(s) in Topic Hierarchy

Subscriptions are created as defined by JMS using TopicSessions. The normal
createSubscriber APIs, provided by JMS, can be used to create subscriptions on hierarchical
topics.

A subscriber can subscribe to multiple topics using a wild-card character. Subscribing to a
topic containing a valid wild-card character effectively creates subscribers on all the topics in
the hierarchy that match that expression.

FioranoMQ® Concept Guide

Chapter 11: Hierarchical Topics Page 68

Template Characters Used in Subscription

Wild-card characters are special characters used in the creation of topic hierarchies. In the
topics hierarchy, these characters are referred to as Template Characters. The period (.)
delimiter is used together with the asterisk (*) and the pound (#) template characters to fulfill
subscriptions. Using these characters avoids having to subscribe to multiple topics on the
server. Client applications can use template characters when subscribing to a set of topics or
while binding a set of topics.

There are two FioranoMQ template characters used in subscription-creation; the asterisk (*)
and the pound (#):

 Asterisk (*): FioranoMQ uses two types of conventions for this template
character An asterisk (*) must be the last template character in subscription
expression. Subscriptions are made for the root node and all matching subordinate
nodes in the hierarchy.

For Example: If the expression for subscription is ABC.*, then ABC and all its
subordinate topics will be matched.

An asterisk (*) is the intermediate character within a subscription expression.
Where a root topic is not selected an (*) is taken as "one or more occurrence of a
character ". Example: If the topic for subscription is ABC.*.1 then ABC will not be
selected but all topics that match this pattern will be selected and used to
subscription. Example: ABC.1.1, ABC.1.1.1, and ABC.2.1.

 Pound (#): The pound (#) selects all topics one level down the hierarchy. If the
(#) character is present in the pattern, then all the topics one level down the
hierarchy are used for subscription. Example: If the subscription topic name is
ABC.# then all the topics a level below ABC will be matched. Example: ABC.1,
ABC.2 will match ABC.#, but ABC.1.1 and ABC.1.2 do not match the pattern and
will not be used.

 Template characters exist to allow a set of managed topics to exist in a message
server. This, in turn, allows the subscriber to choose broad subscription
parameters that include preferred topics and avoid irrelevant topics.

The constraints in using template characters are

At node level, a template character precludes using other template characters. Example:
Qualifying the selection against the pattern A.B*.1 is not allowed where as A.B.*.1 is allowed.
In the patterns used, each character must be separated with a delimiter (.).

Template characters used as replacement are not allowed.

Other than the wild-card characters (*), (#), (.), no other wild-card character is used for
subscription to multiple topics.

Conventions used in Hierarchical topics: Only two template characters are used in Fiorano
hierarchical topics. These characters are the pound (#) and the asterisk (*) with a delimiter
(.).

Using template characters: [Should this not be a sub-heading? Check, please] Using the
asterisk (*):

Subscription Expression ABC.*

FioranoMQ® Concept Guide

Chapter 11: Hierarchical Topics Page 69

Convention used: If (*) is the last character in a subscription expression with no other
template character used, then the root topic and all other topics (where (*) is replaced with
one or more occurrences of any character) will be selected for subscription on Hierarchical
topics.

Example:

If the following Topics exist on the MQ Server: ABC, ABC.1, ABC.2, ABC.1.1, and ABC.1.2

And the expression used for subscription is:

ABC.*

Then the matched topics are:

ABC, ABC.1, ABC.2, ABC.1.1, ABC.1.2

Subscription topic name format:

ABC.*.1

Convention used: If (*) is the intermediate character in a subscription expression then all
other topics (where * is replaced with one or more occurrences of any character in name) will
be selected for that subscription. The root topic is not included in such a selection.

Example:

The the Topics existing in MQ Server are:

ABC, ABC.1, ABC.2, ABC.1.1, and ABC.1.1.1

And the expression used for subscription is:

ABC.*.1

Then the Matched topics are:

ABC.1.1, ABC.1.1.1

Using the pound (#) character.

Subscription topic name format:

ABC. #

Convention used: If (#) is the only wild-character present in the expression then all topics
(where (#) is replaced with only one occurrence of any character in name) would be used for
subscription.

Example

If the Topics existing on the MQ Server are:

ABC, ABC.1, ABC.2, ABC.1.1, ABC.1.1.1

FioranoMQ® Concept Guide

Chapter 11: Hierarchical Topics Page 70

And the expression used for subscription is:

ABC. #

Then the Matched topics are:

ABC.1, ABC.2

If the Subscription topic name is ABC#.1,

Then the Matched topics are:

ABC.1.1, ABC.2.1, ABC.3.1

Using a combination of template characters: Both template characters can be used in a
subscription expression, as explained below.

Subscription topic name format:

ABC.*.#

Convention used: The above topic name is invalid. The pound (#) character after the asterisk
(*) character has no function in an expression.

Subscription topic name format:

ABC.#.*

Convention used: In this expression all the topics (where (#) is replaced with one occurrence
of a character and (*) is replaced with one or more occurrence of a character) will be used for
subscription.

Example:

If the Topics existing on the MQ Server are:

ABC, ABC.1, ABC.1.1, ABC.2, ABC.2.1

And the subscription expression is:

ABC.#.*,

Then the Matched topics are:

ABC.1.1, ABC.2.1

Deleting a Hierarchical Topic

Deletion of a topic/subtopic from the hierarchical ‘name space’ depends on the value of the
parameter AllowDeletionOfSubTopics, which can be configured through Fiorano Studio. If this
value is set to true, then deletion of a topic/subtopic deletes all the children of this
topic/subtopic. If it is set to false, an exception is thrown indicating that the user first needs to
delete the children of the topic\subtopic before deleting the topic itself. By default, this
variable is set to false.

FioranoMQ® Concept Guide

Chapter 11: Hierarchical Topics Page 71

Publish/Subscribe Across Servers

FioranoMQ supports hierarchical topics across servers. Hierarchical topics across servers can
be used in exactly the same way as they are used on a single server.

Security Considerations on Hierarchical Topics

FioranoMQ supports ACL settings for hierarchical topics. An ACL can be set for any topic,
irrespective of the level at which this topic exists. These ACLs are checked at the time of
creation of a publisher and/or subscriber. When creating a subscriber for multiple topics (a
topic that involves a template character in its name), the ACLs for all the subtopics are also
checked. In addition, the subscriber is modified so that it does not receive messages from all
the subtopics that have a negative permission set for that particular user.

Limitations

Topic names cannot contain a wild-card character in topic creation. For subscription expression
on the template characters ((*) or (#) with any number of delimiters (.)) can be used. Usage
of any other template character throws an exception in ‘lookup’.

Deletion of a hierarchical topic that has active publishers/subscribers is disallowed. Care needs
to be taken not to delete the hierarchical topics when any topic in the hierarchy contains
active publishers or subscribers.

A publisher cannot publish on multiple hierarchical topics concurrently. A publisher has to
specify the complete name of the hierarchical topic on which it wants to publish data. Creation
of a publisher on a topic that contains an asterisk (*) throws an exception. Similarly, an
exception is thrown if a publisher tries to publish on a topic which contains an asterisk (*).

If a subscriber subscribes on hierarchical topics with a subscription expression, and the ACL of
a ‘child’ in the hierarchy is changed by the administrator mid way through receiving messages,
the subscriber remains unaffected by this change. However, creating new subscribers with
subscription expressions will get affected by this change.

There is a performance degradation associated with hierarchical topics. Users are advised not
to use hierarchical topics for applications where performance is a major requirement.

FioranoMQ® Concept Guide

Chapter 12: Message Encryption Page 72

Chapter 12: Message Encryption

Message encryption allows transfer of sensitive data from one point to another in a secure
way. Encryption implies the transformation of plain text into cipher text which is not possible
to read without the use of a "key". A key is also used to decrypt the cipher text into plain text.

Base Implementation

FioranoMQ versions 7.1 and upward support encryption. DES (Data Encryption Standards) is
used as the default encryption algorithm. FioranoMQ intends to support more encryption
algorithms in its future releases.

There are two types of encryption algorithms:

 secret key algorithms

 public key algorithms

In secret key algorithms, both the sender and the receiver need the same key for encryption
and decryption. In public key algorithms, the public key is used for encryption that is
published and the private key is used for decryption so that No secret information is
exchanged. The private key is mathematically related to the public key. Theoretically it is
possible to compute the private key based on the public key. To avoid easy computation of the
private key by unauthorized third parties, the computation is made as complex as possible.
DES is based on a secret key cryptography.

An advantage of the secret key cryptography compared to public key cryptography is the
faster speed of computation. Therefore, this method is recommended for bulk encryption and
is commonly used over other methods. The encrypted text is compact.

The disadvantage of secret key cryptography is that the administration of keys can become
complicated because key sharing.

In setups where imparting key information happens in a secure way, secret key cryptography
can be used. Public key cryptography is supposed to make secret key cryptography more
secure and is used when such a need exists.

The message encryption function uses the library cryptix.jar provided by Cryptix for
generating keys as well as for encryption. This file comes bundled with the FioranoMQ
installation. It can be found in the FIORANO_HOME%/extlib/cryptix directory of the FioranoMQ
installation.

FioranoMQ® Concept Guide

Chapter 12: Message Encryption Page 73

Message Encryption Characteristics

FioranoMQ provides message encryption on ‘per message’ as well as on ‘per destination’ basis.

In ‘per message’ encryption, clients can enable or disable encryption for each message. ‘Per
message’ encryption is done by a client before relaying data to the network. Decryption must
be performed by the receiving client application prior to reading the message.

In ‘per destination’ encryption, all messages sent to a particular destination (topic or queue)
are encrypted, thus providing a secure channel of delivery. A destination is marked as
encrypted at the time of its creation. All messages published on this destination is delivered
decrypted to subscribing applications. A client application, therefore, does not have to
explicitly decrypt a received message.

Encryption involves only encrypting the payload of the message and not its JMS header. This
allows usage of the same set of APIs associated with message headers as well as message
selectors, irrespective of whether message encryption is enabled.

FioranoMQ® Concept Guide

Chapter 13: Message Compression Page 74

Chapter 13: Message Compression

Message compression is a function that allows messages sent through FioranoMQ to be
compressed when sending and decompressed, to their original size, prior to delivery to
consumers.

Compression has the advantage of improving performance. Less bandwidth is used during
message transfer. Memory and storage requirements on the server are reduced as well. This
function is important for performance-sensitive applications operating over WAN links. Fiorano
also extends compression support for server-to-server communication.

Base Implementation

Many data compression implementations have been developed in the past, of which the Zlib
implementation is, by far, the most significant one. The Fiorano compression implementation
is based on "Zlib Compressed Data Format Specification Version.

This specification defines a lossless compression data format. The advantages of this
compression implementation, as per specification, are:

 It is independent of CPU type, operating system, file system and character set.

 Can be produced or consumed by an arbitrarily long sequentially presented input data
stream, using a bounded amount of intermediate storage.

 Can be implemented readily in a manner not covered by patents.

 Can use a number of different compression methods.

In FioranoMQ, the Zlib implementation provided in the default Java runtime library
java.util.zip has been used. This implementation provides 'deflate' and 'inflate' mechanisms
using different compression levels and different compression strategies. Compression level is
the amount of compression required. Compression strategy is the actual compression method
used.) The default strategy uses a combination of the LZ77 algorithm and Huffman coding.

FioranoMQ® Concept Guide

Chapter 13: Message Compression Page 75

Message Compression Characteristics

FioranoMQ provides message compression on a ‘per message’ as well as on ‘per destination’
basis. In ‘per message’ compression, clients can enable or disable compression for each
message. In ‘per destination’ compression, all messages sent to a particular destination (topic
or queue) are compressed.

Client applications can choose compression levels and strategies from Zlib specifications using
public APIs.

The available options are:

 NO_COMPRESSION

 BEST_SPEED (fastest compression)

 BEST_COMPRESSION

 DEFAULT_COMPRESSION

There are ten possible compression levels (0-9) available, where BEST_SPEED is defined as 1
and BEST_COMPRESSION is defined as 9.

The possible values for the compression strategy are:

 FILTERED: Compression strategy best used for data consisting primarily of small
values with random distribution. It enforces more Huffman coding and less string
matching.

 HUFFMAN_ONLY:

 DEFAULT_STRATEGY: This uses a combination of the LZ77 method and Huffman
coding.

Compression support provided helps a client application to decide on the optimum
compression level and strategy by providing APIs to check compression ratios of messages
sent and/or received.

Compression involves compressing only the payload of the message and not its JMS header.
The same set of APIs can be used for message headers as well as message selectors,
irrespective of whether message compression is enabled or not.

FioranoMQ's implementation allows users to plug in their proprietary compression
implementation, which overrides the default implementation.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 76

Chapter 14: FioranoMQ Clustering

In real-world applications, it is a common to manage a heavy load of connections over
messaging servers. Installing the messaging server using the best hardware available alone
will not suffice. There must be a more scalable approach to handling a linearly increasing
number of connections.

The most appropriate solution is to have 'n' number of messaging servers communicate with
each other, share the load between them and work in synchronization. A logical unit consisting
of these 'n' servers (and some other software components) is called a cluster. A cluster also
provides support for failover, which is not feasible with a single server.

Common Problems of Real-World Systems

This section gives an introduction to problems faced in distributed systems in real-world
scenarios.

Client Unable to Connect

In certain situations, a server can be temporarily unable to accept a connection request. An
example could be socket buffering that occurs if too many clients try to connect at the same
time. The most desirable behavior for the client is to transparently attempt a few
reconnections first.

Since the server can be completely down rather than temporarily overloaded, the client needs
to be able to connect to alternate backup servers. If this list of backup servers is retrieved as
a parameter of a connectionfactory object, the client code can become non-portable.

Connection if the Server is Lost

This again is an important failure that should be handled. Client side persistence is a
requirement. This ‘store and forward’ feature enables a client to operate in a disconnected
mode, avoiding loss of messages. A seamless integration of client-side persistence should be
transparent, allow for transacted sessions and cater for duplicated messages.

The Server Runs Out of Resources

There are many resources that can effectively render a server inaccessible because of their
shortage: connections, RAM, disk space, threads, file descriptors, sockets, and possibly,
others. A cluster of servers can provide more resources, distribute requests more evenly
(load-balancing) and configure servers as ‘standby’ and ‘ready to take over’ in case of an
emergency. To preserve application portability, the cluster should appear as a single (super)
server where: load balancing and failover are transparent to clients. At times, the shortage of
a resource can be temporary and it can be advisable for a client to first try and reconnect for a
while before looking for an alternate server. Again, such an option should be compatible with
load balancing.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 77

The Server Goes Down Altogether

If a server crashes, clients connected to it need to be able to continue working by connecting
to a secondary server. This scenario is termed ‘failover’. Once a server recovers, it needs to be
reactivated for taking over the tasks assigned to it thereby restoring it to the state before the
crash. It is termed ‘hot failover’ if processing can continue seamlessly (with nearly no latency).
This requires that a secondary server is running and has access to persistent state and
message data.

