

www.fiorano.com

AMERICA'S

Fiorano Software, Inc. 718 University Avenue Suite 212, Los Gatos, CA 95032 USA Tel: + 1 408 354 3210 Fax: + 1 408 354 0846 Toll-Free: + 1 800 663 3621 Email: info@fiorano.com

EMEA

Fiorano Software Ltd. 3000 Hillswood Drive Hillswood Business Park Chertsey Surrey KT16 ORS UK Tel: +44 (0) 1932 895005 Fax: +44 (0) 1932 325413 Email: info_uk@fiorano.com

APAC

Fiorano Software Pte. Ltd. Level 42, Suntec Tower Three 8 Temasek Boulevard 038988 Singapore Tel: +65 68292234 Fax: +65 68292235 Email: info_asiapac@fiorano.com

FioranoMQ® 9

High Availability Guide

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any form without prior written permission is forbidden. The information contained herein has been obtained from sources believed to be reliable. Fiorano disclaims all warranties as to the accuracy, completeness or adequacy of such information. Fiorano shall have no liability for errors, omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein are subject to change without prior notice.

Contents

FioranoMQ 9 High Availability	4
1.1 Introduction to HA	4
1.1.1 Known HA implementations / solutions	
2.1 Introduction to Fiorano HA	4
2.1.1 Terminology	5
2.1.2 Types of Fiorano HA	6
2.1.2.1 Shared HA	6
2.1.2.2 Replicated HA	6
2.1.3 Requirements	6
2.1.3.1 Hardware	6
2.1.3.2 Software	6
3.1 Fiorano HA Concept	7
3.1.1 Fiorano Replicated High Availability Working	7
3.1.1.1 States and state transition	8
3.1.1.3. How do Server State Changes?	9
3.1.1.4. What are the objects that are replicated?	10
3.1.2 Fiorano Shared High Availability Working	11
3.1.2.1 States and State Transition	11
3.1.2.3. How do failovers happens?	13
3.1.2.4. Database details?	13
3.1.3 Advantages or disadvantages / how to determine which HA to use	13
4.1 Configurations of HA	14
4.1.1 Replicated HA	18
4.1.1.1 Basic configurations	18
4.1.1.2 Advanced configurations	22
4.1.2 Shared HA	27
4.1.2.1 Basic configurations	27
4.1.2.2 Advanced configurations	33
5.1 Managing of HA server	38
5.1.1 Replicated HA	38
5.1.1.1 Launching the servers	38
5.1.1.2 Stopping the servers	40
5.1.1.3 Determining status of servers	41
5.1.1.4 Log details	41
5.1.1.5 Verifying HA Setup	41
5.1.2 Shared HA	42
5.1.2.1 Launching the servers	42
5.1.2.2 Stopping the servers	45
5.1.2.3. Determining status of servers	46
5.1.2.4. Log details	46

5.1.2.5 Verify HA Setup	46
6.1 Troubleshooting	47
7.1 Best practices	50
8.1 FAQ	51

FioranoMQ 9 High Availability

1.1 Introduction to HA

Today's real-time enterprise solutions often deploy a messaging middleware that enables communication between various sub-components. This middleware is entrusted with important data that should be delivered reliably and as fast as possible to the recipient application. The middleware server might also be required to store this data in its data store until it is picked up.

A failure of this middleware message bus might bring the entire system down within seconds. Hence, it is absolutely imperative for the messaging backbone to provide its backup, which allows messaging operations to resume quickly in the event of a failure of the running server. This backup server should restore the state prior to failure of the original message server. Any data that was stored previously in the server's data store should be accessible through this backup server and most importantly this operation of shifting from one server to its backup should be automatic and transparent to the client application.

1.1.1 Known HA implementations / solutions

To enable any HA implementation one need to provide certain guarantees. In case active server is down, second server need to take all the existing connections and undelivered messages must be delivered. To achieve this task, the state information of servers must be exchanged between the two servers and database used by servers must be consistent. In order to make database consistent there are two methods one can use. First one is replicated database, where both servers has their own copy of database but on any changes to active server's database those changes are propagated to passive server's database. In this way consistency of these two servers is maintained. In the second implementation one can use a common shared database. As this database is also available to passive server on failure of active server (say primary), when passive server (say secondary) takes over, it has all the changes made by Primary server.

2.1 Introduction to Fiorano HA

FioranoMQ Server (FioranoMQ Server) is designated with backup server when it runs on High Availability mode, which is started along with the primary FioranoMQ Server. In case the primary server is unavailable due to any reason, the backup server picks up all the messaging traffic immediately. This pair of primary and its backup server is known as an Enterprise Server and would be used to describe this pair throughout this document. The Enterprise Server represents a Highly Available entity, which appears as a single FioranoMQ Server to its applications. JMS application connects to the primary FioranoMQ server when initializing, if available. If the primary server goes down due to any reason, all connections are automatically routed to the backup server and communications are restored immediately. Since, all this is transparent to the client application; the client application should not concern about reconnecting logic in its code as it is handled by FioranoMQ's runtime internally.

Figure 1: Enterprise Server

2.1.1 Terminology

Primary Server: The server running with Primary Profile.

Secondary Server: The server running with Secondary Profile.

Failover: The process of shifting from the primary server to the backup server or vice versa is termed as Failover.

HA Layer configuration: The HA Layer configuration deals with configuring the peer server details. The important configuration parameters defined in this layer are Primary (true or false), Lockfile, BackupHAPort, BackupHAIPAddress, GatewayServerIPAddress, and GatewayServerPort. This configuration is required to be done in both replication and shared HA modes.

2.1.2 Types of Fiorano HA

FioranoMQ provides complete flexibility to administrators. There are two modes in which HA can be run:

- 1. Shared HA
- 2. Replicated HA

2.1.2.1 Shared HA

In this mode the database is shared between the active and passive servers. Whenever the active server goes down, the passive server becomes active and uses the database that is being shared.

2.1.2.2 Replicated HA

In this mode, the database is replicated from active server to the passive server. Also, whenever a server is disconnected from the network and reconnects, the database of the active server is replicated into the passive server. This data include message data, admin/security data as well as status information whatever changes are made when the passive server was down.

2.1.3 Requirements

Fiorano's HA solution is purely implemented in software and is not dependent on expensive hardware solutions.

2.1.3.1 Hardware

With Shared database option, one might want to use a RAID or SAN disks if using HA over Fiorano's proprietary file based data store for enhanced speed and stability, but these hardware are not an essential component of Fiorano's HA solution. This hardware can also be avoided by using either replication support or using a central RDBMS server as the message store in the Enterprise Server.

2.1.3.2 Software

It can run on any java supported platform.

3.1 Fiorano HA Concept

HA Locking Mechanism

HA locking mechanism is employed by the servers in replicated mode to determine the server state in case, a server of the pair is unavailable or if the network fails. A read and write permissions file is shared on a machine this file is referred as the **LockFile**. The machine hosting the LockFile is referred to as the gateway machine. A server can switch to Active only if it holds a lock over the **LockFile**.

In HA implementation prior to the locking mechanism, a network link failure between the servers could have led to both servers switching to Standalone state. Since the lock can be held by only one server at a time, it prevents both servers from switching to Active/Standalone state.

The locking mechanism makes the state switching of a HA server more deterministic.

3.1.1 Fiorano Replicated High Availability Working

The central concept of backchannel replication is that the Active Server (the server which is in the Active State) replicates its data store and state to the Passive Server, thus keeping both servers in sync. This replication channel is supported on a private network dedicated to the synchronization of the broker state and messaging data.

In Replicated HA, the database is replicated from the ACTIVE server to the PASSIVE server. This data include messages, admin/security data as well as status information whatever changes are made when the passive server was down. Whenever a server is disconnected from the network and reconnects back, the database of the active server is replicated into the passive server's database. In this case, both servers have their own copy of database but on any changes to active server's database those changes are propagated to passive server's database. In this way consistency of these two servers is maintained.

The passive server accepts no client connection while in its hot-standby (passive) role, but is prepared to immediately transition to the Active role as soon as it detects that the Active Server is unavailable. If the primary fails, all Fiorano applications fail over from the primary and reconnect to the designated secondary backup broker.

The primary and secondary broker-pair use the replication channel to routinely seek the heartbeat of the other and watch for any interruption in the data flow or connection to switch states. A locking mechanism (as already explained) is also employed to determine the state of the servers.

This Hot-failover process is immediate and is completely transparent to all client applications. The Secondary Server in the active role is sensitive to re-establishment of the replication channel. This reconnection may come from a recovery of the Primary Server or from a replacement Primary Server. Once the primary comes up again, it assumes the role of the Passive Server since the Secondary Server switched to Active Server).

Important: If servers are running in Replicated HA mode, it becomes essential to have a reliable network for database synchronization calls.

3.1.1.1 States and state transition

The following states occur in different phases of the servers in replication mode.

- **ACTIVE**: refers to normal working state. In this state the server accepts client connections.
- **PASSIVE**: in this state the server monitors its active peer server and is in standby mode.
- **ACTIVE_TRANSITION_STATE**: this occurs while the server is synchronizing with the standby server and at the same time serving client applications.
- **PASSIVE_TRANSITION_STATE**: this occurs on standby server side while the active server is synchronizing with the standby server.
- **WAITING**: this occurs when the server is waiting for the state of other server/ trying to acquire lock on the lock file to become active. The server does not accept client connections in this state.
- **STANDALONE**: this occurs in a server when it is actively servicing client and the other server is disconnected.
- **DEAD** Indicates that the server is down/not present in network.

