Fiorano

Enabling change at the speed of

www.fiorano.com

AMERICA’S

Fiorano Software, Inc.

230 S. California Avenue,
Suite 103, Palo Alto,

CA 94306 USA

Tel: + 1 650 326 1136

Fax: +1 646 607 5875
Toll-Free: +1 800 663 3621
Email: info@fiorano.com

EMEA

Fiorano Software Ltd.

3000 Hillswood Drive Hillswood
Business Park Chertsey Surrey
KT16 ORS UK

Tel: +44 (0) 1932 895005
Fax: +44 (0) 1932 325413
Email: info_uk@fiorano.com

APAC

Fiorano Software Pte. Ltd.

Level 42, Suntec Tower Three 8
Temasek Boulevard 038988
Singapore

Tel: +65 68292234

Fax: +65 68292235

Email: info_asiapac@fiorano.com

Fiorano

C++RTL Native Guide

Fiorano

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any
form without prior written permission is forbidden. The information contained herein has been obtained from
sources believed to be reliable. Fiorano disclaims all warranties as to the accuracy, completeness or
adequacy of such information. Fiorano shall have no liability for errors, omissions or inadequacies in the
information contained herein or for interpretations thereof. The opinions expressed herein are subject to
change without prior notice.



Copyright (c) 1999-2007, Fiorano Software Private Limited. and Affiliates

Copyright (c) 2008-2013, Fiorano Software Pte Ltd. and Affiliates

All rights reserved.

This software is the confidential and proprietary information of Fiorano Software ("Confidential Information"). You shall not

disclose such (“Confidential Information™) and shall use it only in accordance with the terms of the license agreement enclosed
with this product or entered into with Fiorano.




Content

Chapter 1: Introduction...........ceveiiiieiiiiiiiecceeecceereceereeeeeeee. 12

[N F=3Y== T T g o T o o g =11 1= P 12
(00T T g 1= ot f 0] o I =1 o] oV 12
{0 o1 =T o1 of [0 13
7= o1 = | o 13
LT3 Lo o P 13
R N 1T T PP 13
T Y o [T o oY [ Lol PP 13
(1 L= TST= T T3 o 1= U o 0= 14

Chapter 2: Datatypes and Constants...........ccceeveeveveeveceeeneee. 15

Basic Data Types and Thair Sizes. ...uiuiiiiiiiiiii i s a et e et a e a e e e aneanenn 15
(O o ol 2 I o] 1] =1 o | TP 15
(NN E=T 0 g YT el 0 1VZ=T o 1 o U o RS P 16

Chapter 3: Writing Applications in C++ ...........ccccvvveeevvvvnceennn. 17

NS T 0 g ST = Tl o T 0 e 18
[ o) ol s 1= e | 1110 PP 19
Tt Te L TS =T a1 R o T O o PP 21
(0fe] Y pT=ToidTo] WS} o= o olr=T o [o [ o o RPN 23
100} oY =T o] o 1[0 1= = 23
[ (el=T o uTo ) oI TS =T =T T T T O e PP 24
AdVisory Message lISEENEIS iN Ca ..ttt a e e e e e e e e e e e e e aenenanenenss 26
Lookup of Administered ObJeCS ..ttt 28
(0] o) [=To B T= 111 o o PP 29
Getting MESSage PrOPItiES ...uiui ittt 30

Chapter 4: FioranoMQ C++ RTL - Classes........ccceeeeerveeenceeeenn. 32

(O] o To ] N[ 0] =1 0= PP 32
Inheritance HierarChy . ... et e e 32
SUD C A S 1ttt e 32
(00 1] o 1T o = 32
= o o [ PP P PP 32

L8 g L F= [0 g = 33
Inheritance HierarChy . ... et eas 33

1Y Lo Lol =TT 33




(0] 1 1] o 8110 33

1 = o o Yo £ PP 33
(O7A¥a AV 1T 0] V] 4 (=TT T [ PP 34
Inheritance HierarChy . ... e e e e 34
{0 11 o U T (0 34
Y8 ool 1= 1T PP 35
= Yo T £ 35
(O74¥a AV 1T oY Y4\ FYo | IS o <] =] o PP 36
il at=T gl =T Tol T o 1= =] ol o |V TP 36
YU ool 1= 37
1 = o o Yo £ PP 37
(@1 i To] =] aTe] = ol =3 o' u o o I P 37
Inheritance HierarChy . ... e et e e 37
Y0 ] ool F= 1T PP 37
{0 11 o U T (0 37
= Yo T £ 38
(11 1S ot =] o) o [ o PSP 39
il at=T gl =T Tol T o 1= =] ol |V PP 39
YU ool 1= 39
{0 11 o U T (0 39
1 = o o Yo £ PP 40
L0 =T 01 [ ] 1 I =] /=T = 41
il at=T gl =T Tol T o 1= =] ol |V PP 41
Y8 ] ool = 1T TP 41
(] 13 o U T o] /=3P 41
1= o o Yo £ PP 41
(O =TT ST= Lo =] I3 o= 1= P 41
Inheritance HierarChy . ... et e e 41
Y0 ] ool 1= 1T TP 41
{0 11 o U T (0 41
= Yo T £ 42
(©74% | 29 ]1a1@{e] s aT=Toiu o] o] =Tl we] oV 2 PP 42
ol at=T gl =T Tol T o 1= =] ol |V PP 42
YU ool 1= 42
{0 1 o U T (0 42
1 = o o Yo £ PP 42
L0 @0eT a1t o 0] o1 =Tt o 43
il at=T gl =T aTol T o 1= =] ol o |V TP 43
Y8 ool 1= 1T PP 43
= Yo T £ 44
(1 2iTe] =] aTeT®le] g a =Totu Te] a1 =T ot ue ] o VAP 44
il at=T gl =T Tol T o 1= =] ol o |V TP 44
YU ool 1= 44
{0 1 o U T (0 45
1= o o T £ PP 45

CQUEUECONNECHIONFACEONY L. uiiiiii it s e ae e 46




Inheritance HierarChy . ... e e e e 46

1Y Lo Lol = T 46
(00 1] o ¥ Tt oo = 46
1 1Y o T Y £ 47
Y 1L (=Y 01 1= o o T 3 48
(@0 e] 5] [{ @] ] gT=To1 o (o] 3] ut=T u o V2P 48
Inheritance HierarChy . ... et e e 48
1Y Lo Lol = T 48
(00 1] o 8 Tt oo = 48
1 1Y o T Y £ 49
Y T (=Y 1 1= o o T 3 50
(@7 10 211 310 oY 1Tt {0 o [ 50
Inheritance HierarChy . ... e et e e 50
1Y Lo Lol = T 50
(00 1] o 8 Tt oo = 50
1 1Y o T Y £ 50
(@0 ] 5 1T 1 Y 1P 51
il at=T gl =T Tol T o 1= =] ol |V PP 51
1Y Lo Lol =TT 51
1 1Y ol T Y £ 51
(@ To] =] a Lo T @Xo] o] 5 1T 1o o 1S 54
Inheritance HierarChy . ... et e e 54
1Y Lo Lol = T 54
(0] ] o 8 Tt oo = 54
1 1Y o T Yo £ 54
(@00 LU= U =T 0] o =Tt o Lo o P 56
ol at=T gl =T Tol T o 1= =] ol |V PP 56
1Y Lo Lol =TT 56
(00 1] o 8 Tt oo = 56
1 1Y ol e Y £ 57
LG o 01 o{ @] o1 =T o o 1 58
il at=T gl =T Tol T o 1= =] ol |V TP 58
1Y Lo Lol = T 58
(0] 1 1] o 8Tt 58
1 1Y ol T Y £ 58
(O] 3 Y= o o 59
Inheritance HierarChy . ... et eas 59
1Y Lo Lol = T 59
1 1Y ol T Y £ 59
(0] = 1 10 N T3] 10 TS 65
(00 BT B =Y =1 =] 0 o P 66
(O 10 0] 1Y =] 1] o P 67
(O]t oY- o =T o o o [T PP 68
il at=T gl =T Tol T o 1= =] ol |V PP 69
1Y Lo Lol = T 69

1 1Y o T Yo £ 69




@1 i To] = g o] (=TTt T[] o] oY [0 ol PP 73

ol at=T gl =T Tol T o 1= =] ol |V PP 73
Y0 ] ool 1= 1T TP 73
(] 13 o U T 0] /=3P 73
(10 LT U =1SY=] oo 1= o PP 74
il at=T gl =T aTol T o 1= =] ol o |V TP 74
YU ool 1= 74
{0 11 o U T (0 74
1 = o o Yo £ PP 74
(O o] o7 Lol 2 U o1 1=] o 1T o PP 75
il at=T gl =T Tol T o 1= =] ol o |V PP 75
Y8 ] ool 1= 1T TP 75
(@] 13 o U T o /=3 PP 75
1 = o o Yo £ PP 75
(00 LU U =T 2o [ =T} oo P 76
Inheritance HierarChy . ... et eas 76
Y0 ] ool F= 1T PP 76
{0 1 o U T {0 76
= Yo T £ 76
(O 0 5] [l =T 0 18 T=1=] w0 P 77
il at=T gl =T Tol T o 1= =] ol |V PP 77
YU ool 1= 77
{0 11 o U T (0 77
1 = o o Yo £ PP 77
L0 TS T T =T o 1= U T 0= 78
il at=T gl =T Tol T o 1= =] ol |V PP 78
Y8 ] ool = 1T TP 78
= Yo T £ 79
(O iTe] =] gTe] { T=TSE Y=o L =100 o 118 o o = o P 81
ol at=T gl =T Tol T o 1= =] ol |V PP 81
YU ool 1= 81
{0 1 o U T (0 81
1 = o o Yo £ PP 81
(1@ T LT UT=T U o= Y =T P 82
il at=T gl =T aTol T o 1= =] ol o |V TP 82
Y0 ool = 1T PP 82
(@] 13 o U T o] /=3 PP 82
1= o o T £ PP 82
(O o] o101 8] 01Tl g1 1= S PP 83
Inheritance HierarChy . ... et eas 83
Y8 ool 1= 1T PP 83
{0 11 o U T (0 83
= Yo T £ 83
(Ol o] 0] [ 7 == I - 1 o= P 84
il at=T gl =T aTol T o 1= =] ol o |V TP 84

1Y Lo Lol =TT 84




(0] 1 1] o 8110 84

1 1Y ol e Y £ 84
(@00 LU ST UT=T =] = I =) o= P 85
Inheritance HierarChy . ... e e e e 85
1Y Lo Lol = T 86
(00 1] o 8 Tt oo = 86
1 1Y o T Y £ 86
(]I 713 o T g =1 o [0 1 87
il at=T gl =T aTol T o 1= =] ol o |V PP 87
1Yo Lol =TT 87
(0] ] o 8 Tt oo = 87
1 1Y ol T Y £ 87
(1< 88
il at=T gl =T Tol T o 1= =] ol o |V PP 88
1Y Lo Lol = T 88
(0] 1 1] o 8Tt 88
1 1Y ol T Y £ 89
(O 1o o [P 89
Inheritance HierarChy . ... et e e 89
1Y Lo Lol = T 90
(00 1] o 8 Tt oo = 90
1 1Y o T Yo £ 90
(O I =T 0 ]s Yo =1 Y/ @ LU 1= U P 91
ol at=T gl =T Tol T o 1= =] ol |V PP 91
1Y Lo Lol =TT 91
(00 1] o 8 Tt oo = 91
1 1Y ol e Y £ 91
LG =T oF 7o r=T Y2 o 5. 92
il at=T gl =T Tol T o 1= =] ol |V PP 92
1Y Lo Lol = T 92
(0] 1 1] o 0110 92
1 1Y ol T Y £ 92
(2 /o 0 =T o v P 93
Inheritance HierarChy . ... et eas 93
1Y Lo Lol = T 93
(00 1] o 8 Tt oo = 93
1 1Y o T Yo £ 93
(=TS T= T =P 94
il at=T gl =T Tol T o 1= =] ol o |V TP 94
1Y Lo Lol =TT 94
(00 1] o 8 Tt oo = 94
1 1Y ol T Y £ 96
L = g N =TT T T 110
gl a =T gl =T Tol T o 1< =] ol |V PP 110
1Y Lo ol = T 110

(00 3 1] o {5 T 10 = 110




1 1Y o T Y £ 110

(0123 =T ==Y T 1= P 111
gl a =T gl =T Tol T o 1< =] ol |V PP 111
LYo Lol =TT 111
(0] 1] o ¥ Tt oo = 111
1 1Y ol o Y £ 111

L0817 = 0] 7 =177 T 1= 118
gl a =T gl =T Tol T o 1< =] ol |V PP 118
LY o ol = T 118
(0] 3 1 o (8 T 10 = 118
1 1Y ol T Y £ 118

(@RS o == 0 a1 N =TT T 1= S 125
Inheritance HierarChy . ...t e e 125
1Y Lo ol = T 125
(0] 1 1] o /¥ Tt oo = 125
1 1Y ol T Y £ 125

(0117102 10 0110 57T VATl T PP 131
gl a =T gl =T Tol T o 1< =] ol |V PP 131
LYo Lol =TT 131
(0] 1] o ¥ Tt oo = 131
1 1Y ol T Y £ 131

(@ F= 1 1 =1 5 S 139
gl a =T gl =T Tol T o 1< =] ol |V PP 139
LY o ol = T 139
(00 1] o {5 T 10 = 139
1 1Y ol T Y £ 139

(@ F= 1] =1 01 L1 = 18 T 2 =] = (o 140
Inheritance HierarChy . ...t e e 140
1Y Lo ol = T 140
(0] 1] o ¥ Tt oo = 140
1 1Y o T Y £ 141

(1M oTo | 5 F=] g o | 1= o PP 141
gl a =T gl =T Tol T o 1< =] ol |V PP 141
LYo Lol =TT 141
(0] 1] o ¥ Tt oo = 141
1 1Y ol Y £ 142

L @S] = =T 1= 143
gl a =T gl =T Tol T o 1= =] ol |V PP 143
LY Lo ol = T 143
(00 3 1] o {5 T 10 = 143
(0] 1] o ¥ Tt oo = 143
1 1Y ol Y £ 143

(OO 2= 0 11T 143
gl a =T gl =T Tol T o 1< =] ol |V PP 143
LY Lo ol = T 144

(00 3 1] o {5 T 10 = 144




1 1Y o T Y £ 144

(L@ o =] 181 a1 1= o o 147
gl a =T gl =T Tol T o 1< =] ol |V PP 147
YU ol b= [T PP 147
L0 1) o U T (0 147
1= o o T £ PP 147

(@1 To] 7= a Lo T @o] o1 o T=T o T o 1S 148
(O TNV ZeT o= o] [\ T Y= T L=t = 18 [ o I PP 148
Inheritance HierarChy . ... e e 148
LY o ol = T 148
(00 1] o o8 Tt oo =3 148
1 1Y ol T Y £ 148
(O Iz o 11 LT3V 1= S 149
gl a =T gl =T Tol T o 1< =] ol |V PP 149
LYo Lol =TT 149
(0] 1] o ¥ Tt oo = 149
1 1Y ol T Y £ 149
(O] I 13 o= LU 1] I =] 1= ol 152
gl a =T gl =T Tol T o 1< =] ol |V PP 152
LY o ol = T 153
(00 3 1] o {5 T 10 = 153
1 1Y ol T Y £ 153
(O I I =] 13 ] ] o= 153
Inheritance HierarChy . ... e e e e 153
1Y Lo ol = T 153
(0] 1 1] o /¥ Tt oo = 153
1 1Y ol T Y £ 153

Chapter 6: Message Compression ..........cccccceeeeeeeeeeeeeennneeee.. 156

Message Compression CharaCteriStiCS .. ... et e e e e e e aas 156

Chapter 7: Using Sample Programs..........cccccccueeeeeeeeennnnee... 158

Organization of Samples Provided .....c.viiiiiii i e e 158
Compiling and RUNNING the SamIPIes. ..ot e e e e e e 158
(O oT=T o= 1] T [ = g VT o] ] 1= o | =] 158

I = Yo o 3o O e o 159




Chapter 8: Native C++ Runtime Examples........................... 160

e o Tu o] g FRS] U] 0] o 1o o o =T PP 161
Building and RUNNING CH+4 APPlICAtIONS ...uieiiiieii e e e e e aeas 162
o IS T= 10 0] o L= PP 162
¥ 0 0 T P 162
= 1= [ 163
L0 T 163
(0= o T = T 0 1YL= =T 163
DT Yo 1\ 1= ST oY= o 1T @ U =T U T PP 164
L P 164
0 P 165
1 L=TSY= T T3 o T oY T =171 (0] o N 165
P eI DS NATION 1.ttt e 165

ST L 1T Y=T= T = P 166

17 FTe 1T PP 166
0 o o 1 P 167
[NV o 81 o P 167
RS0 | =] o 167
1= 1 [ 167

I =T [ T o PP 168
NNV 1o F= = @leT o g =Tt o] o F- T TP 168
YT V=T (=71 1 o Yo PP 169
5] PP 169
= 0 7= [ o [0 o P 169
PUD S UD SaMMI DI 1. ittt 170
¥ 0 0 T P 170
= 1= [ 170
(O3 o = o 111 P 170
D T =] 1 {1 P 171
[ T = ol Y Lot o o 11t PP 171
L P 172
0 P 172
1 L=TSY= T T3 o T oY T =111 (0] o N 173
P eI D ST NATION 1.ttt s 173

ST L 1T YT T PP 173

17T =TT PP 174
1101010 11U o PP 174
NV o 81 o T P 174
RS0 | =] o 175
1= 1 [ 175

I =T [ T o PP 175
NNV 1o F= = @eT o g =Tt o] o F- T TP 175
YT V=T (=171 1 o Yo PP 176
5] PP 176




Unified Samples
NonJndi......

Y= e 12Tl Y=




FioranoMQ C++ RTL Native Guide

Chapter 1: Infroduction

The Native C++Runtime Library (C++RTL) allows C++ based application to interact with FioranoMQ. A
C++ based client can thus seamlessly communicate with Java based Fiorano Clients.

This version of C++RTL is designed to run on both native and .NET platforms. Both the versions
support secure and non-secure TCP and HTTP connections on Win32 platform for Point-to-Point and
Publish/Subscribe communication models.

The C++ Runtime is designed to provide maximum conformance with the JMS specifications. All public
APIs have similar signature as the corresponding java APIs specified by JMS. The classes have similar
naming convention.

The Native C++Runtime Library (C++RTL) allows C++ based application to interact with FioranoMQ. A
C++ based client can thus seamlessly communicate with Java based Fiorano Clients.

Messaging Domains

There are two kinds of messaging domains:
1. Point-to-Point (PTP)
2. Publish-Subscribe(Pub/Sub)

In PTP domains, messages are sent to a particular destination where they are queued. A client
application delivers messages from this queue to the destination specified by the provider. Though
there can be several messages in the queue, each message is intended for only one
destination/receiver.

The Pub/Sub domain, on the other hand, allows a message to be distributed to more than one
subscriber via the provider.

Both these domains can be deployed by FioranoMQ. In addition, FioranoMQ can handle the unified
domains introduced by JMS 1.1.

The JMS common interface provides a domain-independent view of the PTP and Pub/Sub messaging
domains. Following are the list of JMS concepts with brief definition:

Connection Factory

As per JMS specifications, an application uses a Connection Factory to fetch the details of a connection
instance to connect to the Server. The connection factory instance encapsulates all the parameters
(like URL, protocol, and so on) required to connect to the Server. These parameters are configured to
use the default socket acceptor settings and must be modified if the Server uses a socket acceptor
with a non-default configuration. The Server creates the default connection to factories when it is
launched for the first time. These connection factories are automatically created based on the
configuration of the socket acceptor being used.

Chapter 1: Infroduction Page 12



FioranoMQ C++ RTL Native Guide

Connection

A Connection object is a client's active connection to its JMS provider. A connection could represent an
open TCP/IP socket between a client and a service provider domain. Connections support concurrent
use. You use a connection to create one or more sessions. Connections can be created specific to PTP
and PubSub messaging styles. For example, CQueueConnection class can be used for Queue connection
type and CTopicConnection class for Topic connection.

Destination

A destination is the object which a client uses to specify the target of messages it produces and the
source of messages it consumes. In the PTP messaging domain, destinations are called Queues, and in
the pub/sub messaging domain, destinations are called Topics.

Session

A session is the single-thread context for producing and consuming messages. It can create and serve
multiple Producers and Consumers.

A session can be either transacted or non-transacted. Each session supports a single series of
transactions and treats them as a unit. Messages produced and consumed within a transaction
become the content of that particular transaction. A commit method indicates that message processing
can occur. A rollback method disables the processing of messages. In both cases, a transaction is
considered to have been completed. A non-transacted session receives message in a mode specified
by JMS 1.1: This mode could be one of the following modes: AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE,
and DUPS_OK_ACKNOWLEDGE. The DUPS_OK_ACKNOWLEDGE is used in applications where messages delivery
can be duplicated.

JMS Message

The ultimate purpose of a JMS application is to produce and to consume messages that can then be
used by other software applications. JMS messages have a basic format that is simple but highly
flexible, allowing you to create messages that match formats used by non-JMS applications on
heterogeneous platforms. A JMS message has three parts:

1. A header
2. Properties (optional)

3. A body (optional)

Message Producer

A message producer is an object created by a session and is used for sending messages to a
destination. The PTP form of a message producer implements the CQueueSender interface. The
pub/sub form implements the CTopicPublisher interface. You can create an unidentified producer by
specifying null as the argument to createSender or createPublisher. With an unidentified producer,
you can wait to specify which destination to send the message to, until you send or publish a
message.

Chapter 1: Infroduction Page 13



FioranoMQ C++ RTL Native Guide

Message Consumer

A message consumer is an object created by a session and is used for receiving messages sent to a
destination. A message consumer allows a JMS client to register interest in a destination with a JMS
provider. The JMS provider manages the delivery of messages from a destination to the registered
consumers of the destination. The PTP form of message consumer implements the CQueueReceiver
class. The pub/sub form implements the CTopicSubscriber class.

The following diagram illustrates the flow of a JMS client.

~

/ . B

 ConnectionFactory |

.‘\\\7 //‘
Jl Creates
N S
Av4

Connection
J—L Creates
L
AV
Creates Creates
MessageProducer aiq;_ Session :E’} MessageConsumer
lSends to J—L Creates TReceives from

L 4
V

— s ——

Figure: JMS client flow

Chapter 1: Intfroduction Page 14



FioranoMQ C++ RTL Native Guide

Chapter 2: Datatypes and Constants

This chapter contains an overview of the C++RTL specific data types and constants. A brief
explanation of each data type along with sizes is provided.

Basic Data Types and their Sizes

This section lists the basic data types used in C++RTL APIs, indicating the size of each.
e mgbyte - Data defined to occupy 8 bits (unsigned).
e mqchar - Data defined to occupy 8 bits.
e mgshort - Data defined to occupy 16 bits.
e mgint - Data defined to occupy 32 bits.
e mqglong - Data defined to occupy 64 bits.
e mqgfloat - Data defined to occupy 32 bits.
e mqdouble - Data defined to occupy 64 bits.

C++RTL Constants

All required public constants are categorized and declared in common_def.h according to JMS
specifications.

Messaging related constants are required while creating sessions and sending messages to a queue or
topic on the FioranoMQ Server.

Following are the possible values of the acknowledgement mode that can be used while creating a
TopicSession or a QueueSession:

e #define AUTO_ACKNOWLEDGE 1

e #define CLIENT_ACKNOWLEDGE 2

e #define DUPS_OK_ACKNOWLEDGE 3
Following are the permissible values for the message delivery mode that can be used in publish or
send call. The persistence of a message is decided using these constants:

e #define NON_PERSISTENT 1

e #define PERSISTENT 2

Chapter 2: Datatypes and Constants Page 15



FioranoMQ C++ RTL Native Guide

Following are the string representations of the various message types that can be sent by a C client to

the FioranoMQ Server. A call of Msg_getJMSType returns one of these values:

#define IMSMESSAGE “Message"

#define BYTESMESSAGE "BytesMessage"
#define STREAMMESSAGE "StreamMessage"
#define MAPMESSAGE "MapMessage"
#define TEXTMESSAGE "TextMessage"

Following are some of the permissible values for message priority that can be used in publish or send

call:

#define MinPriority O
#define MaxPriority 9
#define LowPriority O
#define NormPriority 4
#define HighPriority 9

Naming convention

The C++RTL adheres to the following naming convention for you to easily identify the classes,
constants and member functions with the corresponding definitions in JMS specifications.

Type

Naming Convention

Example

Class

C<JMSClass name>

CTopicPublisher(IMS:TopicPub-
Tisher)

Function As defined in JMS

Specifications

publish

Chapter 2: Datatypes and Constants

Page 16



FioranoMQ C++ RTL Native Guide

Chapter 3: Writing Applications in C++

This chapter provides brief information on getting started with writing C++ applications to connect
with FioranoMQ Server. Following sections detail on the C++ RTL namespace, error handling, handling
exception listeners, message listeners, and advisory message listeners.

Destinations

A destination is the object a client uses to specify the target of messages it produces and the source
of messages it consumes. In the PTP messaging domain, destinations are called Queues. In the
pub/sub messaging domain, destinations are called Topics.

Temporary Destinations

An application typically uses a Temporary Destination to receive replies to request messages. To
specify the destination where a reply to a request message is to be sent, an application calls the Set
JMSReplyTo method of the Message object representing the request message. The destination specified
on the call can be a temporary destination.

To create a temporary queue, a C application calls the TS_createTemporaryQueue (QueueSession)
function and TS_createTemporaryTopic(TopicSession) for creating a Topic, with session as the
parameter. In a C++ application, a temporary queue is created by calling createTemporaryQueue
method of Session object and createTemporaryTopic for a Topic destination.

Message Producers

A message producer is an object created by a session and is used for sending messages to a
destination. The PTP form of a message producer uses the CQueueSender class. The pub/sub form uses
the CTopicPublisher class.

You can create an unidentified producer by specifying NULL as the argument to createSender or
createPublisher. With an unidentified producer, you can wait to specify which destination to send the
message to until you send or publish a message. If you created an unidentified producer, use the
overloaded send or publish method that specifies the destination as the first parameter.

Message Consumers

A message consumer is an object created by a session and is used for receiving messages sent to a
destination. A message consumer allows a JMS client to register interest in a destination with a JMS
provider. The JMS provider manages the delivery of messages from a destination to the registered
consumers of the destination. The PTP form of message consumer uses the CQueueReceiver class. The
pub/sub form uses the CTopicSubscriber class.