FioranoMQ: The Solution

FioranoMQ provides the following features to solve the above problems:

Automatic Failover Protection

Failure of a component should not cause failure of the whole system. The backup of important
components is required to provide high availability. There should be no single point of failure.
FioranoMQ's runtime invocation ensures that clients connected to a server are automatically
‘failed over’ to the back-up server. When an application wants to connect to a particular
server, N attempts are made to connect to that server. If a connection still fails, the runtime
library tries the URL of backup servers specified in the connection factory used to open the
connection. Since this operation is performed automatically by Fiorano's runtime library, the
application does not fetch the list of backup URLs. This avoids any vendor lock-in as the
application code is based on pure JMS.

Transparency and Code Portability

The automatic failover protection mechanism should be completely transparent to the client.
FioranoMQ provides this transparency by making the reconnection mechanism invisible to the
client. The reconnection is done automatically by the runtime library. This is achieved via
server configuration and does not require the use of any proprietary APIs making the client
code completely portable across JMS server implementations.

Configurability

FioranoMQ achieves a high degree of configurability through its modular design. Interfaces for
a number of modules are available to the public, which allow a developer to implement their
own version of the module and plug it in. For example, a developer is free to write a Log
Module that displays information in a Java Frame instead of the java console and plug it in.
Besides these modules, a number of configurable flags are provided to the developer through
the server's config file, which allows a developer to tweak various parameters of the server.
For example, FioranoMQ provides a configurable option for the maximum number of clients
waiting to connect to the server. The default number is 500. This figure can be increased or
decreased through the server's configuration file. Note that the numbers specified represents
the length of the queue of pending sockets and has no relationship with the maximum number
of simultaneous clients that FioranoMQ can support.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 78

Admin System

Availability of the system holding the administered objects (admin system) must be provided
in the first place. The admin system should be different from the client systems and it should
be backed up by a secondary source. Client access to primary or backup admin system should
be transparent. FioranoMQ allows the administrator to configure the admin system storage as
and when required.

The administrator can choose the storage media of administered objects from the following
options:

 JNDI compliant Directory Server

 RDBMS Server

 XML File

 Fiorano's proprietary file format (that also uses JNDI)

Despite these options, a developer is free to write his/her own customized version of admin
system. Storing the admin objects in a central Directory Server allows a client to directly
lookup these objects through JNDI. The client need not go through the FioranoMQ server
(though it is possible to do so). This makes the admin system independent of the server.

Connection if the Server is lost

FioranoMQ provides a client with the ability to automatically connect to a failover or backup
FioranoMQ server. This mechanism works if the client's existing connection is broken or if the
client's primary server is unavailable at the time of creating a connection.

This mechanism is transparent to the client application. In case an existing connection breaks
and there is no backup URL specified, the client application can continue its routine operations
of pushing more messages. These messages are stored in a local repository on the client
machine. Meanwhile, the runtime library automatically tries to re-connect back to the server in
the background, periodically. Once the connection has been established, the runtime system
automatically transfers all the messages stored in the local repository to the server. This
provides the client application with the ‘store and forward’ facility for a publisher in those
situations when the connection to the server is temporarily broken. More importantly, this
does not require the use of any proprietary APIs and hence avoids vendor lock-in of any kind.

Server Runs Out of Resources

FioranoMQ's dispatcher is the load-balancing component within the Fiorano Server. The
dispatcher can be enabled or disabled easily through the server's configuration file. If enabled,
the server distributes incoming connections to members of its clusters. Again, this does not
require special APIs for the client application. The application only sees the dispatcher-enabled
server. The dispatcher administrator is free to add/remove members in the dispatcher cluster
any time. If a member server in the cluster goes down for to any reason, all the applications
connected to this server shift to one of the other members in the cluster. FioranoMQ also
provides fail-over for the dispatcher server, which means that users can setup a secondary
dispatcher that is used in cases where the dispatcher server goes down. The client system can
have the URL of the secondary dispatcher as its backup URL. When the primary dispatcher
goes down the client system gets automatically load-balanced by the secondary dispatcher.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 79

An important requirement for running FioranoMQ Servers in a cluster is that
TopicConnectionFactories (TCF), Topics, QueueConnectionFactories (QCF), Queues and
UnifiedConnectionFactories (CF) should exist on all servers running in the clustered
environment and on the server acting as a dispatcher. These components are used by the
clients to make connections to the least loaded FioranoMQ server through the dispatcher. The
TCFs, QCFs and CFs replication amongst servers is required to make the new connections to
the server. The Topic and Queue replication is required for automatic failover support for
clients. If the client connection to any of the servers in the cluster goes down, the client gets
connected to another server running on the cluster.

Server's Connection if a Client is Lost

If a connection with a consumer gets broken and if the consumer is durable, the server
continues to store messages for the consumer published by the producer. These messages are
made available to the consumer next time it logs into the system. Fiorano's runtime library
also pings the connections to the server periodically (with a configurable time difference
between two pings), which allows the server to detect dead sockets and clean them up. This
becomes a lifesaver in case of network failure, which is not detected by the JVM unless a write
operation is performed on it, which is usually not the case.

Server-to-Server Communication

It is a common requirement of real world applications to allow clients to exchange information
seamlessly across servers. The Repeater and Bridge components of FioranoMQ are used for
server-to-server communication over topics and queues respectively. Apart from FioranoMQ to
FioranoMQ server communication, bridges are available for other messaging servers including:
IBM WebsphereMQ, MSMQ, and Tibco Rendezvous.

Scalability

The load balancing and failover protection architecture of FioranoMQ Server allows unlimited
scalability in terms of the number of client applications that can concurrently access JMS
services. Thousands of concurrent client connections can be supported by a single cluster of
servers. Combined with server-to-server communication, the Fiorano clustering architecture
provides a very robust solution for a vast set of customer problems. For handling thousands of
concurrent client connections, FioranoMQ also provides scalable connection management.

Clustering Components

FioranoMQ provides extensive clustering support using components such as dispatcher,
repeater, and bridge. The dispatcher is used for load balancing (distributing load) client
connections among different servers running in a clustered environment. The repeater and
bridge are used for server-to-server communication over topics and queues, respectively.
Apart from FioranoMQ to FioranoMQ server communication, bridges are available for other
messaging servers including: IBM WebsphereMQ, MSMQ and Tibco Rendezvous. A detailed
explanation of these components is provided in subsequent sections of this chapter.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 80

Dispatcher

FioranoMQ's load balancing architecture involves the use of a Dispatcher-enabled MQServer to
route incoming client connections to the least-loaded server in a cluster, as illustrated in the
figure below.

The dispatcher component of a FioranoMQ server is typically connected to multiple FioranoMQ
servers, which can run on different machines or on the same machine. All of these servers
become part of the "cluster" that is serviced by the dispatcher.

The FioranoMQ Dispatcher runs as part of a server process and maintains a persistent
connection with each FioranoMQ Server in its cluster. This persistent connection is used to
pass information from the server to the dispatcher, enabling the dispatcher to maintain real-
time "in-memory statistics" about the precise load in terms of the number of connections on
each server. The dispatcher uses this information to determine the least loaded server in the
cluster and route new incoming client requests accordingly.

An advantage of using the Fiorano Dispatcher is that no changes are required on the Client
application in order to use Dispatcher. Once this function is turned on in a server, it
automatically routes connection requests to the least loaded server. The server load is
calculated internally by the dispatcher based on the maximum connections allowed on a
particular server, and the number of active connections.

Preferred Server

At times, a particular client application may want to connect to a particular server in a cluster.
This can be done by setting a flag to the "preferred server" within the cluster in the connection
factory being used or in the lookup environment. The preferred server can be set through
dispatcher configuration. The preferred server is typically used by client applications that have
created durable subscriptions on a particular FioranoMQ server within known server clusters
and wish to reconnect to the same server to retrieve messages.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 81

Configuration Parameters

Parameter Description

Login Name Represents the login name used by the dispatcher to connect to
a MQ server that parties a member of a cluster. . The login
should have admin privileges.

Password Represents the password used by the dispatcher to connect to a
member MQ server.

AdminConnectionFactory Specifies the admin connection factory used by the dispatcher
to connect to a member MQ server.

Server URL Specifies the URL of the server in the cluster (Format:
http://hostname:port)

Server Admin URL specifies the admin URL of the server in the
cluster (Format: http://hostname/port)

Backup Connect URL URLs of the backup servers used in case the primary server is
down. Multiple backup URLs can be specified as a string of URLs
separated by a semicolon. Example of a Backup Connect URL is
http://backupServer1:1856; http://backupServer2:1856

MaxClientConnections Specifies the weight associated with a server that is part of a
cluster. A server with MaxClientConnections set to 2 will allow
twice the number of connections as that set to 1.

SecurityManager The Security Manager implementation is used to create secure
connections with the MQ server. The manager should be an
implementation of the fiorano.jms.runtime interface provided
by FioranoMQ.

TransportProtocol (TCP/HTTP) Is the protocol used for communicating with a server. Transport
protocol can be set to either TCP or HTTP.

java.naming.security.protocol Name of the security protocol used to create secure connections
with the MQ server. The possible values that this variable can
take are PHAOS_SSL and SUN_SSL.

Table: Configuration Parameters

http://hostname:port�
http://hostname/port�
http://backupserver1:1856/�
http://backupserver2:1856/�

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 82

Repeater

FioranoMQ architecture allows multiple FioranoMQ Servers to be connected together, allowing
clients connected on one server to exchange information with clients connected on any other
MQ Server. Using FioranoMQ Repeater, servers can be connected both over LAN (Local Area
Networks) and WAN (Wide Area Networks).

FioranoMQ Server clustering allows clients connected on different FioranoMQ servers to
exchange information by setting up an instance of the FioranoMQ Repeater. This feature is
particularly useful in deploying applications that need to communicate with other applications
across geographically distributed sites. For instance, take the example of an organization with
offices in New York, San Francisco and Boston. Here, a client of a MQ Server located in the
Boston office can communicate with a client of a MQ Server located in the New York office.
This is easily achievable with server-to-server communication, facilitated by a repeater. With
Server-to-Server communication, each client application in Boston only needs to connect to
the Boston FioranoMQ Server.

The FioranoMQ Administrator can configure the Repeater to automatically forward relevant
messages from the Boston server to the FioranoMQ Server in New York and/or San Francisco,
based on specified requirements. These messages are delivered to the subscriber applications
that are connected to the New York and/or San Francisco servers. If there are transient
network failures across the WAN connecting Boston, New York and San Francisco, none of the
client applications are affected. Publishers can continue to publish messages locally. These
messages are persistent on the local server of the publisher if a durable link (For more
information, read the Subscription Mode and Choice of Selectors section) on the repeater
connects the concerned FioranoMQ servers. The subscribers stay connected and receive
messages, if any are available, from their local server. The repeater also takes care of
reconnecting the servers in case of temporary network failures.

FioranoMQ Repeater enables the communication between different servers by using the
Publish/Subscribe messaging model. This implies that information is exchanged between the
topics on different servers and the repeater cannot be used for exchange of information over
queues. All Server-to-Server communication is handled in a transparent manner by FioranoMQ
internally and the client application does not need to be modified in any way. MQ Servers can
be part of the same LAN or can be spread across multiple WANs.

The FioranoMQ Repeater allows information exchange over SSL/HTTP/HTTPS in addition to the
default TCP/IP communication.

Salient Features

FioranoMQ Repeater offers the following features:

 Easy Configuration: FioranoMQ Repeater can run as embedded in the same
container in which the server is running, or can run as a standalone component
(separate process) and can be used to wire multiple servers. FioranoMQ Repeater
provides complete power to the enterprise administrator to configure MQ Servers on
any network topology. An administrator can set up topics on source as well as target
servers that exchange information between them. Configuring the Repeater is simple
and is XML based.

 Connection Topology: The Administrator of FioranoMQ can configure the Repeater to
set up a connection between servers and propagate messages on the connection.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 83

The repeater can be configured to support different kinds of network topologies:

 Hub-spoke: A source server can be linked with N number of target servers and vice-
versa. In the former case, the single source server acts like a message broadcast hub
for all target servers. All messages published on the source server can reach one or all
of the target servers depending on the requirement. Similarly, in an opposite scenario,
a single target server can act as a hub for many source servers and receive messages
published on one or all source servers.

 Mesh: A cluster of FioranoMQ servers can be set up in a manner where each server is
connected to all other servers in the cluster through the repeater, forming a mesh
type of structure. Messages published one server can reach other servers in the
cluster, depending upon the topics on which the messages are published.

 Bus based: The repeater can be used to set up a cluster of FioranoMQ Servers, in
which a single source server represents a message bus. Target servers behave as
recipients of messages from this bus where only one message can be received by only
one target server at any point of time.

No Changes in the Client Application

Client applications can communicate with any number of FioranoMQ Servers connected
through the Repeater. Clients connected to one server can exchange messages with clients
connected on another server, without each client having to explicitly connect to the same
server. The client application does not need to be modified in any manner - the FioranoMQ
Repeater forwards messages pertaining to a particular topic across servers. The administrator
only has to configure the repeater to forward messages pertaining to desired topics across
servers.

Robustness in Handling Network Failures

Data transfers between multiple FioranoMQ Servers (connected to each other through the
Repeater) can be made to use Persistent Messages/Durable Subscriptions as an option. In this
case, messages transferred between se rvers are always logged onto persistent storage,
thereby making the system highly reliable and robust in the event of network failure.

In the event of a network connection going down, the repeater tries to bring it up. The
repeater tries to reconnect to the server with which it lost a connection repeatedly, with only a
small interval between each try. This ‘ping’ time interval is configurable through Fiorano
Studio. The pinging operation continues until a connection is re-established (where the "down"
server finally comes up again).

Subscription Mode and Choice of Selectors

The FioranoMQ Administrator can configure the Repeater to create either Durable or Non-
Durable links between the source and target servers. A durable link can be used to ensure that
no messages are lost across the repeater in case of network failure.

Message selectors can be set on a link between servers to allow only the required messages to
be exchanged between them. These can be useful, especially in setting up the bus-based
network topology. For more information, read the Connection Topology section.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 84

Request/Reply Across Repeater

The Repeater provides functionality for using request-reply service over FioranoMQ servers,
which are linked by repeater. This allows a requestor, publishing request messages on topic t1
on server S1 to get replies for the requests. These replies are received from a replier on topic
t2 on server s2. The repeater can be set up, with little effort, to perform a request-reply
scenario.

Dynamic Replication Links

FioranoMQ can be used to create new replication links dynamically. This enables the
applications to replicate messages on topics that are created after the repeater has started.
Administrators do not have to manually add replication links for all topics. They need only
specify a pattern - 'ABC*' - and the FioranoMQ repeater would create replication links for all
topics that matches the pattern. If new matching topic is created after the repeater starts, a
replication link for that topic is created dynamically.