The following diagram explains the transition to various states:

Note:

- failure detected refers to the link between the servers being broken
- sync-complete database synchronization complete
- Lock Lost lock over the LockFile is lost
- Lock Obtained lock obtained over the LockFile
- Resolve to Active/Passive based on which server obtains the lock

3.1.1.3. How do Server State Changes?

- 1. On startup, the Server enters into **WAITING** state. In this state, the server is waiting for its backup server to connect to it. This is the initial synchronization state, which is required to sync up the primary server with the secondary to avoid any message loss. This server will change state if one of the following occurs.
 - **Switch to PASSIVE SYNC state**: If the HA channel is established and the other server is in STANDALONE state.
 - Switch to PASSIVE(STANDBY) SYNC or ACTIVE SYNC state: If the HA channel is established and the other server is also in WAITING state, then the servers assumes themselves as being in Active or Passive roles depending on the Repository Timestamps and remote server status.

- 2. When the Server is actively serving clients and its backup server is not running or if the HA transport channel is broken and it has the lock over the Lockfile, then the state of the active server is STANDALONE. If the server in STANDALONE state establishes the HA channel and the other server is in WAITING state, then the STANDALONE server shifts to ACTIVE SYNC state and further to ACTIVE state. However, a passive (standby) server can switch to STANDALONE if the other server is not running or if the transport channel is broken and passive server acquires the lock over the LockFile.
- 3. When the Server is in **ACTIVE SYNC** state, the server starts synchronizing its data with the backup server which is in PASSIVE SYNC state. The Server in **ACTIVE SYNC** continues to serve its clients. Completion of the Runtime Synchronization Protocol causes a transition of the **ACTIVE SYNC** server to the **ACTIVE** state and the server in **PASSIVE SYNC** state to PASSIVE state.
- 4. Once the ACTIVE SYNC Server completes the synchronization, it enters into the ACTIVE state and resumes actively transmitting state information and all replication data onto the PASSIVE server. At this point, if there is a failure of the ACTIVE server, the Hot Standby PASSIVE server is ready to move into the STANDLONE state and starts accepting requests from the clients.
- An ACTIVE server can switch to WAITING if the transport channel is broken and it loses the lock over the LockFile. Similarly, a STANDALONE server can switch to WAITING if it loses the lock over the LockFile.
- 6. Whenever there is a change in the server state, it broadcasts the present and previous state to the Backup Server. The Servers transition is a function of its own state, the present and previous state of the Backup Server and whether or not it holds the lock over the LockFile.

3.1.1.4. What are the objects that are replicated?

In the database following objects need to be replicated on Primary and Secondary server's machine:

- PTP objects
- ACL objects
- Principal objects
- PubSub objects
- Admin objects

3.1.2 Fiorano Shared High Availability Working

In this mode of High availability, the database is shared between the active and passive servers and do not replicate data over the network. In this, only the active server makes changes to the common database. If the Active fails, all Fiorano applications fail over from the Active and reconnect to the designated Passive backup broker. The Active and Passive broker-pair use the network channel between them to routinely seek the heartbeat of the other and watch for any break in connection to switch states. A locking mechanism (as explained in section 3.1) is also employed to determine the state of the servers. The database which is common to both the servers is referred to as the **shared database**.

Note: The shared database connectivity is critical for the servers to function, as the servers store all data in it. It is mandatory for the **Shared Database** to be always accessible to the servers. Unavailability of the shared database could lead to data loss and data corruption.

3.1.2.1 States and State Transition

- **ACTIVE**: refers to normal working state. In this state the server accepts connections
- **PASSIVE**: in this state the server monitors its active peer server and is in standby mode.
- **ACTIVATING**: this occurs while the server is in transition to become active and synchronizing with the database.

The following diagram explains the transition to various states:

Note:

- failure detected refers to the link between the servers being broken
- Lock Lost lock over the LockFile is lost
- Lock Obtained lock obtained over the LockFile

When the server starts up, the server tries to acquire a lock on the lock file. If it acquires the lock successfully, it switches to the ACTIVATING state. It then switches to ACTIVE state once all its services have been activated. Unlike in replicated HA, where the servers wait for each other to come up (that is, in WAITING state), a server in shared mode does not need to wait for its backup server to come up because they share a common database and no database synchronization is required which is the case for servers working in replicated mode.

After switching to ACTIVE state, the server keeps trying to connect to its backup server. If the backup server starts up, the backup server switches to PASSIVE state.

At this point, if there is a failure of the ACTIVE server, the Hot Standby PASSIVE Server is ready to move into the ACTIVE state and starts accepting requests from the clients.

3.1.2.3. How do failovers happens?

In case the primary server becomes unavailable, all the client applications connected to it are automatically reconnected to the secondary server. The process of shifting from the primary server to the backup server or vice versa is transparent to the application. The client application should not be concern about writing reconnect logic in its code. This is achieved by connecting to the server through a Durable Connection. In case a backup server is available, the Durable Connection would connect to the backup server else it waits for the server to restart. Further, it stores all the data sent during the disconnected period in a local repository and transfers this data as soon as the connection is re-established, thus making the system highly reliable and robust even in the case of network failures.

3.1.2.4. Database details?

In shared HA mode database is shared between active and passive servers.

3.1.3 Advantages or disadvantages / how to determine which HA to use

Both the HA implementations have their own advantages and disadvantages over each-other. These are pointed out here:

In Replicated HA implementation there are two copies of database available, so in case of any database failure on one system, up-to-date database is available on second system. But for Shared HA implementation there is just one database available. So any corruption to this database leads to degradation of system performance.

- In Shared HA implementation, for each database store operation it needs just one disk-write. But for Replicated HA implementation for each operation on database it needs two disk-writes (one each for both the databases on Primary and secondary). Thus performance will be better with shared HA implementation.
- In Shared HA implementation, just one datastore is used contrary to replicated HA, where two datastores are used. So, Cost of storage is less in shared HA implementation. But, for the normal operation of FioranoMQ it needs not much storage space. Thus, storage factor cannot be considered as major one, while deciding which HA implementation to use.

From above discussion we can infer that, when reliability is preferred over performance use Replicated HA implementation and use Shared HA implementation when performance is preferred over reliability.

4.1 Configurations of HA

This section of the document provides details about the pre-configured HA profiles. These profiles can be found in %FIORANO_HOME%\fmq\profiles\FioranoMQ_HA_rpl and FioranoMQ_HA_shared directories respectively.

Primary & Secondary Servers can be started simply by booting the container with these profiles. The table below lists the profiles to be used for Primary and Secondary Servers when setting up HA in Replication or Shared mode.

Mode	Profile Directory	Meant for
Replication	fmq/profiles/FioranoMQ_HA_rpl/HAPrimary	Primary Server
Replication	fmq/profiles/FioranoMQ_HA_rpl/HASeconda ry	Secondary Server
Shared	fmq/profiles/FioranoMQ_HA_shared/ HAPrimary	Primary Server
Shared	fmq/profiles/FioranoMQ_HA_shared/ HASecondary	Secondary Server

To launch the server on one of these profiles, use the following command:

```
fmq.bat -profile %SELECTED_PROFILE%
```

For example, to launch the primary server in replication mode, use the following command:

fmq.bat -profile FioranoMQ_HA_rpl/HAPrimary

Note: This document would refer the selected profile (in FioranoMQ_HA_rpl or FioranoMQ_HA_shared directories) as %SELECTED_HA_PROFILE%. The possible values for %SELECTED_HA_PROFILE% are as shown in the table above.

Following steps need to be followed for configuring any HA profiles

- 1. Start Fiorano Studio. Select Tools >Configure FioranoMQ from the menu bar.
- 2. Select the directory pointing to %SELECTED_HA_PROFILE% from the dialog box and click the Open button.
- 3. Right-click on the selected profile, select FioranoMQ Replicated HA or FioranoMQ Shared HA option. User now can see a new window appeared with all the required configurable parameters. Now, configure all the required parameters.

Note: When configuring the server (in offline mode) through Studio, please ensure that FioranoMQ Server is not running.

Configure BackupHAIPAddress & BackupHAPort of remote Server: HA Layer of an FioranoMQ server connects to the backup server's HA Layer. In order to configure the back-up server's IP and Port, navigate to the node specified below and set the value of BachupHAIPAddress and BachupHAPort displayed in the Properties of FioranoHAKRPCProvider pane.

%SELECT_HA_PROFILE%>Fiorano -> HAKRPCProvider -> FioranoHAKRPCObject

The default profiles have Backup HA IP address configured to localhost and BackupHA Port to 3000 in primary server and 2000 in secondary server. In other words, Primary Server's HA Layer in default profiles would try to connect at localhost on port 3000 while the Secondary's HA Layer would try to connect to localhost on port 2000 by default.

Note: The BackupHA Port here does not refer to the port on which backup server accepts the client connections but the port on which it's HA layer is listening. This should be same as the value of HAConnectionManager's port configured in the peer server.

Configure self - Port: This port refers to the port number on which HA Layer would accept connection from its peer server. The default HA profiles have their HA Port configured for primary server as 2000 and secondary server as 3000. In order to configure Self port, navigate to the node specified below and modify the value of Port in the Properties of FioranoHAConnectionManager pane

%SELECTED_HA_PROFILE% >Fiorano -> FioranoHAConnectionManager

Note: A change in this parameter would require modifying BackupHAPort Configuration in the peer server.

Configure Lock file: Full path of the file which will be used for determining the HA states. This file should be present in the third machine and always be available to the HA servers with all permissions. The LockFile machine must be same as the machine whose IPAddress is given as GatewayServerIPAddress. In order to configure Lock file, navigate to the node specified below and modify the value of LockFile in the Properties of FioranoHAManager pane. Path to Lock file:

%SELECTED_HA_PROFILE% >Fiorano -> FioranoHAManager

A file is created and the directory containing this file is shared with read/write permissions. The lock file, if present on a machine having UNIX/Solaris operating system should be shared by using the NFS protocol - version 4. If the lock file is present on Windows it should be shared using the Samba Protocol. (The lock file can be shared on Windows using NFS – version 4, if it supports it.)