When using either the CQueueReceiver or the CTopicSubscriber, you can use the receive method to
consume a message synchronously. Use this method at any time after you call the start method.

For consuming the messages asynchronously, message listeners are provided.

Chapter 3: Writing Applications in C++ Page 17



FioranoMQ C++ RTL Native Guide

Namespaces in C++

All the C++ classes are declared in a namespace called cppnativertl. A C++ application can therefore
adopt one of the following approaches when referring to the names of cppnativert!/ classes:

The application can qualify the names of cppnativert! classes with the name of the namespace,
cppnativertl, as show in the following C++ code fragment:

#include <cppHeaders.h>

#include <iostream>

using namespace std;

int main(int argc,char* argv[])

{
cppnativert] :: CHashTable *m_env;
cppnativert] :: CInitialContext *m_ic;
// Queue Connection Factory
cppnativert] :: CQueueConnectionFactory *m_gcf;
// Queue Connection
cppnativert] :: CQueueConnection *m_gc;

// Set up the environment variables

m_env = new CHashTable(Q);

m_env->Put (SECURITY_PRINCIPAL, "anonymous');
m_env->Put (SECURITY_CREDENTIALS, "anonymous") ;
m_env->Put (CONNECT_URL, "http://localhost:1856");
m_env->Put (BACKUP_URLS, "http://localhost:1956");
m_env->Put (PROVIDER_URL, "http://localhost:1856");

m_ic = new CInitialContext(m_env);

m_qcf = dynamic_cast<CQueueConnectionFactory *>(m_ic->Lookup("primaryQCF));
if(m_gcf == 0)
{

throw new CIMSException("Connection factory Tookup failed.Error in Type casting.");

}
m_qgc = m_qcf->createQueueConnection("anonymous", "anonymous™);

//0ther code here
//Deletion of objects
return(0);

}

The application can use a using directive to make the names of cppnativertl classes available without
having to qualify them. For example:

#include <cppHeaders.h>

#include <iostream>

using namespace std;

// Using cpp native rtl namespace
using namespace cppnativertl;

int main(int argc,char* argv[])

{

CHashTable *m_env;

Chapter 3: Writing Applications in C++ Page 18



FioranoMQ C++ RTL Native Guide

CInitialContext *m_ic;

// Queue Connection Factory
CQueueConnectionFactory *m_qcf;
// Queue Connection
CQueueConnection *m_qc;

// Set up the environment variables
m_env = new CHashTable(Q);

m_env->Put (SECURITY_PRINCIPAL, "anonymous');
m_env->Put (SECURITY_CREDENTIALS, "anonymous") ;
m_env->Put (CONNECT_URL, "http://localhost:1856");
m_env->Put (BACKUP_URLS, "http://localhost:1956");
m_env->Put (PROVIDER_URL, "http://localhost:1856");

m_ic = new CInitialContext(m_env);

m_qcf = dynamic_cast<CQueueConnectionFactory *>(m_ic->Lookup("primaryQCF));

if(m_gcf == 0)
{
throw new CIMSException("Connection factory lookup failed.Error in Type casting.");
}
m_qc = m_qcf->createQueueConnection("anonymous", "anonymous™);

//0ther code here
//Deletion of objects
return(0);

Error Handling

The C++ RTL uses exceptions to provide error handling. A C++ RTL exception is an object of one of
the following types:

e CFioranoException

e CIMSException

The CFioranoException class is a super class of CIMSException which has a utility function
checkForexception() that throws CIMSException if an exception occurs. As a result, an application can
include all the Fiorano C++ RTL methods in a try-catch block and to catch all types of exception. In
event of an error in the C++RTL layer, CIMSException with a specific error code and description is
thrown.

The Exception can be caught at the application level and the associated message can be read using
the public API getMessage(). The exception handling is also exhaustive; it provides the complete
function stack trace at the moment of the error.

The exception stack is maintained in the Thread-local storage of C RTL, so that the exception that
occurred in one thread doesn't interfere with the flow of other threads. The stack trace can be printed
on the console using the API call printStackTrace(Q).

Chapter 3: Writing Applications in C++ Page 19



FioranoMQ C++ RTL Native Guide

The following code fragment illustrates this technique:

#include <cppHeaders.h>

#include <iostream>

using namespace std;

// Using cpp native rtl namespace
using namespace cppnativertl;

int main(int argc,char* argv[])

{

CHashTable *m_env;
CInitialContext *m_ic;

// Queue Connection Factory
CQueueConnectionFactory *m_gcf;
// Queue Connection
CQueueConnection *m_gc;

CQueue *m_queue;

// Set up the environment variables
try

{

throw new CIMSException("Connection Factory Tookup failed.Error in Type

m_env = new CHashTable(Q;

m_env->Put (SECURITY_PRINCIPAL, "anonymous');
m_env->Put (SECURITY_CREDENTIALS, "anonymous");
m_env->Put (CONNECT_URL, "http://localhost:1856");
m_env->Put (BACKUP_URLS, "http://localhost:1956");
m_env->Put (PROVIDER_URL, "http://localhost:1856");

m_ic = new CInitialContext(m_env);

m_qcf = dynamic_cast<CQueueConnectionFactory *> (m_ic->Lookup("primaryQCF"));

if(m_gcf == 0)
{

casting.");

}

}

m_qc = m_qcf->createQueueConnection("anonymous", "anonymous");

//Additional code here
//Deletion of objects

catch(CIMSException *e)

{

}

cout << e->getMessage();
e->printStackTrace();
delete e;

return(0);

}

Chapter 3: Writing Applications in C++

Page 20



FioranoMQ C++ RTL Native Guide

The application must release the CIMSException object using the delete operator. The C++ RTL can
create an exception for each error it detects during a call and link the exceptions to form a chain. After
an application has caught the first exception, it can call the getLinkedException() method to get a
pointer to the next exception in the chain. The application can continue to call the
getLinkedException() method on each exception in the chain until a null pointer is returned,
indicating that there are no more exceptions in the chain. Because the getLinkedException() method
returns a pointer to a linked exception, the application must release the object using the delete
operator.

Message listeners in C++

A C++ application uses a message listener to receive messages asynchronously. To receive messages
asynchronously, the C++ application must define a message listener class that is based on the
abstract class CMessageListener. The message listener class defined in the application must provide an
implementation of the onMessage() method. The application can then instantiate the class to create a
message listener and register the message listener with one or more message consumers by calling
the setMessageListener() method for each message consumer. Subsequently, when a message
arrives for a message consumer, the onMessage() method is invoked to deliver the message.

To stop the asynchronous delivery of messages to a message consumer, the application can call the
setMessageListener() method again by passing a null pointer as a parameter instead of a pointer to a
message listener. Unless the registration of a message listener is cancelled in this method, the
message listener must exist for as long as the message consumer exists.

A new message listener can be registered with a message consumer without cancelling the
registration of an existing message listener. If the onMessage() method of an existing message listener
is running when a new message listener is registered, the active method completes normally and any
subsequent messages are processed by calls to the onMessage() method of the new message listener.
If a transaction is in progress when a message listener is changed, the transaction is completed by
calls to the onMessage() method of the new message listener.

The following code fragment provides an example of a message listener class implementation with an
onMessage() method:

#include <cppHeaders.h>
#include <iostream>
using namespace std;

// Using cpp native rtl namespace

using namespace cppnativertl;

// Message Listener implementation

class CMyMessageListener: public CMessageListener

{
public:
void onMessage(CMessage *msg)
{
if(msg != NULL)
{
CTextMessage *cmsg = (CTextMessage *)msg;
cout << "Received Message :: " << cmsg->getText() <<endl;
delete msg;
}

Chapter 3: Writing Applications in C++ Page 21



FioranoMQ C++ RTL Native Guide

1

As the C ++RTL delivers a pointer to a message when it calls the onMessage() method, the application
must release the message using the delete operator.

The following code fragment shows how an application can use this message listener class to
implement the asynchronous delivery of messages to a message consumer:

#include <cppHeaders.h>
#include <iostream>
using namespace std;

// Using cpp native rtl namespace
using namespace cppnativertl;

int main(int argc,char* argv[])

{

CHashTable *m_env;

CInitialContext *m_ic;

// Queue Connection Factory

CQueueConnectionFactory *m_gcf;

// Queue Connection

CQueueConnection *m_gc;

CQueue *m_queue;

CMessageListener *m_msgl;

try

{
// Set up the environment variables
m_env = new CHashTable(Q);
m_env->Put (SECURITY_PRINCIPAL, "anonymous');
m_env->Put (SECURITY_CREDENTIALS, "anonymous");
m_env->Put (CONNECT_URL, "http://localhost:1856");
m_env->Put (BACKUP_URLS, "http://localhost:1956");
m_env->Put (PROVIDER_URL, "http://localhost:1856");
m_ic = new CInitialContext(m_env);
m_qcf = dynamic_cast<CQueueConnectionFactory *>(m_ic->Lookup("primaryQCF"));
if(m_gcf == 0)
{

throw new CIMSException("Connection Factory lookup failed.Error in Type
casting.");

}

m_qc = m_qcf->createQueueConnection("anonymous", "anonymous");

m_queue = dynamic_cast<CQueue *>(m_ic->Lookup("primaryQueue™));
if(m_queue == 0)
{

throw new CIMSException("Destination Tookup failed.Error in Type casting.");

Chapter 3: Writing Applications in C++

Page 22



FioranoMQ C++ RTL Native Guide

m_gc = m_qcf->createQueueConnection("anonymous", 'anonymous™);
m_gs = m_gc->createQueueSession(FALSE, AUTO_ACKNOWLEDGE) ;
m_receiver = m_gs->createReceiver(m_queue);
m_msgl = new CMyMessagelListener();
m_receiver->setMessageListener(m_msgl);
m_qc->start(Q);
//0ther code here
//Deleting the objects
delete m_env;
if(m_receiver != NULL)
m_receiver->close();
delete m_receiver;
if(m_gs != NULL)
m_gs->close();
delete m_gs;
if(m_gc !'= NULL)
m_qc->close();
delete m_qc;
delete m_qcf;
delete m_queue;
delete m_ic;
delete m_msgl;
}
catch(CIMSException *e)
{
cout << e->getMessage();
e->printStackTrace();
delete e;
}
return(0);
}

Connection Start and Stop

When an application creates a connection, the connection is in stop mode. When the connection is in
stop mode, the application can initialize sessions and it can send messages but cannot receive them,
either synchronously or asynchronously.

An application can start a connection by calling the Start Connection method. When the connection is
in start mode, the application can send and receive messages. The application can stop and restart the
connection by calling the stop() and start() methods.

Connection Close

In the above code fragment, the statement m_qc->close()closes the connection. When an application
closes a connection, it closes all the sessions associated with the connection and deletes certain
objects associated with these sessions. It also rolls back any transactions currently in progress within
the sessions. It ends the communications connection with the messaging server. It releases the
memory and other internal resources used by the connection in the underlying CRTL.

Chapter 3: Writing Applications in C++ Page 23



FioranoMQ C++ RTL Native Guide

Exception listeners in C++

Using an exception listener is similar in principle to using a message listener. A C++ application must
define an exception listener class that is based on the abstract class CExceptionListener. The exception
listener class defined in the application must provide an implementation of the onException() method.

The application can then instantiate the class to create an exception listener, and register the

exception listener with a connection by calling the setExceptionListener() method. Subsequently, if
C++RTL detects a problem with the connection, the onException() method is invoked to pass an

exception to the application.

To stop the asynchronous reporting of problems with a connection, the application can call the

setExceptionListener() method by passing a null pointer as the parameter instead of a pointer to an
exception listener. Unless the registration of an exception listener is cancelled in this method, the

exception listener must exist for as long as the connection exists.

As the C++RTL passes a pointer to an exception when it calls the onException() method, the

application must release the exception by using the C++ delete operator.

The following code fragment provides an example of a exception listener class implementation with an

onException() method:

#include <cppHeaders.h>
#include <iostream>
using namespace std;

// Using cpp native rtl namespace
using namespace cppnativertl;

class CMyExceptionListener: public CExceptionListener

{

public:
void onkException (CFioranoException* pException)
{
try
{
if(pException->getMessage() != NULL)
cout << "Exception is ::'<<pException->getMessage()<<endl;
delete pException;
}
catch (CIMSException *je)
{
je->printStackTrace();
je->cleareException();
delete je;
}
}
};
int main(int argc,char* argv[])
{

CHashTable *m_env;
CInitialContext *m_ic;

// Queue Connection Factory
CQueueConnectionFactory *m_gcf;
// Queue Connection

Chapter 3: Writing Applications in C++

Page 24



FioranoMQ C++ RTL Native Guide

CQueueConnection *m_qc;

CQueue *m_queue;

CExceptionListener *m_exp;

// Set up the environment variables

m_env = new CHashTable(Q);

m_env->Put (SECURITY_PRINCIPAL, "anonymous');
m_env->Put (SECURITY_CREDENTIALS, "anonymous");
m_env->Put (CONNECT_URL, "http://localhost:1856");
m_env->Put (BACKUP_URLS, "http://localhost:1956");
m_env->Put (PROVIDER_URL,"http://localhost:1856");
try

{

m_ic = new CInitialContext(m_env);

m_qgcf = dynamic_cast<CQueueConnectionFactory *>(m_ic->Lookup("primaryQCF"));

if(m_gcf == 0)

{

throw new CIMSException("Connection Factory lookup failed.Error in Type
casting.");

}

m_qc = m_qcf->createQueueConnection("anonymous", "anonymous™);
m_queue = dynamic_cast<CQueue *>(m_ic->Lookup("primaryQueue"));
if(m_queue == 0)

{

throw new CIMSException("Destination lookup failed.Error in Type casting.");
}

m_qc = m_qcf->createQueueConnection("anonymous", "anonymous™);
m_exp = new CMyExceptionListener();
m_qc->setExceptionListener(m_exp);

//0ther code here

//Deleting the objects

delete m_env;

if(m_gc !'= NULL)
m_qc->close();
delete m_qc;
delete m_exp;
delete m_qcf;
delete m_queue;
delete m_ic;

}

catch(CIMSException *e)
{

cout << e->getMessage();
e->printStackTrace();
delete e;

}

return(0);

}

Chapter 3: Writing Applications in C++ Page 25



FioranoMQ C++ RTL Native Guide

Advisory Message listeners in C++

Advisory message listener is used to receive asynchronously delivered advisory messages when the
reconnection thread is active. Using an advisory message listener is similar in principle to using a
message listener.

A C++ application must define an advisory message listener class that is based on the abstract class
CAdvisoryMessage. The advisory message listener class defined in the application must provide an
implementation of the onAdvisoryMessage() method. The application can then instantiate the class to
create an advisory message listener, and register the advisory message listener with a connection by
calling the setAdvisoryMessageListener() method. Subsequently, if C++RTL receives asynchronous
delivered advisory messages when the reconnection thread is active, the onAdvisoryMessage() method
is invoked to pass an advisory message to the application.

To stop the asynchronous reporting problems with a connection, the application can call the
setAdvisoryMessagelListener() method again, by passing a null pointer as the parameter instead of a
pointer to an advisory message listener. Unless the registration of an advisory message listener is
cancelled in this method, the advisory message listener must exist as long as the connection exists.

As the C++RTL passes a pointer to an advisory message when it calls the onAdvisoryMessage()
method, the application must release the advisory message by using the C++ delete operator.

The following code fragment provides an example of a exception listener class implementation with an
onAdvisoryMessage() method:

#include <cppHeaders.h>
#include <iostream>
using namespace std;

// Using cpp native rtl namespace
using namespace cppnativert];
class CMyAdvisoryMessageListener: public CAdvisoryMsgListener

{
public:
void onAdvisoryMessage (CAdvisoryMessage *msg)
{
try{
cout << "Advisory Message is :: " << msg->getAdvisoryMsgstring() <<endl;
cout << "state of the server is :: " << msg->getAMState() << endl;
delete msg;
}
catch (CIMSException *je)
{
je->printStackTrace();
je->clearException();
delete je;
}
}
s

int main(int argc,char* argv[])
{

CHashTable *m_env;

Chapter 3: Writing Applications in C++ Page 26



FioranoMQ C++ RTL Native Guide

CInitialContext *m_ic;

// Queue Connection Factory
CQueueConnectionFactory *m_qcf;
// Queue Connection
CQueueConnection *m_qc;

CQueue *m_queue;
CAdvisoryMsgListener *m_adv;

try

{
// Set up the environment variables
m_env = new CHashTable(Q);
m_env->Put (SECURITY_PRINCIPAL, "anonymous");
m_env->Put (SECURITY_CREDENTIALS, "anonymous") ;
m_env->Put (CONNECT_URL, "http://localhost:1856");
m_env->Put (BACKUP_URLS, "http://localhost:1956");
m_env->Put (PROVIDER_URL, "http://localhost:1856");

m_ic = new CInitialContext(m_env);

m_gcf = dynamic_cast<CQueueConnectionFactory *>(m_ic->Lookup("primaryQCF™));
if(m_gcf == 0)
{
throw new CIMSException("Connection Factory lookup failed.Error in Type
casting.");

}
m_gc = m_qcf->createQueueConnection("anonymous", "anonymous™);

m_queue = dynamic_cast<CQueue *>(m_ic->Lookup(''primaryQueue'));
if(m_queue == 0)

{

throw new CIMSException("Destination lookup failed.Error in Type casting.");

}

m_qgc = m_qcf->createQueueConnection("anonymous", "anonymous");

m_adv = new CMyAdvisoryMessagelListener();

m_qc->setAdvisoryMessageListener(adv) ;

//0ther code here

//Deleting the objects

delete m_env;

if(m_gc !'= NULL)

m_qc->close();

delete m_qc;

delete m_adv;

delete m_qcf;

delete m_queue;

delete m_ic;

}

catch(CIMSException *e)
{

cout << e->getMessage();
e->printStackTrace(Q);
delete e;

Chapter 3: Writing Applications in C++ Page 27



FioranoMQ C++ RTL Native Guide

}
return(0);

}

Lookup of Administered Objects

FioranoMQ supports lookup of administered objects using the JNDI interface. In case of the CPPRTL,
this support has been provided using the ClInitialContext class that works mostly on the lines of the
InitialContext object of JNDI. Client applications can create an object of CInitialContext and lookup

different administered objects from the FioranoMQ Server.

ClnitialContext class is the starting context for performing naming operations. The ClInitialContext is
used to lookup administered objects from the FioranoMQ JNDI store. The client application must use
Lookup method of Clnitialcontext class to retrieve the named object. The lookup method returns the
named object as CLookupHelper which can be dynamically casted at runtime to the required admin
object.

The following code fragment provides an example of a ClnitialContext class and looking up
administered objects.

#include <cppHeaders.h>
#include <iostream>
using namespace std;

// Using cpp native rtl namespace
using namespace cppnativertl;

int main(int argc,char* argv[])

{
CHashTable *m_env;
CInitialContext *m_ic;
// Queue Connection Factory
CQueueConnectionFactory *m_gcf;
// Queue Connection
CQueue *m_queue;

try

{
// Set up the environment variables
m_env = new CHashTable(Q);
m_env->Put (SECURITY_PRINCIPAL, "anonymous");
m_env->Put (SECURITY_CREDENTIALS, "anonymous") ;
m_env->Put (CONNECT_URL, "http://localhost:1856");
m_env->Put (BACKUP_URLS, "http://localhost:1956");
m_env->Put (PROVIDER_URL, "http://localhost:1856");

m_ic = new CInitialContext(m_env);
m_qgcf = dynamic_cast<CQueueConnectionFactory *>(m_ic->Lookup("primaryQCF™));

if(m_gcf = 0)
{

Chapter 3: Writing Applications in C++ Page 28



FioranoMQ C++ RTL Native Guide

throw new CIMSException("Connection Factory Tookup failed.Error in Type
casting.");

}

m_queue = dynamic_cast<CQueue *>(m_ic->Lookup("primaryQueue"));
if(m_queue == 0)

{
throw new CIMSException("Destination lookup failed.Error in Type casting.™);

}
//0ther code here

}

catch(CIMSException *e)

{
cout << e->getMessage();
e->printStackTrace();
delete e;

}

return(0);

}

Object Deletion

When an application deletes a cppnativertl object that it has created, cppnativertl releases the internal
resources that have been allocated to that object.

When an application creates a cppnativertl object, cppnativertl allocates memory and other internal
resources to the object. cppnativertl retains these internal resources until the application explicitly
deletes the object by calling the object’s close or delete method. The application should close the
MessageConsumer, MessageProducer, QueueBrowser, Requestor, Session, and Connection objects
before deleting it.

The application should close/delete MessageConsumer, MessageProducer, QueueBrowser, and
Requestor objects before closing/deleting Session object and then connection object should be
closed/deleted. Messagelistener, ExceptionListener, AdvisoryMessagelListener, and administered
objects such as Connectionfactory, Destination (Queue, Topic) should be deleted only after
closing/deleting the connection object. The cppnativertl releases the internal resources of the
associated object that has been deleted.
The following objects should be deleted in application side:

e MessageConsumer, MessageProducer, QueueBrowser and Requestor

e Session

e Connection

e Messagelistener, ExceptionListener and AdvisoryMessagelistener

e Administered objects such as Connectionfactory, Destination (Queue, Topic)

Chapter 3: Writing Applications in C++ Page 29



FioranoMQ C++ RTL Native Guide

Getting Message Properties

The CProperty class wraps the message property value, which includes the value type, size and the
value itself.

The CMessage class has a member function getPropertyNames which returns an CEnumeration
object.The CEnumeration object contains all the property names present in the received message.The
property names can be retrieved from the CEnumeration object using nextElement method.The
nextElement method returns void* and it should be type casted to const char*. By using getProperty
method of CMessage class which will return CProperty object, all the property values can be retreived.

The following code segments gives an example of using CProperty class.

class CMyMessagelListener: public CMessageListener

{

public:
void onMessage(CMessage *msg)
{

CEnumeration *propertyNames = NULL;
CTextMessage *cmsg = (CTextMessage *)msg;
propertyNames = cmsg->getPropertyNames();

CProperty *value;
while(propertyNames->hasMoreElements())
{

std: :string name;

PropertyIndex type;

name = (const char*)propertyNames->nextElement() ;
cout << "property name " << name.c_str() << endl;

value = cmsg->getProperty(name.c_str());

type = value->getPropertyType(Q);

switch(type)
{
case StringIndex:
{
mgcstring val = cmsg->getStringProperty(name.c_str());
break;
}
case O:
{
mgbyte b = cmsg->getByteProperty(name.c_str());
break;
}

case ByteArrayIndex:
cout << "ByteArray" << endl;

Chapter 3: Writing Applications in C++ Page 30



FioranoMQ C++ RTL Native Guide

//0ther datatype checks here
}

cout << "Received Message ::
delete msg;

<< cmsg->getText() <<endl;

1

Chapter 3: Writing Applications in C++ Page 31



FioranoMQ C++ RTL Native Guide

Chapter 4: FioranoMQ C++ RTL - Classes

ClLookupHelper

The CLookupHelper class is an abstract base class. The CLookupHelper helper provides methods to

lookup connection factories and destinations.

Inheritance Hierarchy

None

Subclasses
e CTopicConnectionFactory
e CQueueConnectionFactory
e CFioranoConnectionFactory
e CAdminConnectionFactory
e CGenericAdminObject
e CQueue
e CTopic

Constructors

CLookupHelper(Q)

Parameters:

Default constructor

Methods

virtual AdminObjectType getLookupObjectType() FMQCONST throw (CIMSException *) = 0

Returns the type of the looked up administered object.

Parameters: None

Returns: Returns enum AdminObjectType, the looked up Object type.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes

Page 32



FioranoMQ C++ RTL Native Guide

CinitialContext

The ClnitialContext class is used to bind to a local or a remote FioranoMQ Server in order to perform
Tookup() operations on administered objects such as Topics, Queues and Connection Factories.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CInitialcContext() throw (CIMSException *);

Initial context with default parameters

Parameters: None

CInitialContext(CHashTable *env) throw (CIMSException*);

Creates an initial context using the supplied environment variables.
Parameters: env - CHashtable to map key value pairs.

Example:

m_env->Put (SECURITY_PRINCIPAL, m_usrName);
m_env->Put (SECURITY_CREDENTIALS,m_usrPasswd) ;
m_env->Put (CONNECT_URL ,m_provideruUrL) ;
m_env->Put (BACKUP_URLS,m_backupURL) ;
m_env->Put (PROVIDER_URL ,m_providerurL) ;

Methods

CLookupHelper* Lookup(mgcstring adminObjectName) FMQCONST throw (CIMSException *);
Retrieves the named object of type CLookupHelper class. The CLookupHelper class can be dynamically
casted to one of:

e CTopicConnectionFactory

e CQueueConnectionFactory

e CFioranoConnectionFactory

e CAdminConnectionFactory

e CGenericAdminObject

e CQueue

Chapter 4: FioranoMQ C++ RTL — Classes Page 33



FioranoMQ C++ RTL Native Guide

CTopic

One can use the CLookupHelper’s getLookupObjectType() to get the type of the retrieved administered

object.

Parameters:

¢ adminObjectName: Name of the administered object to be looked up.
Returns: CLookupHelper

Exceptions: CIMSException.

CLookupHeTper* LookupTCF(mgcstring adminObjectName) FMQCONST throw (CIMSException *);

Retrieves the named administered object from FioranoMQ’s JNDI store. This method is used in the
scenario of serverless mode.

Parameters:

¢ adminObjectName - Name of the administered object to be looked up.
Returns: CLookupHelper

Exceptions: CIMSException.

CLookupHeTper* LookupQCF(mgcstring adminObjectName) FMQCONST throw (CIMSException *);

Retrieves the named administered object from FioranoMQ’s JNDI store. This method is used in the
scenario of serverless mode.

Parameters:

¢ adminObjectName - Name of the administered object to be looked up.
Returns: CLookupHelper

Exceptions: CIMSException.

CAdyvisoryMessage

The CAdvisoryMessage class defines methods that return the connection state of the application with
the server.

Inheritance Hierarchy

None

Constructors

CAdvisoryMessage(struct _MQAdvisoryMessage *msg);

CAdvisoryMessage constructor.

Chapter 4: FioranoMQ C++ RTL — Classes Page 34



FioranoMQ C++ RTL Native Guide

Parameters: The MQAdvisoryMessage structure as defined in C runtime library.