Repeater with Load Balancing

The repeater can be put to best use in a Load Balanced cluster of FioranoMQ Servers.
FioranoMQ uses the dispatcher for load balancing client connections among different
FioranoMQ Servers.

Repeater Link

The repeater replicates messages in the link specified between a source and a target server. A
repeater can have N number of links configured. By default, the server sets up only a single
link to the repeater. Properties related to this default link can be edited prior to creating and
managing additional links in the online mode. The Link element, within the Repeater Manager
MBean provides, has the following information:

 Status: Specifies the link is running or not.

Note: This is not a read-only parameter and its value can't be edited through any
tool.

 SourceServer: Specifies the server on which subscriptions are created. Source
Server contains the ConnectionInfo.

 TargetServer: Specifies the server on which publishers are created. Target
Server contains the ConnectionInfo.

Connection Information

The Connection Information enables the repeater to connect to source or target servers.
Target Server as well as Source Server within a link is associated with an instance of
Connection Information. An instance of ConnectionInfo contains the elements as listed in the
table Configuration Parameters.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 85

Link Topic Information

Each Link could be associated with one or more Topic Links. Each Topic Link refers to
source/target topic information. A repeater picks up messages from the source topic and
sends them to the target topic.

A link could also have an instance of a Request/Reply Topic. Information regarding the source
and target topics are request-reply services only. They are used when LinkTopic uses a
request-reply message transfer.

Configurable parameters of LinkTopicInfo are summarized below:

Configuration Parameters

Topic Link Information Parameters

Source Topic Name Specifies the name of the topic on which subscriptions are
made on source server of the link containing
LinkTopicInfo. The name supports the wild-card
character ‘*’, which enables the repeater to create
subscriptions on all the topics that matches the source
topic. For example, if the source topic name is ‘ABC*’,
subscriptions will be made on topics such as ABC1,
ABC12, ABCDEF, and so on.

Target Topic Name The name of the topic on which messages received for
the above subscription are forwarded to the target server
of the link containing LinkTopicInfo

ReplyOn Specifies the topic name on which the repeater listens for
replies which it receives on requests it forwards on
LinkTopicInfo.

isDurable Specifies whether the link between the source and the
target is durable. A durable link ensures that no
messages are lost across the repeater in the event of a
network failure. The values for this variable are “yes’ and
“no”.

Message Selector Specifies the selector that is set on a link between servers
to allow only required messages to be exchanged
between them.

Type Specifies whether the link should be constantly connected
to the target server or replicated only if a subscriber
exists.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 86

ReplyTopicInfo Parameters

ReplyTopicName Specifies the name of the ReplyTopic

isDurable Specifies whether the link between source and target is
durable. A durable link can be used to ensure that no
messages are lost across the repeater in the event of a
network failure. The values for this variable are “yes’ and
“no”.

Message Selector Specifies the selector that is set on a link between servers
to allow only required messages to be exchanged
between them.

Wild Character Support

FioranoMQ provides support for wild-card characters in repeater configurations so that
separate links need not be added for each topic. A user can specify wild-card characters in the
source topic. All topics starting with the string mentioned in the source topic can be repeated.

A Repeater can be configured to replicate messages that match a particular pattern. This
pattern can be specified in the source topic name of the Properties Name. For example, if the
Source Topic Name is specified "ABC*", the topics that match this pattern (all the topics
starting with the string "ABC" on the source server) are repeated across two servers. All
subscribers subscribing to ABC, ABC1, ABCZ and so on will be able to receive messages
published on source topics ABC, ABC1 and ABCZ respectively, via the FioranoMQ repeater.

Topics created dynamically that matches the pattern, 'ABC*' are replicated as well. Where
'ABC2' gets created after the repeater starts leads to creating, dynamically, a replication link
for 'ABC2' (topic on source server) to 'ABC2'(topic on target server). And where a topic name
(like 'ABD1') that does not match the pattern ('ABC*') gets created, the replication link is not
added.

Dynamic Link Propagation

The Repeater can be configured to replicate messages only on demand, that is, messages
would travel from source to target only if there is a consumer (active or passive) on the target
server interested in the message. A pre-configured link in the repeater remains in a "stopped"
mode if there are no consumers on the destination. This link is activated as soon as a
consumer is created. By default this feature is turned “off”.

Note: For this function events need to be turned on in the server connected to repeaters.

Request/Reply across Servers

The FioranoMQ Repeater provides a mechanism for using request-reply service across two
servers. An intermediate topic on the target server is needed so as to receive replies from the
replier and forward them to the requestor.

A Possible Scenario:

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 87

 A requestor (REQ) connected to FMQServer 1, is publishing request messages on topic
t1. The requestor awaits a reply for requests on a temporary topic created for the
connection.

 A replier (REP) connected to FMQServer2, is subscribing to request messages on topic
t2. On receipt of messages, the replier sends a reply to the request message on the
reply topic that is specified in the JMSReplyTo property of the request message.

 Using repeater, the requestor REQ on topic T1 of Server1 can get replies for requests
made by it.

 Specify the replytopicname as T3 using Fiorano Studio.

 Create a topic T3 on the Server2 (target server)

Refresh the Repeater

The SourceTopicName and the TargetTopicName can have the same name. Similarly, the
replyOn value signifies the topic that is used by the target server for publishing replies to
messages. This is for messages forwarded on that topic link, represented by LinkTopicInfo.
The ReplyTopicInfo represents information about the replier topic link used in request-reply
services across servers.

In addition, a permanent topic t3 has to be established on the target server if the reply is to
be sent to a temporary topic on the source server. This is because the repeater requires a
topic on which it listens to replies for requests that it has forwarded.

Bridge

Due to lack of a standard communication protocol, every messaging vendor invariably uses a
proprietary protocol for client-server data-exchange. Lack of "interoperability" across multiple
messaging vendors poses serious problems for communication across messaging systems. For
instance, FioranoMQ applications cannot push or pop messages to IBM WebSphereMQ queues
and vice versa. This lack of interoperability among message queuing systems can be a
problem for businesses that merge, particularly when they want to integrate information
systems based on different message queuing systems. FioranoMQ solves this problem by
"bridging" FioranoMQ with IBM MQ Series, MSMQ, Tibrv and all other JMS providers' products.

FioranoMQ Bridge solves this integration problem by allowing messages to be passed between
FioranoMQ and other message queuing systems. If two banks were to merge and needed to
integrate their information systems, the management can decide to consolidate all account
information on IBM systems that use IBM WebSphereMQ for message exchange. The
management would, however, like to have its customers continue using its current ATM
system. The ATM system receives requests for account information and dispatches requests to
the server system using FioranoMQ messages. Instead of rewriting applications, the
FioranoMQ Bridge can be used to forward requests and responses between the two different
message queuing systems.

Bridge Architecture [

The FioranoMQ Bridge is an open, standards based, Java component. The FioranoMQ Bridge
provides a set of standards-based configurable services that allow messages to be exchanged
between FioranoMQ and other message queuing systems.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 88

Communication to any other JMS vendor is done using the standard JMS API. Communication
to MSMQ is done using MSMQ Java APIs and communication to TIBCO Rendevous (Tibrv) is
done using Tibrv Java APIs. The FioranoMQ Bridge sends messages as JMS Messages to the
targeted JMS vendor. The FioranoMQ Bridge is configured using XML-based configuration files
that allow a single instance of the Bridge to "bridge" any number of messaging servers.

Messages are pushed to the remote system using the standard JMS API (or MSMQ/Tibrv APIs
if the remote system is MSMQ/Tibrv). Additionally, the Bridge creates receivers to
asynchronously receive messages from the remote system. The Figure below depicts the flow
between a FioranoMQ client and an IBM WebSphereMQ client through the FioranoMQ Bridge.

Forwarding Messages to Remote Queues

The FioranoMQ Bridge provides communication services between FioranoMQ and other
messaging servers. As shown in Figure above, the Bridges create a relationship between a
remote messaging server and FioranoMQ queues in order to send and receive messages.

This relationship is based on the use of two Bridges-specific entities, referred to as the Source
Queue (SQ) and Target Queue (TQ):

Source Queue (SQ): An application always sends to a SQ, which is defined in the source
messaging system. Messages received on a SQ are read by the Bridge and forwarded to the
associated TQ. A SQ can either be a FioranoMQ queue or a queue on another messaging
server ("subject" if Tibrv).

Target Queue (TQ): This is the final target queue for sending a message. This queue is
defined by the remote messaging system. A Bridge sends messages (retrieved from the
associated SQ) to this queue for subsequent processing by the target application. A TQ can be
either a FioranoMQ queue or a queue on another messaging server ("subject" if Tibrv). The
Figure below shows how the Bridge forwards a message from a FioranoMQ SQ to its associated
Remote TQ.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 89

For example, Application A is an ATM application that uses FioranoMQ for message exchange.
It is designed to receive requests for account inquiries, send these requests to Application B,
and return account information to bank customers. Application B is an account lookup
application that uses IBM WebSphereMQ for message exchange.

Application A places an account inquiry message on Queue_1, a FioranoMQ queue. The part of
FioranoMQ - WebSphereMQ Bridge reads the message on Queue_1. It maps the message
header data into IBM WebSphereMQ format and forwards the message to Queue_2, an IBM
WebSphereMQ queue. Application B reads the message on Queue_2, looks up the requested
account information, and places the account information in a reply message. The message is
placed on Queue_3, an IBM WebSphereMQ queue. The FioranoMQ Bridge reads the message
on Queue_3. It maps the message header data into Fiorano MessageQ format and forwards
the message to Queue_4, a FioranoMQ queue. Application A reads the message on Queue_4
and displays the account information to the customer.

Bridge Features
 XML based: The FioranoMQ administrator can configure the FioranoMQ Bridge using

an XML config file. FioranoMQ Bridge gives the enterprise administrator complete
power to configure message queuing servers on any network topology. The
administrator can set up queues that need to be mapped between target and source
servers. Configuring the Bridges is simple and is based on XML.

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 90

 Robustness and Network Failures: The Bridge has a built in feature to reconnect
automatically with configured messaging servers. If a network connection or a
messaging server goes down, the Bridge automatically tries to reconnect to the
"down" servers after "configurable" periods of time. This pinging operation continues
until a connection is re-established (or when the "down" server finally comes up
again).

 Avoiding Loopback in Bridges: Cyclic links have been enabled in bridges. A
FioranoMQ to FioranoMQ Bridge can result in an infinite loop being set up because of
bridge configuration. A check has been added in the bridge which prevents an infinite
loop. This check is enforced only if a particular configuration flag is turned on via
Fiorano Studio.

 Logging and Tracing Options: The FioranoMQ Bridge provides comprehensive
logging facilities. Logs can be redirected to files or to the console. The administrator
can install "customized" logging mechanisms. Trace levels for the Bridge components
can be set via Fiorano Studio.

Bridge Configuration

Configuring the Bridge consists of adding links and channels to the Bridge and specifying
queue information to allow bi-directional communication across messaging servers.

When in offline mode, the administrator can easily add links to the bridge and configure
source and target servers for message replication. Cluster administrators are provided with a
template configuration file. FioranoMQ installation provides a default ConfigswithBridges.xml
file in the default FioranoMQ profile (fmq\server\profiles\FioranoMQ 9\conf directory of MQ
installation). This provides the default Bridge configuration, adding two links to link the source
and the target servers bi-directionally. This file needs to be renamed as configs.xml prior to
starting Fiorano Studio in the offline mode. The Fiorano Studio tool displays the Bridge with
the default links that can be configured through the offline mode.

The following table lists configurable Bridge Manager properties:

Property Name Description

Parameters Description

Avoid Loopback This flag is used to avoid the loopback
condition in bridge. The default value is
True.

Name Specifies the name of the Bridge

PingIntervel Specifies the time interval after which the
Bridge pings the source and target servers
continuously to reconnect once a connection
gets broken

FioranoMQ® Concept Guide

Chapter 14: FioranoMQ Clustering Page 91

Link Properties

The Bridge sends messages in the link specified between a source and a target server. A
Bridge can have N number of links configured. By default, the server sets up only a single link
to the Bridge. Properties related to the default link can be edited before creating and
managing additional links or channels in the online mode. The Link element within the Bridge
Manager MBean contains the following elements:

SourceServer

Specifies the server on which subscriptions are created. The Source Server element contains
the ConnectionInfo.

TargetServer

Specifies the server on which publishers are created. Target Server contains the
ConnectionInfo.

Connection Info Properties

The information present in the properties enables the Bridge to connect to servers even if they
are behind Proxies or Firewalls. It enables secure connections by providing security certificates
and a security protocol to be used. Connection Info comprises of the ServerURL, UserName,
Password, ProxyURL, and ServerSecurityManager. The ‘type’ property of this element indicates
the protocol over which the Bridge will connect to the source or target server.

ConnectionInfo contains the following elements:

Parameter Description

ServerType Type of the messaging server to connect to.
Currently only four server types are
supported: JMS, MSMQ, IBM WebSphereMQ,
and Tibrv.

Parameter These contain the different environment
parameters required by the connector to
connect to the Source/Target server. An
important use of these parameters is to
configure the protocol and the connection
factory over which the Bridge will establish
connections with the source and the target
servers.

FioranoMQ® Concept Guide

Chapter 15: Large Message Support Page 92

A channel can now be added to the existing link. The channel specifies the source and target
queue information. A channel has the following information:

Parameters Description

Name Name of the Channel

SourceQueue Specifies the source queue information
required by the Bridge. This contains the
Source Queue name.

TargetQueue Specifies the target queue information of the
channel. This contains the Target Queue
name.

Parameter These contain the different environment
parameters required by the connector to
connect to the Source/Target server. An
important use of these parameters is to
configure the protocol and the connection
factory over which the Bridge will establish
connections with the source and the target
servers

FioranoMQ® Concept Guide

Chapter 15: Large Message Support Page 93

Chapter 15: Large Message Support

With Large Message Support (LMS) in FioranoMQ, clients can transfer large messages in the
form of files with, theoretically, no limit on the message size. Large messages can be attached
with any JMS message and the client can be sure of a reliable and secure transfer of the
message through FioranoMQ Server.

Note: In this chapter, the terms "Large Message Support" and “LMS” is used interchangeably.

Salient Features

Reliable transfer of large messages

The Large message sender and receiver use the JMS semantics to transfer arbitrarily large
messages over the network in chunks, using reliable JMS semantics. When large message
transfer is initiated, all message fragments are sent through the server ensuring reliability.
Files sizes in Gigabytes can be transferred.

No increase in cache/JVM heap size required

Although the message transfer happens through the server, the file fragments are sent to the
receiver in a request-reply fashion. This enables the server to handle large message transfers
without any increase in the cache/JVM heap size.