Setup:

OS hosting the Lock File & Protocol Used	OS hosting the servers
Windows - Samba	Windows / Linux
Linux - NFSv4	Linux / Solaris 8,9,10
Solaris - NFSv4	Linux / Solaris 8,9,10

Note: The user has to make sure that, the operating system hosting the server supports the protocol used for sharing the lock file. The LockFile and the directory containing the LockFile should have read/write permissions set. On Operating Systems other than Windows, one can verify the permissions using the Is -I command.

On Windows Operating System, the directory on the gateway machine containing the LockFile should be mapped to a network drive.

Example:

If the directory containing the lock file on Windows, is shared using the samba protocol, this directory should be mapped to a network drive on the Windows machine hosting the server. Let us say the shared directory is mapped to a drive letter 'Z:/' and the lock file is lock.lck , the lock file path now becomes 'Z:/lock.lck'. This path should be used to set the LockFile parameter while configuring the profile via Fiorano Studio.

On non Windows Operating System, the directory on the gateway machine containing the LockFile should be mounted on the machine hosting the server.

Examples:

If the lock file is present in a windows samba share & is mounted at /home/user/db on the machine hosting the server then the lock file path on the machine hosting the server would be /home/user/db/lock.lck. This absolute path should be used to set the LockFile parameter while configuring the profile via Fiorano Studio.

Example Mount Command:

'mount -t cifs –o rw //<gatewayIP>/<sharename> <path on local machine where the directory has to be mounted.>' If the lock file 'lock.lck' is shared using NFS v4 and the directory db is mounted at /home/user/db on the machine hosting the server then the lock file path on the machine hosting the server would be /home/user/db/lock.lck. This absolute path should be used to set the LockFile parameter while configuring the profile via Fiorano Studio.

Example Mount Command:

'mount -t nfs4 -o rw <gatewayIP>:/ <path on local machine where the directory has to be mounted.>'

Note: The newly added mount point will disappear after system reboot. The user has to make sure that the mount is automated on system reboot. One can refer to the URL 'http://www.brennan.id.au/19-Network_File_System.html#nfs4' on how to share a directory using NFS v4.

Configure Gateway Server: HA Layer pings the gateway machine to determine the status of network connectivity. The default profiles have gateway configured to localhost and should be changed to any third independent reliable machine (preferably to the physical router machine on the network). In order to configure Gateway Server, navigate to the node specified below and modify the value of GatewayServerIP Address and GatewayServerPort in the Properties of FioranoHAManager pane

%SELECTED_HA_PROFILE% >Fiorano -> FioranoHAManager

Note: Gateway machine server should be configured as the machine which hosts the lock file. This is esstebntial for the functionality of the HA server to work.

Configure isPrimary: Set Primary to true for primary FioranoMQ Server and false for backup Server by modifying its value as shown in the Properties panel by clicking the node specified below.

%SELECTED_HA_PROFILE%->Fiorano->HA->HAManager FioranoHAManager

The default profiles are already configured. Hence, no change would be required when using them.

Common Configuration: HA requires enabling Durable Connections, Pinging and Auto Revalidation support in FioranoMQ Server. This can be done by modifying the parameters specified below in the Properties panel.

%SELECTED_HA_PROFILE%->Fiorano-->etc -> FmqConfigLoader

- Set AllowDurableConnections Property to true.
- Set PingEnabled to true.
- Set EnableAutoRevalidation to true

Note: The pre-created profiles already come with this configuration and hence no change would be required when working on them.

Right-click on the %SELECTED_HA_PROFILE% root node present under the Explorer tab on the left hand side of the Studio and select the Save option to save the configuration.

Example Configuration:

Parameter	Primary Server	Backup Server
url HAKRPCProvider	http://164.164.128.128:1856	http://164.164.128.108:1956
BackupHAIP Address	164.164.128.108	164.164.128.128
Back upHAPort	3000	2000
HAConnectionManager Port	2000	3000
Common Config Backup IP Address	164.164.128.108	164.164.128.128
Port	1956	1856
Enable DurableConnections	True	true
PingEnabled	True	true
HAManager isPrimary	True	false
Gateway IP Address	164.164.128.108	164.164.128.128
LockFile	/home/fmq/Lock.dat	/home/fmq/Lock.dat

After changing the HA Layer's configuration, the server's existing database should be cleared before restarting. The existing datastore can be cleared by executing the clearDB script in fmq/bin folder of your installation with profile name as an argument.

For example, in Windows:

- clearDB.bat FioranoMQ_HA_rpl\HAPrimary
- clearDB.bat FioranoMQ_HA_rpl\HASecondary

On the client-side the primary server URL has to be added as provider URL and secondary server URL has to be added to the backup URLs'.

4.1.1 Replicated HA

Configuring FioranoMQ HA in replication mode is much easier, as the pre-created profiles are mostly ready to be used (only the gateway IP needs to be modified). These profiles are pre-configured to demonstrate HA on a single machine. However one can easily setup HA on two different machines as well by properly configuring the HA Layer (as described below).

4.1.1.1 Basic configurations

One can configure replicated HA profile through changing Config.cfg file (text based configuration) or through Studio. Following section describe these options.

Text based

Profiles can now be configured through a text based properties file. Profiles can be found under the %FIORANO_HOME%\fmq\profiles\FioranoMQ_HA_rpl directory (say, PROFILE_HOME). In order to configure replicated HA profile, edit Config.cfg file under %PROFILE_HOME%\HAPrimary\conf and %PROFILE_HOME%\HASecondary\conf.

1. The default entries in Config.cfg file looks like:

```
ObjectName=Container

# HA Common Properties.

#

#FMQGroup.BackupServerIp=localhost

#FMQGroup.BackupServerPort=1956

#FMQGroup.BackupHAPort=3000

#FMQGroup.BackupHAIPAddress=localhost

#FMQGroup.Port=2000

#FMQGroup.Port=2000

#FMQGroup.PingInterval=30000

#FMQGroup.LockFile=null

#FMQGroup.SocketCreationTimeout=10000

#FMQGroup.GatewayServerIPAddress=localhost

#FMQGroup.GatewayServerPort=7
```

In front of every parameter, its default values are given.

 Take the scenario of running HAPrimary on a machine with IPAddress: 192.169.1.22 and HASecondary on a machine with IPAddress: 192.169.1.200. GatewayServer address is given as 192.169.1.16 which is present in the network. If LockFile, say Lock.dat, has been shared from third system and mounted to /home/fmq1 on 192.168.1.22 system and to /home/fmq2 on 192.168.1.200 system, then on Primary profile these parameters should takes following value:

```
ObjectName=Container
# HA Common Properties.
#
FMQGroup.BackupServerIp=192.168.1.200
#FMQGroup.BackupServerPort=1956
#FMQGroup.BackupHAIPAddress=192.168.1.200
#FMQGroup.Port=2000
#FMQGroup.PingInterval=30000
FMQGroup.LockFile=/home/fmq1/Lock.dat
```

#FMQGroup.SocketCreationTimeout=10000
FMQGroup.GatewayServerIPAddress=192.168.1.16
#FMQGroup.GatewayServerPort=7

On Secondary profile these parameters should takes following value:

```
ObjectName=Container
# HA Common Properties
#
FMQGroup.BackupServerIp=192.168.1.22
#FMQGroup.BackupHAIPAddress=192.168.1.22
#FMQGroup.BackupHAPort==2000
#FMQGroup.Port=3000
#FMQGroup.PingInterval=30000
FMQGroup.GatewayServerIPAddress=192.168.1.16
#FMQGroup.GatewayServerPort=7
FMQGroup.LockFile=/home/fmq2/Lock.dat
#FMQGroup.SocketCreationTimeout=10000
```

Modified Config.cfg file need to be saved for both Primary and secondary profiles.

Studio

Note: Here, %SELECTED_HA_PROFILE% refers to FioranoMQ_HA_rpl\HAPrimary or FioranoMQ_HA_rpl\HASecondary.

If replicated HA profile needs to be used, then open FioranoMQ_HA_rpl/HAPrimary and FioranoMQ_HA_rpl/HASecondary profile in Studio Profile Manager. Right-click on the profile and click on FMQ Replicated HA. The FMQ Replicated HA wizard appears.

4.1 Configurations of HA

You can configure all the required values from the wizard. After configuring the wizard, rightclick the node and select Save option from the pop-up menu

	FMQ Replicated HA	X
Droperty	EioranoMO HA rol HADrimany	т
BackupServerlp	localhost	-
BackupServerPort	1956	
BackupHAIPAddress	localhost	
BackupHAPort	3000	
Port	2000	
BackupRMIServerPort	1859	
RMIServerPort	1858	
LockFile	null	
GatewayServerIPAddress	localhost	
GatewayServerPort	7	
PingInterval	30000	
ActiveLockReAcquisitionInterva	il 30000	
PassiveLockAcquisitionInterval	60000	
	Close	
	Close	

The following properties are available in the FMQ HA replicated wizard.

BackupHAIPAddress

This IP represents the URL where another FioranoMQ HA server runs. In case this HA server fails then all the required synchronized data is present in backup HA server and HA layer connects to backup HA server.

BackupHAPort

This port represents the backup machine HA port on which another FioranoMQ Server runs.

Port

This port represents the FMQ Server HA port on which this HA Server runs.

LockFile

Full path of the file which will be used for determining the HA states. This file should be present in the third machine and always available to the HA servers with all permissions. The LockFile machine must be same as the machine whose IPAddress is given as GatewayServerIPAddress.

GatewayServerIPAddress

This value represents the IP address of third machine which is always present in the network. This value must not be the machine where one of the FioranoMQ servers runs.