Subclasses

None

Methods

mgcstring_unicode getAdvisoryMsgString() throw (CIMSException¥®);

Gets the advisory message describing the connection status.
Parameters: None
Returns: The Advisory message string (const char*).

Exceptions: CIMSException.

mgint getAMState(Qthrow (CIMSException *);

Gets the state of the connection with the server.
Parameters: None
Returns: The state of the connection with the server.

Exceptions: CIMSException.

mgboolean isActive() throw (CIMSException *);

Returns TRUE (1) if the connection with the server is alive.
Parameters: None
Returns:
e 1 - If the connection state is active
e 0 - Inactive.

Exceptions: CIMSException.

mgboolean isRevalidating() throw (CIMSException *);

Returns TRUE (1) if the connection is trying to revalidate with the server.

Parameters: None
Returns:
e TRUE - If the connection is trying to revalidate

e FALSE - If the connection is not trying to revalidate

Chapter 4: FioranoMQ C++ RTL — Classes

Page 35



FioranoMQ C++ RTL Native Guide

Exceptions: CIMSException.

mgboolean isDisconnected() throw (CIMSException *);

Returns TRUE if the connection with the server is down.
Parameters: None
Returns:
e TRUE - If the connection is down
e FALSE - If the connection is active

Exceptions: CIMSException.

mgboolean isTransferring()throw (CIMSException *);

True if connection is transferring messages from CSP (Client Side Persistence)

Parameters: None

Returns:
e 1 -TRUE
e 0 - FALSE

Exceptions: CIJMSException.

mgboolean isTransferComplete()throw (CIMSException *);

True if connection has completed transferring CSP messages.

Parameters: None

Returns:
e 1 -TRUE
e 0 - FALSE

Exceptions: CIJMSException.

CAdyvisoryMsglistener

An application uses CAdvisoryMsgListener to receive Advisory message on the connection state.

Inheritance Hierarchy

None

Chapter 4: FioranoMQ C++ RTL — Classes

Page 36



FioranoMQ C++ RTL Native Guide

Subclasses

None

Methods

virtual void onAdvisoryMessage(CAdvisoryMessage *msg) = 0;

Application user must implement the ‘onAdvisoryMessage’ to receive Advisory messages. See more
information on Advisory Message Listeners, section Advisory Message listeners in C++.

Parameters:
e msg - CadvisoryMessage
Returns: void

Exceptions: None

CFioranoException

This is the base class for all exceptions defined in the Fiorano framework.

Inheritance Hierarchy

None

Subclasses

CJMSException

Constructors

CFioranoException(mqcstring str);

Constructs a new CFioranoException object with the provided error code string.
Parameters:
e str

e String representing the errorcode

CFioranoException(mqcstring errCode, mqgcstring errDesc);

Constructs a new CFioranoException object with the provided error code string and error description.
Parameters:
e errCode

e String representing the error code

Chapter 4: FioranoMQ C++ RTL — Classes Page 37



FioranoMQ C++ RTL Native Guide

e errDesc

e String representing the error description

Methods

static void checkForeException() throw (CIMSException *)

Utility function that throws CIMSException if an exception had occurred.
Parameters: None
Returns: void

Exceptions: CJMSException

static void checkForeException(mgcstring errcCode)
Overloaded utility function that throws CIMSException if an exception had occurred with the provided
errCode.
Parameters:
e errCode
e String represting the errorcode

Returns: void

static void checkForeException(mgcstring errCode, mqcstring errbDesc)
Overloaded utility function that throws CIMSException if an exception had occurred with the provided
errCode and errDesc.
Parameters:
e errCode: The error code that identifies the error
e errDesc: Description of the error

Returns: void
const DN_STRING getLastErrorcCode() FMQCONST
Returns the last error code as string

Parameters: None

Returns: DN_STRING(mgqstring)
const DN_STRING getMessage() FMQCONST
The associated error message can be read.

Parameters: None

Returns: DN_STRING(mqstring)

Chapter 4: FioranoMQ C++ RTL — Classes Page 38



FioranoMQ C++ RTL Native Guide

CJMSException

Constructs a CIMSException with the specified reason and with the error code.

Inheritance Hierarchy

cppnativertl::CFioranoException

> cppnativertl::CIMSException

Subclasses

None

Constructors

CIMSException(mgcstring errcCode)

Constructs a new CIMSException object with the provided error code string.
Parameters:

e errCode: The error code that identifies the error

CIMSException(mgcstring errCode, mqcstring errbDesc)

Constructs a new CIMSException object with the provided error code string and error description.
Parameters:
e errCode: The error code that identifies the error

e errDesc: Description of the error

CIMSException(mgcstring errCode, CIMSException *1inkedException)

Constructs a new CIMSException object with the provided error code string and linked exception.
Parameters:

e errCode: The error code that identifies the error

Chapter 4: FioranoMQ C++ RTL — Classes Page 39



FioranoMQ C++ RTL Native Guide

e linkedException: The pointer to the CIMSException which acts as linked exception

CIMSException(mgcstring errCode, mgcstring errDesc, CIMSException *1inkedException)
Constructs a new CIMSException object with the provided error code string and linked exception and
error description.
Parameters:
e errCode: The error code that identifies the error
e errDesc: Description of the error

e linkedException: The pointer to the CIMSException which acts as linked exception.

Methods
void printStackTrace()
Prints the function stack trace on the console.

Parameters: None

Returns: void

const DN_STRING getStackTrace()

Gets the stack trace of the function.
Parameters: None

Returns: Returns the stack trace as DN_STRING (mgstring).

const DN_STRING getErrorCode()

Gets the vendor specific error code.
Parameters: None

Returns: The vendor specific error code.

CIMSException *getLinkedException()

Gets the exception linked to this one.
Parameters: None

Returns: The linked exception

Chapter 4: FioranoMQ C++ RTL — Classes Page 40



FioranoMQ C++ RTL Native Guide

CExceptionlistener
If FioranoMQ cpp detects a serious problem with a CConnection object, it informs the CConnection

object's CExceptionListener, if one has been registered. It does this by calling the listener's
onException method, passing it a CIJMSException argument describing the problem.

Inheritance Hierarchy

None

Subclasses

None

Constructors

Default

Methods

virtual void onException(CFioranoException *msg) = 0

Notifies the user of JMS exception. The user is expected to override this function with the required
functionality.

Parameters
e Msg: Message handle

Returns: Void

CMessagelistener

A CMessagelistener object is used to receive asynchronously delivered messages. Passes a message
to the listener.

Inheritance Hierarchy

None

Subclasses

None

Constructors

Default

Chapter 4: FioranoMQ C++ RTL — Classes Page 41



FioranoMQ C++ RTL Native Guide

Methods

virtual void onMessage(CMessage *msg) = 0

Notifies the user with message received. The user is expected to override this function with the
required functionality.

Parameters

e Msg: The message passed to the listener

Returns: Void

CAdminConnectionFactory

The Admin connection Factory used for creating Admin connections to the FioranoMQ Server.

Inheritance Hierarchy

cppnativertl:CLookupHelper

cppnativertl: :CAdminConnectionFactory

Subclasses

None

Constructors

CAdminConnectionFactory (struct _AdminConnectionFactory *pacf);

Parameters:

e pacf - pointer to the AdminConnectionFactory C structure.

Methods

CAdminConnection *createAdminConnection(mgcstring username, mgcstring password) throw
(CIMSException *);

Creates an Admin connection with the FioranoMQ Server using the specified user credentials. The
username provided must belong to the Administrators group of FioranoMQ Security realm.
Parameters:

e username: user who belongs Administrators group of Fiorano Security realm

Chapter 4: FioranoMQ C++ RTL — Classes Page 42



FioranoMQ C++ RTL Native Guide

e password: password
Returns: CAdminConnection

Exceptions: CIMSException

CAdminConnection *createAdminConnectionDefParams() throw (CIMSException *);

Creates an Admin connection with the FioranoMQ Server using default credentials.
Parameters: None
Returns: CAdminConnection

Exceptions: CIMSException

AdminobjectType getLookupObjectType() FMQCONST throw (CIMSException *);

This function will returns the type of looked up Object. The return value AdminObjectType is enum of:

e OBJID_QCF, (QueueConnectionFactory )
e OBIJID_TCF, (TopicConnectionFactory )
e OBIJID_QUEUE, (Queue destination )
e OBIJID_TOPIC, (Topic destination )
e OBIJID_GAO, (GenericAdminObject)
e OBIJID_ACF, (AdminConnectionFactory)
e OBIJID_UCF, (UnifiedConnectionFactory)

Parameters: None

Returns: AdminObjectType

Exceptions: CIMSException

CConnectionFactory
A ConnectionFactory object encapsulates a set of connection configuration parameters that has been

defined by an administrator. A client uses it to create a connection with a JMS provider. The
CConnectionFactory is an abstract base class.

Inheritance Hierarchy

None

Subclasses
e CFioranoConnectionFactory

e CQueueConnectionFactory

Chapter 4: FioranoMQ C++ RTL — Classes Page 43



FioranoMQ C++ RTL Native Guide

e CTopicConnectionFactory

Methods

virtual CConnection *createConnection() throw (CIMSException *) = 0;
Creates a connection with the default user identity. The connection is created in stopped mode. No
messages will be delivered until the Connection.start() method is explicitly called.

Parameters: None

Returns: CConnection object

Exceptions: CJIMSException

virtual CConnection *createConnection(mgcstring username, mgcstring password)throw
(CIMSException *) = 0;

Creates a connection with the specified user identity. The connection is created in stopped mode. No
messages will be delivered until the Connection.start method is explicitly called. If NULL values are
passed as parameters, then it considers the default identity.

Parameters:
e username - The caller’s user name
e password - The caller’s password
Returns: CConnection object

Exceptions: CJIMSException

CFioranoConnectionFactory

A client uses a CFioranoConnectionFactory object to create unified Connection objects to use with PTP
and PubSub messaging models.

Inheritance Hierarchy

cppnativertl: :CConnectionFactory, cppnativertl: :CLookupHelper

cppnativertl: :CFioranoConnectionFactory

Subclasses

None

Chapter 4: FioranoMQ C++ RTL — Classes Page 44



FioranoMQ C++ RTL Native Guide

Constructors

CFioranoConnectionFactory(struct _ConnectionFactory *pcf);
Parameters:

e pcf - pointer to the ConnectionFactory C structure.

CFioranoConnectionFactory();

Parameters: None

CFioranoConnectionFactory(CHashTable *env, mgstring connectionFactoryName)throw
(CIMSException *);

Creates a ConnectionFactory with the specified name and specified environment variables
without using JNDI lookup.
Parameters:

e env - CHashTable contains the specified environment variables.

e connectionFactoryName - Name of the ConnectionFactory

Exceptions: CIMSException

Methods

CConnection *createConnection() throw (CIMSException *);
Creates a unified connection with the default user identity. The connection is created in stopped mode.
No messages will be delivered until the Connection.start method is explicitly called.

Parameters: None

Returns: CConnection object

Exceptions: CIMSException

CConnection *createConnection(mgcstring username, mgcstring password) throw(CIMSException *);
Creates a unified connection with the default user identity. The connection is created in stopped mode.
No messages will be delivered until the Connection.start() method is explicitly called.
Parameters:
e username - The caller’s user name
e password - The caller’s password
Returns: CConnection object

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 45



FioranoMQ C++ RTL Native Guide

AdminobjectType getLookupObjectType() FMQCONST throw (CIMSException *);

This function returns the type of looked up Object. The return value AdminObjectType is enum of:

OBJID_QCF, (QueueConnectionFactory )
OBJID_TCF, (TopicConnectionFactory )
OBJID_QUEUE, (Queue destination )
OBJID_TOPIC, (Topic destination )
OBJID_GAO, (GenericAdminObject)
OBJID_ACF, (AdminConnectionFactory)
OBJID_UCF, (UnifiedConnectionFactory)

Parameters: None

Returns: AdminObjectType

Exceptions: CIMSException

CQueueConnectionFactory

A client uses a CQueueConnectionFactory object to create CQueueConnection objects with a point-to-
point JMS provider.

Inheritance Hierarchy

cppnativertl::CConnectionFactory, cppnativertl::CLookupHelper

Subclasses

None

Constructors

cppnativertl: :CQueueConnectionFactory

CQueueConnectionFactory(struct _QueueConnectionFactory *pqcf);

Parameters:

e Pqcf - pointer to the QueueConnectionFactory C structure.

Chapter 4: FioranoMQ C++ RTL — Classes

Page 46



FioranoMQ C++ RTL Native Guide

CQueueConnectionFactory (CHashTable* env,mgstring gcfName)throw (CJIMSException *);

Creates a new QueueConnectionFactory with the specified name and with the
specified properties on the hashtable, without using JNDI lookup.
Parameters:

e env - CHashTable contains the specified environment variables.

e gcfName - Name of the QueueConnectionFactory

Exceptions: CIMSException

Methods

CQueueConnection *createQueueConnection() throw (CIMSException *);
Creates a queue connection with the default user identity. The connection is created in stopped mode.
No messages will be delivered until the Connection.start method is explicitly called.

Parameters: None

Returns: CQueueConnection object

Exceptions: CJMSException

CQueueConnection *createQueueConnection(mqcstring username, mqcstring password) throw
(CIMSException *);

Creates a queue connection with the default user identity. The connection is created in stopped mode.
No messages will be delivered until the Connection.start method is explicitly called.
Parameters:
e username - The caller’'s user name
e password - The caller’s password
Returns: CQueueConnection object

Exceptions: CJMSException

AdminobjectType getLookupObjectType() FMQCONST throw (CIMSException *);

This function will returns the type of looked up Object. The return value AdminObjectType is enum of:
e OBJID_QCF, (QueueConnectionFactory )
e OBIJID_TCF, (TopicConnectionFactory )
e OBJID_QUEUE, (Queue destination )
e OBJID_TOPIC, (Topic destination )
e OBJID_GAO, (GenericAdminObject)
e OBIJID_ACF, (AdminConnectionFactory)

Chapter 4: FioranoMQ C++ RTL — Classes Page 47



FioranoMQ C++ RTL Native Guide

e OBJID_UCF, (UnifiedConnectionFactory)
Parameters: None
Returns: AdminObjectType
Exceptions: CIMSException

Inherited Methods

CreateConnection, getLookupObjectType

CTopicConnectionFactory

A client uses a CTopicConnectionFactory object to create CTopicConnection objects with a PubSub JMS
provider.

Inheritance Hierarchy

cppnativertl: :CConnectionFactory, cppnativertl::CLookuoHelper

cppnativertl: :CTopicConnectionFactory

Subclasses

None

Constructors

CTopicConnectionFactory(struct _TopicConnectionFactory *ptcf);
Parameters:

e ptcf — pointer to the TopicConnectionFactory C structure.

CTopicConnectionFactory(CHashTable *env,mgstring tcfName)throw (CIMSException *);

Creates a new TopicConnectionFactory with the specified name and with the specified properties on
the hashtable, without using JNDI lookup.

Parameters:

Chapter 4: FioranoMQ C++ RTL — Classes Page 48



FioranoMQ C++ RTL Native Guide

e env - CHashTable contains the specified environment variables.

e tcfName - Name of the TopicConnectionFactory

Exceptions: CIMSException

Methods

CTopicConnection *createTopicConnection() throw (CIMSException *);

Creates a topic connection with the default user identity. The connection is created in stopped mode.
No messages will be delivered until the Connection.start() or simple start() method is explicitly
called.

Parameters: None
Returns: CTopicConnection object

Exceptions: CIMSException

CTopicConnection *createTopicConnection(mqcstring username, mqcstring password) throw
(CIMSException *);

Creates a topic connection with the default user identity. The connection is created in stopped mode.
No messages will be delivered until the Connection.start method is explicitly called.
Parameters:
e username - The caller’s user name
e password - The caller’s password
Returns: CTopicConnection object

Exceptions: CJMSException

AdminobjectType getLookupObjectType() FMQCONST throw (CIMSException *);

This function will returns the type of looked up Object. The return value AdminObjectType is enum of:
e OBJID_QCF, (QueueConnectionFactory )
e OBIJID_TCF, (TopicConnectionFactory )
e OBJID_QUEUE, (Queue destination )
e OBJID_TOPIC, (Topic destination )
e OBJID_GAO, (GenericAdminObject)
e OBIJID_ACF, (AdminConnectionFactory)
e OBIJID_UCF, (UnifiedConnectionFactory)

Chapter 4: FioranoMQ C++ RTL — Classes Page 49



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns: AdminObjectType
Exceptions: CIMSException

Inherited Methods

CreateConnection, getLookupObjectType

CAdminConnection

AdminConnectionFactories are used to create AdminConnections with the FioranoMQ Server. The
AdminConnection is created with the server running on the ConnectURL specified in the
AdminConnectionFactory and if the same is unavailable then the RTL tries to make a connection with a
BackupURL, if any. AdminConnections can be created using default user identity ("admin","passwd" in
case of FioranoMQ) or by specifying a username and password.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CAdminConnection()
The default constructor.

Parameters: None

CAdminConnection(struct _AdminConnection®* pAdminConn)
Parameters:

e pAdminConn - AdminConnection structure defined in C runtime.

Methods

CMQAdminService* getMQAdminService() FMQCONST throw (CIMSException®)

A MQAdminService object provides methods for creating and deleting Queues,
Topics,QueueConnectionFactory and TopicConnectionFactory objects. Various get/set methods specify
the object properties to and from the server.

Chapter 4: FioranoMQ C++ RTL — Classes Page 50



FioranoMQ C++ RTL Native Guide

Returns: A newly created admin connection.
Parameters: None

Exceptions: CIMSException

void close() throw (CIMSException¥)

Closes the connection.
Returns: Void
Parameters: None

Exceptions: CIMSException

void setAdvisoryMessageListener(const CAdvisoryMsgListener *advMsgListener) throw
(CIMSException *);

Sets the Advisory Message listener to the connection. The user application should implement the
‘onAdvisoryMessage’ method to receive any state change event that happens on this connection. For
more information refer to section on Advisory Message listeners in C++.

Parameters:
e advMsgListener - the CAdvisoryMsgListener
Returns: Void

Exceptions: CIMSException

CConnection

A Connection object is a client's active connection to its JMS provider.

Inheritance Hierarchy

None

Subclasses
e CFioranoConnection
e CQueueConnection

e CTopicConnection

Methods

virtual void close() throw (CIMSException *) = 0;

Closes the connection. If an application tries to close a connection that is already closed, the call is
ignored. Closing a connection causes all temporary destinations to be deleted.

Chapter 4: FioranoMQ C++ RTL — Classes Page 51



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns: Void

Exceptions: CIMSException.

virtual CIMSSession *createSession(const mgboolean transacted, const mgint acknowledgeMode)
throw (CIMSException *) = 0;
Creates a CIMSSession object.
Parameters:
e transacted - Indicates whether the session is transacted.

¢ acknowledgeMode: indicates whether the consumer or the client will acknowledge any
messages it receives; ignored if the session is transacted. Legal values are
AUTO ACKNOWLEDGE, CLIENT ACKNOWLEDGE, and DUPS OK ACKNOWLEDGE.

Returns: CIMSSession object

Exceptions: CIMSException.

virtual mgcstring getClientID() FMQCONST throw (CIMSException *) = 0;

Gets the client identifier for this connection. This value is specific to the JMS provider. It is either
preconfigured by an administrator in a ConnectionFactory object or assigned dynamically by the
application by calling the setClientID method.

Parameters: None
Returns: The client id of this connection.

Exceptions: CIMSException.

virtual CExceptionListener *getExceptionListener() FMQCONST throw (CIMSException *) = 0;

Get a pointer to the exception listener that is registered with the connection.
Parameters: None
Returns: Pointer to the exception listener.

Exceptions: CIMSException.

virtual void setExceptionListener(const CExceptionListener * exceptionListener) throw
(CIMSException *) = 0;

Sets an exception listener for this connection. If a JMS provider detects a serious problem with a
connection, it informs the connection's ExceptionListener, if one has been registered. It does this by
calling the listener's onException method, passing it a JMSException object describing the problem.

An exception listener allows a client to be notified of a problem asynchronously. Some connections
only consume messages, so they would have no other way to learn their connection has failed.

Chapter 4: FioranoMQ C++ RTL — Classes Page 52



FioranoMQ C++ RTL Native Guide

Parameters:

e exceptionListener: A pointer to the exception listener. If an exception listener is
already registered with the connection, you can cancel the registration by
specifying a null pointer instead.

Returns: Void

Exceptions: CIMSException

virtual void setClientID(mqcstring clientID) throw (CIMSException *) = 0;

Set a client identifier for the connection. If an application calls this method to set a client identifier for
a connection, the application must do so immediately after creating the connection, and before
performing any other operation on the connection.

Parameters:
e clientID: The unique client identifier.
Returns: Void

Exceptions: CIMSException

virtual void start() FMQCONST throw (CIMSException *) = 0;
Starts (or restarts) a connection's delivery of incoming messages. A call to start on a connection that
has already been started is ignored.

Parameters: None

Returns: Void

Exceptions: CIMSException

virtual void stop() FMQCONST throw (CIMSException *) = 0;

Temporarily stops a connection's delivery of incoming messages. Delivery can be restarted using the
connection's start method. When the connection is stopped, delivery to all the connection's message
consumers is inhibited: synchronous receives block, and messages are not delivered to message
listeners. Stopping a connection has no effect on its ability to send messages. A call to stop on a
connection that has already been stopped is ignored.

Parameters: None
Returns: Void

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 53



FioranoMQ C++ RTL Native Guide

CFioranoConnection

CFioranoConnection represents the Unified messaging model, where it can be used for both Point-to-
Point and Pub/Sub messaging domains. Each CFioranoConnection creates a CQueueConnection and

CTopicConnection based on the destination type used for sending/Receiving messages.

Inheritance Hierarchy

cppnativertl::CConnection

cppnativertl::CFioranoConnection

Subclasses

None

Constructors
e CFioranoConnection() throw (CIMSException *);
e Creates defualt Fiorano Unified Connection.
Parameters: None

Exceptions: CIMSException

CFioranoConnection(struct _FioranoConnection* pfc)throw (CIMSException *);

Creates CFioranoConnection object.
Parameters:
e Pfc - pointer to FioranoConnection structure.

Exceptions: CIMSException

Methods

mgcstring getUnifiedConnectionID() FMQCONST throw (CIMSException *);

Gets the CFioranoConnection’s unique connection ID.
Parameters: None
Returns: The connection id as const char*.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes

Page 54



FioranoMQ C++ RTL Native Guide

void setunifiedConnectionID(mgcstring ucId) throw (CIMSException *);

Sets connection id for Unified connection. The unified connection id is different from Queue Connection
id or topic connection id. Each Queue/Topic connection ids in a unified connection will have a common
unified connection id.

Parameters:
e ucld - connection id as const char*.
Returns: void

Exceptions: CIMSException

CIMSSession *createQueueSession(const mgboolean isTransacted, const mgint ackMode)throw
(CIMSException *);
Creates Queue Session.
Parameters:
e isTransacted - If the session has to be transacted or not.

e ackMode: indicates whether the consumer or the client will acknowledge any
messages it receives; ignored if the session is transacted. Legal values are
AUTO ACKNOWLEDGE, CLIENT ACKNOWLEDGE, and DUPS OK ACKNOWLEDGE.

Returns: CIJMSSession

Exceptions: CIMSException

CIMSSession *createTopicSession(const mgboolean isTransacted, const mqint ackmode) throw
(CIMSException *);
Creates Topic session.
Parameters:
e isTransacted - If the session has to be transacted or not.

e ackMode: indicates whether the consumer or the client will acknowledge any
messages it receives; ignored if the session is transacted. Legal values are
AUTO ACKNOWLEDGE, CLIENT ACKNOWLEDGE, and DUPS OK ACKNOWLEDGE.

Returns: CIMSSession

Exceptions: CIMSException

void setAdvisoryMessagelistener (const CAdvisoryMsgListener *advMsgListener) throw
(CIMSException *);

Sets the Advisory Message listener to the unified connection. The user application should implement
the “onAdvisoryMessage” method to receive any state change event that happens on this

connection. For more information refer to section on Advisory Message listeners in C++.

Parameters: advMsgListener: the CAdvisoryMsgListener

Chapter 4: FioranoMQ C++ RTL — Classes Page 55



FioranoMQ C++ RTL Native Guide

Returns: Void
Exceptions: CIMSException

void setExceptionlListener (const CExceptionlListener *exceptionlListener)throw (CJIJMSException

*);

Sets an exception listener for this unified connection. If a JMS provider detects a serious problem with
a connection, it informs the connection's ExceptionListener, if one has been registered. It does

this by calling the listener's onException method, passing it a JMSException object describing

the problem. An exception listener allows a client to be notified of a problem asynchronously. Some
connections only consume messages, so they would have no other way to learn their

connection has failed.

Parameters:

exceptionListener: A pointer to the exception listener. If an exception listener is already registered
with the connection, you can cancel the registration by specifying a null pointer instead.

Returns: Void

Exceptions: CIMSException

CQueueConnection

A CQueueConnection object is an active connection to a point-to-point JMS provider. A client uses a
CQueueConnection object to create one or more CQueueSession objects for producing and consuming
messages.

Inheritance Hierarchy

cppnativertl::CConnection

cppnativertl: :CQueueConnection

Subclasses

None

Constructors
CQueueConnection(struct _QueueConnection *pqc) throw (CIMSException *);
Creates CQueueConnection Object.

Parameters:

e Pqc - pointer to _QueueConnection C structure.

Chapter 4: FioranoMQ C++ RTL — Classes Page 56



FioranoMQ C++ RTL Native Guide

Exceptions: CIMSException

Methods

CQueueSession *createQueueSession(mgboolean transacted, mgint acknowledgeMode) throw
(CIMSException *);

CIMSSession *createSession(const mgboolean transacted, const mgint acknowledgeMode)throw
(CIMSException *);
Creates a Queue Session Object.
Parameters:
e transacted - If the session has to be transacted or not.

e acknowledgeMode: indicates whether the consumer or the client will acknowledge
any messages it receives; ignored if the session is transacted. Legal values are
AUTO ACKNOWLEDGE, CLIENT ACKNOWLEDGE, and DUPS OK ACKNOWLEDGE.

Returns: CQueueSession

Exceptions: CIMSException

void setAdvisoryMessageListener(const CAdvisoryMsgListener *advMsgListener) throw
(CIMSException *);

Sets the Advisory Message listener to the connection. The user application should implement the
‘onAdvisoryMessage’ method to receive any state change event that happens on this connection. For
more information refer to section on Advisory Message listeners in C++.