The Large message transfer is not restricted to any queue or topic

As mentioned above, large message transfer conforms to JMS semantics, allowing the user to
transfer the message on any queue or topic.

Resume function at both sender and receiver end]

Broken transfers can be restored using the resume functionality built into the message class.

Message transfers are specific to the JMS Connection-Users involved in the transfer. The user
can resume the transfers at any later point provided the participant at the other end is
available.

Minimal changes in the application code

All the message transfer properties are built into the message object while the message
transfer semantics are built into the normal JMS send and receive calls. Therefore, only
minimal code changes are needed to send and receive large sized data.

FioranoMQ® Concept Guide

Chapter 15: Large Message Support Page 94

Using Fiorano LMS to Transfer Large Files

A large message is defined as a JMS Message with a reference to a large sized file. Message
fragmentation, reassembly, sequencing, duplication, and recovery are handled internally.
When the large message is sent, it is only the reference to the large file that is sent with the
JMS Message. The actual file transfer happens only after the receiver has received the JMS
message containing the reference to the message and starts the saveTo operation on it.

Transferring a large message using Fiorano LMS involves the following phases:

 Message creation

 Starting the message transfer

 Tracking the message transfer

 Handling exceptions in the message transfer

 Resuming the message transfer

Message Creation

The large message is created using the complete JMS semantics. A JMS application can specify
a string property; "JMSX_LM_PATH" to convert a JMS message to a large message. This string
property specifies the absolute path of the large file that needs to be sent to the listening
consumers. A consumer receives the large message just like any other JMS message.

Starting the Message Transfer

The large message transfer can be initialized by calling the normal JMS send call at the
producer end. This posts the large message to the intended destination (queue/topic), which is
received by the listening consumers. They receive this large message and can start the actual
transfer of the large file by opting to save this message at the required location using the
saveTo API.

Tracking the Message Transfer

Message transfer can be tracked asynchronously by registering the status listener with every
large message. The status listener can be set using the setLMStatusListener API.

Handling Exceptions During Message Transfer

Exceptions can be handled using the status listener registered with the large message. When
an exception occurs while transferring the large message, the application is notified via the
registered status listener. Applications can check the type of error and status of the transfer
and can decide to resume/cancel the message transfer.

FioranoMQ® Concept Guide

Chapter 15: Large Message Support Page 95

Resuming the Message Transfer

If a failure occurs while transferring the message, the application can resume the message
transfer from the state at which the failure had occurred. The application can resume the
message transfer from the two levels described below:

 Resume on exception: FioranoMQ notifies the application about the status of the
message transfer using the registered status listener. If an exception occurs during
message transfer, FioranoMQ notifies the application about the failure. Upon failure
notification, the application can opt to resume the message transfer. It can resume the
transfer using the resumeSend () or resumeSaveTo () APIs provided in the message
object.

 Resume on startup: The JMS Connection object keeps track of all active message
transfers fora particular connection. If the application becomes unavailable (JVM
down) while participating in the message transfer, it can then check the list of
unfinished transfers from the connection object. The connection object provides a list
of unfinished messages required to be sent and received. The application can resume
the transfer using the resumeSend () or resumeSaveTo () APIs provided in the message
object.

Salient Features

The actual transfer of the large file attached with the large message follows certain message
transfer semantics explained below:

Consumer Discovery

The message producer waits for the initial message (handshake) from the consumer before
any message fragments are sent. In the point-to-point (request/reply) messaging model, the
discovery phase ends as soon as the handshake message is received from the consumer. In
the publish-subscribe model, the discovery phase continues to receive handshake messages
from new consumers. The duration for which the producer waits for handshake messages is
determined by the requestTimeOut value set by the user in the message object.

Fragment Size

A large file is broken into fragments of size <fragment size> as set by the user in the message
object. Fragments in multiples of TCP/IP window size are recommended for optimal
performance.

Window Size

Window size is the number of message fragments sent by the message producer before an
acknowledgment is received from the message consumer. For instance, for a window size of
50, 50 fragments of size <fragment size> are sent to the server. The producer then stops
sending new fragments until an acknowledgment is received from the message consumer.
Once an acknowledgment is received, the message transfer continues.

FioranoMQ® Concept Guide

Chapter 15: Large Message Support Page 96

Sequencing

Every message fragment sent has a sequence number attached to it by the message
producer. The message consumer expects the fragments to be received in the same sequence
as the order in which they were sent. If the sequence is disturbed then the consumer re-
requests those fragments that could not be received sequentially. A producer, on receiving
such requests, starts sending the fragments from the sequence number mentioned in the
request.

Handling Duplication

In rare cases a message fragment is received more than once. In such cases, the message
consumer ignores the duplicate fragments.

Handling lost fragments

The message consumer identifies lost fragments using the sequence number associated with
each fragment. When a fragment is not received, the consumer re-requests those fragments
which could not be received sequentially. A producer, upon receiving such requests, starts
sending the fragments from the sequence number mentioned in the request.

Optimizing Large Message Transfer

The time involved in transferring a large message (of size M) is the sum of: [

 The time involved in transferring N JMS Messages of size M/N.

 Time involved in I/O operations (reading the large file on the sender side + saving
the large file at the receiver end)

 The time involved in establishing the connection and ensuring fragment sequence
and reliability.

The following factors can affect the performance of LMS:

Fragment Size

A small fragment size implies frequent I/O operations (reading the source file and saving the
target file) as well as frequent socket calls to send the fragments to the server. Large
fragment size implies increased memory usage both at the client and server ends. The optimal
fragment size should be small enough to be held in the memory of the sender, server and
receiver. Fragment sizes, whether small or large, should be in multiples of TCP/IP packet size
for deriving optimal performance.

FioranoMQ® Concept Guide

Chapter 15: Large Message Support Page 97

Window Size

A large window size implies increased memory usage at the server end because of the
possibility of the receiver being slow to receive the messages from the server. After a window
of fragments is sent, the message producer halts itself to receive an acknowledgment from the
server. The receiver can not receive a fragment sequentially and request the fragment to be
sent again. It is wise to have smaller window sizes when the expected rate of fragment loss is
high. Another factor to be considered is the latency between the sender and the receiver. It is
better to have a large window size when the latency is high.

Status message frequency

The setLMStatusListener call registers a status listener with the message transfer and informs
the user application of the status of the message transfer. It also takes another parameter for
the frequency of status updates required by the user. The value of this parameter is the
number of windows of message fragments sent before the user application is updated to the
status of ‘transfer’. A small value (say 1, for an update after every window) hampers the
message transfer rate considerably. Performing intensive operations in the onLMStatus call
takes up considerable time by the message transfer thread.

Known Limitations

 Only one file can be associated with a JMS message.

 Large messages cannot be sent in a transacted session.

 Resume API does not work well at times in cases of publish-subscribe.

 Resume directory cannot be shared by multiple consumers receiving a large message.

 LMS does not work if AllowDurableConnections is set to TRUE

 LMS does not work if the MQ Servers are run in High Availability (HA) mode.

 An instance of a large message cannot be sent again unless the previous transfer is
complete.

 LMS works only for unified connections provided by the JMS 1.1 specifications.

FioranoMQ® Concept Guide

Chapter 16: High Availability Page 98

Chapter 16: High Availability

Today's real-time enterprise solutions often deploy messaging middleware that enables
communication between various sub components. This middleware is entrusted with important
data that should be delivered reliably and as fast as possible to the recipient application. The
middleware server might also be required to store this data in its data store until it is
delivered.

A failure in the middleware message bus can bring the entire system to its knees within
seconds. It is absolutely imperative for the messaging backbone to provide a backup facility
that allows messaging operations to resume quickly in the event of a failure. This backup
server restores the state of the original message server to the state prior to failure. Any data
stored in the server's data store is accessible through the backup server. Switching from one
server to its back up should be automatic and transparent to the client application.

FioranoMQ implements High Availability (HA), which allows JMS applications to take advantage
of in-built fault tolerance capabilities. This chapter discusses the salient features of
FioranoMQ's HA solution. It explains the functions and underlying architecture of the entire
solution together with step-by-step instructions for enabling HA in FioranoMQ.

FioranoMQ's HA - An overview

FioranoMQ servers running in HA mode have a designated backup server that is started,
together, with the primary FioranoMQ server. If the primary server becomes unavailable due
to any reason; the backup server picks up messaging traffic immediately. This pair of primary
and its backup server is known as an Enterprise Server and this term is used to describe this
primary/backup pair throughout the document.

This Enterprise Server represents a HA entity that appears as a single FioranoMQ server to its
applications. JMS applications, during initialization, connect to the primary FioranoMQ server,
if available. If the primary server goes down due to any reason, all connections are
automatically routed to the backup server and communications are restored immediately.
Since this is transparent to the client application, the client application need not worry about
the reconnection logic in its code as these are handled by FioranoMQ's client runtime library
internally.

FioranoMQ® Concept Guide

Chapter 16: High Availability Page 99

HA Components

The section below describes the components and associated concepts that collectively form an
Enterprise Server.

Backup Server

Fiorano's HA solution requires running a backup FioranoMQ server. This server (also referred
to as secondary server in this document) can be started on the same or on a different
machine. The server picks up all the messaging traffic as soon as it detects the unavailability
of its Primary server.

Server States

FioranoMQ Servers that make up the Enterprise Server can be in either active or passive state.
‘Active state’ refers to the normal working mode of the server. In ‘passive mode’, the server
only monitors its peer and does not handle any client requests. Client connections to a server
in passive mode are refused. On startup, the server establishes communication with its peer
server. If this peer server is ‘alive’, the current server enters passive mode. It leaves the
passive mode and becomes active (accepts client connections) only when it detects that the
peer is unavailable.

FioranoMQ® Concept Guide

Chapter 16: High Availability Page 100

Intra-Enterprise Server Communication

Both Primary and Secondary servers open and listen on a TCP/IP port that allows them to
establish a dedicated connection between themselves. This port is different from the one used
by client applications for connecting to the server and hence does not affect normal messaging
operations in the active server. A connection is established during the initialization phase of
the servers and is used for exchanging ‘health’ and ‘state’ information between the two
servers. Information gathered is used by the servers to switch to ‘active’ from ‘passive’ state
(and vice-versa), if and when required.

Common Persistent Message Store

Both Primary and Secondary servers are required to logically access a common persistent
message store. To achieve this, the FioranoMQ administrator can either point both the servers
to the same physical database or can set up replication between the databases of the two
servers. Both these options are available with Fiorano's file-based database as well as on third
party JDBC compliant RDBMS Servers.

Common Admin and Security

Besides the message store, the Primary and Backup Server in an enterprise server must share
the admin objects (Destinations and Connection factories) and Security Information (ACLs and
User Information) amongst themselves. This is achieved by using a common naming and
realm storage (like RDBMS and LDAP) or setting up replication on these databases between
the two servers.

Gateway Machine

Consider a scenario where the enterprise server consists of FioranoMQ server 1 and FioranoMQ
server 2. Both these servers are constantly monitoring each other's status without any
problems. Now, assume FioranoMQ Server 2 exits the network due to some network failure.
Though FioranoMQ Server 2 is still running, it is no longer connected to the network (and
hence not accessible to FioranoMQ Server 2 and to related client applications). In this
scenario, a third gateway machine is used to detect the HA server which is no longer available
on the network. It becomes imperative to choose a gateway machine that is least expected to
fall out of the network. It is best to use the actual gateway server of the network, in which the
enterprise server is deployed, as the Gateway machine for HA.

Note: If the Gateway machine was to exit the network, HA continues to function properly as
long as the two HA servers are present on the network. If one of the HA servers also goes out
of the network, then it is not possible to reach a consistent state. In such a situation, both the
servers’ switches to passive mode and the enterprise server will not be in a position to process
client requests. However, the enterprise server would be available for client requests when
either both peers are up or if one of the peers and the gateway machine are available on the
network.

FioranoMQ® Concept Guide

Chapter 16: High Availability Page 101

FioranoMQ HA Salient Features

Shared and Replication of Databases

FioranoMQ provides complete flexibility to administrators giving them an option of either using
a shared database (between active and passive servers) or using database replication (from
active to passive server). “Shared” HA typically provides much better performance in
comparison with “Replicated” HA. If it is not possible to share a database, administrators can
still use FioranoMQ's HA using inbuilt replication support.

Application Failover

If the primary server becomes unavailable, all the client applications connected to it are
automatically re-connected to the secondary server. The process of shifting from the primary
server to the backup server or vice-versa is transparent to the application. The application
does not need to implement any reconnect logic in its code. Re-connection achieved by
connecting to the server through a Durable Connection. If a backup server is available, the
Durable Connection will connect to the backup server. Otherwise it waits for the server to
restart and during the disconnected period stores all data in to a local repository. This data is
re-transferred to the server as soon as a connection is re-established, making the system
highly reliable and robust even in the event of network failures.

Note: Durable connections implement ‘client side persistence’ and are a proprietary feature of
FioranoMQ (though it does not require any proprietary APIs) and should not be confused with
Durable Subscribers.

Data Store Consistency (maintained between server switches)

When the primary server becomes unavailable, its backend database state is preserved. This
state is picked up by the secondary server when it becomes available. This avoids loss of
persistent information between server switches while, at the same time, providing access to
information stored to the backup server. For example, all the messages published on various
destinations residing on the primary server are available to valid consumers through the
secondary backup server without loss.

Expensive HA Hardware Not Required

Fiorano's HA solution is implemented using software and is not dependent on expensive
hardware solutions. It can run on any java-supported platform. With the shared database
option, one might want to use RAID or SAN disks (if using HA over Fiorano's proprietary file-
based data store) for enhanced speed and stability, but this hardware is not necessary for
Fiorano's HA solution. Using either replication support or using a central RDBMS server as the
message store in the Enterprise Server avoids the need for additional hardware.

FioranoMQ® Concept Guide

Chapter 16: High Availability Page 102

Implementing a Cluster

The Enterprise Server can be clustered with other Enterprise Servers or even stand-alone
FioranoMQ servers. The cluster can share destinations (using a common naming store) and
provide load-balancing facilities.

HA Example Scenario

This section of the document provides a description of events that occur if of the servers in the
Enterprise Server becomes unavailable.

State - 1 (Normal Operation State)

All client applications are connected to one of the servers in the Enterprise Server. It can be
assumed that the clients are connected to the primary server at this instant. The backup
server is up and running in passive mode. The backup server will not accept any client
connections at this point of time. Primary and Backup servers are continuously exchanging
health information over a dedicated channel. All persistent information is being stored in the
‘back-end’ data store through the primary server.

The above scenario is illustrated below:

FioranoMQ® Concept Guide

Chapter 16: High Availability Page 103

State - 2 (Active Server goes down)

The backup server detects the primary server's failure and initiates its start up sequence. All
client applications connected to the primary server detect the problem and Fiorano's runtime
library internally attempts to re-connect to the secondary server. New messages published
during this downtime are stored in a local repository in all client machines.