GatewayServerPort

This value represents the port to which any of the HA Servers pings. This port must not be used for some other purpose.

All IP addresses, ports should represent the correct values. Without modifying any of these values HAPrimary and HASecondary can run on a single machine.

Take the scenario of running HAPrimary on a machine with IPAddress: 192.169.1.22 and HASecondary on a machine with IPAddress: 192.169.1.200. Gatewayserver address is given as 192.169.1.16 which is present in the network. If LockFile, say Lock.dat, has been shared from third system and mounted to /home/fmq1 on 192.168.1.22 system and to /home/fmq2 on 192.168.1.200 system, then HAPrimary wizard looks like:

	FMQ Replicated HA	×
Description		-
Property	HORANOMQ_HA_rpi.HAPrimary	4
	192.166.1.200	
BackupServerPort	1956	
BackupHAIPAddress	192.168.1.200	
BackupHAPort	3000	
Port	2000	
 BackupRMIServerPort 	1859	
RMIServerPort	1858	
LockFile	/home/fmq1/Lock.dat	
GatewayServerIPAddress	192.168.1.16	
GatewayServerPort	7	
PingInterval	30000	
ActiveLockReAcquisitionInterval	30000	
PassiveLockAcquisitionInterval	60000	
		-
	Close	

And HASecondary wizard looks like

		FMQ Replicated HA	×
	Directo curto a	Figure MO, MA, and MA Concerdent.	-
	BackunServerin	192.168.1.22	-
	BackupServerPort	1856	
	BackupHAIPAddress	192 168.1 22	
	BackupHAPort	2000	
	Port	3000	
	BackupRMIServerPort	1859	
	RMIServerPort	1859	
	LockFile	/home/fmq2/Lock.dat	
	GatewayServerIPAddress	192.168.1.16	
	GatewayServerPort	7	
	PingInterval	30000	
	ActiveLockReAcquisitionInterva	30000	
•	PassiveLockAcquisitionInterval	60000	
1.1.1			
Ac	tiveLockReAcquisitionInterval		
Th sh	is parameter indicates the wait h ould be in multiples of pingInter	nterval between each attempt to acquire the lock for active server. This value val/2 otherwise server may try to acquire the lock on the next multiple of	

Close

4.1.1.2 Advanced configurations

Text based

pingInterval/2.

Edit Config.cfg file under:

%FIORANO_HOME%\fmq\profiles\FioranoMQ_HA_rpl\HAPrimary\conf for HAPrimary and

%FIORANO_HOME%\fmq\profiles\FioranoMQ_HA_rpl\HASecondary\conf for HASecondary

1. Port

Specify the Port on which HA Manager would listen for connection from the peer HA Server. Apart from the port that the HA Server uses to listen for connections from its clients, it must also listen for a connection from its HA Peer Server, in order to know the status of its peer.

This parameter is used to specify that port.

Valid values:

Default value is 2000 for Primary and 3000 for secondary profile.

Note: The port must be not in use by any other services.

Configuration:

In Configs.cfg file this property can be found under HA common Properties. For example: #FMQGroup.Port=2000

User can change this value and for taking changes into effect uncomment the value, like- FMQGroup.Port=2500

2. NagleAlgo

Boolean determining whether Nagle's Algorithm is enabled or not in socket creation with peer HA Server. Nagle's algorithm is used in TCP/IP networks for congestion control. It works by coalescing a number of small outgoing messages, and sending them all at once. Specifically, as long as there is a sent packet for which the sender has received no acknowledgment, the sender should keep buffering its output until it has a full packet's worth of output, so that output can be sent all at once.

Valid values:

Default value is no

- yes NagleAlgo is enabled
- no NagleAlgo is not enabled

Configuration:

In Configs.cfg file this property can be found under HA Connection Manager Settings. For example:

#NagleAlgo=false

User can change this value and for taking changes into effect uncomment the value, like-

NagleAlgo=true

3. SocketInitializationTimeout

Time (in milliseconds) within any client socket should identify itself and able to exchange the version number with server. The version number exchange is an authentication mechanism that FioranoMQ employs.

Valid values:

Default value is 60000 (which is equal to a minute).

Configuration:

In Configs.cfg file this property can be found under HA Connection Manager Settings. For example:

#SocketInitializationTimeout=60000

User can change this value and for taking changes into effect uncomment the value, like- SocketInitializationTimeout=65000

4. ActiveLockReAcquisitionInterval

This parameter indicates the wait Interval between each attempt to acquire the lock for active server. This value should be in multiples of pingInterval/2 otherwise server may try to acquire the lock on the next multiple of pingInterval/2. Default value for this parameter is 30000.

Configuration:

In Configs.cfg file this property can be found under HA Manager Settings. For example:

#ActiveLockReAcquisitionInterval=30000

User can change this value and for taking changes into effect uncomment the value, like-

ActiveLockReAcquisitionInterval=35000

5. PassiveLockReAcquisitionInterval

This parameter indicates the wait Interval for the passive server to acquire the lock when the link between active and passive server is down. This value should be greater than '2*ActiveLockReacquisitionInterval', otherwise an exception will be thrown. Server won't start if this value is not set properly. Default value for this parameter is 60000.

Configuration:

In Configs.cfg file this property can be found under HA Manager Settings. For example:

#PassiveLockAcquisitionInterval=60000

User can change this value and for taking changes into effect uncomment the value, like-

PassiveLockAcquisitionInterval=65000

6. PingInterval

This interval represents the duration after which HAServer pings the other HABackup server to find whether the server is running properly or not.

Configuration:

In Configs.cfg file this property can be found under HA Common Properties. For example:

#FMQGroup.PingInterval=30000

User can change this value and for taking changes into effect uncomment the value, like-

FMQGroup.PingInterval=35000

7. BackupRMI ServerPort

Port of backup server on which Mx4j RMIConnector server will bind.

Configuration:

In Configs.cfg file this property can be found under HA KRPC Provider Settings. For example:

#BackupRMIServerPort=1858

User can change this value and for taking changes into effect uncomment the value, like-

BackupRMIServerPort=1958

8. **RMI ServerPort**

Port on which Mx4j RMIConnector server will bind.

Configuration:

In Configs.cfg file this property can be found under RMI Connector Settings. For example:

#RMIServerPort=1859

User can change this value and for taking changes into effect uncomment the value, like-

RMIServerPort=1959

9. MaxWaitTimeout

Whenever an owning server realizes that there has been a change in its peer server's state, it must handle the change in its peer state by changing its state appropriately. While the owning server is changing state it starts a timer. If for some reason the state change is unable to complete after a reasonable amount of time then the owning server must realize that.

This parameter specifies the maximum waiting timeout in milliseconds for which the local server should wait for state transition to complete.

Configuration:

In Configs.cfg file this property can be found under HA Manager Settings. For example:

#MaxWaitTimeout=30000

User can change this value and for taking changes into effect uncomment the value, like-

MaxWaitTimeout=35000

Studio

All the properties listed in this section are described in text based configuration.

1. Port

This property can be found under:

Fiorano->HA->HAConnectionManager->FioranoHAConnectionManager->config through studio.

2. NagleAlgo

This property can be found under:

Fiorano->HA->HAConnectionManager->FioranoHAConnectionManager->config through studio.

3. SocketInitializationTimeout

This property can be found under:

Fiorano->HA->HAConnectionManager->FioranoHAConnectionManager->config through studio.

Figure: Configuring Port, NagleAlgo and SocketInitializationTimeout parameters from studio

4. ActiveLockReAcquisitionInterval

This property can be found under:

Fiorano->HA->HAManager->FioranoHAManager->config through studio.

5. PassiveLockReAcquisitionInterval

This property can be found under:

Fiorano->HA->HAManager->FioranoHAManager->config through studio.

6. Pingl nterval

This property can be found under:

Fiorano->HA->HAManager->FioranoHAManager->config through studio.

7. MaxWaitTimeout

This property can be found under:

Fiorano->HA->HAManager->FioranoHAManager->config through studio.

8. BackupRMI ServerPort

This property can be found under:

Fiorano->HA->HAKRPCProvider->FioranoHAKRPCProvider->config through studio.

9. RMI ServerPort

This property can be found under:

Fiorano->jmx->RMIBasedJMXConnector->config through studio.

4.1.2 Shared HA

4.1.2.1 Basic configurations

One can configure Shared HA profile through changing Config.cfg file (text based configuration) or through Studio. Following section describe these options.

Text based

Profiles can now be configured through a text based properties file. Profiles can be found under the %FIORANO_HOME%\fmq\profiles\FioranoMQ_HA_shared directory (say, PROFILE_HOME). In order to configure shared HA profile, edit Config.cfg file under %PROFILE_HOME%\HAPrimary\conf and %PROFILE_HOME%\HASecondary\conf. 1. The default entries in Config.cfg file looks like:

```
ObjectName=Container
# HA Common Properties.
#
#FMQGroup.BackupServerIp=localhost
#FMQGroup.BackupHAIPAddress=localhost
#FMQGroup.BackupHAPort=3000
#FMQGroup.Port=2000
#FMQGroup.PingInterval=30000
#FMQGroup.GatewayServerIPAddress=localhost
#FMQGroup.GatewayServerPort=7
#FMQGroup.LockFile=null
#FMQGroup.SocketCreationTimeout=10000
```

In front of every parameter, its default values are given.