Parameters:
e advMsgListener: the CAdvisoryMsgListener
Returns: Void

Exceptions: CIMSException

mgboolean revalidate() throw (CIMSException *);
Revalidate and reconnect this connection with the MQ server. This method should be used only if the
‘Auto-Revalidation’ feature is disabled.
Parameters: None
Returns:
e 1 - If the revalidation is successful
e 0 - If the revalidation fails.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 57



FioranoMQ C++ RTL Native Guide

CTopicConnection

A CTopicConnection object is an active connection to a publish/subscribe JMS provider. A client uses a

CTopicConnection object to create one or more CTopicSession objects for producing and consuming
messages.

Inheritance Hierarchy

cppnativertl::CConnection

cppnativertl:: CTopicConnection

Subclasses

None

Constructors

CTopicConnection(struct _TopicConnection *ptc) throw (CIMSException *);
Creates CTopicConnection Object.
Parameters:
e ptc - pointer to _TopicConnection C structure.

Exceptions: CIMSException

Methods

CTopicSession *createTopicSession(mgboolean transacted, mqgint acknowledgeMode) throw
(CIMSException *);

CIMSSession *createSession(const mgboolean transacted, const mgint acknowledgeMode)throw
(CIMSException *);
Creates a Topic Session Object.
Parameters:
e transacted - If the session has to be transacted or not.

e acknowledgeMode: indicates whether the consumer or the client will acknowledge
any messages it receives; ignored if the session is transacted. Legal values are
AUTO ACKNOWLEDGE, CLIENT ACKNOWLEDGE, and DUPS OK ACKNOWLEDGE.

Returns: CTopicSession

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 58



FioranoMQ C++ RTL Native Guide

void setAdvisoryMessagelListener(const CAdvisoryMsgListener *advMsgListener) throw
(CIMSException *);

Sets the Advisory Message listener to the connection. The user application should implement the
‘onAdvisoryMessage’ method to receive any state change event that happens on this connection. For
more information refer to section on Advisory Message listeners in C++.

Parameters:
e advMsgLlistener - the CAdvisoryMsgListener
Returns: Void

Exceptions: CIMSException

mgboolean revalidate() throw (CIMSException *);
Revalidate and reconnect this connection with the MQ server. This method should be used only if the
‘Auto-Revalidation’ feature is disabled.
Parameters: None
Returns:
e 1 - If the revalidation is successful
e 0 - If the revalidation fails.

Exceptions: CIMSException

CJMSSession

CIMSSession is an abstract base class. A CIMSSession object is a single-threaded context for
producing and consuming messages. It is considered a lightweight JMS object.

Inheritance Hierarchy

None

Subclasses
e CTopicSession
e CQueueSession

e CFioranoSession

Methods

virtual void close()throw (CIMSException *) = 0;

Closes the session. If the session is transacted, any transaction in progress is rolled back. This call will
block until a receive call or message listener in progress has completed. A blocked message
consumer’s receive call returns NULL when this session is closed.

Chapter 4: FioranoMQ C++ RTL — Classes Page 59



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns: Void

Exceptions: CIMSException

virtual void conmit() throw (CIMSException *) = 0;

Commit all messages in the current transaction only if the session is set as transacted.
Parameters: None
Returns: Void

Exceptions: CIMSException

virtual CQueueBrowser *createBrowser(const CQueue *q) FMQCONST throw (CIMSException *) = 0;

Creates a CQueueBrowser object to look at the messages on the specified queue.
Parameters: CQueue object to access.
Returns: The CQueueBrowser object.

Exceptions: CIMSException

virtual CQueueBrowser *createBrowser(const CQueue *queue, mgcstring messageSelector) FMQCONST
throw (CIMSException *) = 0;

Creates a QueueBrowser object to look at the messages on the specified queue using a message
selector.
Parameters:
e Queue: CQueue object to access.

e messageSelector: only messages with properties matching the message selector
expression are delivered. A value of null or an empty string indicates that there is no
message selector for the message consumer.

Returns: The CQueueBrowser object.

Exceptions: CIMSException

virtual CTopicSubscriber *createburableSubscriber(const CTopic *topic, mgcstring name)
FMQCONST throw (CIMSException *) = 0;

Creates a durable subscriber to the specified topic. If a client needs to receive all the messages
published on a topic, including the ones published while the subscriber is inactive, it uses a durable
TopicSubscriber. The JMS provider retains a record of this durable subscription and ensures that all
messages from the topic's publishers are retained until they are acknowledged by this durable
subscriber or they have expired.

Chapter 4: FioranoMQ C++ RTL — Classes Page 60



FioranoMQ C++ RTL Native Guide

Sessions with durable subscribers must always provide the same client identifier. Additionally, each
client must specify a name that uniquely identifies (within client identifier) each durable subscription it
creates. Only one session at a time can have a TopicSubscriber for a particular durable subscription.

A client can change an existing durable subscription by creating a durable TopicSubscriber with the
same name, a new topic and/or message selector. Changing a durable subscriber is equivalent to
unsubscribing (deleting) the old one and creating a new one.

Parameters:

e topic: the non-temporary Topic to subscribe to

¢ name: the name used to identify this subscription
Returns: The TopicSubscriber Object.
Exceptions: CIMSException.

virtual CTopicSubscriber *createburableSubscriber(const CTopic *topic, mqcstring name,
mgcstring messageSelector, mgboolean noLocal) FMQCONST throw (CIMSException *) = 0;

Creates a durable subscriber to the specified topic, using a message selector and specifying whether
messages published by its own connection should be delivered to it.
Parameters:
e topic: the non-temporary Topic to subscribe to
e name: the name used to identify this subscription

e messageSelector: only messages with properties matching the message selector
expression are delivered. A value of null or an empty string indicates that there is no
message selector for the message consumer.

e nolocal: if set, inhibits the delivery of messages published by its own connection
Returns: The TopicSubscriber Object.
Exceptions: CJIMSException.

virtual CMapMessage *createMapMessage() FMQCONST throw (CIMSException *) = 0;

Creates a Map Message.
Parameters: None
Returns: The CMapMessage Object.
Exceptions: CJIMSException.

virtual CMessage *createMessage()FMQCONST throw (CIMSException *) = 0;

Creates a message that has no body.

Chapter 4: FioranoMQ C++ RTL — Classes Page 61



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns: The CMessage Object.
Exceptions: CIMSException.

virtual CObjectMessage *createObjectMessage() FMQCONST throw (CIMSException *) = 0;

Creates an Object Message.
Parameters: None
Returns: The CObjectMessage Object.
Exceptions: CIMSException.

virtual CQueue *createQueue(mgcstring queueName) FMQCONST throw (CIMSException *) = 0;

Creates a Queue destination in the messaging server with the specified queueName as mqctsring.
Parameters:
¢ queueName - name of the Queue (Destination) on the MQ Server.
Returns: The CQueue Object.
Exceptions: CIMSException.

virtual CStreamMessage *createStreamMessage() FMQCONST throw (CIMSException *) = 0;

Creates a CStreamMessage.
Parameters: None
Returns: The CStreamMessage Object.
Exceptions: CIMSException.

virtual CTemporaryQueue *createTemporaryQueue() FMQCONST throw (CIMSException *) = 0;

Creates a TemporaryQueue object. Its lifetime will be that of the Connection unless it is deleted earlier.
Parameters: None
Returns: The CTemporaryQueue Object.
Exceptions: CIMSException.

virtual CTemporaryTopic *createTemporaryTopic() FMQCONST throw (CIMSException *) = 0;

Creates a TemporaryTopic object. Its lifetime will be that of the Connection unless it is deleted earlier.

Chapter 4: FioranoMQ C++ RTL — Classes Page 62



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns: The CTemporaryTopic Object.
Exceptions: CIMSException.

virtual CTextMessage *createTextMessage() FMQCONST throw (CIMSException *) = 0;

Creates a TextMessage with empty body.
Parameters: None
Returns: The CTextMessage Object.
Exceptions: CIMSException.

virtual CTextMessage *createTextMessage(mqcstring text) FMQCONST throw (CIMSException *) = 0;

Creates a TextMessage initialised with text provided.
Parameters:
e text: message in the form of const char*
Returns: The CTextMessage Object.
Exceptions: CIMSException.

virtual CTopic *createTopic(mgcstring topicName) FMQCONST throw (CIMSException *) = 0;

Creates a Topic destination in the messaging server.
Parameters:
e topicName: name of the Topic in the form of const char*
Returns: The CTopic Object.
Exceptions: CIMSException.

virtual CMessagelListener *getMessageListener() FMQCONST throw (CIMSException *) = 0;

Returns the session's distinguished message listener.
Parameters: None
Returns: The CMessagelistener Object.

Exceptions: CIMSException.

virtual mgboolean getTransacted() FMQCONST throw (CIMSException *) = 0;

Indicates whether the session is transacted or not.

Chapter 4: FioranoMQ C++ RTL — Classes Page 63



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns:

e 1 - Transacted

e 0: Non-Transacted.

Exceptions: CIMSException.

virtual void recover()throw (CIMSException *) = 0;

Stops message delivery in this session and restarts message delivery with the oldest unacknowledged
message.

All consumers deliver messages in a serial order. Acknowledging a received message automatically
acknowledges all messages that have been delivered to the client. This session must be a Non-
Transacted one.

Restarting a session causes it to take the following actions:

e Stop message delivery

e Mark all messages that might have been delivered but not acknowledged as
"redelivered"

e Restart the delivery sequence including all unacknowledged messages that had been
previously delivered. Redelivered messages do not have to be delivered in exactly
their original delivery order.

Parameters: None
Returns: Void

Exceptions: CIMSException.

virtual void rollback() throw (CIMSException *) = O;

Rolls back any messages done in this transaction. The Session must be Transacted.
Parameters: None
Returns: Void

Exceptions: CIMSException.

virtual void setMessageListener(const CMessageListener *messagelListener)throw (CIMSException
*) = 0;

Sets the session's distinguished message listener.

Chapter 4: FioranoMQ C++ RTL — Classes Page 64



FioranoMQ C++ RTL Native Guide

Parameters: messagelistener
Returns: Void

Exceptions: CIMSException.

virtual void unsubscribe(mqcstring name) throw (CIMSException *) = 0;

Unsubscribes a durable subscription that has been created by a client. This method deletes the state
being maintained on behalf of the subscriber by its provider. It is erroneous for a client to delete a
durable subscription while there is an active MessageConsumer or TopicSubscriber for the subscription,
or while a consumed message is part of a pending transaction or has not been acknowledged in the
session.
Note: It is recommended to unsubscribe the subscription after closing the Subscriber.

Parameters:

e name - Subscription name used to identify the durable subscriber.
Returns: Void

Exceptions: CIMSException.

CFioranoSession

The CFioranoSession class provides a unified Session object and provides methods to create producers
and consumers.

CFioranoMessageConsumer *createConsumer(const CDestination *dest) FMQCONST throw
(CIMSException *);

Creates a CFioranoMessageConsumer for the specified destination. Since Queue and Topic both inherit
from Destination, they can be used in the destination parameter to create a
CFioranoMessagecConsumer.

Parameters:
e dest - destination to consume messages
Returns: CFioranoMessageConsumer

Exceptions: CIMSException.

CFioranoMessageConsumer *createConsumer(const CDestination *dest, mgcstring messageSelector,
mgboolean noLocal) FMQCONST throw (CIMSException *);

Creates MessageConsumer for the specified destination, using a message selector. This method can
specify whether messages published by its own connection should be delivered to it, if the destination
is a topic.

Chapter 4: FioranoMQ C++ RTL — Classes Page 65



FioranoMQ C++ RTL Native Guide

Since Queue and Topic both inherit from Destination, they can be used in the destination parameter to
create a MessageConsumer. A client uses a MessageConsumer object to receive messages that have
been published to a destination. In some cases, a connection may both publish and subscribe to a
topic. The consumer NolLocal attribute allows a consumer to inhibit the delivery of messages published
by its own connection. The default value for this attribute is False. The noLocal value must be
supported by destinations that are topics.

Parameters:
e dest - destination to consume messages

e messageSelector: only messages with properties matching the message selector
expression are delivered. A value of null or an empty string indicates that there is no
message selector for the message consumer.

e Nolocal: if true, and the destination is a topic, inhibits the delivery of messages
published by its own connection. The behavior for NoLocal is not specified if the
destination is a queue.

Returns: CFioranoMessageConsumer

Exceptions: CJMSException.

CFioranoMessageProducer *createProducer(const CDestination *dest) FMQCONST throw
(CIMSException *);

Creates a MessageProducer to send messages to the specified destination. A client uses a
CFioranoMessageProducer object to send messages to a destination. Since Queue and Topic both
inherit from Destination, they can be used in the destination parameter to create a
CFioranoMessageProducer object.

Parameters:
e dest - destination to publish messages
Returns: CFioranoMessageProducer

Exceptions: CJMSException.

CQuevueSession

The CQueueSession class provides methods for creating CQueueReceiver, CQueueSender,
CQueueBrowser, and CTemporaryQueue objects.

CQueueReceiver *createReceiver(const CQueue *queue) FMQCONST throw (CIMSException *);

Creates a CQueueReceiver object to receive messages from the specified queue.
Parameters:
e queue - Queue destination to access.
Returns: CQueueReceiver object

Exceptions: CIMSException.

Chapter 4: FioranoMQ C++ RTL — Classes Page 66



FioranoMQ C++ RTL Native Guide

CQueueReceiver *createReceiver(const CQueue *queue, mgcstring messageSelector) FMQCONST throw
(CIMSException *);

Creates a CQueueReceiver object to receive messages from the specified queue using a
message selector.

Parameters:
e queue - Queue destination to access.

e messageSelector: only messages with properties matching the message selector
expression are delivered. A value of null or an empty string indicates that there is no
message selector for the message consumer.

Returns: CQueueReceiver object

Exceptions: CIMSException.

CQueueSender *createSender(const CQueue *queue) FMQCONST throw (CIMSException *);
Creates a CQueueSender object to send messages to the specified queue.
Parameters:

e queue - Queue destination to access, or null if this is an unidentified producer
Returns: CQueueSender object

Exceptions: CIMSException.

CTopicSession

The CTopicSession class provides methods for creating CTopicPublisher, CTopicSubscriber, and
CTemporaryTopic objects. It also provides a method for deleting its client's durable subscribers.

CTopicPublisher *createPublisher(const CTopic *topic) FMQCONST throw (CIMSException *);

Creates a publisher for the specified topic. A client uses a TopicPublisher object to publish messages
on a topic. Each time a client creates a TopicPublisher on a topic, it defines a new sequence of
messages that have no ordering relationship with the messages it has previously sent.

Parameters:
e topic - Topic destination to publish, or null if it is an unidentified producer
Returns: CTopicPublisher

Exceptions: CIMSException.

CTopicSubscriber *createSubscriber(const CTopic *topic) FMQCONST throw (CIMSException *);

Creates a nondurable subscriber to the specified topic. A client uses a TopicSubscriber object to
receive messages that have been published to a topic. Regular TopicSubscriber objects are not
durable. They receive only messages that are published while they are active.

Chapter 4: FioranoMQ C++ RTL — Classes Page 67



FioranoMQ C++ RTL Native Guide

In some cases, a connection may both publish and subscribe to a topic. The subscriber NoLocal
attribute allows a subscriber to inhibit the delivery of messages published by its own connection. The
default value for this attribute is false.

Parameters:
e topic - Topic destination to subscribe to
Returns: CTopicSubscriber

Exceptions: CIMSException.

CTopicSubscriber *createSubscriber(const CTopic *topic, mqcstring messageSelector,mgboolean
noLocal) FMQCONST throw (CIMSException *);

Creates a nondurable subscriber to the specified topic, using a message selector or specifying
whether messages published by its own connection should be delivered to it. A client uses a
TopicSubscriber object to receive messages that have been published to a topic.

Regular TopicSubscriber objects are not durable. They receive only messages that are published
while they are active.

Messages filtered out by a subscriber's message selector will never be delivered to the subscriber. From
the subscriber's perspective, they do not exist.

In some cases, a connection may both publish and subscribe to a topic. The subscriber NoLocal
attribute allows a subscriber to inhibit the delivery of messages published by its own connection. The
default value for this attribute is false.

Parameters:
e topic - Topic destination to subscribe to

e messageSelector: only messages with properties matching the message selector
expression are delivered. A value of null or an empty string indicates that there is no
message selector for the message consumer.

e nolocal: if set, inhibits the delivery of messages published by its own connection
Returns: CTopicSubscriber

Exceptions: CIMSException.

CMessageProducer

A client uses a CMessageProducer object to send messages to a destination. A CMessageProducer object
is created by passing a Destination object to a message-producer creation method supplied by a
session.

A client also has the option of creating a message producer without supplying a destination. In this
case, a destination must be provided with every send operation. A typical use for this kind of message
producer is to send replies to requests using the request's JMSReplyTo destination.

A client can specify a default delivery mode, priority, and time to live for messages sent by a message
producer. It can also specify the delivery mode, priority, and time to live for an individual message.

Chapter 4: FioranoMQ C++ RTL — Classes Page 68



FioranoMQ C++ RTL Native Guide

A client can specify a time-to-live value in milliseconds for each message it sends.

Inheritance Hierarchy

None

Subclasses

CMessageProducer is an abstract base class with the following derived classes.
e CQueueSender
e CTopicPublisher

e CFioranoMessageProducer

Methods

virtual void close()throw (CIMSException *)=0;

Closes the message producer.
Parameters: None
Returns: void

Exceptions: CIMSException

virtual mgint getDeliveryMode() FMQCONST throw (CIMSException *) = 0;

Gets the producer's default delivery mode.
Parameters: None

Returns: Delivery mode on this producer. It can be one of NON_PERSISTENT (1) or
PERSISTENT (2)

Exceptions: CIMSException

virtual CDestination *getDestination() FMQCONST throw (CIMSException *) = 0;
Parameters: None
Returns: This producer’s destination.

Exceptions: CIMSException

virtual mgboolean getDisableMesageTimestamp() FMQCONST throw (CIMSException *) = 0;

Gets an indication of whether message timestamps are disabled.

Parameters: None

Chapter 4: FioranoMQ C++ RTL — Classes Page 69



FioranoMQ C++ RTL Native Guide

Returns: An indication of whether message timestamps are disabled

Exceptions: CIMSException

virtual mgboolean getDisableMessageID() FMQCONST throw (CIMSException *)

Gets an indication of whether message IDs are disabled.

Parameters: None
Returns: An indication of whether message IDs are disabled. By default this is disabled for

FioranoMQ.
Exceptions: CIMSException

virtual mqint getPriority() FMQCONST throw (CIMSException *) = 0;

Gets the producer's default priority.

Parameters: None
Returns: The message priority for this message producer

Exceptions: CIMSException
virtual mglong getTimeToLive() FMQCONST throw (CIMSException *) = 0;
Gets the default length of time in milliseconds from its dispatch time that a produced message should

be retained by the message system.

Parameters: None
Returns: The message time to live in milliseconds; zero is unlimited

Exceptions: CIMSException

virtual void setDeliveryMode(mgint deliveryMode) throw (CIMSException *) = 0;

Sets the producer's default delivery mode. Delivery mode is set to PERSISTENT by default.

Parameters:
deliveryMode: the message delivery mode for this message producer; legal values
are NON_PERSISTENT(1) and PERSISTENT(2)

Returns: Void
Exceptions: CIMSException

virtual void setDisableMessageID(mgboolean value) throw (CIMSException *) = 0;

Sets whether message IDs are disabled. Disabled for FioranoMQ by default.

Page 70

Chapter 4: FioranoMQ C++ RTL — Classes



FioranoMQ C++ RTL Native Guide

Parameters:
e value: indicates if message IDs are disabled
Returns: Void

Exceptions: CIMSException

virtual void setDisableMessageTimestamp(mgboolean value) throw (CIMSException *) = 0;

Sets whether message timestamps are disabled.
Parameters:
e value: indicates if message timestamps are disabled
Returns: Void

Exceptions: CJMSException

virtual void setPriority(mgint defaultPriority)  throw (CIMSException *) = 0;

Sets the producer's default priority. Priority is set to 4 by default.

Parameters:

e defaultPriority: the message priority for this message producer; must be a value
between 0 and 9

Returns: Void

Exceptions: CIMSException

virtual void setTimeToLive(mglong timeToLive) throw (CIMSException *) = 0;
Sets the default length of time in milliseconds from its dispatch time that a produced message should
be retained by the message system. Time to live is set to zero by default.
Parameters:
e timeToLive: the message time to live in milliseconds; zero is unlimited
Returns: Void

Exceptions: CIMSException

virtual void send(const CDestination *dest, CMessage *msg) FMQCONST throw (CIMSException *)
= O;

Sends a message to a destination for an unidentified message producer. Uses the CMessageProducer's
default delivery mode, priority, and time to live.

Chapter 4: FioranoMQ C++ RTL — Classes Page 71



FioranoMQ C++ RTL Native Guide

Typically, a message producer is assigned a destination at creation time; however, the JMS API also
supports unidentified message producers, which require that the destination be supplied every time a
message is sent.

Parameters:
e dest: the destination to send this message
¢ msg: the message to send

Returns: void

Exceptions: CIMSException

virtual void send(const CDestination *dest, CMessage *msg, mgint deliveryMode, mqint
priority, mgint timeToLive) FMQCONST throw (CIMSException *) = 0;

Sends a message to a destination for an unidentified message producer, specifying delivery mode,
priority and time to live.
Parameters:
e dest: the destination to send this message
e ms: the message to send
e deliveryMode: the delivery mode to use
e priority: the priority for this message
e timeToLive: the message's lifetime (in milliseconds)
Returns: void

Exceptions: CIMSException

virtual void send(CMessage *msg) FMQCONST throw (CIMSException *) = 0;

Sends a message using the MessageProducer's default delivery mode, priority, and time to live.

Parameters:
e msg: the message to send
Returns: void

Exceptions: CIMSException

virtual void send(CMessage *msg,mqint deliveryMode, mqint priority, mglong timeToLive)

FMQCONST throw (CIMSException *) = 0;

Sends a message to the destination, specifying delivery mode, priority, and time to live.
Parameters:

e msg: the message to send

Chapter 4: FioranoMQ C++ RTL — Classes Page 72



FioranoMQ C++ RTL Native Guide

e deliveryMode: the delivery mode to use

e priority: the priority for this message

e timeTolive: the message's lifetime (in milliseconds)
Returns: void

Exceptions: CIMSException

CFioranoMessageProducer

The CFioranoMessageProducer class provides a unified MessageProducer object which can be used as
QueueSender or TopicPublisher.

Inheritance Hierarchy

cppnativertl:: CMessageProducer

cppnativertl: :CMessageProducer

Subclasses

None

Constructors

CFioranoMessageProducer();
Default constructor.

Parameters: None

CFioranoMessageProducer(struct _FioranoMessageProducer® producer);
Parameters:
e producer - FioranoMessageProducer structure defined in C runtime.

(CFioranoMessageProducer defines all the methods in CMessageProducer class.)

Chapter 4: FioranoMQ C++ RTL — Classes Page 73



FioranoMQ C++ RTL Native Guide

CQueveSender

A client uses a CQueueSender object to send messages to a queue. Normally, the Queue is specified
when a CQueueSender is created. An exception will be thrown if an attempt is made to use the send
methods for an unidentified CQueueSender.

Inheritance Hierarchy

cppnativertl:: CMessageProducer

cppnativertl: :CQueueSender

Subclasses

None

Constructors
CQueueSender(struct _QueueSender *queueSender);
Parameters:

e queueSender - QueueSender structure defined in C runtime.

Methods

(CQueueSender defines all the methods in CMessageProducer class, with the following additional APIs)

CQueue *getQueue() FMQCONST throw (CIMSException *);
Parameters: None
Returns: CQueue

Exceptions: CJMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 74



FioranoMQ C++ RTL Native Guide

CTopicPublisher

A client uses a CTopicPublisher object to publish messages on a topic. A CTopicPublisher object is the
publish-subscribe form of a message producer. Normally, the Topic is specified when a TopicPublisher
is created. An exception will be thrown if an attempt is made to use the publish methods for an

unidentified CTopicPublisher.

Inheritance Hierarchy

cppnativertl:: CMessageProducer

Subclasses

None

Constructors

CTopicPublisher(struct _TopicPublisher *tpub);

Parameters:

e tpub - TopicPublisher structure defined in C runtime.

Methods

cppnativertl: :CTopicPublisher

(CTopicPublisher defines all the methods in CMessageProducer class, with the following additional

APIs)

CTopic *getTopic() FMQCONST throw (CIMSException *);
Parameters: None
Returns: CTopic

Exceptions: CJMSException

Chapter 4: FioranoMQ C++ RTL — Classes

Page 75




FioranoMQ C++ RTL Native Guide

CQueueRequestor
The CQueueRequestor helper class simplifies making service requests.

The CQueueRequestor constructor is given a non-transacted CQueueSession and a destination Queue. It
creates a TemporaryQueue for the responses and provides a request method that sends the request
message and waits for its reply.

Inheritance Hierarchy

None

Subclasses

None

Constructor

CQueueRequestor(CQueueSession *gs,CQueue *queue) throw (CIMSException *);
Constructor for the CQueueRequestor class. This implementation assumes the session parameter to
be non-transacted, with a delivery mode of either AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE.
Parameters:
e s - The CQueueSession the queue belongs to
e queue - The Queue to perform request/reply call on.

Exceptions: CIMSException.

Methods

void close() throw (CIMSException *);

Closes the CQueueRequestor. Note that the CQueueSession is not closed in this call.
Parameters: None
Returns: Void

Exceptions: CIMSException.

CMessage *request(CMessage *msg) FMQCONST throw (CIMSException *);
Sends a request and waits for a reply. The temporary queue is used for the JMSReplyTo destination,
and only one reply per request is expected.

Parameters:

e msg - The message to send

Chapter 4: FioranoMQ C++ RTL — Classes Page 76



FioranoMQ C++ RTL Native Guide

Returns: CMessage - the reply message

Exceptions: CIMSException.

CMessage *request(CMessage *msg, const mqlong timeout) FMQCONST throw (CIMSException *);
Send a request and wait for a reply within the specified timeout. The temporary topic is used for
replyTo; the first reply is returned and the subsequent replies are discarded.
Parameters:
e msg - The message to send
e timeout: the time for which the requestor will wait for a reply
Returns:
e (CMessage - the reply message

Exceptions: CIMSException.