FioranoMQ® Concept Guide

Chapter 16: High Availability Page 104

State - 3 (Backup Server resumes operations)

The backup Server then starts up and gets ready to take up client connections. All client
applications reconnect with the secondary server once the backup server is up, such re-
connections being managed automatically by the FioranoMQ client runtime system. Messages
stored in the local repository (that were sent during down-time) are sent to the secondary
server. All durable consumers continue to pick up messages from where they had left off.

When the primary server restarts, it detects that its backup is alive and enter into passive
mode. The primary server continuously pings the backup server and initiates its startup
sequence if the backup server goes down due to any reason. In this sense, the original backup
is now the Primary and the original Primary is now the backup server.

FioranoMQ® Concept Guide

Chapter 16: High Availability Page 105

Limitations of HA

Client level transactions do not span across servers in the Enterprise Server when running in
shared mode. Transacted sessions involving receivers will be rolled back if the primary server
crashes. Therefore, the messages delivered in that transaction are redelivered to the receivers
upon connection to the backup server.

Distributed transactions, which are in execution during the transition phase, become "in-doubt
transactions" when the primary server goes down. These transactions get ‘rolled back’ and can
be recovered after the client reconnects to the secondary server.

JMS Topic Requestor can not receive its intended reply if failover occurs after a request is
sent. This occurs because JMS Topic Requestor creates a non-durable subscriber, which can
miss a message during failover. However, if a topic requestor creates a durable subscriber to
listen for replies, then it works even during failover.

If both HA servers (primary as well as backup) go down, the requestor receives a duplicate
reply (with reDelivered Flag = true) for the first request made after failover occurs.

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 106

Chapter 17: Distributed Transactions
Communication between diverse applications is an essential requirement in today's distributed
network environments. This communication can be at a single tier where one application
communicates to another in a single transaction, or at a multiple tiers where many
applications communicating to each other in one large transaction. The ability of a transaction
to span multiple applications is fundamental to multi-process communication.

The availability of low-cost computing power and increased network bandwidth gives rise to
distributed component-based computing applications. Distributed computing applications and
distributed transactions are vital for developing computing components for multi-tier
applications, which can run on different platforms or through networks. Here, a transaction is
defined as a unit of work composed of sets of operations on objects. A distributed component-
based application is a configuration of services provided by different application components.
These components are executed on physically independent systems running on multiple
machines. To the user, these components appear as a single application running on a single
physical machine.

Introduction

In the world of distributed computing and distributed transactions, a transaction can be
defined as a group of statements representing a unit of work composed of a set of operations
on objects. These groups of statements must be executed in totality as a unit. Transactions
can also be viewed as sequences of operations on resources, such as read, write, or update,
which transform one consistent state of the system into a new consistent state. The basis of
these transactions lies in the fundamental concept of an all-or-nothing proposition. Either all
steps of a transaction must be completed successfully or none of them should be completed.

In a large network, spread over multiple machines and involving many individual steps for a
transaction, it is highly probable that one of these steps do not get completed. This can occur
due to many reasons such as flawed application logic, server failure, hardware failure, and
network interruptions. Due to unpredictable environmental factors, transactions must adhere
to the following properties:

 Atomicity: This is the all-or-nothing property. Either the entire sequence of
operations is successful or unsuccessful. A transaction should be treated as a single
unit of operation. Only completed transactions are committed and incomplete
transactions are rolled back or restored to their original state.

 Consistency: A transaction maps one consistent state of resources (for example,
database) to another. Consistency is concerned with correctly reflecting the reality of
the state of the resources. Some examples of consistency are referential integrity of
the database and unique primary keys in tables.

 Isolation: A transaction should not reveal its results to other concurrent transactions
before it commits. Isolation assures that transactions do not access data that is being
concurrently updated. The other name for isolation is serialization.

 Durability: Results of completed transactions have to be made permanent and cannot
be erased from the database if the system fails. Resource managers ensure that the
results of a transaction are not altered due to system failures.

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 107

Use Case

A familiar example of distributed transactions is transferring money from one bank account to
another. The transfer comprises of two separate actions involving debit of a certain sum of
money, and the credit of this sum to another account. Both these steps will be a part of a
single transaction. Both steps must be completed for the completion of the entire transaction.
If only one of the two steps gets completed, the following possible problems are likely to arise:

Case 1 and 2 are summarized in the following table.

Step 1 Step 2 Result

Completed Successfully Incomplete connection
failure

The amount has been
debited from the customer’s
account but the payment
has not been received. This
causes the customer to lose
money.

Payment has not been made
by the customer

The amount is credited to
the sellers account

The bank loses money.

In the above example, a single transaction should ensure that the either-or-none proposition
holds true. Transactions do not always involve the transfer of funds as in the banking example
just covered. Transactions are necessary for all kinds of business activities. For example, an
online bookstore performs transactions that include ordering books from suppliers,
transferring inventory from suppliers, updating available quantities of books accurately,
charging customers appropriately for purchases and fulfilling customer orders. All of these
actions, and a multitude of others, can need to be executed within a single transaction.

In other words, a transaction is a unit of work performed on behalf of a single client, delimiting
a related set of operations and providing scope for concurrency. Transactions guarantee
consistency of a ‘shared state’ in the occurrence of concurrent access by isolating one client's
work from another and undoing a client's work in case of a failure.

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 108

Transactions and the Distributed Transaction Processing (DTP) System

A Distributed Transaction Processing (DTP) system defines and coordinates interactions
between multiple users and databases (or other shared resources) residing on multiple
machines. When a transaction includes operations in several databases or other shared
resources, the goal of a DTP system is to carry out this transaction in an efficient, reliable, and
coordinated manner. The transaction must comply with ACID properties as far as possible.

Components of a Distributed Transaction

The transaction manager and the resource manager are the two key elements of any
transactional system. Generally, distributed transactions have five components:

 Transaction manager

 Application server

 Resource manager

 Application program

 Communication resource manager

Each of these contributes to the distributed transaction processing system by implementing
different sets of transaction APIs and functionalities.

 A Transaction Manager provides the services and management functions required to
support transaction demarcation, transactional resource management,
synchronization, and transaction context propagation.

 An application server provides the infrastructure required to support the application
runtime environment, which includes transaction state management. An example of
such an application server is an EJB server.

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 109

 A Resource Manager (RM) provides the application access to resources through a
resource adapter. The resource manager participates in distributed transactions by
implementing a transaction resource interface. This interface is used by the
transaction manager to communicate transaction associations, transaction completion
as well as recovery work. FioranoMQ is a resource manager.

 A transactional application specifies actions that form part of a transaction. These
programs can require actions such as updating a database or sending messages. Such
standalone Java client programs might want to control their transaction boundaries
using a high-level interface provided by an application server or the transaction
manager.

 A Communication Resource Manager (CRM) supports transaction context propagation
and access to the transaction service for incoming requests.

From the transaction manager's perspective, the actual implementation of the transaction
services does not need to be exposed. Only high-level interfaces need to be defined to allow
transaction demarcation, resource enlistment, synchronization and recovery processes to be
driven by the users of the transaction services.

FioranoMQ as a Distributed Transaction Resource Manager

The JMS specification provides a model that outlines how a messaging system should behave
in a transactional environment. In the JMS transactional model, message producers and
message consumers never participate in a single distributed transaction. Instead, the JMS
specification has its own loosely coupled transaction model, whereby each message producer
or message consumer has its own private transactional session with the messaging system,
such as FioranoMQ.

This is due to the inherent nature of applications using messaging to communicate in an
asynchronous environment. Senders and receivers of messages are abstractly decoupled from
each other. A receiver can not be available at the time the sender initiates a transaction. Thus,
the sender has a contract with the JMS messaging system, which ensures messages produced
within a transactional session are "committed" to the JMS messaging system in an all-or-
nothing manner. Likewise, the receiver has another contract with the JMS provider ensuring all
messages being consumed within a transactional session are received in an all-or-nothing
manner.

FioranoMQ, being s standards based JMS server, implements the above-mentioned model to
provide XA support in a Distributed Transaction environment using the JMS XA Service
Provider Interface (JMS XA SPI).

In addition to the high performance "file based" data store, FioranoMQ supports the use of
Relational Database (like Oracle) as message data stores.

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 110

Transactions with J2EE

J2EE Applications include components that take advantage of infrastructural services provided
by the J2EE Container and Server, and therefore need only to focus on "Business logic".

Transactional support is an important infrastructural service offered by the J2EE platform. The
specification describes the Java Transaction API (JTA), whose major interfaces include:
javax.transaction, UserTransaction, and the javax.jms.TransactionManager. The
UserTransaction remains exposed to application components, while the underlying interaction
between the J2EE server and the JTA TransactionManager is transparent to the application
components. The JTA UserTransaction and JDBC's transactional support are both available to
J2EE components.

An EJB (Enterprise Java Bean) running in an Application Server exposes the business logic
methods that clients invoke to perform useful operations, such as depositing or withdrawing
from a bank account. Enterprise beans are capable of handling transactions. This implies that
EJBs can fully leverage the ACID properties to perform reliable, robust server side operations.
Thus, EJBs are ideal modules for performing mission critical transactional tasks.

In an EJB, the code never interacts with the low level transactional system. The beans never
interact with a transaction manager or a resource manager.

The application logic needs to be written at a high level, without regard for specific underlying
transaction systems. The low-level transaction system is abstract to the EJB container that
runs behind the scenes.

The bean components are responsible for deciding when a transaction should begin, commit or
abort. If the system executes properly, a commit is invoked; else an abort is invoked.

It is the XAResource provider (FioranoMQ) responsibility to integrate itself seamlessly with the
transaction in progress and allow for behind the scenes enlistment and delistment. Commit
operations, with transaction propagation managed by the application server.

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 111

This provides a much higher level of abstraction as compared to using an external transaction
manager. In addition, it achieves the objective of isolating the "business logic designer"/"bean
designer" from the details of how the transaction progresses. The bean no longer has to take
care of specific enlisting, delisting, and committing or rolling back transactions in progress.
This is in contrast to controlling transactions using an external transaction Manager.

The javax.transaction.UserTransaction interface defines methods that allow applications to
define transaction boundaries and explicitly manage transactions. The UserTransaction
implementation provides application components -- servlets, JSPs, EJBs (with bean-managed
transactions) -- with the ability to programmatically control transaction boundaries. EJB
components can access UserTransaction through EJBContext using the getUserTransaction ()
method. Some of the methods specified in the UserTransaction interface include begin (),
commit (), getStatus (), rollback () and setRollbackOnly (). The J2EE server provides the
object that implements the javax.transaction.UserTransaction interface and makes it
available through JNDI lookup.

FioranoMQ as a XAResource provider can be integrated with any J2EE application server so as
to perform in a predictable manner when used with a UserTransaction object provided by the
application server.

FioranoMQ XA Implementation Notes

Distributed transactions are supported for topics as well as queues as long as the data store
used is able to participate in distributed transactions. FioranoMQ supports the use of RDBMS
as the data store for messages which needs to be used in XA scenarios. Fiorano's File based
data store cannot be used for destinations that need to be used in XA.

FioranoMQ XA implementation does provide support for local transactions as well. This implies
that when a new XA session is created, it has a local transaction context. This local transaction
context ends when the XA session gets associated with a global transaction context.
XAResource associated with the session starts a new distributed transaction
(XAResource.start). When the global transaction ends - (XAResource.end() or
XAResource.rollback()) - xasession automatically switches back to the local transaction
context where the JMS session of the xa session can be used as a transacted JMS session,
invoking its commit/rollback methods.

The behavior of createSession call on the XAConnection object is undefined in the JTA
specifications.

Session session = xaConnection.createSession(boolean transacted, int ackMode);

 boolean transacted: usage undefined.

 int ackmode: usage undefined.

FioranoMQ behaves in the following way when it encounters a createSession (or
createTopicSession/createQueueSession) on the xaConnection (or
XATopicConnection/XAQueueConnection) object:

It returns the session (or topicsession/queueSession) object whose behavior is defined
entirelyby the specified parameters. For example, in the following call a transacted (non-xa)
session object is returned, which can take part in the JMS transactions.

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 112

xaConnection.createSession(true, 0);

All transactions are rolled back on server startup or on application close.

If a FioranoMQ client terminates after a transaction has successfully ended,
(XAResource.TMSuccess)/suspended (XAResource.TMSUSPEND)/ prepared (returned with a
XAResource.XA_OK flag), then this transaction can be used from the same status (prepared,
ended or suspended), upon client re-activation. Similarly, if a FioranoMQ Server terminates
when any ended/suspended/prepared transactions are active then, upon restart, FioranoMQ
clients remain unaffected and can continue working on the transaction.

RDBMS based topics, on which messages are published in a transaction get locked in the
‘prepare’ call. No other transaction can be prepared in which messages published on locked
topics. All Non-xa publishers publishing on a locked topic have to wait for the release of the
lock to publish a message.

Limitations of XA Implementation of FioranoMQ

XAResource’s Transaction timeout() APIs and forget() APIs are not supported in this release.

A durable subscriber can be associated with only one distributed transaction at any point of
time. It can be associated with the next transaction only when it is disassociated with the
previous transaction. The durable subscriber gets associated with the transaction when the
xaResource object, created from the same session object as the durableSubscriber, starts a
new transaction. This association ends when the resource object performs a commitrollback on
the transaction that is started.

The following code snippet displays the point at which the association of the durable subscriber
ends with the transaction.

// Get the topic session object

TopicSession ts = xats.getTopicSession();

// create a durable subscriber. This subscriber is not associated with

// the distributed transaction as the distributed transaction has not started yet.

TopicSubscriber subscriber = ts.createDurableSubscriber(topic,"clientId");

// get the xaResource object

XAResource xaresource = xats.getXAResource();

// start the resource Object. During this call, above durable subscriber gets

// associated with the transaction.

xaresource.start(xid,XAResource.TMNOFLAGS);

Applications perform some work here:

// end the resource object. The association does not end when the resource ends.

xaresource.end(xid,XAResource.TMSUCCESS);

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 113

// prepare the resource object

xaresource.prepare(xid);

// commit the resource object. The association ends when the resource object gets

// committed. The association ends when the resource objects rollbacks.

xaresource.commit(xid, false);

The methods with which a durable subscriber can be disassociated from the distributed
transaction are:

Single phase commit: Committing the transaction in a single phase disassociates the
durable subscriber from the distributed transaction.

xaresource.commit(xid, true);

Two phase Commit: Committing the transaction in two phases disassociates the durable
subscriber from the distributed transaction.

xaresource.prepare(xid);

xaresource.commit(xid, false);

Rolling back the transaction: Rolling back the transaction disassociates the durable
subscriber from the distributed transaction.

xaresource.rollback(xid);

Invalid attempts: The association of the durable subscriber does not end when the resource
object ends the distributed transaction. As explained above, the association ends only when
the transactions commit/rollbacks the transaction that has started. If a durable subscriber is
associated with a distributed transaction that has ended, performing any of the following
functions leads to the throwing of an exception by the FioranoMQ server.