 Take the scenario of running HAPrimary on a machine with IPAddress: 192.169.1.22 and HASecondary on a machine with IPAddress: 192.169.1.200. GatewayServer address is given as 192.169.1.16 which is present in the network. If LockFile, say Lock.dat, has been shared from third system and mounted to /home/fmq1 on 192.168.1.22 system and to /home/fmq2 on 192.168.1.200 system, then on Primary profile these parameters should takes following value:

```
ObjectName=Container
# HA Common Properties.
#
FMQGroup.BackupServerIp=192.168.1.200
#FMQGroup.BackupHAIPAddress=192.168.1.200
#FMQGroup.BackupHAPort=3000
#FMQGroup.Port=2000
#FMQGroup.GatewayServerIPAddress=192.168.1.16
#FMQGroup.GatewayServerPort=7
FMQGroup.LockFile=/home/fmq1/Lock.dat
#FMQGroup.SocketCreationTimeout=10000
```

On Secondary profile these parameters should takes following value:

```
ObjectName=Container
# HA Common Properties
#
FMQGroup.BackupServerIp=192.168.1.22
#FMQGroup.BackupHAIPAddress=192.168.1.22
#FMQGroup.BackupHAPort==2000
#FMQGroup.Port=3000
#FMQGroup.PingInterval=30000
FMQGroup.GatewayServerIPAddress=192.168.1.16
#FMQGroup.GatewayServerPort=7
FMQGroup.LockFile=/home/fmq2/Lock.dat
#FMQGroup.SocketCreationTimeout=10000
```

Modified Config.cfg file need to be saved for both Primary and secondary profiles.

Studio

If shared HA needs to be used, then open FioranoMQ_HA_shared/HAPrimary and FioranoMQ_HA_shared/HASecondary profile in Studio Profile Manager. Right-click on the profile and click on FMQ Shared HA. The FMQ Shared HA wizard appears.

You can configure all the required values from the wizard. After configuring the wizard, rightclick the node and select Save option from the pop-up menu

		FMQ Shared HA	X
Г	Property	EioranoMO HA shared HADrimany	Т
	BackupServerIp	localhost	1
	BackupServerPort	1956	
	BackunHAIPAddress	localhost	
	BackupHAPort	3000	
	Bort	2000	
	Port Parkup DMISon (or Dort	1950	
		1059	
1		2000	
 	PingInterval	30000	
1	LockFile	null	
	GatewayServerIPAddress	localhost	
	GatewayServerPort	7	
	ActiveLockReAcquisitionIntervi	al 30000	
	PassiveLockAcquisitionInterval	60000	
-	~~~~~		-
		Close	

The following properties are available in the FMQ HA replicated wizard.

BackupHAI PAddress

This IP represents the URL where another FioranoMQ HA server runs. In case this HA server fails then all the required synchronized data is present in backup HA server and HA layer connects to backup HA server.

BackupHAPort

This port represents the backup machine HA port on which another FioranoMQ Server runs.

Port

This port represents the FMQ Server HA port on which this HA Server runs.

BackupRMI ServerPort

Port of backup server on which Mx4j RMIConnector server will bind.

RMI ServerPort

Port on which Mx4j RMIConnector server will bind.

PingInterval

This interval represents the duration after which HAServer pings the other HABackup server to find whether the server is running properly or not.

LockFile

Full path of the file which will be used for determining the HA states. This file should be present in the third machine and always available to the HA servers with all permissions. The LockFile machine must be same as the machine whose IPAddress is given as GatewayServerIPAddress.

GatewayServerI PAddress

This value represents the IP address of third machine which is always present in the network. This value must not be the machine where one of the FioranoMQ servers runs.

GatewayServerPort

This value represents the port to which any of the HA Servers pings. This port must not be used for some other purpose.

ActiveLockReAcquisitionInterval

This parameter indicates the wait Interval between each attempt to acquire the lock for active server. This value should be in multiples of pingInterval/2 otherwise server may try to acquire the lock on the next multiple of pingInterval/2. Default value for this parameter is 30000.

PassiveLockReAcquisitionInterval

This parameter indicates the wait Interval for the passive server to acquire the lock when the link between active and passive server is down. This value should be greater than '2*ActiveLockReacquisitionInterval', otherwise an exception will be thrown. Server won't start if this value is not set properly. Default value for this parameter is 60000.

All IP addresses, ports should represent the correct values. Without modifying any of these values HAPrimary and HASecondary can run on a single machine.

Take the scenario of running HAPrimary on a machine with IPAddress: 192.169.1.22 and HASecondary on a machine with IPAddress: 192.169.1.200. Gatewayserver address is given as 192.169.1.16 which is present in the network. If LockFile, say Lock.dat, has been shared from third system and mounted to /home/fmq1 on 192.168.1.22 system and to /home/fmq2 on 192.168.1.200 system, then HAPrimary wizard looks like:

]	FMQ Shared HA	
1	Property	FioranoMO HA shared.HAPrimary	
	BackupServerlp	192.168.1.200	
	BackupServerPort	1956	
	BackupHAIPAddress	192.168.1.200	
	BackupHAPort	3000	
	Port	2000	
	BackupRMIServerPort	1859	
	RMIServerPort	1858	
	PingInterval	30000	
	LockFile	/home/fmq1/Lock.dat	
	 GatewayServerIPAddress 	192.168.1.16	
	 GatewayServerPort 	7	
	ActiveLockReAcquisitionInterval	30000	
	PassiveLockAcquisitionInterval	60000	
	ActiveLockReAcquisitionInterval		
	This parameter indicates the wait interval between each attempt to acquire the lock for active server. This value should be in multiples of pinginterval/2 otherwise server may try to acquire the lock on the next multiple of pinginterval/2		
	hundlingen angeleren	Close	

And HASecondary wizard looks like:

		FMQ Shared HA
	Property	FioranoMQ_HA_shared.HASecondary
)	BackupServerlp	192.168.1.22
)	BackupServerPort	1856
)	BackupHAIPAddress	192.168.1.22
)	BackupHAPort	2000
)	Port	3000
)	BackupRMIServerPort	1859
)	RMIServerPort	1859
)	PingInterval	30000
)	LockFile	/home/fmq2/Lock.dat
1	GatewayServerIPAddress	192.168.1.16
)	GatewayServerPort	7
1	ActiveLockReAcquisitionInterva	30000
	Passivel ockAcquisitionInterval	60000

4.1.2.2 Advanced configurations

Text based

Edit Config.cfg file under

%FIORANO_HOME%\fmq\profiles\FioranoMQ_HA_shared\HAPrimary\conf for HAPrimary and

%FIORANO_HOME%\fmq\profiles\FioranoMQ_HA_shared\HASecondary\conf for HASecondary.

1. Port

Specify the Port on which HA Manager would listen for connection from the peer HA Server. Apart from the port that the HA Server uses to listen for connections from its clients, it must also listen for a connection from its HA Peer Server, in order to know the status of its peer.

This parameter is used to specify that port.

Valid values:

Default value is 2000 for Primary and 3000 for secondary profile.

Note: The port must be not in use by any other services.

Configuration:

In Configs.cfg file this property can be found under HA common Properties. For example: #FMQGroup.Port=2000

User can change this value and for taking changes into effect uncomment the value, like- FMQGroup.Port=2500

2. NagleAlgo

Boolean determining whether Nagle's Algorithm is enabled or not in socket creation with peer HA Server. Nagle's algorithm is used in TCP/IP networks for congestion control. It works by coalescing a number of small outgoing messages, and sending them all at once. Specifically, as long as there is a sent packet for which the sender has received no acknowledgment, the sender should keep buffering its output until it has a full packet's worth of output, so that output can be sent all at once.

Valid values:

Default value is no

- yes NagleAlgo is enabled
- no NagleAlgo is not enabled

Configuration:

In Configs.cfg file this property can be found under HA Connection Manager Settings. For example: #NagleAlgo=false

User can change this value and for taking changes into effect uncomment the value, like- NagleAlgo=true

3. SocketInitializationTimeout

Time (in milliseconds) within any client socket should identify itself and able to exchange the version number with server. The version number exchange is an authentication mechanism that FioranoMQ employs.

Valid values:

Default value is 60000 (which is equal to a minute).

Configuration:

In Configs.cfg file this property can be found under HA Connection Manager Settings. For example: #SocketInitializationTimeout=60000

User can change this value and for taking changes into effect uncomment the value, like- SocketInitializationTimeout=65000

4. ActiveLockReAcquisitionInterval

This parameter indicates the wait Interval between each attempt to acquire the lock for active server. This value should be in multiples of pingInterval/2 otherwise server may try to acquire the lock on the next multiple of pingInterval/2. Default value for this parameter is 30000.

Configuration:

In Configs.cfg file this property can be found under HA Manager Settings. For example: #ActiveLockReAcquisitionInterval=30000

User can change this value and for taking changes into effect uncomment the value, like- ActiveLockReAcquisitionInterval=35000

5. PassiveLockReAcquisitionInterval

This parameter indicates the wait Interval for the passive server to acquire the lock when the link between active and passive server is down. This value should be greater than '2*ActiveLockReacquisitionInterval', otherwise an exception will be thrown. Server won't start if this value is not set properly. Default value for this parameter is 60000.

Configuration:

In Configs.cfg file this property can be found under HA Manager Settings. For example: #PassiveLockAcquisitionInterval=60000

User can change this value and for taking changes into effect uncomment the value, like- PassiveLockAcquisitionInterval=65000

6. PingInterval

This interval represents the duration after which HAServer pings the other HABackup server to find whether the server is running properly or not.

Configuration:

In Configs.cfg file this property can be found under HA Common Properties. For example: #FMQGroup.PingInterval=30000

User can change this value and for taking changes into effect uncomment the value, like- FMQGroup.PingInterval=35000

7. BackupRMI ServerPort

Port of backup server on which Mx4j RMIConnector server will bind.

Configuration:

In Configs.cfg file this property can be found under HA KRPC Provider Settings. For example: #BackupRMIServerPort=1858

User can change this value and for taking changes into effect uncomment the value, like- BackupRMIServerPort=1958

8. RMI ServerPort

Port on which Mx4j RMIConnector server will bind.

Configuration:

In Configs.cfg file this property can be found under RMI Connector Settings. For example: #RMIServerPort=1859

User can change this value and for taking changes into effect uncomment the value, like- RMIServerPort=1959

Studio

All the properties listed in this section are described in text based configuration.

1. Port

This property can be found under:

Fiorano->HA->HAConnectionManager->FioranoHAConnectionManager->config through studio.

2. NagleAlgo

This property can be found under:

Fiorano->HA->HAConnectionManager->FioranoHAConnectionManager->config through studio.

3. SocketInitializationTimeout

This property can be found under:

Fiorano->HA->HAConnectionManager->FioranoHAConnectionManager->config through studio.

FioranoMQ saved.

Figure: Configuring Port, NagleAlgo and SocketInitializationTimeout parameters from studio

4. ActiveLockReAcquisitionInterval

This property can be found under:

Fiorano->HA->HAManager->FioranoHAManager->config through studio.

5. PassiveLockReAcquisitionInterval

This property can be found under:

Fiorano->HA->HAManager->FioranoHAManager->config through studio.

6. PingInterval

This property can be found under:

Fiorano->HA->HAManager->FioranoHAManager->config through studio.

7. BackupRMI ServerPort

This property can be found under:

Fiorano->HA->HAKRPCProvider->FioranoHAKRPCProvider->config through studio.

8. RMI ServerPort

This property can be found under:

Fiorano->jmx->RMIBasedJMXConnector->config through studio.

5.1 Managing of HA server

5.1.1 Replicated HA

5.1.1.1 Launching the servers

While launching the Enterprise Server, the launch sequence within the two servers is not important. Either server (primary or backup) can be started first. On start up, the servers establish a communication path between each other in order to exchange information regarding proper functioning of all servers. The servers can be launched by using the fmq (bat/sh) script (available in the fmq/bin directory of the installation package), and supplying the %SELECTED_HA_PROFILE% as an argument. Different methods to run HA profiles are described here.

5.1.1.1.1 Console

Windows:

When launching the Primary HA Server in Replicated Mode, the command line would be:

fmq.bat -profile FioranoMQ_HA_rpl/HAPrimary

For Secondary HA server in Replicated Mode, the command line would be:

fmq.bat –profile FioranoMQ_HA_rpl/HASecondary

Unix:

When launching the Primary HA Server in Replicated Mode, the command line would be:

./fmq.sh _profile FioranoMQ_HA_rpl/HAPrimary -nobackground

For Secondary HA server in Replicated Mode, the command line would be:

./fmq.sh _profile FioranoMQ_HA_rpl/HASecondary -nobackground

5.1.1.1.2 Background

Unix:

When launching the Primary HA Server in Replicated Mode, the command line would be:

./fmq.sh _profile FioranoMQ_HA_rpl/HAPrimary

For Secondary HA server in Replicated Mode, the command line would be:

./fmq.sh _profile FioranoMQ_HA_rpl/HASecondary

5.1.1.1.3 Service

HA replicated profiles can be made to run as service. Detailed procedure based on platform is provided here.

Windows:

Any profile present under %FMQ_DIR%/profiles can be made to run as NT service.

Steps for installing HA profile as NT Service:

- 1. Open a command prompt
- 2. Goto to %FMQ_DIR%\bin\service directory
- 3. To install FioranoMQ Kernel as NT service, run the command

install-fmq-service.bat -profile FioranoMQ_HA_rpl/HAPrimary or

install-fmq-service.bat -profile FioranoMQ_HA_rpl/HASecondary

- 4. After installation you should be able to see "FioranoMQ <%PROFILE_NAME%>" NT service installed.
- 5. Start the NT Service. Logs for NT service run can be viewed in %FMQ-DIR%\bin\service\logs\%PROFILE_NAME%.log.

Linux:

For enabling Replicated HA profiles as service, there is a script "fmq-linux" available in fmq/bin/service directory of FioranoMQ installation directory. Follow the procedures listed here:

- 1. Set the FIORANO_HOME at line 8 of fmq-linux file.
- 2. fmq-linux by default runs FioranoMQ Profile, to run Primary profile change the name of the profile on line 16 to FioranoMQ_HA_rpl/HAPrimary. To run Secondary profile, change the name of the profile on line 16 to FioranoMQ_HA_rpl/HASecondary.
- 3. Copy the file fmq-linux in "/etc/init.d".
- 4. Give Executable Permission, "chmod +x fmq-linux".
- 5. To start as a service, type "./fmq-linux start".
- 6. To stop the server, type "./fmq-linux stop".
- 7. To run this as a service with system startup, type "chkconfig --add fmq-linux". This will launch the service whenever the system is started.

SOLARIS:

For enabling Replicated HA profiles as service, there is a script "fmq-solaris" available in fmq/bin/service directory of FioranoMQ installation directory. Follow the procedures listed here:

- 1. Set the FIORANO_HOME at line 9 of fmq-solaris file.
- 2. fmq-solaris by default runs FioranoMQ Profile, to run Primary profile change the name of the profile on line 19 to FioranoMQ_HA_rpl/HAPrimary. To run Secondary profile, change the name of the profile on line 16 to FioranoMQ_HA_rpl/HASecondary.
- 3. Copy the file fmq-solaris in "/etc/init.d".
- 4. Give Executable Permission, "chmod +x fmq-solaris".
- 5. To start as a service, type "./fmq-solaris start".

- 6. To stop the server, type "./fmq-solaris stop".
- 7. To run this as a service with system startup create the links from "/etc/init.d" using the following commands

To start the service at startup:

In -s fmq-solaris /etc/rc3.d/S86fmq-solaris

Note: If the priority level '86' which is specified in the link already exists in the run level (rc3.d), then select a number which doesn't exist there.

Example: If you want to set the priority 71 then create the link using the following command in "/etc/init.d"

In -s fmq-solaris /etc/rc3.d/S71fmq-solaris

8. Set JAVA_HOME in <FIORANO_HOME>/fiorano_vars.sh

Note: Even if you set JAVA_HOME in your .bashrc or .bash_profile, it won't be set at startup.

So JAVA_HOME must be set in "fiorano_vars.sh" script file.

5.1.1.2 Stopping the servers

5.1.1.2.1 Console

Windows:

When stopping the Primary HA Server in Replicated Mode with RMIPort 1858, the command line would be:

```
shutdown-fmq.bat -rmiPort 1858
```

For Secondary HA server in Replicated Mode with RMIPort 1859, the command line would be:

```
shutdown-fmq.bat -rmiPort 1859
```

Unix:

When stopping the Primary HA Server in Replicated Mode with RMIPort 1858, the command line would be:

./shutdown-fmq.sh -rmiPort 1858

For Secondary HA server in Replicated Mode with RMIPort 1859, the command line would be:

./shutdown-fmq.sh -rmiPort 1859

5.1.1.2.2 Background

Unix:

When stopping the Primary HA Server in Replicated Mode with RMIPort 1858, the command line would be:

./shutdown-fmq.sh -rmiPort 1858

For Secondary HA server in Replicated Mode with RMIPort 1859, the command line would be:

./shutdown-fmq.sh -rmiPort 1859

5.1.1.2.3 Service

Windows:

1. To remove FioranoMQ Kernel NT service, run the command

uninstall-fmq-service.bat -profile %PROFILE_NAME%

2. Un-Install should stop and remove NT service for given profile from the services list.

Linux:

To remove initially created service type "chkconfig --del fmq-linux". This will remove the previously added service

SOLARIS:

To stop the service at shutdown/reboot type:

ln -s fmq-solaris /etc/rc3.d/K45fmq-solaris

Note: It is recommended to choose low priority level for shutdown.

5.1.1.3 Determining status of servers

It is easy to determine the status of server while running through console, as status of servers are printed on console. It can also be determined by running ServerStatus.java file available in fmq/samples/JMX directory of FioranoMQ installation directory. Details about running this file are available in readme file in the same directory.

5.1.1.4 Log details

Just like the base FioranoMQ server, the HA server can log into files, consoles, or use any other custom-made logger. The type of logging is controlled through the Loggers module in Fiorano Studio. Options to log all information on the console or save all logs into a log or error file, is provided through Console-based and File-based logging respectively.

5.1.1.5 Verifying HA Setup

On starting the Fiorano MQ Server that is part of an HA pair, the server prints debug information about its own state (ACTIVE, PASSIVE, and WAITING). It also prints information about its backup server's state whenever it detects a change.

Example Statements on console:

[Sat Feb 07 14:03:50 IST 2009] Old status of remote server = DEAD [Sat Feb 07 14:03:50 IST 2009] New status of remote server = WAITING [Sat Feb 07 14:03:50 IST 2009] Old status of remote server = DEAD [Sat Feb 07 14:03:50 IST 2009] New status of remote server = WAITING [Sat Feb 07 14:03:50 IST 2009] Old status of remote server = WAITING [Sat Feb 07 14:03:50 IST 2009] New status of remote server = PASSIVE TRANSITION STATE

The Console includes statements as shown below:

'Primary Server switched to ACTIVE' or 'Secondary Server switched to PASSIVE', which indicate that the pair has successfully connected. Also, a statement gets printed when the lock is successfully acquired over the LockFile on the active servers console.

Example: Successfully acquired lock on:C:\lockFile.dat.

The figure below illustrates a successfully started Fiorano HA MQ Server:

5.1.2 Shared HA

5.1.2.1 Launching the servers

While launching the Enterprise Server, the launch sequence within the two servers is not important. Either server (primary or backup) can be started first. On start up, the servers establish a communication path between each other in order to exchange information regarding proper functioning of all servers. The servers can be launched by using the runContainer script (available in the fmq/bin directory of the installation package), and supplying the %SELECTED_HA_PROFILE% as an argument.

In order to run shared HA profiles we need to specify dbPath as extra command line argument. This is the path where run folder will be created and this must be pointing to the same directory for both the profiles (Primary and Secondary). It would be better if this shared db is on third machine (other than machines where Primary and Secondary profiles are running). For sharing db from third machine, use same method as specified for sharing LockFile. Different methods to run HA profiles are described here. It is supposed that shared db is mounted, for Primary server, on /home/fmq1/shared for Linux machine (C:\fmq1\share on Windows machine) and, for Secondary server, /home/fmq2/shared on Linux machine (C:\fmq2\share on Windows machine).

5.1.2.1.1 Console

Windows:

When launching the Primary HA Server in shared Mode, the command line would be:

fmq.bat _profile FioranoMQ_HA_shared/HAPrimary _dbPath C:\fmq1\share

For Secondary HA server in shared Mode, the command line would be:

fmq.bat _profile FioranoMQ_HA_shared/HASecondary _dbPath C:\fmq2\share

Unix:

When launching the Primary HA Server in shared Mode, the command line would be:

./fmq.sh __profile FioranoMQ_HA_shared/HAPrimary __nobackground _dbPath /home/fmq1/share

For Secondary HA server in shared Mode, the command line would be:

./fmq.sh _profile FioranoMQ_HA_shared/HASecondary _nobackground _dbPath /home/fmq2/share

5.1.2.1.2 Background

Unix:

When launching the Primary HA Server in shared Mode, the command line would be:

```
./fmq.sh _profile FioranoMQ_HA_shared/HAPrimary _dbPath /home/fmq1/share
```

For Secondary HA server in shared Mode, the command line would be:

./fmq.sh _profile FioranoMQ_HA_shared/HASecondary _dbPath /home/fmq2/share

5.1.2.1.3 Service

Windows

Any profile present under %FMQ_DIR%/profiles can be made to run as NT service.

Steps for installing HA profile as NT Service:

1. Open a command prompt

- 2. Goto to %FMQ_DIR%\bin\service directory
- 3. To install FioranoMQ Kernel as NT service, run the command
 - install-fmq-service.bat -profile FioranoMQ_HA_shared/HAPrimary or

install-fmq-service.bat -profile FioranoMQ_HA_shared/HASecondary

- 4. After installation you should be able to see "FioranoMQ <%PROFILE_NAME%>" NT service installed.
- 5. Start the NT Service. Logs for NT service run can be viewed in %FMQ-DIR%\bin\service\logs\%PROFILE_NAME%.log.

Linux:

For enabling Shared HA profiles as service, there is a script "fmq-linux" available in fmq/bin/service directory of FioranoMQ installation directory. Follow the procedures listed here:

- 1. Set the FIORANO_HOME at line 8 of fmq-linux file.
- 2. fmq-linux by default runs FioranoMQ Profile, to run Primary profile change the name of the profile on line 16 to FioranoMQ_HA_shared/HAPrimary. To run Secondary profile changes the name of the profile on line 16 to FioranoMQ_HA_shared/HASecondary.
- 3. Copy the file fmq-linux in "/etc/init.d".
- 4. Give Executable Permission, "chmod +x fmq-linux".
- 5. To start as a service, type "./fmq-linux start".
- 6. To stop the server, type "./fmq-linux stop".
- 7. To run this as a service with system startup, type "chkconfig --add fmq-linux". This will launch the service whenever the system is started.

SOLARIS:

For enabling Shared HA profiles as service, there is a script "fmq-solaris" available in fmq/bin/service directory of FioranoMQ installation directory. Follow the procedures listed here:

- 1. Set the FIORANO_HOME at line 9 of fmq-solaris file.
- 2. fmq-solaris by default runs FioranoMQ Profile, to run Primary profile change the name of the profile on line 19 to FioranoMQ_HA_shared/HAPrimary. To run Secondary profile changes the name of the profile on line 16 to FioranoMQ_HA_shared/HASecondary.
- 3. Copy the file fmq-solaris in "/etc/init.d".
- 4. Give Executable Permission, "chmod +x fmq-solaris".
- 5. To start as a service, type "./fmq-solaris start".
- 6. To stop the server, type "./fmq-solaris stop".
- 7. To run this as a service with system startup create the links from "/etc/init.d" using the following commands

To start the service at startup:

In -s fmq-solaris /etc/rc3.d/S86fmq-solaris

Note: If the priority level '86' which is specified in the link already exists in the run level (rc3.d), then select a number which doesn't exist there.

Example: If you want to set the priority 71 then create the link using the following command in "/etc/init.d"

ln -s fmq-solaris /etc/rc3.d/S71fmq-solaris

To stop the service at shutdown/reboot:

ln -s fmq-solaris /etc/rc3.d/K45fmq-solaris

Note: It is recommended to choose low priority level for shutdown

8. Set JAVA_HOME in <FIORANO_HOME>/fiorano_vars.sh

Note: Even if you set JAVA_HOME in your .bashrc or .bash_profile, it won't be set at startup.

So JAVA_HOME must be set in "fiorano_vars.sh" script file.

5.1.2.2 Stopping the servers

5.1.2.2.1 Console

Windows:

When stopping the Primary HA Server in shared Mode with RMIPort 1858, the command line would be:

shutdown-fmq.bat -rmiPort 1858

For Secondary HA server in shared Mode with RMIPort 1859, the command line would be:

```
shutdown-fmq.bat -rmiPort 1859
```

Unix:

When stopping the Primary HA Server in shared Mode with RMIPort 1858, the command line would be:

./shutdown-fmq.sh -rmiPort 1858

For Secondary HA server in shared Mode with RMIPort 1859, the command line would be:

./shutdown-fmq.sh -rmiPort 1859

5.1.2.2.2 Background

Unix:

When stopping the Primary HA Server in shared Mode with RMIPort 1858, the command line would be:

./shutdown-fmq.sh -rmiPort 1858

For Secondary HA server in shared Mode with RMIPort 1859, the command line would be:

./shutdown-fmq.sh -rmiPort 1859

5.1.2.2.3 Service

Windows:

1. To remove FioranoMQ Kernel NT service, run the command

uninstall-fmq-service.bat -profile %PROFILE_NAME%

2. Un-Install should stop and remove NT service for given profile from the services list.

Linux:

To remove initially created service type "chkconfig --del fmq-linux". This will remove the previously added service

SOLARIS:

To stop the service at shutdown/reboot type:

```
ln -s fmq-solaris /etc/rc3.d/K45fmq-solaris
```

Note: It is recommended to choose low priority level for shutdown.

5.1.2.3. Determining status of servers

It is easy to determine the status of server while running through console, as status of servers are printed on console. It can also be determined by running ServerStatus.java file available in fmq/samples/JMX directory of FioranoMQ installation directory. Details about running this file are available in readme file in the same directory.

5.1.2.4. Log details

Just like the base FioranoMQ server, the HA server can log into files, consoles, or use any other custom-made logger. The type of logging is controlled through the Loggers module in Fiorano Studio. Options to log all information on the console or save all logs into a log or error file, is provided through Console-based and File-based logging respectively.

5.1.2.5 Verify HA Setup

On starting the Fiorano MQ Server that is part of an HA pair, the server prints debug information about its own state (ACTIVE, PASSIVE, and ACTIVATING). It also prints information about its backup server's state whenever it detects a change.

Example Statements on console:

```
[Sat Feb 07 14:03:50 IST 2009] Old status of remote server = DEAD
[Sat Feb 07 14:03:50 IST 2009] New status of remote server = WAITING
[Sat Feb 07 14:03:50 IST 2009] Old status of remote server = WAITING
```

[Sat Feb 07 14:03:50 IST 2009] New status of remote server = PASSIVE

The Console includes statements as shown below:

'Primary Server switched to ACTIVE' or 'Secondary Server switched to PASSIVE', which indicate that the pair has successfully connected. Also, a statement gets printed when the lock is successfully acquired over the lockfile on the active servers console.

Example: Successfully acquired lock on: C:\lockFile.dat.

The figure below illustrates a successfully started Fiorano HA MQ Server in shared mode:

E:\Fiorano\FioranoMQ9.1.0\fmg\bin>fmg.bat -profile FioranoMQ_HA_shared\HAPrimary -dbPath C:\DB
Fiorano Home : E:\Fiorano\FioranoMQ9.1.0 Java Home : E:\Fiorano\FioranoMQ9.1.0\jre1.5.0_16 Profile : E:\Fiorano\FioranoMQ9.1.0\fmg\profiles\FioranoMQ_HA_shared\HAPrimary
Server's Process ID : 5920 Created MBeanServer with ID: 16574816:125e26d5ab3:-8000:sreenivas-lap:1 [30/Dec/2009 17:50:35] license INFO The fiorano-mg9.lic license for the product MQ ver 9x is vali alse, Node locked = false [Wed Dec 30 17:50:37 PSI 2009] Primary Server switched to PASSIVE Profileprofiles.FioranoMQ_HA_shared.MAPrimary successfully deployed on Wed Dec 30 17:50:37 PSI 2009 Successfully acquired lock on :: C:\lockFile.dat [Wed Dec 30 17:50:39 PSI 2009] Trying to establish connection with localhost:3000 [Wed Dec 30 17:50:40 PSI 2009] Trying to establish connection with localhost:3000 [Wed Dec 30 17:50:40 PSI 2009] Trying to establish connection with localhost:3000
lWed Dec 30 17:50:41 PSI 2009] Trying to establish connection with localhost:3000 RMIConnectorServer started at: service:jmx:rmi://localhost/jndi/fmq RmiConnectorServer Listening Port: 1958
Max Memory Allocated to the Server : 254 MB. Dashboard Listening Port: 1780
[LWed Dec 30 17:50:58 PST 2009] New status of remote server = PASSIVE Fiorano Server accepting connections at http://0.0.0.0:1856 Server Protocol:: TCP Default:: true
Maximum Client Connections : 1,024 FioranoMQ 9.1.0, Build # 9195
LWed Dec 30 17:50:59 PSI 2009] Primary Server switched to HGIIVE

6.1 Troubleshooting

1) What if HA servers are not able to run?

E:\Fiorano\FioranoMQ9.1.0\fmq\bin>fmq.bat -profile FioranoMQ_HA_rpl\HAPrimary Fiorano Home : E:\Fiorano\FioranoMQ9.1.0 Java Home : E:\Fiorano\FioranoMQ9.1.0\jme1.5.0_16 Profile : E:\Fiorano\FioranoMQ9.1.0\jme1.5.0_16 Server's Process ID : 4840 Created MBeanServer with ID: 39fce974:125e299410b:-8000:sreenivas-lap:1 (30/Dec/2009 18:38:321 license INFO The fiorano-mq9.lic license for the product MQ ver 9x is va alse, Mode locked = false RMIConnectorServer started at: service:jmx:rmi://localhost/jndi/fmq RmiConnectorServer Listening Port: 1958 (Wed Dec 30 18:38:43 PST 2009] Primary Server switched to WAITING Backup Server not Connected. Check configuration or Start backup Server ... Profile ...profiles\FioranoM_Ha_rpl\HAPrimary successfully deployed on Wed Dec 30 18:38:43 PST 2009 HA properties are not set properly in the backup server. Please verify whether the following properties are of 1.ActiveLockReAcquisitionInterval 2.PassiveLockAcquisitionInterval 3.PingInterval 4.GatewayServerPort 6.LockFile Container shutdown initiated

This might be related to HA properties. Please verify whether the following properties are configured to use same values in the backup server.

- 1. ActiveLockReAcquisitionInterval
- 2. PassiveLockAcquisitionInterval
- 3. PingInterval
- 4. GatewayServerIPAddress
- 5. GatewayServerPort
- 6. LockFile

2) While running HA Profile following error message is thrown to console:

Lock file::null is not specified properly.

Unable to validate permissions on lock file::null.

Either file is not valid or lock file machine is not allowing to verify permissions on lock,

Unable to boot the server

This will occurs when Lock file is not specified. So, please make sure to specify Lock file.

3) What if HA servers are not able to run, while launched as a service?

Look in the logs runContainer_output_log and runContainer_error_log. These logs have all the error and messages thrown at run time.

4. SocketBindException saying that the HA Port is already bound.

This exception means that some other program running on the HA port or the last instance of the server is not properly killed. You can choose to stop or kill the application which is holding up the port and start the server again or choose a different HA port. But changing this means that there needs to be a change in the Backup Servers' configuration for its Backup Server port.

5. None of the servers connect to each other.

One Server is in STANDALONE state and the other server in WAITING state and both the servers are unable to communicate.

This behavior means that the Backup Server IP and port numbers are wrong for both the server configurations.

Example: Server consoles when it cannot connect to each other.

The Server console below illustrates a situation where the server is not able to connect to the Backup Server. If it the backup server is running as shown, then there is a problem with the configuration. The message prints the IP address and the port to which it is trying to connect to establish the HA channel. You can check if the Backup Server is running in the printed IP address and port.

Primary Server Console

E:\Fiorano\Fioran	oMQ9.1.0\fmq\b	in≻fmq.bat	-profile H	?ioranoMQ_Hf	Դ_rp1∖HAP	rimary	
Fiorano Home Java Home Profile	: E:\Fiorano\F : E:\Fiorano\F : E:\Fiorano\F	ioranoMQ9.1 ioranoMQ9.1 ioranoMQ9.1	L.0 L.0\jre1.5. L.0\fmq\pro	.0_16 ofiles\Fiora	anoMQ_HA_	rp1\HAPrima	۴y
Server's Process Created MBeanServ I30/Dec/2009 18:1 alse, Node locked RMIConnectorServe	ID : 1724 er with ID: 7c 7:55] licen = false • started at:	b7c1ee:125e se INI service:jm>	28660e3:-8 FO TI <:rmi://loc	3000:sreeniu ne fiorano-r calhost/jnd:	vas-lap:1 ng9.lic l i/fmg	icense for t	the prod
RmiConnectorServe [Wed Dec 30 18:18 Backup Server not Profile\profil [Wed Dec 30 18:18 Successfully acgu	r Listening Po 13 PST 2009] Connected. Ch es\FioranoMQ_H 30 PST 2009] ired lock on :	rt: 1958 Primary Se eck configu A_rpl\HAPri Trying to :C:\lockFil	erver switc uration or imary succe establish le.dat	ched to WAII Start backu essfully dej connection	IING up Server ployed on with 192	Wed Dec 30	18:18:1 3000
Max Memory Alloca Dashboard Listeni Fiorano Server ac Server Protocol:	ed to the Ser og Port: 1780 cepting connec TCP, Default:	ver : 254 M tions at ht : true	18. ttp://0.0.0	0.0:1856			
FioranoMQ 9.1.0, FioranoMQ 9.1.0, EWed Dec 30 18:18 EWed Dec 30 18:18 EWed Dec 30 18:19	Inections : 1, Build # 9195 :40 PST 2009] :58 PST 2009] :17 PST 2009]	024 Primary Se Trying to Trying to	erver switc establish establish	ched to STAN connection connection	NDALONE with 192 with 192	.168.1.177:3	3000
LWed Dec 30 18:19 [Wed Dec 30 18:19 [Wed Dec 30 18:20 [Wed Dec 30 18:20 [Wed Dec 30 18:20	35 PST 2009 J 54 PST 2009 J 12 PST 2009 J 31 PST 2009 J 49 PST 2009 J	Trying to Trying to Trying to Trying to Trying to	establish establish establish establish establish	connection connection connection connection connection	with 192 with 192 with 192 with 192 with 192	.168.1.177: .168.1.177: .168.1.177: .168.1.177: .168.1.177:	3000 3000 3000 3000

Secondary Server Console

E:\Fiorano\FioranoMQ9.1.0\fmq\bin>fmq.bat -profile FioranoMQ_HA_rpl\HASecondary
Fiorano Home : E:\Fiorano\FioranoMQ9.1.0 Java Home : E:\Fiorano\FioranoMQ9.1.0\jre1.5.0_16 Profile : E:\Fiorano\FioranoMQ9.1.0\fmq\profiles\FioranoMQ_HA_rp1\HASecondary
Server's Process ID : 5688 Created MBeanServer with ID: -4901c7c5:125e286adfa:-8000:sreenivas-lap:1
[30/Dec/2009 18:18:15] license INFO The fiorano-mq9.lic license for the pro- left = 47, Locale specific = false, CPU based = false, Node locked = false PMICensectoryServery started at: service invitmit/(localbact/indi/fmg)
RmiConnectorServer Started at: Service-JMX:rM1.//Ibtainost/JM41/IM4 RmiConnectorServer Listening Port: 1859
Backup Server not Connected. Check configuration or Start backup Server Profile \profiles\FioreanoMO_HA_ppl\HQSecondary_successfully_deployed on Wed Dec 30 18:
[Wed Dec 30 18:18:49 PST 2009] Trying to establish connection with 192.168.1.24:2000
[Wed Dec 30 18:19:27 PST 2009] Trying to establish connection with 192.168.1.24:2000 [Wed Dec 30 18:19:46 PST 2009] Trying to establish connection with 192.168.1.24:2000
[Wed Dec 30 18:20:04 PST 2009] Trying to establish connection with 192.168.1.24:2000 [Wed Dec 30 18:20:24 PST 2009] Trying to establish connection with 192.168.1.24:2000
[Wed Dec 30 18:20:42 PST 2009] Trying to establish connection with 192.168.1.24:2000 [Wed Dec 30 18:21:01 PST 2009] Trying to establish connection with 192.168.1.24:2000
[Wed Dec 30 18:21:20 PST 2009] Trying to establish connection with 192.168.1.24:2000 [Wed Dec 30 18:21:39 PST 2009] Trying to establish connection with 192.168.1.24:2000
LWed Dec 30 18:21:58 PST 2009] Trying to establish connection with 192.168.1.24:2000 [Wed Dec 30 18:22:17 PST 2009] Trying to establish connection with 192.168.1.24:2000

6. Both servers go to Standalone/Active state

Both servers g to Standalone/Active state in replicated/shared mode respectively if the network link between them is broken. This can happen if the servers do not refer to the same **LockFile**.

7.1 Best practices.

- For database store use SAN disks. This is not necessary for running HA profiles, but they are more reliable and data can be retrieved in case of failure.
- Make sure to have Lockfile and Gateway server on same machine.
- Use nfs-4 for mounting files.
- In case of shared HA profiles give Separate addresses for storing server logs. This will make debugging easy.

8.1 FAQ

What is high availability?

High availability is a system design protocol and associated implementation that ensures a certain absolute degree of operational continuity during a given measurement period.

Today's real-time enterprise solutions often deploy a messaging middleware that enables communication between various sub-components. This middleware is entrusted with important data that should be delivered reliably and as fast as possible to the recipient application. The middleware server might also be required to store this data in its data store until it is picked up. A failure of this middleware message bus might bring the entire system down within seconds. Hence, it is absolutely imperative for the messaging backbone to provide its backup, which allows messaging operations to resume quickly in the event of a failure of the running server. This backup server should restore the state prior to failure of the original message server. Any data that was stored previously in the server's data store should be accessible through this backup server and most importantly this operation of shifting from one server to its backup should be automatic and transparent to the client application.