CTopicRequestor

The CTopicRequestor helper class simplifies making service requests. The CTopicRequestor constructor
is given a non-transacted TopicSession and a destination Topic. It creates a TemporaryTopic for the
responses and provides a request method that sends the request message and waits for its reply.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CTopicRequestor(CTopicSession *ts,CTopic *topic) throw (CIMSException *);
Constructor for the TopicRequestor class. This implementation assumes the session parameter to be
non-transacted, with a delivery mode of either AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE.
Parameters:
e Ts: The CTopicSession the topic belongs to
e Topic: The Topic destination to perform request/reply call on.

Exceptions: CIMSException.

Methods

void close() throw (CIMSException *);

Chapter 4: FioranoMQ C++ RTL — Classes Page 77



FioranoMQ C++ RTL Native Guide

Closes the CTopicRequestor. Note that the CTopicSession is not closed in this call.
Parameters: None
Returns: Void

Exceptions: CIMSException.

CMessage *request(CMessage *msg) FMQCONST throw (CIMSException *);
Sends a request and waits for a reply. The temporary queue is used for the JMSReplyTo destination,
and only one reply per request is expected.
Parameters:
e msg: The message to send
Returns:
e (CMessage: the reply message

Exceptions: CIMSException.

CMessage *request(CMessage *msg, const mqlong timeout) FMQCONST throw (CIMSException *);
Send a request and wait for a reply within the specified timeout. The temporary topic is used for
replyTo; the first reply is returned and the subsequent replies are discarded.
Parameters:
e Msg: The message to send
¢ Timeout: the time for which the requestor will wait for a reply
Returns:
e (CMessage: the reply message

Exceptions: CIMSException.

CMessageConsumer
A client uses a C(MessageConsumer object to receive messages from a destination. A CMessageConsumer

object is created by passing a Destination object to a message-consumer creation method supplied
by a session.

Inheritance Hierarchy

None

Subclasses
e CTopicSubscriber

e CQueueReceiver

Chapter 4: FioranoMQ C++ RTL — Classes Page 78



FioranoMQ C++ RTL Native Guide

e CFioranoMessageConsumer

Methods

virtual void close() throw (CIMSException *) = 0;

Closes the message consumer. This call blocks until a receive or message listener in progress has
completed. A blocked message consumer receive call returns null when this message consumer is
closed.

Parameters: None
Returns: None

Exceptions: CJMSException

virtual CMessagelListener *getMessageListener() FMQCONST throw (CIMSException *) = 0;

Gets the message consumer's MessageListener.
Parameters: None
Returns: The listener for the consumer

Exceptions: CJMSException

virtual mgcstring getMessageSelector() FMQCONST throw (CIMSException *) = 0;

Gets this message consumer's message selector expression.
Parameters: None

Returns: Message consumer's message selector, or null if no message selector exists for the
message consumer (that is, if the message selector was not set or was set to null or the
empty string)

Exceptions: CJMSException

virtual void setMessagelListener(const CMessageListener *messagelListener) throw
(CIMSException *) = 0;

Sets the message consumer's MessagelListener. Setting the message listener to null is the equivalent
of unsetting the message listener for the message consumer.

The effect of calling MessageConsumer.setMessageListener while messages are being consumed by
an existing listener or the consumer is being used to consume messages synchronously is undefined.
Parameters:

e messageListener: the listener to which the messages are to be delivered

Chapter 4: FioranoMQ C++ RTL — Classes Page 79



FioranoMQ C++ RTL Native Guide

Returns: Void

Exceptions: CIMSException

virtual CMessage *receive() FMQCONST throw (CIMSException *) = 0;
Receives the next message produced for this message consumer. This call blocks indefinitely until a
message is produced or until this message consumer is closed.

Parameters: None

Returns: The next message produced for this message consumer, or null if this message
consumer is concurrently closed

Exceptions: CIMSException

virtual CMessage *receive(mglong timeout) FMQCONST throw (CIMSException *) = O;

Receives the next message that arrives within the specified timeout interval. This call blocks until a
message arrives, the timeout expires, or this message consumer is closed. A timeout of zero never
expires, and the call blocks indefinitely.

Parameters:
e timeout: the timeout value (in milliseconds)

Returns: The next message produced for this message consumer, or null if the timeout
expires or this message consumer is concurrently closed

Exceptions: CJIMSException

virtual CMessage *receiveNowait() FMQCONST throw (CIMSException *) = 0;

Receives the next message if one is immediately available.
Parameters: None

Returns: The next message produced for this message consumer, or null if one is not
available.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 80



FioranoMQ C++ RTL Native Guide

CFioranoMessageConsumer

A client uses a CFioranoMessageConsumer (unified message consumer) object to receive messages that
have been published to a topic/queue. A CFioranoMessageConsumer object is the publish/subscribe form
of a message consumer.

Inheritance Hierarchy

cppnativertl:: CMessageConsumer

cppnativertl: :CFioranoMessageConsumer

Subclasses

None

Constructors

CFioranoMessageConsumer(struct _FioranoMessageConsumer *consumer);

Creates a CFioranoMessageConsumer Object.

Parameters: FioranoMessageConsumer structure defined in C runtime library.

Methods

(CFioranoMessageConsumer defines all the methods in CMessageConsumer class.)

Chapter 4: FioranoMQ C++ RTL — Classes Page 81



FioranoMQ C++ RTL Native Guide

CQueueReceiver

A client uses a QueueReceiver object to receive messages that have been delivered to a queue.

Inheritance Hierarchy

cppnativertl:: CMessageConsumer

cppnativertl: :CQueueReceiver

Subclasses

None

Constructors

CQueueReceiver(struct _QueueReceiver *queueRcvr);

Creates a CQueueReceiver object.

Parameters: QueueReceiver structure defined in C runtime library.

Methods

(CQueueReceiver defines all the methods in CMessageConsumer class, with the following additional
APIs)

CQueue *getQueue() throw (CIMSException *);
Gets the Queue associated with this queue receiver.
Parameters: None
Returns: The CQueue object to which this receiver is associated with.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 82



FioranoMQ C++ RTL Native Guide

CTopicSubscriber

A client uses a CTopicSubscriber object to receive messages that have been published to a topic. A
CTopicSubscriber object is the publish/subscribe form of a message consumer.

Inheritance Hierarchy

cppnativertl:: CMessageConsumer

cppnativertl: :CTopicSubscriber

Subclasses

None

Constructors

CTopicSubscriber(struct _TopicSubscriber *tsub);

Creates a CTopicSubscriber Object.

Parameters: TopicSubscriber structure defined in C runtime library.

Methods

(CTopicSubscriber defines all the methods in CMessageConsumer class, with the following additional
APIs)

mgboolean getNoLocal() FMQCONST throw (CIMSException *);

Gets the NoLocal attribute for this subscriber. The default value for this attribute is false.
Parameters: None
Returns: true if locally published messages are being inhibited

Exceptions: CIMSException

CTopic *getTopic() throw (CIMSException *);

Gets the Topic associated with this subscriber.

Chapter 4: FioranoMQ C++ RTL — Classes Page 83



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns: The CTopic object to which this subscriber is associated with.

Exceptions: CIMSException

CTopicMetaData

CTopicMetaData class represents the metadata information for a Topic destination as it is stored in the
JNDI store. CTopicMetaData is used for creating Topics.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CTopicMetabData()throw (CIMSException *);

Creates the CTopicMetaData object.

Parameters: None

mgboolean enableCompression(const mgint compressLevel, const mgint compressStrategy) throw
(CIMSException *);

Enables Message Compression for a given message with specified compression level and compression
strategy.

Parameters:

e m_nCompressionStrategy - Compression Strategy to be set
Returns: mgboolean

Exceptions: CIMSException

Methods

TopicMetaData getTopicMetaData() FMQCONST;
Parameters: None
Returns: C runtime TopicMetaData structure.

Exceptions: None

Chapter 4: FioranoMQ C++ RTL — Classes Page 84



FioranoMQ C++ RTL Native Guide

mgboolean setName(mqcstring metaDataName) throw (CIMSException *);

Sets name of the topic in the Topic’s metadata.
Parameters:
e metaDataName - Topic's name
Returns:

Exceptions: CJMSException

mgcstring getName() FMQCONST throw (CIMSException *);
Parameters: None
Returns: Topic's name.

Exceptions: CJMSException

void setDescription(mqcstring metaDatabDescription) throw (CIMSException *);

Sets description name for the topic.
Parameters:
e metaDataDescription — Description for the Topic.
Returns: None

Exceptions: CJMSException

mgcstring getDescription() FMQCONST throw (CIMSException *);
Parameters: None
Returns: Description name for the Topic.

Exceptions: CJMSException

CQueuveMetaData

CQueueMetaData class represents the metadata information for a Queue destination as it is stored in
the JNDI store. CQueueMetaData is used for creating Queues.

Inheritance Hierarchy

None

Chapter 4: FioranoMQ C++ RTL — Classes Page 85



FioranoMQ C++ RTL Native Guide

Subclasses

None

Constructors

CQueueMetabata()throw (CIMSException *);

Creates the CQueueMetaData object.

Parameters: None

mgboolean enableCompression(const mqint compressLevel, const mgint compressStrategy) throw

(CIMSException *);

Purpose: Enables Message Compression for a given message with specified compression level and

compression strategy.

Parameters:

¢ m_nCompressionStrategy - Compression Strategy to be set
Returns: mgboolean

Exceptions: CIMSException

Methods

QueueMetaData getQueueMetaData() FMQCONST;
Parameters: None
Returns: C runtime QueueMetaData structure.

Exceptions: None

mgboolean setName(mqcstring metaDataName) throw (CIMSException *);

Sets name of the queue in the Queue’s metadata.
Parameters:
¢ metaDataName - Queue's name
Returns:

Exceptions: CJMSException

mgcstring getName() FMQCONST throw (CIMSException *);
Parameters: None

Returns: Queue’s name.

Chapter 4: FioranoMQ C++ RTL — Classes

Page 86



FioranoMQ C++ RTL Native Guide

Exceptions: CIMSException

void setDescription(mqcstring metabatabDescription) throw (CIMSException *);

Sets description name for the queue.
Parameters:
¢ metaDataDescription — Description for the Queue.
Returns: None

Exceptions: CIMSException

mgcstring getDescription() FMQCONST throw (CIMSException *);
Parameters: None
Returns: Description name for the Queue.

Exceptions: CIMSException

CDestination

A CDestination object encapsulates a provider-specific address.

Inheritance Hierarchy

None

Subclasses

Base class for:

e CTopic
e CQueue
Constructors

Chestination(struct _Destination *dest)
Parameters:

e dest - Destination structure defined in C runtime.

Methods

mgboolean isQueue() FMQCONST throw (CIMSException *)

Chapter 4: FioranoMQ C++ RTL — Classes Page 87



FioranoMQ C++ RTL Native Guide

Checks whether the destination object is a queue or not.
Parameters: None
Returns: mqgboolean value for success or failure from the server.

Exceptions: CIMSException

mgboolean isTopic() FMQCONST throw (CIMSException *)

Checks whether the destination object is a topic or not.
Parameters: None
Returns: mgboolean value for success or failure from the server.

Exceptions: CJMSException

CQueve

A CQueue object encapsulates a provider-specific queue name. It is the way a client specifies the
identity of a queue to JMS API methods. For those methods that use a CDestination as a parameter, a
CQueue object is used as an argument.

Inheritance Hierarchy

Cppnativertl: :CLookupHelper Cppnativertl::CDestination

Cppnativertl::CQueue

\4

Subclasses

Base class for:

e CTemporaryQueue

Constructors

CQueue(struct _Destination *dest);

Parameters:

e dest - Destination structure defined in C runtime.

Chapter 4: FioranoMQ C++ RTL — Classes Page 88



FioranoMQ C++ RTL Native Guide

CQueue (mgstring queueName) throw (CJIMSException *);
Creates a new Queue with the specified name without using JNDI lookup.

Parameters:

e queueName - Name of the Queue to be created

Exceptions: CIMSException

Methods

mgcstring getQueueName() FMQCONST  throw (CIMSException *)

Gets the name of this queue. Clients that depend upon the name are not portable.
Parameters: None
Returns: The queue name

Exceptions: CIMSException

mgcstring tostring() FMQCONST  throw (CIMSException *)

Returns a mqcstring representation of this object.
Parameters: None
Returns: The provider-specific identity values for this queue.
Exceptions: CJMSException

(CQueue defines getLookupObjectType() method of CLookupHelper base class)

CTopic
A CTopic object encapsulates a provider-specific topic name. It is the way a client specifies the identity

of a topic to JMS API methods. For those methods that use a CDestination as a parameter, a CTopic
object may used as an argument.

Inheritance Hierarchy

Cppnativertl: :CDestination
Cppnativertl::CLookupHelper

Cppnativertl::CTopic

Chapter 4: FioranoMQ C++ RTL — Classes Page 89



FioranoMQ C++ RTL Native Guide

Subclasses

Base class for:

e CTemporaryTopic

Constructors

CTopic(struct _Destination *dest);
Parameters:

e dest - Destination structure defined in C runtime.

CTopic(mgstring topicName) throw (CIMSException *);
Creates a new Topic with the specified name without using JNDI lookup.

Parameters:

e topicName - Name of the Topic to be created

Exceptions: CIMSException

Methods

mgcstring getTopicName() FMQCONST  throw (CIMSException *)

Gets the name of this topic. Clients that depend upon the name are not portable.
Parameters: None
Returns: The topic name

Exceptions: CIMSException

macstring toString() FMQCONST throw (CIMSException *)

Returns a mqcstring representation of this object.
Parameters: None
Returns: The provider-specific identity values for this topic.
Exceptions: CJMSException

(CTopic defines getLookupObjectType() method of CLookupHelper base class)

Chapter 4: FioranoMQ C++ RTL — Classes Page 90



FioranoMQ C++ RTL Native Guide

CTemporaryQueue

A CTemporaryQueue object is a unique CQueue object created for the duration of a CConnection. It is
a system-defined queue that can be consumed only by the CConnection that created it.

Inheritance Hierarchy

Cppnativertl::CLookupHelper

Cppnativertl::CDestination

Subclasses

None

Constructors

A 4

Cppnativertl::CQueue

—»| Cppnativertl::CTemporaryQueue

CTemporaryQueue(struct _TemporaryQueue *temporaryQueue)

Parameters:

e temporaryQueue - TemporaryQueue structure defined in C runtime.

Methods

void remove() throw (CIMSException *);

Deletes this temporary queue. If there are existing receivers still using it, a CIMSException will be

thrown.
Parameters: None

Returns: void

Chapter 4: FioranoMQ C++ RTL — Classes

Page 91



FioranoMQ C++ RTL Native Guide

Exceptions: CIMSException

CTemporaryTopic

A CTemporaryTopic object is a unique CTopic object created for the duration of a CConnection. It is a
system-defined topic that can be consumed only by the CConnection that created it.

Inheritance Hierarchy

Cppnativertl::CLookupHelper

Cppnativertl: :CDestination

Subclasses

None

Constructors

v

Cppnativertl::CTopic

CTemporaryTopic(struct _TemporaryTopic *temporaryTopic)

Parameters:

Cppnativertl::CTemporaryTopic

e temporaryTopic - TemporaryTopic structure defined in C runtime.

Methods

void remove() throw (CIMSException *);

Deletes this temporary topic. If there are existing subscribers still using it, a CIMSException will be

thrown.
Parameters: None
Returns: void

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes

Page 92




FioranoMQ C++ RTL Native Guide

CProperty

The CProperty class wraps the 'value' part of a message property, which includes the value type, size,
and the value itself.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CProperty(struct _Property* m_property)
Parameters:

e m_property — Property structure defined in C runtime.

Methods

PropertyIndex getPropertyType() FMQCONST throw (CIMSException*)

Gets the type of the property.
Parameters: None

Returns: It returns an enum PropertyIndex. PropertyIndex is an enum of Byte, Short, Int,
Float, Double, Long, ByteArray, String, Bool, Char, NullObj, Invalid, AnySerializable
indices.PropertyIndex enum is defined in basic_datatypes.h file in
$FMQ_DIR/clients/c/native/include directory.

Exceptions: CIMSException

mgbyteArray getPropertyvalue() FMQCONST throw (CIMSException*)

Gets the value of the property. Despite the type of property being set, this function returns the value
as a mgbyteArray (ie. char*) type.

Parameters: None

Returns: mgbyteArray

Exceptions: CIMSException

mgint getPropertySize() FMQCONST throw (CIMSException*)

Gets the size of the value as number of bytes.

Chapter 4: FioranoMQ C++ RTL — Classes Page 93



FioranoMQ C++ RTL Native Guide
Parameters: None
Returns: mqint

Exceptions: CIMSException

CMessage

The CMessage interface is the base class of all JIMS messages. It defines the message header and the

acknowledge method used for all messages.

Inheritance Hierarchy

cppnativertl: :CLargeMessage

Subclasses

Base class for:
e (CTextMessage
e CBytesMessage
¢ (CMapMessage
e (CStreamMessage

e CObjectMessage

Constructors

CMessage(struct _Message *msg);

Parameters:

cppnativertl: :CMessage

e msg - Message structure defined in C runtime.

mgcstring getActualDestination() FMQCONST throw (CIMSException *);

Purpose: Gets the actual destination name of the message.This method is used to return destination

name for which the message was intended to before its arrival on SYSTEM_DMQ due to TTL

expiration.

Parameters: None

Chapter 4: FioranoMQ C++ RTL — Classes

Page 94



FioranoMQ C++ RTL Native Guide

Returns: mqcstring

Exceptions: CIMSException

mgint getCompressionLevel (mgint *val) FMQCONST throw (CIMSException *);
Purpose: Returns the Compression Level set on a given message.
Parameters: Pointer to mqint, into which the mgint property is to be read
Returns: mqint

Exceptions: CIMSException

mgint getCompressionStrategy (mgint *val) FMQCONST throw (CIMSException *);
Purpose: Returns the Compression Strategy set on a given message.
Parameters: Pointer to mqint, into which the mqint property is to be read
Returns: mqint

Exceptions: CIMSException

mgfloat getCompressionRatio() FMQCONST throw (CIMSException *);
Purpose: Returns the Compression Ratio.

Parameters: None

Returns: mqgfloat

Exceptions: CIMSException

mgboolean setCompressionLevel(const mgint m_nCompressionLevel) throw (CIMSException
Purpose: Sets the specified Compression Level on a given message.

Parameters:

¢ m_nCompressionLevel - Compression level to be set
Returns: mgboolean

Exceptions: CIMSException

*);

Chapter 4: FioranoMQ C++ RTL — Classes

Page 95



FioranoMQ C++ RTL Native Guide

mgboolean setCompressionStrategy(const mqint m_nCompressionStrategy) throw (CIMSException *);

Purpose: Sets the specified Compression Strategy on a given message.

Parameters:
¢ m_nCompressionLevel - Compression level to be set

¢ m_nCompressionStrategy - Compression Strategy to be set
Returns: mgboolean

Exceptions: CJIMSException

mgboolean enableCompression() throw (CIMSException *);
Purpose: Enables Message Compression for a given message
Parameters: None

Returns: mgboolean

Exceptions: CIMSException

mgboolean enableCompression params (const mgint m nCompressionLevel, const mgint
m nCompressionStrategy) throw (CIMSException *);

Purpose: Enables Message Compression for a given message with specified compression level and
compression strategy.

Parameters:

¢ m_nCompressionStrategy - Compression Strategy to be set
Returns: mgboolean

Exceptions: CIMSException

Methods

void acknowledge()

Acknowledges all consumed messages of the session of this consumed message. All consumed

JMS messages support the acknowledge method for use when a client has specified that its
JMS session's consumed messages are to be explicitly acknowledged. By invoking

acknowledge on a consumed message, a client acknowledges all messages consumed by the

session that the message was delivered.

Chapter 4: FioranoMQ C++ RTL — Classes Page 96



FioranoMQ C++ RTL Native Guide

Calls to acknowledge are ignored for both transacted sessions and sessions specified to use
implicit acknowledgement modes. A client may individually acknowledge each message as it is
consumed, or it may choose to acknowledge messages as an application-defined group (which
is done by calling acknowledge on the last received message of the group, thereby
acknowledging all messages consumed by the session.) Messages that have been received but
not acknowledged may be redelivered.

Parameters: None
Returns: Void

Exceptions: CIMSException

void clearBody() throw (CIMSException *)

Clears out the message body. Clearing a message's body does not clear its header values or
property entries. If this message body was read-only, calling this method leaves the message
body in the same state as an empty body in a newly created message.

Parameters: None
Returns: Void

Exceptions: CIMSException

void clearProperties() throw (CIMSException *)
Clears a message's properties. The message's header fields and body are not cleared.
Parameters: None
Returns: Void

Exceptions: CIMSException

CProperty getProperty(mgcstring propName) FMQCONST throw (CJMSException *);
Gets the Property object from the message with the specified propName.

Note : This property object should be freed by the client application as it is not freed by the
RTL.

Parameters:

e propName - Name of the property to be returned.
Returns: CProperty

Exceptions: CIMSException

mgboolean getBooleanProperty(mgcstring name) FMQCONST throw (CIMSException *)
Returns the value of the boolean property with the specified name.

Parameters:

Chapter 4: FioranoMQ C++ RTL — Classes Page 97



FioranoMQ C++ RTL Native Guide

¢ name: The name of the boolean property
Returns: The boolean property value for the specified name

Exceptions: CIMSException

mgbyte getByteProperty(mgcstring name) FMQCONST throw (CIMSException *)
Returns the value of the byte property with the specified name.
Parameters:
e name: The name of the byte property
Returns: The byte property value for the specified name

Exceptions: CIMSException

mqdouble getDoubleProperty(mqcstring name) FMQCONST throw (CIMSException *)
Returns the value of the double property with the specified nhame.
Parameters:
¢ name: The name of the double property

Returns: The double property value for the specified name. If there is no property by this
name, a null value is returned

Exceptions: CIMSException

mgfloat getFloatProperty(mgcstring name)FMQCONST throw (CIMSException *)
Returns the value of the float property with the specified name.
Parameters:
e name: The name of the float property
Returns: The float property value for the specified name

Exceptions: CIMSException

mgint getIntProperty(mgcstring name) FMQCONST throw (CIMSException *)
Returns the value of the int property with the specified name.
Parameters:
e name: The name of the int property
Returns: The int property value for the specified name

Exceptions: CIMSException

mgcstring getiMsCorrelationID() FMQCONST throw (CIMSException *)

Chapter 4: FioranoMQ C++ RTL — Classes Page 98



FioranoMQ C++ RTL Native Guide

Gets the correlation ID for the message. This method is used to return correlation ID values
that are either provider-specific message IDs or application-specific String values.

Parameters: None
Returns: The correlation ID of a message as a String

Exceptions: CIMSException

mgcstring getiMSCorrelationIDAsBytes() FMQCONST throw (CIMSException *);

Gets the correlation ID as an array of bytes for the message. The use of a byte[] value for
JMSCorrelationID is non-portable.

Parameters: None
Returns: The correlation ID of a message as an array of bytes

Exceptions: CIMSException

mgint getIMsDeliveryMode() FMQCONST throw (CIMSException *);
Gets the DeliveryMode value specified for this message.
Parameters: None
Returns: The delivery mode for this message

Exceptions: CIMSException

CDestination *getJMSDestination() FMQCONST throw (CIMSException *)

Gets the Destination object for this message. The JMSDestination header field contains the
destination to which the message is being sent. When a message is sent, this field is ignored.
After completion of the send or publish method, the field holds the destination specified by the
method. When a message is received, its JMSDestination value must be equivalent to the
value assigned when it was sent.

Parameters: None
Returns: The destination of this message

Exceptions: CIMSException

mqlong getIMSExpiration() FMQCONST throw (CIMSException *)

Gets the message's expiration value. When a message is sent, the JMSExpiration header field
is left unassigned. After completion of the send or publish method, it holds the expiration time
of the message. This is the sum of the time-to-live value specified by the client and the GMT
at the time of the send or publish. If the time-to-live is specified as zero, JMSExpiration is set
to zero to indicate that the message does not expire. When a message's expiration time is
reached, a provider should discard it.The JMS API does not define any form of notification of
message expiration. Clients should not receive messages that have expired; however, the JMS
API does not guarantee that this will not happen.

Chapter 4: FioranoMQ C++ RTL — Classes Page 99



FioranoMQ C++ RTL Native Guide

Parameters: None

Returns: The time the message expires, which is the sum of the time-to-live value specified
by the client and the GMT at the time of the send

Exceptions: CIMSException

mgcstring getIMSMessageID() FMQCONST throw (CIMSException *)

Gets the message ID. The JMSMessagelID header field contains a value that uniquely identifies
each message sent by a provider. When a message is sent, JMSMessageID can be ignored.
When the send or publish method returns, it contains a provider-assigned value. A
JMSMessagelD is a String value that should function as a unique key for identifying messages
in a historical repository. The exact scope of uniqueness is provider-defined. It should at least
cover all messages for a specific installation of a provider, where an installation is some
connected set of message routers. All JMSMessagelD values must start with the prefix 'ID:'.
Uniqueness of message ID values across different providers is not required.

Since message IDs take some effort to create and increase a message's size, some JMS
providers may be able to optimize message overhead if they are given a hint that the
messagelD is not used by an application. By calling the MessageProducer.
setDisableMessagelD method, a JMS client enables this potential optimization for all messages
sent by that message producer. If the JMS provider accepts this hint, these messages must
have the message ID set to null. If the provider ignores the hint, the messagelD must be set
to its normal unique value.

Parameters: None
Returns: The message ID
Exceptions: CJIMSException

If the JMS provider fails to get the message ID due to some internal error.

mgint getIMSPriority() FMQCONST throw (CIMSException *)

Gets the message priority level. The JMS API defines ten levels of priority value, with 0 as the
lowest priority and 9 as the highest. In addition, clients should consider priorities 0-4 as
gradations of normal priority and priorities 5-9 as gradations of expedited priority. The JMS
API does not require that a provider strictly implement priority ordering of messages;
however, it should do its best to deliver expedited messages ahead of normal messages.

Parameters: None
Returns: The default message priority
Exceptions: CIMSException

If the JMS provider fails to get the message priority due to some internal error.

mgboolean getIMSRedelivered() FMQCONST throw (CIMSException *)

Gets an indication of whether this message is being redelivered. If a client receives a message
with the JMSRedelivered field set. It is likely, but not guaranteed, that this message was
delivered earlier but that its receipt was not acknowledged at that time.