Start transaction: FioranoMQ Server throws an exception in case an attempt is made to start
a new transaction when the previously started transaction has not committed/rolled back yet.

The following code snippet displays the above:

// create a durable subscriber.

// TopicSubscriber subscriber = ts.createDurableSubscriber(topic,"clientId");

// start a resource Object.

xaresource.start(xid,XAResource.TMNOFLAGS);

 ..

// end the resource object.

xaresource.end(xid,XAResource.TMSUCCESS);

// Attempt to start a different transaction leads to an exception

xaresource.start(xid2,XAResource.TMNOFLAGS);

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 114

The application provider is advised to commit or rollback the transactions that have ended,
before starting new ones.

The following code snippet explains the work-around to the mentioned problem:

// get the resource object

xaresource = xats.getResource();

The transaction should be committed before creating the durable subscriber. The transaction
can be committed either in a single phase or in two phases.

xaresource.prepare(xid);

xaresource.commit(xid,false);

or

xaresource.commit(xid,true);

If the transaction cannot be committed, the transaction should be rolled back before creating
the durable subscriber.

xaresource.rollback(xid);

Restart the application: FioranoMQ retains the state of all the transactions that have ended
or that are prepared. If an application crashes after ending a transaction, it can
restart/prepare/commit/rollback the transaction. If an application, where a durable subscriber
is associated with the ended transaction, crashes, any attempt to use the subscriber in non-xa
transactions or in any other transaction leads to an exception.

An example: A durable subscriber is associated with a distributed transaction; xid. The
application crashes after ending the transaction xid. When the application restarts, the
following sequence leads to an exception:

Subscriber creation without starting the transaction: An attempt to create a subscriber,
without starting the transaction those ending leads to an exception thrown by the JMS server.

// get the resource object

xaresource = xats.getResource();

// attempting to create a durable subscriber, without starting the transaction leads

to

//an exception.

dsubscriber = ts.createDurableSubscriber(topic, "subId");

It is recommended that the application provider should commit/rollback/restart the ended
distributed transaction before creating the durable subscriber.

// get the resource object

xaresource = xats.getResource();

FioranoMQ® Concept Guide

Chapter 17: Distributed Transactions Page 115

The transaction should be committed before creating the durable subscriber. The transaction
can be committed either in a single phase or in two phases.

xaresource.prepare(xid);

xaresource.commit(xid,false);

Or

xaresource.commit(xid,true);

If the transaction cannot be committed, the transaction should be rolled back before creating
the durable subscriber.

 xaresource.rollback(xid);

In case the transaction needs to be restarted, it should be restarted before creating the
durable subscriber.

 xaresource.start(xid, XAResource.TMJOIN);

// Creating the durable subscriber is possible after this: dsubscriber =

ts.createDurableSubscriber(topic, "subId");

// attempting to create a durable subscriber, without starting the transaction leads

to an exception.

dsubscriber = ts.createDurableSubscriber(topic, "subId");

Distributed Transactions do not work for unified connections.

Note: If a transaction is in the start phase, then it will rollback automatically when the server
terminates.

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 116

Chapter 18: FioranoMQ Content
Based Routing

Routing and addressing messages on communication networks is handled by specialized
addressing and routing information present in the message header. Several applications,
however, require a message to be addressed and routed according to the contents of the
message. For XML messages, it is possible to perform content-based addressing and routing
using X-Path predicates and SQL 92 syntax. FioranoMQ Content-based Routing (CBR)
combines the world's fastest JMS server with ultra high-speed proprietary routing algorithms
to provide fast content-based routing that is scalable.

FioranoMQ Content Based Routing

Fiorano is the first to introduce an intelligent, standards-based message, content-based
routing system.

This chapter outlines the content-based routing (CBR) problem that FioranoMQ CBR solves, a
description of how to use CBR with samples, includes a description of the types of XML
currently supported, a section covering the entire subset of XPath supported and a review of
SQL 92 syntax for predicates. It is assumed here that the reader has a working knowledge of
JMS.

Current pub/sub systems are group-based. In these systems, messages are classified as
belonging to a certain group, referred to as a ‘Topic’. Publishers are required to label each
message with a topic name, while consumers subscribe to all messages on a particular topic.
For example, a topic based pub/sub system for stock trading can define a message header
field in the form of a name-value pair. Publishers post messages after labeling them, by
setting a header property for each particular message. Subscribers can set preferences based
on predetermined header properties, known as message selectors.

The default mechanism for routing messages in JMS is the use of Message Selectors. Message
selectors are created in the form of header-properties of messages (for both PTP and Pub/Sub
messaging). Client applications use an SQL-92 syntax language to specify the messages to be
selected.

This approach has the following drawbacks:

 Requires high processing overheads on the publisher when setting message header
properties appropriately.

 Limits the scope of messages to a domain specific set because the selectors for the
subscribers have to be in accordance with the message header properties that areset.
Thus, there is loss of flexibility in the selection process when it comes to changing
domains.

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 117

The newer generations of pub/sub systems offer a better alternative to message-selection,
known as content-based routing. These systems route messages to subscribers based on
content instead of message-header properties. There is no overhead imposed on the publisher
and prior knowledge of the domain is not required. Subscribers have the added flexibility of
choosing filtering criteria along multiple dimensions, without requiring that groups be pre-
defined.

In a trading example for group based systems, the subscribers can only select trades by issue
name. In contrast, the content-based subscriber is free to use an orthogonal criterion, such as
volume; or a collection of criteria, such as issue, price or volume. Management of content-
based systems is simpler, as there is no administration overhead required to pre-define and
maintain groups. Content-based routing systems enable efficient and scalable message
distribution.

Going back to the stock trading example, consider a brokerage firm that can have thousands
of subscribers interested in information on stock trade. Each subscriber has their own selection
criteria based on individual requirements. In the event that a subscriber would like to be
alerted when two stocks fall below a certain price:

MSFT stock falls below 55 AND ORCL stock falls below 15

In another event, a subscriber would like to be alerted when any one of three stocks change
price and when the market volume exceeds a certain threshold:

(INTC < 21 OR CSCO > 20 OR GE > 32) AND DowVolume > 1,000,000,000

In an unrelated event, a subscriber would like to be alerted when a Formula 1 driver sets a
new lap record at Imola:

(Car_Make = Ferrari) AND (Driver = Senna) AND (Circuit = Imola) AND (Lap Time < 1.01

mins)

The information a subscriber can be interested in is unlimited. Messages, events and alerts
can be desired for items such as changes in inventory, new purchase orders, product delivery,
receipt of a ‘request-for-a-quote’ and late breaking news.

To efficiently implement a pub/sub system with content-based routing, an efficient solution to
the problem of matching a message against a large number of subscribers, referred to as the
matching problem, needs to be solved. Additionally, there must be an efficient and easy to
understand standards based language that enables subscribers to register and store their
personal message preferences. FioranoMQ CBR provides these functions.

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 118

Using FioranoMQ Content Based Routing

This section explains how to use FioranoMQ Content Based Routing (CBR) with samples and a
description of XML syntax. FioranoMQ CBR is based on JMS 1.1 specifications with extensions
to support content-based routing.

Setting up the FioranoMQ Server for CBR

The Content Based Routing support of FioranoMQ is available only in the Publish/ Subscribe
JMS domain and not in the PTP (Point to Point) domain. By default, the CBR support is not
enabled on the server. It can be enabled using the Fiorano Studio. Perform the following steps
to set up the FioranoMQ server for CBR:

1. Start the Fiorano Studio. Select Tools > Configure Profile from the menu bar, select the
profile directory in the resulting. Select Profile Directory dialog box and click the Open
button. This switches the FioranoMQ environment to offline mode.

2. Navigate to FioranoMQ > Fiorano> etc> FMQConfigLoader in the Profile Explorer
pane. The properties are displayed in the Properties pane.

3. Select UseFioranoCbr property and set its value to True from the drop-down list.

4. Right-click the root node in the profile explorer and select the Save option from the
shortcut menu.

At the end of these steps CBR is enabled in the server and clients can send and receive XML
messages with XPath selectors. More information on client side changes is available in
subsequent sections.

FioranoMQ CBR XPath Support

FioranoMQ CBR utilizes a subset of XPath notation and SQL92 syntax to specify XPath
message selectors.

Only absolute paths can be used. It is possible to combine several XPath string with AND/OR
conditions. For example, to provide an XML:

<Sports>

 <Soccer>

 <Team>Manchester United</Team>

 <Record>33,5,1</Record>

 <LastGame>

 <Team>Arsenal</Team>

 <Date>4/5/01</Date>

 <HomeAway>Home</HomeAway>

 <HomeScore>2</HomeScore>

 <VisitorScore>0<VisitorScore>

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 119

 </LastGame>

 </Soccer>

</Sports>

In the above example, if only messages for Manchester United are to be viewed, then the
following XPath message selector can be used:

"/Sports/Soccer/Team = 'Manchester United'"

In the above example, if only messages where Manchester United was the home team are to
be viewed, the following XPath message selector can be used:

"/Sports/Soccer/Team = 'Manchester United'

and /Sports/Soccer/LastGame/HomeAway = 'Home'"

Publishing XML Messages

For the Publisher sample to use CBR, set the value of InitialContext environment variable
UseFioranoCbr to true. To use CBR related proprietary APIs, the package
fiorano.jms.runtime.xpubsub needs to be imported. XML messages are sent as contents of
FioranoXMLMessages.

FioranoXMLMessages in JMS terminology are text messages and can be created using
FioranoTopicSession.

Below is a code snippet for creating a publisher with which to publish XML messages.

 /**

 * @(#)FCRPublisher.java 1.0, 04/25/2001

 *

 * Publishes 3 xml messages on the topic specified by client.

 * The mode of delivery can be both persistent and non-persistent.

 * One of these messages would be received by the XCRSubscriber sample.

 *

 * Copyright (c) 2001 by Fiorano Software, Inc.,

 * Los Gatos, California, 95030, U.S.A.

 * All rights reserved.

 *

 * This software is the confidential and proprietary information

 * of Fiorano Software, Inc. ("Confidential Information"). You

 * shall not disclose such Confidential Information and shall use

 * it only in accordance with the terms of the license agreement

 * enclosed with this product or entered into with Fiorano.

 */ [Style check please]

import javax.jms.*;

import java.util.*;

import javax.naming.*;

import fiorano.jms.services.msg.def.*;

import fiorano.jms.runtime.xpubsub.*;

import fiorano.jms.runtime.naming.FioranoJNDIContext;

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 120

public class FCRPublisher

{

 public static void main(String args[]) throws Exception

 {

 Hashtable env = new Hashtable();

 env.put (Context.SECURITY_PRINCIPAL, "anonymous");

 env.put (Context.SECURITY_CREDENTIALS, "anonymous");

 env.put (Context.PROVIDER_URL,

 "http://localhost:1856");

 env.put (Context.INITIAL_CONTEXT_FACTORY,

 "fiorano.jms.runtime.naming.FioranoInitialContextFactory");

 InitialContext ic = new InitialContext (env);

 TopicConnectionFactory tcf =

 (TopicConnectionFactory) ic.lookup ("primaryTCF");

 TopicConnection topicConnection = tcf.createTopicConnection();

 Topic topic = (Topic)ic.lookup("primaryTopic");

 FioranoTopicSession topicSession =

(FioranoTopicSession)topicConnection.createTopicSession(false,1);

 TopicPublisher topicPublisher = topicSession.createPublisher(topic);

 System.out.println("Starting message delivery");

 FioranoXMLMessage tMsg1 = topicSession.createXMLMessage();

 FioranoXMLMessage tMsg2 = topicSession.createXMLMessage();

 FioranoXMLMessage tMsg3 = topicSession.createXMLMessage();

 String[] sym = {"MSFT","IBM","HWP"};

 int[] price = {40,50,60};

 String[] xml = new String[3];

 for(int i=0;i<3;i++)

 {

 xml[i] = "<quote>";

 xml[i] = xml[i] + "<symbol>"+ sym[i] +"</symbol>";

 xml[i] = xml[i] + "<askprice>"+ price[i] +"</askprice>";

 xml[i] = xml[i] + "</quote>";

 }

 try

 {

 // setting the xml to the text messages

 tMsg1.setText(xml[0]);

 tMsg2.setText(xml[1]);

 tMsg3.setText(xml[2]);

 tMsg1.setJMSDeliveryMode (DeliveryMode.NON_PERSISTENT);

 tMsg2.setJMSDeliveryMode (DeliveryMode.NON_PERSISTENT);

 tMsg3.setJMSDeliveryMode (DeliveryMode.NON_PERSISTENT);

 topicPublisher.publish(tMsg1);

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 121

 System.out.println("Published the message :: " + xml[0]);

 topicPublisher.publish(tMsg2);

 System.out.println("Published the message :: " + xml[1]);

 topicPublisher.publish(tMsg3);

 System.out.println("Published the message :: " + xml[2]);

 }

 catch(Exception e)

 {

 System.out.println("Exception in publishing:" +e);

 }

 }

}

Subscribing to XML Messages

Creating a FioranoMQ CBR subscriber is similar to creating a JMS subscriber. Set the value of
InitialContext environment variable UseFioranoCbr to true. The subscribers (durable and
non-durable) can then be created in a manner similar to PubSub. The message can be any
valid XML message passed as the contents of FioranoXMLMessages.

CreateDurableSubscriber

The following API creates a Durable Subscriber which receives messages only if they conform
to the specified Xpath Message Selector string:

 /**

 * Fiorano's proprietary API to create XPath Durable Subscriber.

 *

 * This API creates an XPath Durable Subscriber.

 *

 * @param topic - the non temporary topic to subscribed to.

 * @param subscriptionID - ID used to identify subscription.

 * @param messageSelector - string containing the XPth message selector or normal JMS

Message selector.

 * @param NoLocal - if set, inhibits delivery of messages published over its own

connection.

 * @exception JMSException if operation fails

 *

 */

public TopicSubscriber createDurableSubscriber (

 Topic topic,

 String subscriberID,

 String messageSelector,

 boolean noLocal)

 throws JMSException ;

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 122

CreateSubscriber

The following API creates a Non-Durable Subscriber, which only receives messages if they
pass the specified Xpath Message Selector string:

 /**

 * Fiorano's proprietary API to create XPath Subscriber

 *

 * Create XPath Durable Subscriber

 *

 * @param topic - the non temporary topic to subscribe to.

 * @param messageSelector - string containing the XPth message selector or normal

JMS Message selector.

 * @param NoLocal - if set, inhibits delivery of messages published by its own

connection.

 * @exception JMSException if operation fails

 */

 public TopicSubscriber createSubscriber (

 Topic topic,

 String messageSelector,

 boolean noLocal)

 throws JMSException ;

To create a FioranoMQ CBR subscriber, you can follow the example code snippet given

below, which sets up an XPath Subscriber, onMessage and onException listeners.

/*

 * Copyright (c) 2001, Fiorano Software, Inc.

 * All Rights Reserved

 *

 * FileName : XPathSubscriber.java

 *

 * [No Text. Check please]

 * Implements an asynchronous listener to listen

 * for messages published on the topic - "primaryTopic"

 * only receiving message which match the selector parameter

 *

 * Questions/comments/suggestions?

 * Please visit: http://www.fiorano.com

 * Or e-mail: support@fiorano.com

 *

 * @since FioranoMQ 6.0, August 2002

 */

import javax.jms.*;

import javax.naming.*;

import java.io.*;

import java.util.*;

import fiorano.jms.services.msg.def.*;

import fiorano.jms.rtl.*;

import fiorano.jms.runtime.naming.FioranoJNDIContext;

import java.net.*;

class Subscriber implements MessageListener,ExceptionListener

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 123

{

 public static void main (String args[])

 {

 Subscriber subscriber = new Subscriber ();

 try

 {

 // 1. Create the InitialContext Object used for looking up

 // JMS administered objects on the Fiorano/EMS

 // located on the default host.

 //

 Hashtable env = new Hashtable ();

 env.put (Context.SECURITY_PRINCIPAL, "anonymous");

 env.put (Context.SECURITY_CREDENTIALS, "anonymous");

 env.put (Context.PROVIDER_URL,

 "http://localhost:1856");

 env.put (Context.INITIAL_CONTEXT_FACTORY,

 "fiorano.jms.runtime.naming.FioranoInitialContextFactory");

 InitialContext ic = new InitialContext (env);

 System.out.println ("Created InitialContext :: " + ic);

 // 1.1 Lookup Connection Factory and Topic names

 //

 TopicConnectionFactory tcf =

 (TopicConnectionFactory) ic.lookup ("primaryTCF");

 Topic topic = (Topic)ic.lookup("primaryTopic");

 // 2. create and start a topic connection

 System.out.println("Creating topic connection");

 TopicConnection topicConnection = tcf.createTopicConnection();

 // Register an Exception Listner

 topicConnection.setExceptionListener (subscriber);

 topicConnection.start ();

 // 3. create topic session on the connection just created

 System.out.println("Creating topic session: not transacted, auto ack");

 TopicSession topicSession = topicConnection.createTopicSession(false,1);

 // 4. create XpathSubscriber

 System.out.println("Creating topic, subscriber");

 String selector = "/quote/symbol = 'IBM' and /quote/askprice > 40";

 TopicSubscriber topicSubscriber =

 topicSession.createSubscriber(topic,selector,false);

 // 5. install an asynchronous listener/callback on the subscriber object

 // just created

 System.out.println ("Ready to subscribe for messages :");

 topicSubscriber.setMessageListener (new Subscriber ());

 }

 catch (Exception e)

 {

 e.printStackTrace ();

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 124

 }

 }

 /**

 * Message listener which receives messages aysynchronously

 * For the bound subscriber.

 */

 public void onMessage(Message m)

 {

 if(!(m instanceof FioranoXMLMessage))

 {

 return;

 }

 String s = "";

 try

 {

 s = ((FioranoXMLMessage)m).getText();

 }

 catch(Exception e)

 {

 System.out.println("Exception in getText() :" + e);

 }

 System.out.println ("Received the message :: "+s);

 }

 /**

 * If a JMS provider detects a serious problem with a

 * Connection this method is invoked passing it a JMSException

 * describing the problem.

 * @param JMSException e

 */

 public void onException (JMSException e)

 {

//Report the Error and take necessary Error handling measures

 String error = e.getErrorCode ();

System.out.println (error);

 ((fiorano.jms.common.FioranoException)e).printCompleteStackTrace();

 }

}

More samples of using FioranoXCR content-based routing are available in the samples
directory of the FioranoMQ installation under pubsub/ContentBasedRouting.

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 125

Handling Massive Number of Subscribers

In an environment where millions of subscribers are required, it is possible to cascade
FioranoMQ Servers a form that allows data source publishers to multiple FioranoMQ servers
simultaneously. This enables each source to publish and/or send messages to several
FioranoMQ Servers. Each of these in turn sends the information to another set of FioranoMQ
Servers or sends information directly to the system that ultimately transfers information to
subscribers. For best results it is recommended not to run more than 500 subscribers on each
FioranoMQ connection.

Below are the key concepts that enable the handling of a large number of subscribers:

 Keep XML messages small (do not mix domain data, such as weather and sports. Do not
add information on more than one item within a domain at a time, such as stock quotes
for more than 1 company).

 Use fewer connections and more subscribers per connection.

 Use suitably powered systems that run subscribers so that they do not decelerate the
movement of messages. Most slowdowns occur due to subscribers that are unable to
process the messages at speed.

 Segregate domain data on different topics (for example, use a topic for weather and a
different topic for sports).

Following figure illustrates an environment where incoming XML messages are distributed to
several FioranoMQ boxes. These FioranoMQ boxes in turn feed the distribution systems that
eventually send message to devices such as cell phones and wireless PDAs. This example
illustrates how multiple subscribers can be used to distribute data on several different topics.

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 126

XML Support

The FioranoMQ Content Based Routing supports elements and attributes typical to XML. Later
versions of FioranoMQ support all XML files. It is recommended that XML files remain small so
that they can be parsed and delivered quickly. Large XML files take longer to parse and
distribute. While formatting XML, several methods are available to package the information.
This implies that information can be packaged in Elements only, in Attributes only, or in
Elements and Attributes xml. Depending on the packaging, it can be optimized for CBR.

For example, if a subscriber wants to receive stock information from company XYZ whereas
the XML file contains stock information on companies XYZ and company ABC, then the
subscriber receives some information it does not require or need. Therefore, while
disseminating stock quotes, it is preferable to add information pertaining to only one stock in a
single message.

This ensures that:

 Messages remain small.

 Unwanted content is not sent to the subscribers.

For the purpose of discussion XML files can be broken into three categories: Elements only,
Attributes only, and Elements and Attributes. Examples of each type of XML, as well as
example message selectors can be found in the section below. When wrapping data in XML, so
as to be optimized for content-based routing, it is recommended that ‘elements only’ and/or
‘attributes only’ be used to enable highest message throughput.

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 127

An example of elements only is:

<atag>

 <btag>value</btag>

 <ctag>value</ctag>

 .

 .

 .

<ztag>value</ztag>

</atag>

In the above example, the level of nesting is not fixed to two, but shows that this XML type
contains only elements. This type of XML is the fastest to process.

An example of attributes only is:

<Stock quotes>

 <Quote Symbol="x" ASkPrice="y" BidPrice="z">

 <Quote Symbol="a" AskPrice="b" BidPrice="c">

</Stock quotes>

The above example shows that there are only attributes with no elements that can be
referenced. This does not imply that an elements only XPATH, such as "/Stock quotes/Quote
Symbol IS NOT NULL," cannot be used. This selector indicates that any XML message
containing this element can be selected. This type of XML is a little slower to process than
‘elements only’ type of XML.

An example of elements and attributes is:

<atag>

 <btag att1="x" att2="y">

 <ctag att3="z">value</ctag>

 </btag>

</atag>

The above example shows how elements can be found within the elements containing
attributes. Processing this type of XML can be much slower than processing either of the other
two types of XML, depending upon the size of the message. This XML would require more
complex XPath identifiers.

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 128

FioranoMQ Content - Based Message Selector Language

This section explains SQL92 syntax predicates and the subset of XPath supported by
FioranoMQ CBR. In addition, it explains the type of XMLs that are supported, along with
suitable examples of the XMLs and message selectors.

General Form

Message selection criterion is registered by consumers using the FioranoMQ Content-based
Message Selector (CbMS) language, which is a subset of the SQL92 conditional expression
syntax. It is combined with XPath like notation for retrieving identifiers and values from XML
documents.

The order of evaluation of a CbMS takes place from left to right incorporating within it levels of
precedence. Parentheses can be used to change this order. Predefined selector literals and
operator names are written in uppercase though they are case insensitive.

XPath notation is used as a reference mechanism to return one or many elements from an
XML file. The entire XPath specification is sometimes inaccurate for content-based message
selection, particularly where speed and scalability is essential. XPath notation must return only
a single value, else an exception is launched.

The general form of CbMS is:

[/ {not} C {[in]|[between]} q y {and|or} /]

Where:

"[/ /] One or many.

"{} Optional.

"{|} Optional, and if used then select one C Identifier: For details refer to the section on
‘Identifiers’.

"q Operator. For details refers to the section on ‘Operators’.

"y Literal. For details refer to the section on ‘Literals’.

Examples:

Below are a few examples of the FioranoMQ content-based message selector language:

/quotes/symbol = 'IBM' (NOTE: C is '/quotes/symbol', q is '=' and y is 'IBM')

/quotes/symbol='IBM' or /quotes/symbol='CSCO'

(/quotes/symbol='IBM' or /quotes/symbol='CSCO') and /quotes/bidprice>150

/quotes/symbol in ['IBM','CSCO'] and (/quotes/pricedelta between 1 and 10)

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 129

Subset of Supported XPath Queries

The current limitations of CbMS XPath as compared to the full XPath specifications are:

1. Only absolute paths are allowed.

This indicates that all the XPath strings must start with '/'. '//' is not supported for relative
paths. All the paths must be specified from the root of the XML. For example, the following
XPath query is invalid:

"//person"

If a person is found under parent researchers, then the correct XPath query would be: [

"/researchers/person"

2. A test node can have only one predicate.

This indicates that the query below is invalid, even though it can be valid in XPath:

"//researchers/person[@name = "Shin"][@loc = "Bethesda"]"

The query below is acceptable:

"/researchers/person[@name = "Shin"] and /researchers/person[@loc = "Bethesda"]"

3. A predicate cannot appear inside another predicate.

This indicates that the query below is invalid since it has a predicate nested inside another
predicate.

"/researchers/person[@name = /salesperson/person/name[@id > "8080"]])"

4. The character '|' and the expressions 'and' and 'or' are not supported inside a
predicate.

This implies that the operator "|" (Union operator) is not allowed for connecting path
expressions outside predicates. Connecting path expressions outside predicates is
accomplished through the use of the 'OR' keyword. Inside predicates, "|", "and" and "or"
operators are not allowed. Therefore, the following query is invalid:

"/a[@id="1" or in("2","3")]"

The above invalid query becomes a valid query when represented as:

"/a[@id="1"] or /a[@id=2] or /a[@id=3]"

5. One side of the equality and relation operator (=, <, >, <=, >=) must be a literal.

6. The ‘join’ operation is not supported.

Points (5) and (6) indicate that comparison inside predicates is limited. At least one
argument must be literal for the equality and comparison operator. For instance, the query
below is valid:

"//a[@id > "100"]" or "//a[title = "XPERT"]"

Whereas, the query below is invalid:

"//a[@id=//b/@id]"

At present, the ‘semi-join’ operation is not supported.

7. Only three functions, "contains()", "in()", and "between()" are supported.

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 130

This indicates that only three functions are supported; "contains()", "in()", and
"between()".

8. "*" representing 'anything' is not supported.

This indicates that the wildcard character "*" is not supported in any form.

Identifiers

Identifiers are expressed in terms of XPath notation. XPath can be used to refer to any part or
parts of an XML document. Since message selection is based on actual contents of a message
and not just upon the presence of the message, the XPath notation must return a single
attribute of an element in the XML file. Any valid XPath notation is supported, but in case an
XPath returns multiple elements, only the first one will be evaluated. The following XPath
notation is recommended:

"/ROOT/CHILD where CHILD contains only 1 element

"/ROOT/CHILD[x] where x is the number of exact element of type CHILD

"/ROOT/CHILD[last()] selects the last element of type CHILD

"/ROOT/CHILD[first()] selects the first element of type CHILD

Operators

XPATH selectors involve the use of various arithmetical, logical and conditional operators.
FioranoMQ CBR supports most of the operators. This section explains, with examples, the
support of the following operators:

Standard bracketing () is supported. This implies that the conditions inside a bracket are
evaluated first followed by the conditions outside the bracket.

Logical operators in order of precedence: NOT, AND, OR

Comparison operators: =, >, >=, <, <=, <>

Note - Not equal (<>) is supported internally as (NOT (C = y))

Only like type values can be compared. A string can be compared to a string and a boolean to
a boolean. However, it is valid to compare exact numeric values and approximate numeric
values (the type of conversion required is defined by the rules of Java numeric promotion). If
the comparison of non-like type values is attempted, then the selector is always false.

String and Boolean comparison is restricted to = and <>. Two strings are equal if and only if
they contain the same sequence of characters.

Note - Not equal (<>) is supported internally as (NOT (C = y))

"-+, - unary

"*, / multiplication and division

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 131

"+, - addition and subtraction

"Arithmetic operations must use Java numeric promotion

"{NOT} BETWEEN arithmetic-expr1 and arithmetic-expr2 (exact numeric values only)

Note - BETWEEN x and y is supported internally as z >= x AND z <= y

NOT BETWEEN x and y is supported internally as z < x OR z > y

" {NOT} IN (string-literal1, string-literal2...)

Note - IN (x,y,z) is supported internally as w = x OR w = y OR w = z

Note - NOT IN (x,y,z) is supported internally as ((NOT(w = x)) AND (NOT(w = y)) AND
(NOT(w = z))))

(OPTIONAL) {NOT} LIKE pattern-value [ESCAPE escape-character] comparison operator,
where identifier has a String value. Pattern-value is a string literal, where '_' represents any
single character; '%' represents any sequence of characters (including the empty sequence);
and all other characters represent themselves. The optional escape-character is a single
character string literal, whose character is used to release the special meaning of '_' and '%' in
pattern-value.

Below are few examples of the use of the LIKE operator with the results:

 "Phone LIKE '12%3' is true for '123' '12993' and false for '1234'

 "Word LIKE 'l_se' is true for 'lose' and false for 'loose'

 "Underscored LIKE '_%' ESCAPE '\' is true for '_foo' and false for 'bar'

 "Phone NOT LIKE '12%3' is false for '123' and '12993' and true for '1234'

 "If identifier of a LIKE or NOT LIKE operation is NULL, the value of the operation is
unknown.

 "{NOT} NULL allows for testing of the existence of an element or elements within an XML
without actually testing any values.

Examples:

/quotes/bidprice NOT NULL succeeds for any XML which has any elements matching
/quotes/bidprice /quotes/bidprice. NULL succeeds for any XML which has no elements
matching /quotes/bidprice

Literals

A string literal is enclosed in single quotes with a single quote included, represented by
doubled single quote such as 'literal' and 'literal''s'. Similar to Java String literals, these use
the Unicode character encoding.