Chapter 4: FioranoMQ C++ RTL — Classes Page 100



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns: TRUE if this message is being redelivered
Exceptions: CIMSException

If the JMS provider fails to get the redelivered state due to some internal error.

CDestination *getJMSReplyTo() FMQCONST throw (CIMSException *)
Gets the Destination object to which a reply to this message should be sent.
Parameters: None
Returns: Destination to which to send a response to this message

Exceptions: CIMSException

If the JMS provider fails to get the JMSReplyTo destination due to some internal error.

mqlong getIMSTimestamp() FMQCONST throw (CIMSException *)

Gets the message timestamp. The JMSTimestamp header field contains the time when the
message was handed off to a provider to be sent. It is not the time when the message was
actually transmitted, because the actual transmission may occur later due to transactions or
other client-side queuing of messages. When a message is sent, JMSTimestamp is ignored.

Parameters: None
Returns: The timestamp of the message
Exceptions: CJMSException

If the JMS provider fails to get the timestamp due to some internal error.

mgcstring getIMSType() FMQCONST throw (CIMSException *)

Gets the message type identifier supplied by the client when the message was sent.

Parameters: None
Returns: The message type
Exceptions: CIMSException

If the JMS provider fails to get the message type due to some internal error.

mqlong getLongProperty(mgcstring propName) FMQCONST throw (CIMSException *)
Returns the value of the long property with the specified name.
Parameters:
e propName: The name of the long property
Returns: The long property value for the specified name

Exceptions: CJMSException

Chapter 4: FioranoMQ C++ RTL — Classes

Page 101



FioranoMQ C++ RTL Native Guide

If the JMS provider fails to get the property value due to some internal error.

mgobject getObjectProperty(mgcstring propName) FMQCONST throw (CIMSException *)

Returns the value of the object property with the specified name. This method can be used to
return, in objectified format, an object that has been stored as a property in the message with
the equivalent setObjectProperty method call, or its equivalent primitive settypeProperty
method.

Parameters:

e PropName: The name of the object property
Returns: The object property value with the specified name.
Exceptions: CIMSException

If the JMS provider fails to get the property value due to some internal error.

CEnumeration *getPropertyNames() FMQCONST throw (CIMSException *)
Returns an enumeration of the property names from the message object
Parameters: None
Returns: An enumeration of the property names.

Note: The CEnumeration object contains all the property names present in the
received message.The property names can be retrieved from the CEnumeration object
using nextElement method.The nextElement method returns void* and it should be
type casted to const char *.

Exceptions: CIMSException

If the JMS provider fails to get the property value due to some internal error.

mgshort getShortProperty(mgcstring propName) FMQCONST throw (CIMSException *)
Returns the value of the short property with the specified name.
Parameters:
e PropName: The name of the short property
Returns: The short property value for the specified name
Exceptions: CIMSException

If the JMS provider fails to get the property value due to some internal error.

mgcstring getStringProperty(mgcstring propName) FMQCONST throw (CIMSException *)
Returns the value of the String property with the specified name.
Parameters:

e PropName: The name of the String property

Chapter 4: FioranoMQ C++ RTL — Classes Page 102



FioranoMQ C++ RTL Native Guide

Returns: The String property value for the specified name. If there is no property by this
name, a null value is returned

Exceptions: CIMSException

If the JMS provider fails to get the property value due to some internal error.

mgcstring_unicode getStringProperty_unicode(mgcstring_unicode propName) FMQCONST throw
(CIMSException *)

Returns the unicode string property with the specified name.
Parameters:
e PropName: The name of the String property in Unicode.

Returns: The unicode string property value for the specified name. If there is no property by
this name, a null value is returned

Exceptions: CIMSException

If the JMS provider fails to get the property value due to some internal error.

mgint getMessageType() FMQCONST throw (CIMSException *)
Returns the message type property value as mgqint.
Parameters: None
Returns: The mqint property value for the message type.
Exceptions: CJMSException

If the JMS provider fails to get the property value due to some internal error.

mgboolean propertyExists(mqcstring propName) FMQCONST throw (CIMSException *)
Indicates whether a property value exists.
Parameters:
e PropName: The name of the property to test
Returns: TRUE if the property exists
Exceptions: CIMSException

If the IJMS provider fails to determine if the property exists due to some internal error.

void setBooleanProperty(mgcstring propName, const mgboolean value) throw (CIMSException *)
Sets a boolean property value with the specified nhame into the message.
Parameters:
¢ name: The name of the boolean property

e value: the boolean property value to set

Chapter 4: FioranoMQ C++ RTL — Classes Page 103



FioranoMQ C++ RTL Native Guide

Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the property due to some internal error.

void setByteProperty(mgcstring propName,const mgbyte value) throw (CIMSException *)
Sets a byte property value with the specified nhame into the message.
Parameters:
e name: The name of the byte property value - the byte property value to set
Returns: Void

Exceptions: CIMSException

void setDoubleProperty(mgcstring propName,const mqdouble value) throw (CIMSException *)
Sets a double property value with the specified name into the message.
Parameters:
¢ name: The name of the double property
e value: The double property value to set
Returns: Void
Exceptions: CJMSException

If the JMS provider fails to set the property due to some internal error.

void setFloatProperty(mqcstring propName,const mgfloat value) throw (CIMSException *);
Sets a float property value with the specified nhame into the message.
Parameters:
e name: The name of the float property
e value: The float property value to set
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the property due to some internal error.

void setIntProperty(mqcstring propName,const mqgint value) throw (CIMSException *)
Sets an int property value with the specified name into the message.
Parameters:
e propName: The name of the int property

e Value: The int property value to set

Chapter 4: FioranoMQ C++ RTL — Classes Page 104



FioranoMQ C++ RTL Native Guide

Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the property due to some internal error.

void setJIMSCorrelationID(mgcstring corriD) throw (CIMSException *)

Sets the correlation ID for the message. A client can use the JMSCorrelationID header field to
link one message with another. A typical use is to link a response message with its request
message.

Parameters:

e correlationID: The message ID of a message being referred to
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the correlation ID due to some internal error.

void setJImsDeliveryMode(const mgint deliveryMode) throw (CIMSException *)

Sets the DeliveryMode value for this message. JMS providers set this field when a message is
sent. This method can be used to change the value for a message that has been received.

Parameters:

e deliveryMode: The delivery mode for this message
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the delivery mode due to some internal error.

void setIMSDestination(const CDestination *dest) throw (CIMSException *)

Sets the Destination object for this message. JMS providers set this field when a message is
sent. This method can be used to change the value for a message that has been received.

Parameters:

e Destination: The destination for this message
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the destination due to some internal error.

void setIMSExpiration(const mglong expiration) throw (CIMSException *)

Sets the message's expiration value. JMS providers set this field when a message is sent. This
method can be used to change the value for a message that has been received.

Parameters:

Chapter 4: FioranoMQ C++ RTL — Classes Page 105



FioranoMQ C++ RTL Native Guide

e Expiration: The message's expiration time
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the message expiration due to some internal error.

void setJMSMessageID(mgcstring msgID) throw (CIMSException *)

Sets the message ID. JMS providers set this field when a message is sent. This method can be
used to change the value for a message that has been received.

Parameters:

e msgID: The ID of the message
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the message ID due to some internal error.

void setIMSPriority(const mgint priority) throw (CIMSException *)

Sets the priority level for this message. JMS providers set this field whena message is sent.
This method can be used to change the value for a message that has been received.

Returns: Void
Parameters:

e Priority: The priority of this message
Exceptions: CIMSException

If the JMS provider fails to set the message priority due to some internal error.

void setJIMSRedelivered(const mgboolean redelivered) throw (CIMSException *);

Specifies whether this message is being redelivered. This field is set at the time the message
is delivered. This method can be used to change the value for a message that has been
received.

Parameters:

e Redelivered: An indication of whether this message is being redelivered
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the redelivered state due to some internal error.

void setJIMSReplyTo(const CDestination *dest) throw (CIMSException *)

Chapter 4: FioranoMQ C++ RTL — Classes Page 106



FioranoMQ C++ RTL Native Guide

Sets the Destination object to which a reply to this message should be sent. The JMSReplyTo
header field contains the destination where a reply to the current message should be sent. If it
is null, no reply is expected. The destination may be either a Queue object or a Topic object.
Messages sent with a null JMSReplyTo value may be a notification of some event, or they may
just be some data the sender thinks is of interest. Messages with a JMSReplyTo value typically
expect a response. A response is optional; it is up to the client to decide. These messages are
called requests. A message sent in response to a request is called a reply. In some cases a
client may wish to match a request it sent earlier with a reply it has just received. The client
can use the JMSCorrelationID header field for this purpose.

Parameters:

e Dest: Destination to which to send a response to this message
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the JMSReplyTo destinationdue to some internal error.

void setIMSTimestamp(const mqlong timestamp) throw (CIMSException *)

Sets the message timestamp. JMS providers set this field when a message is sent. This
method can be used to change the value for a message that has been received.

Parameters:

e Timestamp: The timestamp for this message
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the timestamp due to some internal error.

void setIMSType(mqgcstring type) throw (CIMSException *)

Sets the message type. Some IJMS providers use a message repository that contains the
definitions of messages sent by applications. The JMSType header field may reference a
message's definition in the provider's repository. The JMS API does not define a standard
message definition repository, nor does it define a naming policy for the definitions it contains.

Parameters:

e Type: The message type
Returns: Void
Exceptions: CJIMSException

If the JMS provider fails to set the message type due to some internal error.

void setLongProperty(mgcstring propName,const mqlong value) throw (CIMSException *);
Sets a long property value with the specified name into the message.

Parameters:

Chapter 4: FioranoMQ C++ RTL — Classes Page 107



FioranoMQ C++ RTL Native Guide

¢ Name: The name of the long property
e Value: The long property value to set.
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the property due to some internal error.

void setObjectProperty(mqcstring propName, mgobject value,const mgint size) throw
(CIMSException *);

Sets a object property value with the specified name into the message. This method works
only for the objectified primitive object types (Integer, Double, Long...) and String objects.

Parameters:
e Name: The name of the object property
e Value: The object property value to set.
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the property due to some internal error.

void setShortProperty(mgcstring propName,const mgshort value) throw (CIMSException *);
Sets a short property value with the specified name into the message.
Parameters:
e PropName: The name of the short property
e Value: The short property value to set.
Returns: Void
Exceptions: CJMSException

If the JMS provider fails to set the property due to some internal error.

void setStringProperty(mgcstring propName, mqgcstring value) throw (CIMSException *);
Sets a String property value with the specified hame into the message.
Parameters:
e PropName: The name of the String property
e Value: The String property value to set.
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the property due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 108



FioranoMQ C++ RTL Native Guide

void setDiscardable(mgboolean isDiscardable) throw (CIMSException *)
Gets the isDiscardable value specified for this message.
Parameters:
e isDiscardable: boolean value TRUE or FALSE
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the property due to some internal error.

mgboolean isDiscardable() FMQCONST throw (CIMSException *)
Gets the isDiscardable value specified for this message.
Parameters: None
Returns:
e mgboolean: the Discardable value for this message
Exceptions: CIMSException

If the JMS provider fails to set the property due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 109



FioranoMQ C++ RTL Native Guide

CTextMessage

A CTextMessage object is used to send a message containing a mqcstring. It inherits from the
CMessage class and adds a text message body.

Inheritance Hierarchy

Cppnativertl::CLargeMessage

Cppnativertl::CMessage

A 4

A\ 4

Cppnativertl::CTextMessage

Subclasses

None

Constructors

CTextMessage(struct _Message *msg);

Parameters:

e msg: Message structure defined in C runtime.

Methods

mgcstring_unicode getText() FMQCONST
Gets the mqcstring_unicode containing this message's data. The default value is null.
Parameters: None
Returns: The String containing the message's data
Exceptions: CIMSException

If the JMS provider fails to get the text due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 110



FioranoMQ C++ RTL Native Guide

void setText(mqcstring_unicode)
Sets the mqcstring_unicode containing this message's data.
Parameters:
e mgqcstring_unicode - The String containing the message's data
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to set the text due to some internal error.

CByteMessage

A CBytesMessage object is used to send a message containing a stream of uninterpreted bytes. It
inherits from the CMessage class and adds a bytes message body. The receiver of the message
supplies the interpretation of the bytes.

Inheritance Hierarchy

Cppnativertl::CLargeMessage

Cppnativertl::CMessage

A 4

Cppnativertl::CBytesMessage

Subclasses

None

Constructors

CBytesMessage(struct _Message *msg)
Parameters:

e msg: Message structure defined in C runtime.

Methods

mglong getBodyLength() FMQCONST throw (CIMSException *)

Chapter 4: FioranoMQ C++ RTL — Classes Page 111



FioranoMQ C++ RTL Native Guide

Gets the number of bytes of the message body when the message is in read-only mode. The
value returned can be used to allocate a byte array. The value returned is the entire length of
the message body, regardless of where the pointer for reading the message is currently
located.

Parameters: None
Returns: Number of bytes in the message.

Exceptions: CJIMSException

mgboolean readBoolean() FMQCONST throw (CIMSException *)

mgbyte

Reads a boolean from the bytes message stream.
Parameters: None

Returns: The boolean value read

Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

readByte() FMQCONST throw (CIMSException *)

Reads a signed 8-bit value from the bytes message stream.

Parameters: None

Returns: The next byte from the bytes message stream as a signed 8-bit byte
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgint readBytes(mgbyteArray value, int length) FMQCONST throw (CIMSException *)

Reads a byte array from the bytes message stream. If the length of array value is less than
the number of bytes remaining to be read from the stream, the array should be filled. A
subsequent call reads the next increment, and so on. If the nhumber of bytes remaining in the
stream is less than the length of array value, the bytes should be read into the array. The
return value of the total number of bytes read will be less than the length of the array,
indicating that there are no more bytes left to be read from the stream.

The next read of the stream returns -1.

Parameters:
e value - The buffer into which the data is read.
e length - The length of the buffer.

Returns: The total number of bytes read into the buffer or -1 if there is no more data because
the end of the stream has been reached.

Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 112



FioranoMQ C++ RTL Native Guide

mgchar readChar() FMQCONST throw (CIMSException *)
Reads a Unicode character value from the bytes message stream.
Parameters: None
Returns: The next two bytes from the bytes message stream as a Unicode character
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgdoubTle readbouble() FMQCONST throw (CIMSException *)
Reads a double from the bytes message stream.
Parameters: None
Returns: The next eight bytes from the bytes message stream, interpreted as a double.

Exceptions: CIMSException

mgfloat readFloat() FMQCONST throw (CIMSException *)
Reads a float from the bytes message stream.
Parameters: None
Returns: The next four bytes from the bytes message stream, interpreted as a float
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgint readInt() FMQCONST throw (CIMSException *)
Reads a signed 32-bit integer from the bytes message stream.
Parameters: None
Returns: The next four bytes from the bytes message stream, interpreted as an int
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mglong readLong() FMQCONST throw (CIMSException *)
Reads a signed 64-bit integer from the bytes message stream.
Parameters: None
Returns: The next eight bytes from the bytes message stream, interpreted as a long.
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 113



FioranoMQ C++ RTL Native Guide

mgshort readShort() FMQCONST throw (CIMSException *)
Reads a signed 16-bit humber from the bytes message stream.
Parameters: None

Returns: The next two bytes from the bytes message stream, interpreted as a signed 16-bit
number

Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgint readunsignedByte() FMQCONST throw (CIMSException *)
Reads an unsigned 8-bit number from the bytes message stream.
Parameters: None

Returns: The next byte from the bytes message stream, interpreted as an unsigned 8-bit
number

Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgint readunsignedShort() FMQCONST throw (CIMSException *)
Reads an unsigned 16-bit number from the bytes message stream.
Parameters: None

Returns: The next two bytes from the bytes message stream, interpreted as an unsigned 16-
bit integer.

Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgcstring_unicode readuTF() FMQCONST throw (CIMSException *)

Reads a mqcstring that has been encoded using a modified UTF-8 format from the bytes
message stream.

Parameters: None
Returns: A Unicode mqcstring from the bytes message stream
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

void reset() throw (CIMSException *)

Chapter 4: FioranoMQ C++ RTL — Classes Page 114



FioranoMQ C++ RTL Native Guide

Puts the message body in read-only mode and repositions the stream of bytes to the
beginning.

Parameters: None
Returns: None
Exceptions: CIMSException

If the JMS provider fails to reset the message due to some internal error.

void writeBoolean(mgboolean value) throw (CIMSException *)

Writes a boolean to the bytes message stream as a 1-byte value. The value true is written as
the value (byte)1; the value false is written as the value (byte)0.

Parameters:

e Value: The boolean value to be written
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeByte(mgbyte value) throw (CIMSException *)
Writes a byte to the bytes message stream as a 1-byte value.
Parameters:
e Value- The byte value to be written
Returns: Void
Exceptions: CJMSException

If the JMS provider fails to write the message due to some internal error.

void writeByte(mgbyte value) throw (CIMSException *)
Writes a portion of a byte array to the bytes message stream.
Parameters:
e Value - The byte array value to be written
e Offset - The initial offset within the byte array
e Length - The number of bytes to use
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeChar(mgchar value) throw (CIMSException *)

Chapter 4: FioranoMQ C++ RTL — Classes Page 115



FioranoMQ C++ RTL Native Guide

Writes a char to the bytes message stream as a 2-byte value, high byte first.
Parameters:
e Value - The char value to be written
Returns: Void
Exceptions: CJIMSException

If the JMS provider fails to write the message due to some internal error.

void writeDouble(mgdouble value) throw (CIMSException *)
Writes a double from the bytes message stream.
Parameter:
e Value - mgdouble value to be written to the bytes message
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

void writeFloat(mgfloat value) throw (CIMSException *)

Converts the float argument to an int using the floatToIntBits method in class Float, and then
writes that int value to the bytes message stream as a 4-byte quantity, high byte first.

Parameters:

e Value - The float value to be written
Returns: Void
Exceptions: CJMSException

If the JMS provider fails to write the message due to some internal error.

void writeInt(mgint value) +throw (CIMSException *)
Writes an int to the bytes message stream as four bytes, high byte first.
Parameters:
e Value- The int to be written
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeLong(mgqlong value) throw (CIMSException *)

Writes a long to the bytes message stream as eight bytes, high byte first.

Chapter 4: FioranoMQ C++ RTL — Classes Page 116



FioranoMQ C++ RTL Native Guide

Parameters:

e Value - The long to be written
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeShort(mgshort value) throw (CIMSException *)
Writes a short to the bytes message stream as two bytes, high byte first.
Parameters:
e Value: The short to be written
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeUTF(mgcstring_unicode value) throw (CIMSException *)

Writes a mqcstring to the bytes message stream using UTF-8 encoding in a machine-
independent manner.

Parameters:

e Value - The String value to be written
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 117



FioranoMQ C++ RTL Native Guide

CMapMessage

The CMapMessage object is used to send a set of name-value pairs. The nhames must have a value
that is not null, and not an empty mqcstring. The entries can be accessed sequentially or randomly by
name.CMapMessage inherits from the CMessage class and adds a message body that contains a Map.

Inheritance Hierarchy

Cppnativertl::CLargeMessage

Cppnativertl::CMessage

Cppnativertl::CMapMessage

Subclasses

None

Constructors

CMapMessage(struct _Message *msg)
Parameters:

e Msg: Message structure defined in C runtime.

Methods

mgboolean getBoolean(mgcstring name) FMQCONST throw (CIMSException *)
Returns the boolean value with the specified name.
Parameters:
¢ Name: The name of the Boolean
Returns: The boolean value with the specified name
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 118



FioranoMQ C++ RTL Native Guide

mgbyte getByte(mqcstring name) FMQCONST throw (CIMSException *)
Returns the byte value with the specified name.
Parameters:
e Name: The name of the byte
Returns: The byte value with the specified name.
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgchar getChar(mgcstring name) FMQCONST throw (CIMSException *)
Returns the Unicode character value with the specified name.
Parameters
e Name: The name of the Unicode character
Returns: The Unicode character value with the specified name
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mqdouble getDouble(mgcstring name) FMQCONST throw (CIMSException *)
Returns the double value with the specified name.
Parameters
e Name: The name of the double
Returns: The double value with the specified name
Exceptions: CJMSException

If the JMS provider fails to read the message due to some internal error.

mgfloat getFloat(mgcstring name) FMQCONST  throw (CIMSException *)
Returns the float value with the specified name.
Parameters
e Name: The name of the float
Returns: The float value with the specified name
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgint getInt(mgcstring name) FMQCONST throw (CIMSException *)

Returns the int value with the specified name.

Chapter 4: FioranoMQ C++ RTL — Classes Page 119



FioranoMQ C++ RTL Native Guide

Parameters

e Name: The name of the int
Returns: The int value with the specified name
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mglong getLong(mgcstring name) FMQCONST throw (CIMSException *)
Returns the long value with the specified nhame.
Parameters
e Name: The name of the long
Returns: The long value with the specified name
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgcstring®* getMapNames() FMQCONST  throw (CIMSException *)
Returns a pointer to mqcstrings of all the names in the MapMessage object.
Parameters: None
Returns: An a pointer to all the names (mqcstring) in this MapMessage
Exceptions: CJIMSException

If the JMS provider fails to read the message due to some internal error.

CHashTableEnumerator *getMapNamesHTEnum() FMQCONST throw (CIMSException *)
Returns an Enumeration of all the names in the MapMessage object.
Parameters: None
Returns: An enumeration of all the names in this MapMessage
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgshort getShort(mgcstring name) FMQCONST throw (CIMSException *)
Returns the short value with the specified name.
Parameters
e Name: The name of the short
Returns: The short value with the specified name

Exceptions: CJMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 120



FioranoMQ C++ RTL Native Guide

If the JMS provider fails to read the message due to some internal error.

mgcstring getString(mgcstring name) FMQCONST throw (CIMSException *)
Returns the String value with the specified name.
Parameters
e Name: The name of the String

Returns: The String value with the specified name; if there is no item by this name, a null
value is returned.

Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgboolean itemExists(mgcstring name) FMQCONST throw (CIMSException *)
Indicates whether an item exists in this MapMessage object.
Parameters
e Name: The name of the item to test
Returns: TRUE if the item exists
Exceptions: CIMSException

If the JMS provider fails to determine if the item exists due to some internal error.

void setBoolean(mgcstring name, const mgboolean value) throw (CIMSException *)
Sets a boolean value with the specified name into the Map.
Parameters
e Name: The name of the boolean
e Value: The boolean value to set in the Map
Returns: void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void setByte(mqcstring name, const mgbyte value) throw (CIMSException *)
Sets a byte value with the specified name into the Map.
Parameters
¢ Name: The name of the byte
e Value: The byte value to set in the Map
Return: Void
Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 121



FioranoMQ C++ RTL Native Guide

If the JMS provider fails to write the message due to some internal error.

void setBytes(mgcstring name, mqcstring value,const mqgint length) throw (CIMSException *)
Sets a byte array value with the specified name and length into the Map.
Parameters
e Name: The name of the byte array
e Value: The byte array value to set in the Map
e Length: Number of bytes to be set
Return: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void setBytes(mgcstring name, mgbyteArray value) throw (CIMSException *);

Sets a byte array value with the specified name into the Map.
Parameters
¢ Name: The name of the byte array

e Value: The byte array value to set in the Map; the array is copied so that the value
for name will not be altered by future modifications

Returns: Void
Exceptions: CJMSException

If the JMS provider fails to write the message due to some internal error.

void setBytes(mgcstring name,mqcstring value, const mgint offset, const mgint Tength) throw
(CIMSException *)

Sets a portion of the byte array value with the specified name into the Map.
Parameters
e Name: The name of the byte array
e Value: The byte array value to set in the Map
e offset : The initial offset within the byte array
e length: The number of bytes to use
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 122



FioranoMQ C++ RTL Native Guide

void setChar(mqcstring name,const mgchar value) throw (CIMSException *)
Sets a Unicode character value with the specified name into the Map.
Parameters
e name: The name of the Unicode character
e Value: The Unicode character value to set in the Map
Returns: Void
Exceptions: MSException

If the JMS provider fails to write the message due to some internal error.

void setDouble(mgcstring name, const mqdouble value) throw (CIMSException *)
Sets a double value with the specified name into the Map.
Parameters
e Name: The name of the double
e Value: The double value to set in the Map
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void setFloat(mgcstring name, const mgfloat value)throw (CIMSException *)
Sets a float value with the specified name into the Map.
Parameters
e Name: The name of the float
e Value: The float value to set in the Map
Returns: Void
Exceptions: CJMSException

If the JMS provider fails to write the message due to some internal error.

void setInt(mqcstring name, const mgint value) throw (CIMSException *)
Sets an int value with the specified name into the Map.
Parameters
e Name: The name of the int
e Value: The int value to set in the Map
Returns: Void

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 123



FioranoMQ C++ RTL Native Guide

If the JMS provider fails to write the message due to some internal error.

void setLong(mqcstring name, const mglong value) throw (CIMSException *)
Sets a long value with the specified hame into the Map.
Parameters
e Name: The name of the long
e Value: The long value to set in the Map
Returns: Void

Exceptions: CIMSException

If the JMS provider fails to write b the message due to some internal error.

void setShort(mgcstring name, const mgshort value) throw (CIMSException *)
Sets a short value with the specified name into the Map.
Parameters
e Name: The name of the short
e Value: The short value to set in the Map
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void setString(mgcstring name, mgcstring value) throw (CIMSException *)
Sets a String value with the specified name into the Map.
Parameters
e Name: The name of the String
e Value: The String value to set in the Map
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes

Page 124



FioranoMQ C++ RTL Native Guide

CStreamMessage

A CStreamMessage object is used to send a stream of primitive types in C++4+ programming language.
It is filled and read sequentially. It inherits from the CMessage class and adds a stream message
body.

Inheritance Hierarchy

Cppnativertl::CLargeMessage

Cppnativertl::CMessage

\ 4

A 4

Cppnativertl::CStreamMessage

Subclasses

None

Constructors

CStreamMessage(struct _Message *msg) ;
Parameters:

e Msg: Message structure defined in C runtime.

Methods

mgboolean readBoolean() FMQCONST throw (CIMSException *)
Reads a boolean from the stream message.
Parameters: None
Returns: The Boolean value read
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgbyte readByte() FMQCONST throw (CIMSException *)
Reads a byte value from the stream message.