An exact numeric literal is a numeric value without a decimal point: 57, -957, +62. Numbers
in represented within the range of ‘Java long’ are supported. Exact numeric literals use the
Java integer literal syntax.

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 132

An approximate numeric literal is a numeric value in scientific notation: 7E3, -57.9E2 or a
numeric value with a decimal such as 7., -95.7, +6.2. Numbers represented within the range
of ‘Java double’ are supported. Approximate literals use the Java floating point literal syntax.

The two Boolean literals are ‘TRUE’ and ‘FALSE’.

Example XMLs

The complete XPath specification can be found at: http://www.w3.org/TR/xpath

Below are three examples of XML files and associated XPath strings that are found within the
XML files. For each XML file there is an example message selector. After each sample message
selector are the strings that need to be returned by the single pass parser. Following each
string is the value that is returned by the single pass parser, given the value of the particular
XPath string is found to be advantageous. If the value of the XPATH string is found matching
in the parsed XML, then the message is selected.

Elements Only XML

<Stock quotes>

 <Symbol>csco</Symbol>

 <AskPrice>33.50></AskPrice>

 <BidPrice>33.25>>/BidPrice>

</Stock quotes>

Example 1 for Elements Only XML

An example of a related XPath predicate:

/Stock quotes/AskPrice > 33.2 and /Stock quotes/Symbol = 'csco'

Description: Generate the XML if AskPrice is greater than 33.2 and Symbol is 'csco'. This is an
example of using equality and inequality check."

Example 2 for Elements Only XML

An example of a related XPath predicate:

/Stock quotes/AskPrice > 33.2 and /Stock quotes/Symbol LIKE 'csc%'

Description: Generate the XML if AskPrice is greater than 33.2 and Symbol starts with 'csc'.

An example of using Ineq and LIKE trees:

XPath parser will return:

/Stock quotes/Symbol

/Stock quotes/AskPrice

/Stock quotes/BidPrice

Values returned for each XPath string:

http://www.w3.org/TR/xpath�

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 133

/Stock quotes/Symbol 'csco'

/Stock quotes/AskPrice '33.50'

/Stock quotes/BidPrice '33.25'

Attributes Only

<Stock quotes>

 <Quote Symbol>="csco" AskPrice="33.50" BidPrice=33.25">

 <Quote Symbol>="ibm" AskPrice="122.50" BidPrice="122.25">

<Stock quotes>

An example of a related XPath predicate:

/Stock quotes/Quote[@Symbol='csco'] NOT NULL and /Stock quotes/Quote[@AskPrice] > 33.2

Description: Generate the XML if it contains a Quote Element with attribute Symbol set to
'csco' and an AskPrice attribute > 33.2. An example of using Ineq and NULL trees is given
below. This example demonstrates the use of checking attribute values inside the XPath
query.

XPath parser will return:

/Stock quotes/Quote[@Symbol]

/Stock quotes/Quote[@AskPrice]

/Stock quotes/Quote[@BidPrice]

/Stock quotes/Quote[@Symbol]

/Stock quotes/Quote[@AskPrice]

/Stock quotes/Quote[@BidPrice]

Values returned for each XPath string:

/Stock quotes/Quote[@Symbol]

'csco

/Stock quotes/Quote[@AskPrice]

'33.50'

/Stock quotes/Quote[@BidPrice]

'33.25'

/Stock quotes/Quote[@Symbol]

'ibm'

/Stock quotes/Quote[@AskPrice]

'122.50'

/Stock quotes/Quote[@BidPrice]

'122.25'

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 134

Elements and Attributes XML

<Quotes>

 <QuoteType Type='Quote of the Day'>

 'This is the funny quote of the day for April 2, 2001 [Close quotation? Syntax check please]

 </QuoteType>

 <QuoteType Type='Stock Quote'>

 <Symbol>csco</Symbol>

 <AskPrice>33.50</AskPrice>

 <BidPrice>33.25</BidPrice>

</QuoteType>

An example of a related XPath predicate:

/Quotes/QuoteType[@Type='StockQuote']/Symbol = 'csco' and

/Quotes/QuoteType[@Type='StockQuote']/AskPrice > 33.2

Description: Generate the XML if it contains QuoteType element with attribute Type =
'StockQuote' and elements = 'csco' and > 33.2. The following example uses Eq and Ineq
trees:

XPath parser will return:

/Quotes/QuoteType[@Type='Quote of the Day']

/Quotes/QuoteType[@Type='Stock Quote']/Symbol

/Quotes/QuoteType[@Type='Stock Quote']/AskPrice

/Quotes/QuoteType[@Type='Stock Quote']/BidPrice

Values returned for each XPath String are given below:

/Quotes/QuoteType[@Type='Quote of the Day']

 'This is the funny quote of the day for April 2, 2001'

/Quotes/QuoteType[@Type='Stock Quote']/Symbol

 'csco'

/Quotes/QuoteType[@Type='Stock Quote']/AskPrice

 '33.50'

/Quotes/QuoteType[@Type='Stock Quote']/BidPrice

 '33.25'

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 135

Limitations of FioranoMQ Content Based Routing

Given below are a few of the known limitations of FioranoMQ Content Based Routing:

1. If an attribute or a tag does not exist and a message selector attempts to check the
presence of that attribute or tag, then the message is not selected, irrespective of the
nature of the selector. For instance, consider the following XML as an example:

<Stock quotes>

<Symbol>csco</Symbol>

<AskPrice>33.50</AskPrice>

<BidPrice></BidPrice>

</Stock quotes>

A message selector in the following form will return a ‘false’:

//Stock quotes/Symbol/AskPrice[@att1='0']=33.50

//Stock quotes/Symbol/AskPrice[@att1<>'0']=33.50

This is because no attribute by the name 'att1' exists in the XML message and the
message is not delivered.

Similarly, a selector in the following form will return a ‘false’ and the message will not be
delivered:

//Stock quotes/Symbol/BidPrice<>212

2. 'Between' is not supported in attributes. It is, however, supported tags.

Consider the XML given below:

<Stock quotes>

<Symbol>csco</Symbol>

<AskPrice att1='12'>33.50</AskPrice>

<BidPrice att2='13'>33.25</BidPrice>

</Stock quotes>

A selector in the following form is not supported;

 /Stock quotes/Symbol/AskPrice[@att1 between '12' and '13']:

However, a selector in the following form is supported:

/Stock quotes/Symbol/AskPrice between 30 and 40

3. Message selectors involving mathematical operations are not supported. For example,
consider the XML given below:

<Stock quotes>

<Symbol>csco</Symbol>

<AskPrice>33.50</AskPrice>

<BidPrice>33.25</BidPrice>

</Stock quotes>

A message selector in the following form is not supported:

/Stock quotes/Symbol/AskPrice = 0.3350*100

4. JMS message selectors in the following ‘type’ are not allowed:

FioranoMQ® Concept Guide

Chapter 18: FioranoMQ Content Based Routing Page 136

Consider a TextMessage on which the following properties have been set:

textMessage.setIntProperty("low_val",10);

textMessage.setIntProperty("high_val",100);

textMessage.setIntProperty("mid_val",50);

A message selector in the following form is not supported:

mid_val between low_val and high_val

	FioranoMQ Concept Guide
	Contents
	Chapter 1: Introduction
	Messaging Fundamentals
	JMS Provider
	Loosely Coupled Nature of Messaging Systems
	Reliable Delivery of Messages
	Messaging Domains
	Mode of Consumption of Messages
	Administered Objects
	Sessions
	JMS Message

	Salient Features of FioranoMQ
	High Availability
	Clustering
	XA Support
	Scalability
	Application Server Integration
	Native Runtime Support
	Security
	Durable Connections
	Large Message Support
	Hierarchical Topics
	HTTP Support
	Logging Facilities
	Message Snooping
	Dead Message Queue
	Encryption, Compression Support

	Samples

	Chapter 2: Configuration Concepts
	Fiorano Component Model
	Deployment Profile
	Default Profiles
	Configuration Tools

	Chapter 3: Connection Management
	Socket Acceptors
	Port Number
	Protocol
	Thread Management
	Security Parameters
	Configuration

	Connection Factory
	Obtaining a Connection Factory Instance
	JNDI Lookup
	Creating a new instance

	Lookup
	JMX
	RMI Connector

	JMS Connector
	Pinging
	When to Enable Pinging
	Salient Features

	Chapter 4: HTTP Support
	Client Side Changes
	Using Proxies
	Proxy Authentication

	Tunneling through Firewalls
	Tunneling through SOCKS Proxy Server
	Enabling JMS Applets to Tunnel through SOCKS Proxy Server
	Additional Notes on SOCKS

	HTTP Pinging

	Chapter 5: FioranoMQ Security
	User Identification and Authentication
	Data Protection
	Authentication Based on Digital Certificates
	Security Realms
	FioranoMQ User Management
	Access Control Management

	Default Realm
	NT Realm
	Salient Features
	Limitations
	Troubleshooting

	RDBMS Realm
	LDAP Realm
	Configuring the LDAP Security Realm
	Miscellaneous Features

	XML Realm
	Caching Realm
	FioranoMQ Security - Salient Features & Advantages
	Design Advantages
	Effective Protection of JMS Destinations
	Centralized Control
	Destination-based Security
	Authorization and Access Control

	Default Users, Groups and ACLs

	Chapter 6: FioranoMQ Data Stores
	Storage type
	File-based store versus JDBC-compliant RDBMS store
	Default Destinations for sample applications
	Creating a Default Database
	Clearing a Database

	Chapter 7: Managing Administrated Objects
	Naming Services
	File
	XML
	LDAP
	RDBMS
	Cache
	Salient Features

	Chapter 8: Message Expiry
	Point of Checking of Message Expiry
	On Detection of an Expired Message
	Dead Message Queue
	DMQ Configuration
	Selectively disabling DMQ for a message
	Message Expired Notifications
	Configuration
	Additional points

	Chapter 9: Snooper
	Snooper Configuration
	Working of Snooper
	Security Settings
	Miscellaneous Features

	Chapter 10: Durable Connections
	Overview
	Working of Durable Connection
	Producer on a Durable Connection
	Consumer on a Durable Connection
	Advantages
	Network Reliability
	Store and Forward Capabilities
	Transparent Reconnection Code
	Message Browsing of Persisted Messages
	No Vendor Lock-in

	Enabling Durable Connections Support
	Client side Message Cache
	Serverless Environment
	Sample Application

	Relationship with Revalidate
	Relationship with CSP
	Constraints in Durable Connections

	Chapter 11: Hierarchical Topics
	Need For Hierarchical Name-Spaces
	Name Space Notation
	Creating Hierarchical Topics
	Case Insensitive
	Spaces in Names
	Empty String
	Unlimited Length of Topic Names
	Unlimited Depth of Topic Hierarchy
	Wild Card Support

	Dynamic Creation of Topics in Hierarchy
	Looking up Hierarchical Topics
	Publishing on Node(s) in Topic Hierarchy
	Subscribing to Node(s) in Topic Hierarchy
	Template Characters Used in Subscription

	Deleting a Hierarchical Topic
	Publish/Subscribe Across Servers
	Security Considerations on Hierarchical Topics
	Limitations

	Chapter 12: Message Encryption
	Base Implementation
	Message Encryption Characteristics

	Chapter 13: Message Compression
	Base Implementation
	Message Compression Characteristics

	Chapter 14: FioranoMQ Clustering
	Common Problems of Real-World Systems
	Client Unable to Connect
	Connection if the Server is Lost
	The Server Runs Out of Resources
	The Server Goes Down Altogether

	FioranoMQ: The Solution
	Automatic Failover Protection
	Transparency and Code Portability
	Configurability
	Admin System
	Connection if the Server is lost
	Server Runs Out of Resources
	Server's Connection if a Client is Lost
	Server-to-Server Communication
	Scalability

	Clustering Components
	Dispatcher
	Preferred Server
	Configuration Parameters
	Repeater
	Salient Features
	No Changes in the Client Application
	Robustness in Handling Network Failures
	Subscription Mode and Choice of Selectors
	Request/Reply Across Repeater
	Dynamic Replication Links
	Repeater with Load Balancing
	Repeater Link
	Connection Information
	Link Topic Information
	Configuration Parameters
	Wild Character Support
	Dynamic Link Propagation
	Bridge
	Bridge Architecture [

	Forwarding Messages to Remote Queues
	Bridge Features
	Bridge Configuration

	Property Name Description
	Link Properties
	SourceServer
	TargetServer

	Connection Info Properties

	 Chapter 15: Large Message Support
	Salient Features
	Reliable transfer of large messages
	No increase in cache/JVM heap size required
	The Large message transfer is not restricted to any queue or topic
	Resume function at both sender and receiver end]
	Minimal changes in the application code

	Using Fiorano LMS to Transfer Large Files
	Message Creation
	Starting the Message Transfer
	Tracking the Message Transfer
	Handling Exceptions During Message Transfer
	Resuming the Message Transfer

	Salient Features
	Consumer Discovery
	Fragment Size
	Window Size
	Sequencing
	Handling Duplication
	Handling lost fragments

	Optimizing Large Message Transfer
	Fragment Size
	Window Size
	Status message frequency

	Chapter 16: High Availability
	FioranoMQ's HA - An overview
	HA Components
	Backup Server
	Server States
	Intra-Enterprise Server Communication
	Common Persistent Message Store
	Common Admin and Security
	Gateway Machine

	FioranoMQ HA Salient Features
	Shared and Replication of Databases
	Application Failover
	Data Store Consistency (maintained between server switches)
	Expensive HA Hardware Not Required
	Implementing a Cluster

	HA Example Scenario
	State - 1 (Normal Operation State)
	State - 2 (Active Server goes down)
	State - 3 (Backup Server resumes operations)

	Limitations of HA

	Chapter 17: Distributed Transactions
	Introduction
	Use Case
	Transactions and the Distributed Transaction Processing (DTP) System
	Components of a Distributed Transaction
	FioranoMQ as a Distributed Transaction Resource Manager
	Transactions with J2EE

	FioranoMQ XA Implementation Notes
	Limitations of XA Implementation of FioranoMQ

	Chapter 18: FioranoMQ Content Based Routing
	FioranoMQ Content Based Routing
	Using FioranoMQ Content Based Routing
	Setting up the FioranoMQ Server for CBR
	FioranoMQ CBR XPath Support

	Publishing XML Messages
	Subscribing to XML Messages
	CreateDurableSubscriber
	CreateSubscriber
	Handling Massive Number of Subscribers

	XML Support
	FioranoMQ Content - Based Message Selector Language
	General Form
	Subset of Supported XPath Queries
	Identifiers
	Operators
	Literals

	Example XMLs
	Elements Only XML
	Attributes Only
	Elements and Attributes XML

	Limitations of FioranoMQ Content Based Routing