Parameters: None

Chapter 4: FioranoMQ C++ RTL — Classes Page 125



FioranoMQ C++ RTL Native Guide

Returns: The next byte from the stream message as a 8-bit byte
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgint readBytes(mgbyteArray value, mgint length) FMQCONST throw (CIMSException *)
Reads a byte array field from the stream message into the specified value.
Parameters
e Value: The buffer into which the data is read
e Length: Length of the byte array

Returns: The total number of bytes read into the buffer, or -1 if there is no more data
because the end of the byte field has been reached.

Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgchar readcChar() FMQCONST throw (CIMSException *)
Reads a Unicode character value from the stream message.
Parameters: None
Returns: A Unicode character from the stream message
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgdoubTle readbouble() FMQCONST throw (CIMSException *)
Reads a double from the stream message.
Parameters: None
Returns: A double value from the stream message
Exceptions: CJIMSException

If the JMS provider fails to read the message due to some internal error.

mgfloat readFloat() FMQCONST throw (CIMSException *)
Reads a float from the stream message.
Parameters: None
Returns: A float value from the stream message.
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 126



FioranoMQ C++ RTL Native Guide

mgint readInt() FMQCONST throw (CIMSException *)
Reads a 32-bit integer from the stream message.
Parameters: None
Returns: A 32-bit integer value from the stream message, interpreted as an integer
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mglong readLong() FMQCONST throw (CIMSException *)
Reads a 64-bit integer from the stream message.
Parameters: None
Returns: A 64-bit integer value from the stream message, interpreted as a long.
Exceptions: CJIMSException

If the JMS provider fails to read the message due to some internal error.

mgshort readShort() FMQCONST throw (CIMSException *)
Reads a 16-bit integer from the stream message.
Parameters: None
Returns: A 16-bit integer from the stream message.
Exceptions: CIMSException

If the JMS provider fails to read the message due to some internal error.

mgcstring readstring() FMQCONST throw (CIMSException *);

Reads a String from the stream message.
Parameters: None
Returns: A mqcstring from the stream message

Note: This string should be manually freed by the user, as it is not freed by deleting the
Message Object.

Exceptions: CJMSException

If the IJMS provider fails to read the message due to some internal error.

void reset() throw (CIMSException *)

Puts the message body in read-only mode and repositions the stream to the beginning.

Chapter 4: FioranoMQ C++ RTL — Classes Page 127



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to reset the message due to some internal error.

void writeBoolean(mgboolean value) throw (CIMSException *)
Writes a Boolean to the stream message.
Parameters
e Value: The Boolean value to be written.
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeByte(mgbyte value) throw (CIMSException *)
Writes a byte to the stream message.
Parameters
e Value: The byte value to be written.
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeBytes(mqcstring value, mgint length) throw (CIMSException *)

Writes a byte array field to the stream message. The byte array value is written to the
message as a byte array field. Consecutively written byte array fields are treated as two

distinct fields when the fields are read.
Parameters
e Value: The byte array value to be written
e Length: length of the bytes to be written
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeBytes(mqcstring value,mgint offset,mqint length) throw (CIMSException

7':)

Chapter 4: FioranoMQ C++ RTL — Classes

Page 128



FioranoMQ C++ RTL Native Guide

Writes a portion of a byte array as a byte array field to the stream message. The portion of
the byte array value is written to the message as a byte array field. Consecutively written byte
array fields are treated as two distinct fields when the fields are read.

Parameters
e Value: The byte array value to be written
e Offset: The initial offset within the byte array
e Length: The number of bytes to be written
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeChar(mgchar value) throw (CIMSException *)
Writes a char to the stream message.
Parameters
e Value: The char value to be written
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeDoubTle(mgdouble value) throw (CIMSException *)
Writes a double to the stream message.
Parameters
e Value: The double value to be written
Returns: Void
Exceptions: CIMSException

if the JMS provider fails to write the message due to some internal error.

void writeFloat(mgfloat value) throw (CIMSException *)
Writes a float to the stream message.
Parameters
e Value: The float value to be written
Returns: Void
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes Page 129



FioranoMQ C++ RTL Native Guide

void writeInt(mgint value) throw (CIMSException *)
Writes an int to the stream message.
Parameters
e Value: The int value to be written
Returns: Void

Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeLong(mglong value) throw (CIMSException *)
Writes a long to the stream message.
Parameters
e Value: The long value to be written

Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeShort(mgshort value) throw (CIMSException *)
Writes a short to the stream message.
Parameters
e Value: The short value to be written

Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

void writeString(mqcstring value) throw (CIMSException *)
Writes a String to the stream message.
Parameters
e Value: The String value to be written
Exceptions: CIMSException

If the JMS provider fails to write the message due to some internal error.

Chapter 4: FioranoMQ C++ RTL — Classes

Page 130



FioranoMQ C++ RTL Native Guide

CMQAdminService

The CMQAdminService class provides methods for all Admin requests to create Administered Objects.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CMQAdminService(struct _FioranoMQAdminService* pmgas)
Parameters:

e pmgas - FioranoMQAdminService structure defined in C runtime.

Methods

bool disconnectClient(mqcstring clientID) FMQCONST throw (CIMSException®);
Parameters: None
Returns: Void

Exceptions: CJMSException

mgint getNumberofActiveClientConnections() FMQCONST throw (CIMSException*);
Gets the number of active client connections to the MQ Server.
Parameters: None
Returns: mqgint

Exceptions: CIMSException

CEnumeration®* getDurableSubscribersForTopic(mgcstring topicName) FMQCONST throw
(CIMSException*)

Returns a pointer to enumeration of all the subscriber names on the specified topic.
Parameters: topicName - The topic name.
Returns: Pointer to CEnumeration object of all the subscriber names on the specified topic.

Note: The CEnumeration object contains all the durable subscriber names for the topic.The
names can be retrieved from the CEnumeration object using nextElement method.The
nextElement method returns void* and it should be type casted to const char *.

Chapter 4: FioranoMQ C++ RTL — Classes Page 131



FioranoMQ C++ RTL Native Guide

Exceptions: CIMSException

CEnumeration®* getClientIDs() FMQCONST throw (CIMSException*)
Returns a pointer to enumeration of all client ids.
Parameters: None
Returns: Pointer to CEnumeration object of all the client ids.

Note: The CEnumeration object contains all the client ID’s for the topic.The ID’s can be
retrieved from the CEnumeration object using nextElement method.The nextElement method
returns void* and it should be type casted to const char *.

Exceptions: CJMSException

CEnumeration* getPTPClientIDs() FMQCONST throw (CIMSException*)
Returns a pointer to enumeration of all client ids for PTP (Point to Point JMS model).
Parameters: None
Returns: Pointer to CEnumeration object of all the client ids on PTP.

Note: The CEnumeration object contains all the PTP client ID’s for the topic.The ID’s can be
retrieved from the CEnumeration object using nextElement method.The nextElement method
returns void* and it should be type casted to const char *.

Exceptions: CIMSException

CEnumeration® getPubSubClientIDs() FMQCONST throw (CIMSException¥®)
Returns a pointer to enumeration of all client ids for PubSub (Publish / Subscribe JMS model).
Parameters: None
Returns: Pointer to CEnumeration object of all the client ids on PubSub.
Exceptions: CIMSException

Note: The CEnumeration object contains all the PUBSUB client ID’s for the topic.The ID’s can
be retrieved from the CEnumeration object using nextElement method.The nextElement
method returns void* and it should be type casted to const char *.

CEnumeration* getSubscriberIDs(mgcstring clientID) FMQCONST throw (CIMSException*)
Returns a pointer to enumeration of all subscriber ids on the specified client id.
Parameters: clientID -String representing the client id.

Returns: Pointer to CEnumeration object of all the Subscriber ids on the specified client id.

Note: The CEnumeration object contains all the Subscriber ID’s for the topic.The ID’s can be
retrieved from the CEnumeration object using nextElement method.The nextElement method
returns void* and it should be type casted to const char *.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 132



FioranoMQ C++ RTL Native Guide

mgcstring getSubscriptionTopicName(mgcstring clientID, mgcstring subscriberID) FMQCONST throw
(CIMSException*)

Returns a mqcstring subscription topic name for the specified clientID and subscriberID
combo.

Parameters:
e clientID - String representing the client id
e subscriberID - String representing the subscriber id.

Returns: Mqcstring- subscription topic name for the specified clientID and subscriberID
combo.

Exceptions: CIMSException

mgqlong getNumberofDeliverableMessagesl(mqcstring queueName) FMQCONST throw (CIMSException®)
Returns a mqglong object for the number of deliverable messages on the specified queue.
Parameters:
e queueName - String representing the queue name.
Returns: mqglong object for the number of deliverable messages on the specified queue.

Exceptions: CIMSException

mqlong getNumberofbDeliverableMessages2(mqcstring clientID, mgcstring subscriberID) FMQCONST
throw (CIMSException®)

Returns a mglong object for the humber of deliverable messages on the specified clientID and
subscriberID combo.

Parameters:
e clientID - String representing the client id.
e subscriberID - String representing the subscriber id.

Returns: mqglong object for the number of deliverable messages on the specified clientID and
subscriberID combo.

Exceptions: CIMSException

mgqlong getNumberofuUndeletedMessages(mgcstring queueName) FMQCONST throw (CIMSException¥®)

Returns a mqglong object for the number of undeleted messages on the server for the specified
gueue name.

Parameters:
e queueName - String representing the queue Name.

Returns: Returns a mqglong object for the number of undeleted messages on the server for
the specified queueName.

Chapter 4: FioranoMQ C++ RTL — Classes Page 133



FioranoMQ C++ RTL Native Guide

Exceptions: CIMSException

mgboolean unsubscribe(mqcstring clientID, mqcstring subscriberID) FMQCONST throw
(CIMSException*)

Unsubcribes a durable subscriber for the specified clientID and subscriberID combo.
Parameters:

e clientID - String representing the client id.

e subscriberID - String representing the subscriber id.

Returns: mgboolean when unsubscribing a durable subscriber for the specified clientID and
subscriberID combination.

Exceptions: CJMSException

mgboolean purgeSubscriptionMessages(mqcstring clientID, mqcstring subscriberID) FMQCONST
throw (CIMSException*)

Purge all messages for a durable subscriber for the specified clientID and
subscriberIDcombination.

Parameters:
e clientID - String representing the client id.
e subscriberID - String representing the subscriber id.

Returns: mgboolean when purging all messages for a durable subscriber for the specified
clientID and subscriberID combo.

Exceptions: CIMSException

mgboolean createTopic(const CTopicMetaData* topicMetaData) FMQCONST throw (CIMSException®)
Creates a topic with the specified topic meta-data on the MQ Server.
Parameters:
e topicMetaData - pointer to CTopicMetaData object.
Returns: mgboolean value for success or failure from the server.

Exceptions: CIMSException

mgboolean createQueue(const CQueueMetaData* queueMetaData) FMQCONST throw (CIMSException®)
Creates a queue with the specified queue meta data on the MQ Server.
Parameters:
e queueMetaData - pointer to CQueueMetaData object.
Returns: mgboolean value for success or failure from the server.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 134



FioranoMQ C++ RTL Native Guide

mgboolean deleteTopic(mqcstring topicName) FMQCONST throw (CIMSException*)
Delete a topic with the specified topic name.
Parameters:
e topicName - String representing the topic name.
Returns: mgboolean value for success or failure from the server.

Exceptions: CJMSException

mgboolean deleteQueue(mqcstring queueName) FMQCONST throw (CIMSException®)
Delete a queue with the specified queue name.
Parameters:
e queueName - String representing the queue name.
Returns: mgboolean value for success or failure from the server.

Exceptions: CIMSException

mgboolean deleteTopicConnectionFactory(mqcstring tcfName) FMQCONST throw (CIMSException*)
Delete a topicConnectionFactory with the specified topicConnectionFactory name.
Parameters:
e tcfName - String representing the topic connection factory name.
Returns: mgboolean value for success or failure from the server.

Exceptions: CIMSException

mgboolean deleteQueueConnectionFactory(mqcstring qcfName) FMQCONST throw (CIMSException*)
Delete a queueConnectionFactory with the specified queueConnectionFactory name.
Parameters:
¢ qcfName - String representing the queue connection factory name.
Returns: mgboolean value for success or failure from the server.

Exceptions: CIMSException

mgboolean deleteAdminConnectionFactory(mqcstring acfName) FMQCONST throw (CIMSException*)
Delete a adminConnectionFactory with the specified adminConnectionFactory name.
Parameters:
e acfName -String representing the admin connection factory name.

Returns: mgboolean value for success or failure from the server.

Chapter 4: FioranoMQ C++ RTL — Classes Page 135



FioranoMQ C++ RTL Native Guide

Exceptions: CIMSException

mgboolean createTopicConnectionFactory( const CTopicConnectionFactoryMetaData *tcfmetaData)
FMQCONST throw (CIMSException*)

Creates a topicConnectionFactory with the specified topicConnectionFactory meta data on the
MQ Server.

Parameters:
e tcfMetaData - pointer to CTopicConnectionFactoryMetaData object.
Returns: mgboolean value for success or failure from the server.

Exceptions: CJMSException

mgboolean createQueueConnectionFactory( const CQueueConnectionFactoryMetaData *qcfMetaData)
FMQCONST throw (CIMSException*)

Creates a queueConnectionFactory with the specified queueConnectionFactory meta data on
the MQ Server.

Parameters:
e qcfMetaData - pointer to CQueueConnectionFactoryMetaData object.
Returns: mgboolean value for success or failure from the server.

Exceptions: CIMSException

mgboolean createAdminConnectionFactory( const CAdminConnectionFactoryMetaData *acfMetaData)
FMQCONST throw (CIMSException®)

Creates a adminConnectionFactory with the specified adminConnectionFactory meta data on
the MQ Server.

Parameters:
e acfMetaData - pointer to CAdminConnectionFactoryMetaData object.
Returns: mgboolean value for success or failure from the server.

Exceptions: CIMSException

CEnumeration* getCurrentUsers() FMQCONST throw (CIMSException*)
Returns a pointer to enumeration of all the current users on the MQ Server.
Parameters: None
Returns: Pointer to CEnumeration object of all the current users on the MQ Server.

Note: The CEnumeration object contains all the current users.The users can be retrieved from
the CEnumeration object using nextElement method.The nextElement method returns void*
and it should be type casted to const char *.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 136



FioranoMQ C++ RTL Native Guide

mgboolean restartServer() FMQCONST throw (CIMSException¥*)
Restarts the MQ Server.
Parameters: None
Returns: mgboolean value for success or failure from the server.

Exceptions: CJMSException

mgboolean shutdownServer() FMQCONST throw (CIMSException*)
Shuts down the MQ Server.
Parameters: None
Returns: mqgboolean value for success or failure from the server.

Exceptions: CIMSException

mgboolean shutDownActiveHAServer() FMQCONST throw (CIMSException¥)
Shuts down the Active HA MQ Server.
Parameters: None
Returns: mgboolean value for success or failure from the server.

Exceptions: CJMSException

mgboolean shutDownPassiveHAServer() FMQCONST throw (CIMSException¥)
Shuts down the Passive HA MQ Server.
Parameters: None
Returns: mqgboolean value for success or failure from the server.

Exceptions: CIMSException

mgboolean purgeQueueMessages2(mgcstring queueName, const mgboolean forcefully) FMQCONST
throw (CIMSException*)

Purges all the messages on the specified queue forcefully.
Parameters:
e queueName - String representing the queue name.

o forcefully - boolean representing whether the messages in the queue have to be
purged forcefully, irrespective of active consumers.

Returns: mgboolean value for success or failure from the server.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 137



FioranoMQ C++ RTL Native Guide

mgboolean purgeQueueMessagesl(mgcstring queueName) FMQCONST throw (CIMSException*)
Purges all the messages on the specified queue,if no active consumer is present.
Parameters:
e queueName - String representing the queue name.
Returns: mgboolean value for success or failure from the server.

Exceptions: CJMSException

mgboolean showStatusOfAllQueues() FMQCONST throw (CIMSException*)
Shows the status of all the queues on the server.
Parameters: None
Returns: mqgboolean value for success or failure from the server.

Exceptions: CIMSException

mgint deleteMessagesOnServer(mqcstring queueName, const mqlong startIndex, const mqlong
endIndex, const mgint priority) FMQCONST throw (CIMSException*)

Delete messages on the specified queue with start index upto the end index and with specified
priority.

Parameters:
e queueName - String representing the queue name.
e startIndex - mglong start index.
e endIndex - mglong end index.
e Priority - Mgint message priority.
Returns: Mqint representing the number of messages deleted on the server.

Exceptions: CIMSException

mgboolean loadAdminObjects() FMQCONST throw (CIMSException®)
Load admin objects on the server.
Parameters: None
Returns: mgboolean value for success or failure from the server.

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 138



FioranoMQ C++ RTL Native Guide

CHashTable

This class implements a hashtable, which maps keys to values. Any non-null mgobject can be used as
a value and any non-null mqcstring can be used as a key.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CHashTable() throw (CIMSException *);
Constructs a new, empty hashtable.

Parameters: None

Methods

mgobject Put(mgcstring key, mgobject value) throw (CIMSException *)

Maps the specified key to the specified value in this hashtable. Neither the key nor the value
can be null.

Parameters:

e Key -The string which acts as a key.

e Value - the value mapped to the key which should be casted to mqgobject
Returns: mqobject

Exceptions: CIMSException

mgobject Get(mgcstring key) FMQCONST throw (CIMSException *)
Returns the value to which the specified key is mapped in this hashtable.
Parameters:
e Key - The string which acts as a key.
Returns: mqobject

Exceptions: CIMSException

mgobject RemoveElement(mgcstring key) throw (CIMSException *)

Chapter 4: FioranoMQ C++ RTL — Classes Page 139



FioranoMQ C++ RTL Native Guide

Removes the key (and its corresponding value) from this hashtable. This method does nothing
if the key is not in the hashtable.

Parameters:
e Key - The string which acts as a key.
Returns: mqobject

Exceptions: JMSException

mgboolean Containsvalue(mgobject value) throw (CIMSException *)
Checks if the given value exists in this hashtable.
Parameters:
e Value - the value mapped to the key which should be casted to mqgobject
Returns:
e Mgboolean - True/False

Exceptions: CIMSException

mgboolean Containskey(mqcstring key) throw (CIMSException *)
Checks if the given key exists in this hashtable.
Parameters:
e Key - The string which acts as a key.
Returns:
e Mgboolean - True/False

Exceptions: CIMSException

CHashTableEnumerator

This is the enumeration class that gets the contents of the CHashTable as an enumerated object.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CHashTableEnumerator(struct _HashtableEnumerator *htenum); throw (CIMSException *);

Chapter 4: FioranoMQ C++ RTL — Classes Page 140



FioranoMQ C++ RTL Native Guide

Parameters:

e htenum - HashtableEnumerator structure defined in C runtime.

Methods

mgboolean hasMoreElements() FMQCONST
Tests if this enumeration contains more elements.
Parameters: None

Returns: Returns true if enumeration contains more elements otherwise it returns false

mgcstring nextkeyElement() FMQCONST

Returns the nextKey value of this enumeration if this enumeration object has at least one
more element to provide.

Parameters: None
Returns:

e mqcstring - Returns the next Key value

mgobject nextvalueElement() FMQCONST

Returns the next value element of this enumeration if this enumeration object has at least one
more element to provide

Parameters: None
Returns:

¢ mgqobject - Returns the next value Element

CLogHandler

This class is used for logging to a file. It is a singleton class and only one instance of Logger exists for
the whole application.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CLogHandler() throw (CIMSException*);

Chapter 4: FioranoMQ C++ RTL — Classes Page 141



FioranoMQ C++ RTL Native Guide

Default constructor

Methods

static mgboolean setLoggerName(mgstring name) throw (CIMSException®)
Sets file name [in which data is logged] to nhame. The default file name is cclient.
For example, CLogHandler::setLoggerName("Publisher");
Parameters: Logger name
Returns: Boolean returning true or false

Exceptions: CIMSException

static CLogHandler* getLogHandler() throw (CIMSException*)

This function gets the reference to the LogHandler, using which data can be logged from
application.

Parameters: None
Returns: Reference to CLogHandler

Exceptions: CIMSException

mgboolean setTraceLevel(mgstring Tevel)

The trace level can also be set using this function. The legal values for the "level" are:

1. ERROR

2. INFO

3. DEBUG
Parameters

e level - Trace level in mgstring

Returns: Boolean returning true or false

mgboolean logData(mgstring info, ...) throw (CIMSException*)

It logs the given data to the log file. This function is variable argument function. The usage of
this function is similar to printf function.

Example

CLogHandler *logger = CLogHandler::getLogHandler();
logger->Togbata("Logging from file - %s, func -%s", "FileName", "funcName");

In log file it is printed as follows:

Fri Dec 19 14:41:25 2008 :APPL: Logging from file - FileName, func —funcName

Parameters: User defined

Chapter 4: FioranoMQ C++ RTL — Classes Page 142



FioranoMQ C++ RTL Native Guide

Returns: Boolean returning true or false

Exceptions: CIMSException

CCSPManager

This class is used to create CSPBrowser, which is used for browsing messages stored in CSP cache.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CCSPManager(mgcstring cspPath)
Constructors are used for creating CCSPManager class.

Parameters: The path to the CSP has to be given as parameter to the constructor.

Methods

CCSPBrowser* createCSPBrowser() throw (CIMSException *)
Creates CCSPBrowser for the location specified for the manager.
Parameters: None
Returns: Returns CCSPBrowser pointer.

Exceptions: CIMSException

CCSPBrowser

CSP Browser is used to browse the messages stored in Client-Side Persistent Cache. While browsing,
messages are read from CSP and are not deleted. So, next time when the Server is re-connected,
messages are sent to the Server. The classes used for CSP Browsing are CCSPBrowser and
CCSPEnumeration.

Inheritance Hierarchy

None

Chapter 4: FioranoMQ C++ RTL — Classes Page 143



FioranoMQ C++ RTL Native Guide

Subclasses

None

Constructors

CCSPBrowser(struct _CSPBrowser *m_cspBrowser)
Parameters:

e m_cspBrowser - CSPBrowser structure defined in C runtime.

Methods

CEnumeration* getAllConnections() FMQCONST throw (CIMSException *)

This function returns the enumeration of all the Connection IDs whose messages are stored in
CspP

Parameters: None
Returns: returns the enumeration of all the Connection IDs

Note: The CEnumeration object contains all the Connection IDs whose messages are stored in
CSP. The names can be retrieved from the CEnumeration object using nextElement method.
The nextElement method returns void* and it should be type casted to const char *.

Exceptions: CIMSException

CEnumeration® getTopicsForConnection(mgcstring connectionID) FMQCONST throw (CIMSException *)

This function returns the Enumeration of all the topic names for the specified connection with
clientID as connectionID.

Parameters
e connectionID - clientID as string
Returns: returns the enumeration of all the topic names

Note: The CEnumeration object contains all the topic names for the specified connection.The
names can be retrieved from the CEnumeration object using nextElement method.The
nextElement method returns void* and it should be type casted to const char *.

Exceptions: CIMSException

CEnumeration* getQueuesForConnection(mgcstring connectionID) FMQCONST throw (CIMSException *)

This function returns the Enumeration of all the queue names for the specified connection with
clientID as connectionID.

Parameters
e connectionID - clientID as string

Returns: returns the enumeration of all the queue names

Chapter 4: FioranoMQ C++ RTL — Classes Page 144



FioranoMQ C++ RTL Native Guide

Note: The CEnumeration object contains all the queue names for the specified connection.
The names can be retrieved from the CEnumeration object using nextElement method. The
nextElement method returns void* and it should be type casted to const char *.

Exceptions: CIMSException

CCSPEnumeration* browseMessagesOnQueue(mqcstring queueName, mgboolean checkTransacted)
FMQCONST throw (CIMSException *)

This function returns the enumeration of messages stored in the queue specified by
gueueName. It searches for messages in queue in all the existing connections.

Parameters
e queueName - Name of the queue to browse as mqcstring

e checkTransacted - If checkTransacted is TRUE, transacted messages are also
browsed.

Returns: returns the enumeration of all the messages in queue

Exceptions: CIMSException

CCSPEnumeration* browseMessagesOnQueue(mqcstring connectionID, mgcstring queueName, mgboolean
checkTransacted) FMQCONST throw (CIMSException *)

This function returns the enumeration of messages stored in the queue specified by
queueName. It searches for messages in queue for the connection specified by connectionID.
If checkTransacted is TRUE, transacted messages are also browsed.

Parameters
e connectionID - clientID as string
e queueName - Name of the queue to browse as mqcstring

e checkTransacted - If checkTransacted is TRUE, transacted messages are also
browsed.

Returns: returns the enumeration of all the messages in queue

Exceptions: CIMSException

CCSPEnumeration* browseMessagesonTopic(mqcstring topicName,mgboolean checkTransacted)
FMQCONST throw (CIMSException *)

This function returns the enumeration of messages stored in the topic specified by topicName.
It searches for messages in topic in all the existing connections.

Parameters
e topicName - Name of the topic to browse as mqcstring

e checkTransacted - If checkTransacted is TRUE, transacted messages are also
browsed.

Returns: returns the enumeration of all the messages in topic

Chapter 4: FioranoMQ C++ RTL — Classes Page 145



FioranoMQ C++ RTL Native Guide

Exceptions: CIMSException

CCSPEnumeration* browseMessagesOnTopic(mgcstring connectionID, mgcstring topicName, mgboolean
checkTransacted) FMQCONST throw (CIMSException *)

This function returns the enumeration of messages stored in the topic specified by topicName.
It searches for messages in topic for the connection specified by connectionID.

Parameters
e connectionID - clientID as string
e topicName - Name of the topic to browse as mqcstring

e checkTransacted - If checkTransacted is TRUE, transacted messages are also
browsed.

Returns: returns the enumeration of all the messages in topic

Exceptions: CIMSException

mglong numberOofMessagesinQueue(mgcstring connID, mgcstring queueName,mgboolean
checkTransacted) FMQCONST throw (CIMSException *)

This function returns the number of messages stored in the queue specified by queueName for
a given connection with clientID connID.

Parameters
e connlD - clientID as string
e queueName - Name of the queue to browse as mqcstring

e checkTransacted - If checkTransacted is TRUE, transacted messages are also
counted.

Returns: returns the messages count in mglong

Exceptions: CIMSException

mglong numberofMessagesinTopic(mgcstring connID, mgcstring topicName, mgboolean
checkTransacted) FMQCONST throw (CIMSException *)

This function returns the number of messages stored in the topic specified by topicName for a
given connection with clientID connID.

Parameters
e connlD - clientID as string
e topicName - Name of the topic to browse as mqcstring

e checkTransacted - If checkTransacted is TRUE, transacted messages are also
counted.

Returns: returns the messages count in mglong

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes Page 146



FioranoMQ C++ RTL Native Guide

CCSPEnumeration

This is the enumeration class that gets the list of messages from CSP Cache.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CCSPEnumeration(CSPEnumeration cspe);
Parameters:

e cspe — CSPEnumeration structure defined in C runtime.

Methods

mgboolean hasMoreElements() FMQCONST throw (CIMSException *)

This function checks whether more elements are available in the enumeration.

Parameters: None
Returns: returns true/false

Exceptions: CIMSException

CMessage* nextElement() FMQCONST throw (CIMSException *)

This function returns the next element of this enumeration if this enumeration object has at

least one more element to provide.
Parameters: None
Returns: returns the next CMessage

Exceptions: CIMSException

Chapter 4: FioranoMQ C++ RTL — Classes

Page 147



FioranoMQ C++ RTL Native Guide

Chapter 5: Large Message Support

With Large Message Support (LMS) in FioranoMQ, clients can transfer large files in the form of large
messages with theoretically no limit on the message size. Large messages can be attached with any
JMS message and the client can be sure of a reliable and secure transfer of the message through
FioranoMQ Server.

The following classes and functions are used in LMS.

CFioranoConnection

These two functions are used for resuming any pending large messages.

CRecoverableMessagesEnum *getUnfinishedMessagesToSend() FMQCONST

This function Returns the enumeration of Messages whose transfers are pending as they were
not fully sent.

CRecoverableMessagesenum *getUnfinishedvessagesToReceive() FMQCONST;

This function Returns the enumeration of Messages which were not fully received and need to
be resumed.

CRecoverableMessagesEnum

This class is the enumeration of Unfinished Messages.

Inheritance Hierarchy

None

Subclasses

None

Constructors

CRecoverableMessagesEnum(RMEnum enumr) ;

Parameters:

e enumr - _RecoverableMessagesEnum structure defined in C runtime.

Methods

bool hasmoreElements() FMQCONST

Returns true if there are more elements in the enumeration, false otherwise

Chapter 5: Large Message Support Page 148



FioranoMQ C++ RTL Native Guide

Parameters: None

Returns: Returns true if there are more elements in the enumeration, false otherwise

CMessage *nextElement() FMQCONST
Return the next element (CMessage Object) of the enumeration.
Parameters: None

Returns: Returns CMessage Object

ClLargeMessage

Inheritance Hierarchy

None

Subclasses

CMessage

Constructors

Default

Methods

virtual void setLMStatusListener(CLMStatusListener *1istener, const mqgint updateFrequency)

Sets the status listener for the message. This function is used to know the status of message
transfer asynchronously.

Parameters
e listener
e CLMStatuslListener object
e updateFrequency

Returns: void

virtual CLMStatusListener *getLMStatusListener() FMQCONST
Gets the status listener for the message.
Parameters: None

Returns: CLMStatusListener object

Chapter 5: Large Message Support Page 149



FioranoMQ C++ RTL Native Guide

virtual void SaveTo(mqcstring fileName, bool isBlocking)
Saves the contents of the message in the file specified.
Parameters
o fileName - file name to save.
e isBlocking - boolean for blocking or non blocking

Returns: void

virtual void resumeSaveTo(bool isBlocking)
Resumes saving the contents of the message in the file specified.
Parameters:
e isBlocking: boolean for blocking or non blocking

Returns: void

virtual void resumeSend(

Resumes an incomplete transfer. This function is used to resume a message transfer which

could not be completed earlier either due to some internal error or due to some problem at the
client side.

Parameters: None

Returns: void

virtual void cancelAllTransfers(Q)

Cancels all message transfers which are currently transferring this message. A cancelled
transfer also removes the resume information of the transfer. Hence a transfer once cancelled
cannot be resumed.

Parameters: None

Returns: void

virtual void cancelTransfer(mgint consumeriD)

Cancels the transfer specified by the consumerID. A cancelled transfer also removes the
resume information of the transfer. Hence a transfer once cancelled cannot be resumed.

Parameters

e consumerID - Id of the consumer for which the transfer has to be stopped.

Returns: void

virtual void suspendAllTransfers

Chapter 5: Large Message Support Page 150



FioranoMQ C++ RTL Native Guide

Suspends all the message transfers which are transferring this large message temporarily.
Suspending a transfer only stops the thread which is doing the message transfer and does not
delete resume related information. Hence, a suspended transfer can be resumed using resume
functions.

Parameters: None

Returns: void

virtual void suspendTransfer(mgint consumerID)

Suspends the transfer specified by the consumerID temporarily. Suspending a transfer only
stops the thread which is doing the message transfer and does not delete resume related
information. Hence, a stopped transfer can be resumed using resume functions

Parameters
e consumerlID - Id of the consumer for which the transfer has to be suspended.

Returns: void

virtual void setFragmentSize(const mqint size)
Sets the fragment size for the message.
Parameters
e size - size of the fragment in int

Returns: mqglong

virtual int getFragmentSize() FMQCONST
Gets the fragment size of the message.
Parameters: None
Returns:

e Int - returns the size

virtual void setwindowSize(const mgint size)
Sets the frequency after which acknowledgement will be sent
Parameters
e size —size of the window in int

Returns: void

virtual int getwindowSize() FMQCONST

Gets the window size of the message.

Chapter 5: Large Message Support Page 151



FioranoMQ C++ RTL Native Guide

Parameters: None
Returns

e size - size of the window in int

virtual void setRequestTimeoutInterval(const mglong timeout)
Sets the time until which the sender will wait for message transfer to start
Parameters
e timeout - time in mglong (in milliseconds)

Returns: void

virtual mqlong getRequestTimeoutInterval() FMQCONST
Gets the time until which the sender will wait for message transfer to start
Parameters: None

Returns: mglong

virtual void setResponseTimeoutInterval(const mqlong responseInterval)
Sets the time until which the sender/receiver will wait for message from the other end.
Parameters
e responselnterval - responselnterval time as mqglong (in milliseconds)

Returns: void

virtual mqlong getResponseTimeoutInterval() FMQCONST
Gets the time until which the sender/receiver will wait for messages from the other end.
Parameters: None

Returns: mglong

CLMStatuslListener

This class listens to the status of the Large Message received or sent. This has one virtual function
which has to over ridden in Status Listener implementation. Refer to the Ims samples for the sample
implementation of this class.

Inheritance Hierarchy

None

Chapter 5: Large Message Support Page 152



FioranoMQ C++ RTL Native Guide

Subclasses

None

Constructors

Default

Methods

virtual void onLMStatus(CLMTransferStatus *status, bool exception) = 0

Notifies the user with large message status. The user is expected to override this function with
the required functionality.

Parameters
e status - CLMTransferStatus object which holds the status.
Exception: Boolean indicating whether exception occured or not.

Returns: Void

CLMTransferStatus

This class provides methods that provide information about the status of the Message transfer such as
number of bytes transferred, number of bytes left to be transferred, etc.
Inheritance Hierarchy

None

Subclasses

None

Constructors

CLMTransferstatus (LMTransferStatus status)
Parameters:

e enumr - LMTransferStatus structure defined in C runtime.

Methods

mqlong getBytesTransferred() FMQCONST
Returns the number of bytes transferred.

Parameters: None

Chapter 5: Large Message Support Page 153



FioranoMQ C++ RTL Native Guide

Returns: number of bytes transferred

mqlong getBytesToTransfer() FMQCONST
Returns the number of bytes to be transferred.
Parameters: None

Returns: number of bytes to be transferred.

mqlong getLastFragmentID() FMQCONST
Returns the ID of the last fragment.
Parameters: None

Returns: ID as mglong

float getPercentageProgress() FMQCONST
The percentage of the progress of message transfer.
Parameters: None

Returns: Returns the percentage of the progress message transfer in float

mgbyte getStatus()
Returns the status of the Message transfer.
e LM_TRANSFER_NOT_INIT or 1
Indicates that the transfer has not yet started
e LM_TRANSFER_IN_PROGRESS or 2
Indicates that transfer is currently in progress
e LM_TRANSFER_DONE or 3
Indicates that the transfer is complete for one consumer
e LM_TRANSFER_ERR or 4
Indicates that an error occurred during the transfer
e LM_ALL_TRANSFER_DONE or 5
Indicates that the transfer is complete for all consumers
Parameters: None

Returns: Returns the status of the Message transfer.

bool isTransferComplete() FMQCONST

Chapter 5: Large Message Support

Page 154



FioranoMQ C++ RTL Native Guide

Returns true if transfer completes, else returns false.
Parameters: None

Returns: true if transfer completes, else returns false.

bool isTransferCompleteForAl1() FMQCONST
Returns true if all the transfers are completed, else returns false.
Parameters: None

Returns: true if all the transfers are completed, else returns false

CLargeMessage *getLargeMessage() FMQCONST
Returns the large message for which this status is created.
Parameters: None

Returns: The large message

int getConsumerID() FMQCONST
Returns the consumerlD of the connection that is being used.
Parameters: None

Returns: Returns the consumerID

Chapter 5: Large Message Support

Page 155



FioranoMQ C++ RTL Native Guide

Chapter 6: Message Compression

Message compression is a functionality that allows messages sent through FioranoMQ to be
compressed when sending and decompressed, to their original size, prior to delivery to consumers.

Compression has the advantage of improving performance. Less bandwidth is used during message
transfer. Memory and storage requirements on the server are reduced as well. This function is
important for performance-sensitive applications operating over WAN links. Many data compression
implementations have been developed in the past, of which the Zlib implementation is, by far, the
most significant one. The Fiorano compression implementation is based on Zlib Compressed Data
Format Specification Version.

This specification defines a lossless compression data format. The advantages of this compression
implementation, as per specification, are:
e Itis independent of CPU type, operating system, file system and character set.

e Can be produced or consumed by an arbitrarily long sequentially presented input data stream,
using a bounded amount of intermediate storage.

e Can be implemented readily in a manner not covered by patents.

e Can use a number of different compression methods.
In FioranoMQ C RTL, the Zlib implementation is provided using the zlib general purpose compression
library. The zlib compression library provides in-memory compression and decompression functions.

This implementation provides 'deflate' and 'inflate' mechanisms using different compression levels and
different compression strategies.

e Compression level is the amount of compression required.

e Compression strategy is the actual compression method used.

The default strategy uses a combination of the LZ77 algorithm and Huffman coding.

Message Compression Characteristics

FioranoMQ provides message compression on a ‘per message’ as well as on ‘per destination’ basis. In
‘per message’ compression, clients can enable or disable compression for each message. In ‘per
destination’ compression, all messages sent to a particular destination (topic or queue) are
compressed. Client applications can choose compression levels and strategies from Zlib specifications.
The available options are:

e Z_NO_COMPRESSION

e Z BEST_SPEED (fastest compression)

e Z BEST_COMPRESSION

e Z DEFAULT_COMPRESSION

There are ten possible compression levels (0-9) available, where Z_BEST_SPEED is defined as 1 and
Z_BEST_COMPRESSION is defined as 9.

Chapter 6: Message Compression Page 156



FioranoMQ C++ RTL Native Guide

The possible values for the compression strategy are:

e Z_ FILTERED: Compression strategy best used for data consisting primarily of small values
with random distribution. It enforces more Huffman coding and less string matching.

e Z HUFFMAN_ONLY: Enforces more Huffman coding.

e Z_RLE: Limits match distances to one (run-length encoding). Z_RLE is designed to be almost
as fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data.

e Z_ FIXED: Prevents the use of dynamic Huffman codes, allowing for a simpler decoder for
special applications.

Z_DEFAULT_STRATEGY: This uses a combination of the LZ77 method and Huffman coding.

Compression support provided helps a client application to decide on the optimum compression level
and strategy by providing APIs to check compression ratios of messages sent and/or received.
Compression involves compressing only the payload of the message and not its JMS header.

Refer the samples in PTP/Message Compression & PubSub/Message Compression on enabling
compression on PerMessage or PerDestination basis in the application code.

Chapter 6: Message Compression Page 157



FioranoMQ C++ RTL Native Guide

Chapter 7: Using Sample Programs

This chapter explains the various steps involved in running the sample programs which are shipped as
part of the installer.

Organization of Samples Provided
The sample programs illustrating the use of C++RTL for PubSub and PTP Operations are organized
into the following categories.

e Pubsub: This directory contains sample programs, which illustrate basic JMS
Publish/Subscribe functionality, using the C++RTL.

e Ptp: This directory contains sample programs which illustrate JMS send-receive
mechanism using the C++RTL.

¢ Unified: This directory contains sample programs which illustrate the JMS Send-Receive
functionality using unified APIs.

Compiling and Running the Samples
To run the samples using FioranoMQ, perform the following steps:
Compile each of the source files, using the script file, cppclientbuild.bat, in the fmq\
clients\cpp\native\scripts folder. Environment settings like path, compiler settings can be modified in
the cppclientbuild.bat (.sh script for UNIX platform) file.
For information on compiling and running these samples please refer to the readme file in the
cpp\native\samples directory of FioranoMQ installation.

Operating Environments

The JMS C/C++ RTL supports client applications for each of the following operating systems. Table 1
lists the compiler for each client platform.

Table 1. Message Service Client for C/C++ platforms and compilers

Operating System Compiler

Microsoft Windows XP/Server 2000/Server 2003 Microsoft Visual C++ .NET 2003 (Visual C++
(Intel 32 bit) 7.1), Microsoft Visual C++ 2005, Microsoft
Visual C++ 2008, Microsoft Visual C++ 2010

Fedora/Cent OS/Open Suse Linux (Intel 32 bit) gcc4.1.2

Fedora/Cent OS/Open Suse Linux (x86_64) gcc4.1.2
Sun Solaris 5.10 (Intel 32 bit) gcc 3.4.3
Sun Solaris 5.10 (SPARC) gcc 3.4.3

Chapter 7: Using Sample Programs Page 158




FioranoMQ C++ RTL Native Guide

Limitations of C++ RTL

Exception handling is limited to CIMSException and any variation is implemented by varying the error
Code and error description parameters.

C++RTL provides a limited set of APIs for the end user, which just allows messaging using Pub/Sub or
Sender/Receiver.

Chapter 7: Using Sample Programs Page 159



FioranoMQ C++ RTL Native Guide

Chapter 8: Native C++ Runtime

Examples

This chapter describes usage of C++ Runtime for connecting to FioranoMQ Server. The various sample

programs illustrates the use of simple Point-To-Point and Publish-Subscribe operations.

PTP

This directory contains samples which demonstrate the following functionality over PTP using C++

Runtime.
[ ]

PubSub

Admin

Basic Send Receive
Browser

HTTP

Message Selector
Multi-thread PTP
RequestReply

Basic
TimedRequestReply
SSL

Transaction
cspBrowser

Ims

nonJndi
revalidateConnections
serverlessMode

DeadMessageQueue

Message Compression - PerDestination

Message Compression - PerMessage

This directory contains samples which demonstrate the following functionality over PubSub using C++

Runtime.
[ ]

Admin
Basic Pub Sub
Durable Subscriber

HTTP

Chapter 8: Native C++ Runtime Examples

Page 160



FioranoMQ C++ RTL Native Guide

e Message Selector

e  Multi-thread PubSub
e RequestReply

e Basic

¢ TimedRequestReply

e SSL

e Transaction

e cspBrowser

e Ims

e nonJndi

e revalidateConnections
e serverlessMode

¢ DeadMessageQueue

e Message Compression - PerDestination

e Message Compression - PerMessage
Unified

This directory contains samples which demonstrate the following functionality over Unified APIs using
C++ Runtime.

e NonJndi

e Sendreceive
These samples are available in %FMQ_DIR%\clients\cpp\native\samples directory. The

%FMQ_DIR%\clients\cpp\native\script directory contains a script called build_samples.bat (.sh for
UNIX platform) which compiles the C++ programs.

Platforms Supported

Currently C++ libraries are supported on the following OS platforms: Windows, Linux (32 and 64 bit),
Solaris x86, Solaris Sparc, and HP-UX.

Chapter 8: Native C++ Runtime Examples Page 161



FioranoMQ C++ RTL Native Guide

Building and Running C++ Applications

FioranoMQ C++ library package comes with a comprehensive list of sample applications covering
important features of PTP and PubSub messaging domains. The Non-java client library packages
should be downloaded along with the FioranoMQ installer and extracted to the ‘fmq’ directory of

Fiorano_Home.

For getting started with a basic send/receive sample, while compiling please ensure to link the
required libraries and header files as mentioned in the script files under the scripts directory (located
at $FMQ_DIR/clients/cpp/native/scripts for compiling C++ samples). In order to compile all the
samples at one shot, please use the build_samples.bat(.sh for unix platform) or use the
cppclientbuild.bat(.sh) for compiling a particular sample.

Both static and dynamic libraries are provided for all supported platforms. To run any C++ samples,
set the LD_LIBRARY_PATH environment variable in ~/.bashrc profile to both C and C++ library
directories for UNIX platforms,

Example: LD_LIBRARY_PATH = $FMQ_DIR/clients/c/native/lib:$FMQ_DIR/clients/cpp/native/lib

For Windows platform, set the PATH environment variable to the location of ¢/native/lib and
cpp/native/lib folders.

Example: PATH=%FMQ_DIR%\clients\c\native\lib;%FMQ_DIR%\clients\cpp\native\lib

Note: For Message Compression support in Windows zlibwapi.lib/.dll provides dynamic linking with
fmgq cpprtl. In Linux & Solaris platforms, the same is provided by libz.a static library and libz.so shared
object.The above libraries are present in the %FMQ_DIR%\clients\c\native\lib directory.

PTP Samples

Admin
This directory contains one sample program which illustrates basic JMS Administration API
functionality using the FioranoMQ C++ Runtime Library.

e AdminTest.cpp - Creates an Admin Connection with the MQServer and gets an
MQAdminService object to create and delete Queues and QueueConnectionFacotries and
retrieves information of users connected from the server.

To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the AdminTest by executing the AdminTest.exe executable file.

Chapter 8: Native C++ Runtime Examples Page 162



FioranoMQ C++ RTL Native Guide

Basic

This directory contains two sample programs which illustrate JMS Send-Receive mechanism using the
FMQ C++ Runtime Library.

Sender.cpp - Reads strings from standard input and sends the text messages on the
queue "PrimaryQueue".

Receiver.cpp - Implements a synchronous blocking receiver, which listens on the queue
"PrimaryQueue", and prints the text of the received text messages on the console.

To run these samples using FioranoMQ, perform the following steps:

1.

Browser

Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

Run the Sender by executing the Sender.exe executable file.

Run the receiver by executing the Receiver.exe file.

This directory contains two sample programs which illustrate basic JMS Browser functionality using the
FioranoMQ C++ Runtime Library.

QSender.cpp - Reads strings from standard input and sends them on the queue
"PrimaryQueue".

Browser.cpp - Implements a browser, which is used to browse the messages on the
queue "PrimaryQueue", and prints out the received messages.

To run these samples using FioranoMQ, perform the following steps:

1.

Compile each of the source files. For convenience, compiled versions of the sources are
included in this directory. The %FMQ_DIR%\clients\cpp\native\scripts directory contains a
script called cppclientbuild.bat which compiles the C++ program.

Run the Sender by executing the QSender.exe executable file. Send some messages
before running the browser application

Run the browser by executing the Browser.exe file.

Csp Browser

This directory contains two sample programs which illustrate basic JMS CspBrowser functionality using
the FioranoMQ CPP Runtime Library.

1. Sender.cpp

Reads strings from standard input and sends them on the queue "PrimaryQueue".

2. Browser.cpp

Implements a browser, which is used to browse the messages on the cspcache, and prints out
the received messages.

To run these samples using FioranoMQ, perform the following steps:

a. Compile each of the source files.

Chapter 8: Native C++ Runtime Examples Page 163



FioranoMQ C++ RTL Native Guide

The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script called
cclientbuild.bat which compiles the CPP program.

b. Run the Sender by executing the Sender.exe executable file. Send some messages
before running the browser application.

c. Run the asynchronous receiver by executing the Browser.exe file.

DeadMessageQueue

This directory contains three sample programs which illustrate functionality of Dead Message Queue
using the FioranoMQ C Runtime Library.
Note: Before running the given sample, enable the following configuration through WMT:

1. To use WMT, open a web browser and type http://localhost:1780

2. Go to JMX -> ConfigureFMQServer -> fiorano->mq->ptp->queuingSubSystem-
>EnableDMQONAIIQueues to true

a. Sender.cpp - Reads strings from standard input and sends them on the queue
"PrimaryQueue".Some messages expire after the TTL and are sent to
"SYSTEM_DEADMESSAGES_QUEUE".

b. Receiver.cpp - Implements an asynchronous listener, which listens on the queue
"PrimaryQueue", and prints out the received messages.

c. ReceiverDMQ.cpp - Implements an asynchronous listener, which listens on the queue
“SYSTEM_DEADMESSAGES_QUEUE", and prints out the received messages and the
actual destination of the messages.

To run this sample using FioranoMQ, perform the following steps:

1. Compile the source file. The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script
called cppclientbuild.bat which compiles the C++ program.

2. Run the Sender by executing the Sender.exe executable file.
3. Run the Receiver by executing the Receiver.exe executable file.

4. Run the ReceiverDMQ by executing the ReceiverDMQ.exe executable file.

HTTP

This directory contains two sample programs which illustrate the use of HTTP protocol for basic JMS
PTP functionality using the FioranoMQ C++ Runtime Library.

¢ QReceiver.cpp - Receives messages asynchronously on primaryQueue. This program
implements a synchronous listener to listen for messages published on the queue
“PrimaryQueue”.

¢ QSender.cpp - Implements a client application publishing user specified data on
primaryQueue. This program reads strings from standard input and publishes them on the
Queue “PrimaryQueue”.

Chapter 8: Native C++ Runtime Examples Page 164



FioranoMQ C++ RTL Native Guide

To run this sample using FioranoMQ, perform the following steps:

1. Compile the source file. The %FMQ_DIR%\clients\cpp\native\scripts directory contains a
script called cppclientbuild.bat which compiles the C++ program.

2. Run the HttpReceiver by executing the QReceiver.exe executable file.

3. Run the HttpSender by executing the QSender.exe executable file.

LMS

This directory contains sample programs which illustrate the use of Large Message Support - LMS for
basic JMS ptp functionality using the FioranoMQ CPP Runtime Library.
1. LmSender.cpp
Accept filename to be send from standard input and send them on queue, "PrimaryQueue".
2. LmReceiver.cpp

Implements an asynchronous listener, which listens on the queue "PrimaryQueue", and create
a received message file (default output fileName, "received.zip").

To run this sample using FioranoMQ, perform the following steps:

a. Compile the source file.
The %FMQ_DIR%\clients\CPP\native\scripts directory contains a script called
cclientbuild.bat which compiles the CPP program.

b. Run the LmReceiver by executing the LmReceiver.exe executable file.

c. Run the LmSender by executing the LmSender.exe executable file.

Message Compression

This directory contains two folders PerDestination and PerMessage

PerDestination
This directory contains three sample programs which illustrate the message compress/uncompress
abstraction supplied by the JMS API using a C++ Sender application and Receiver application.

1. Sender.cpp - Sends a file as a compressed message to the server on the "CompressedQueue".

2. Receiver.cpp - Implements an asynchronous listener, which listens on the queue
CompressedQueue". Receives the message sent by the sender in the uncompressed original
form and writes the data in the message to a file.

3. CreateQueue.cpp - Creates a queue called "CompressedQueue" that has compression enabled
on it which means that all messages sent on this queue will be compressed by default.
To run this sample using FioranoMQ, perform the following steps:

1. Compile the source file. The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script
called cppclientbuild.bat which compiles the C++ program.

Chapter 8: Native C++ Runtime Examples Page 165



FioranoMQ C++ RTL Native Guide

2. Run the CreateQueue by executing the CreateQueue.exe executable file.
3. Run the Sender by executing the Sender.exe executable file.

4. Run the Receiver by executing the Receiver.exe executable file.

PerMessage

This directory contains two sample programs which illustrate the message compress/uncompress
abstraction supplied by the JMS API using a C++ Sender application and Receiver application

1. Sender.cpp - Sends a file as a compressed message to the server on the "PrimaryQueue".
Compression is enabled for every message and the default compression level and strategy are
used.

2. Receiver.cpp - Implements an asynchronous listener, which listens on the queue
"PrimaryQueue". Receives the message sent by the sender in the uncompressed original form
and writes the data in the message to a file.

To run this sample using FioranoMQ, perform the following steps:

1. Compile the source file. The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script
called cppclientbuild.bat which compiles the C++ program.

2. Run the Sender by executing the Sender.exe executable file.

3. Run the Receiver by executing the Receiver.exe executable file.

MsgSel
This directory contains two sample programs which illustrate the use of message selectors using the
FioranoMQ C++ Runtime Library.

¢ QSelSender.cpp - Selector sends messages with the string property "name" and an int
property "value", set differently for 3 consecutive messages.

¢ SelReceive.cpp - Implements a synchronous listener, which listens on the queue
"primaryqueue" for the messages which match the criteria specified in the message
selector, and prints out the received messages.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%/\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the Sender by executing the QSelSender.exe executable file.

3. Run the synchronous receiver by executing the QSelReceive.exe file.

Chapter 8: Native C++ Runtime Examples Page 166



FioranoMQ C++ RTL Native Guide

Mtptp
This directory contains one sample programs which illustrate basic JMS Sender/Receiver functionality
using the FioranoMQ C++ Runtime Library multithreading support.

¢ mtPtp.cpp - The multithreaded version of basic PTP. Single Sender is created, sends 10
text messages on PrimaryQueueand a single receiver blocking receive with timewait of 1
second reads the messages. Each executes on a separate thread. On receipt of 10
messages, the receiver notifies the main thread to end. Sender and Receiver threads are
joined to the main thread.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%/\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the mtPtp by executing the mtPtp.exe executable file.

NonJndi

This directory contains samples to create Queue connection Factory and Queue without using JNDI:
1. Sender.cpp

Implements a client application publishing user specified data on "SampleQueue" created
without using JNDI in persistent mode. It reads strings from standard input and publishes
them on the queue, "SampleQueue"

2. Receiver.cpp

Implements an asynchronous listener, which listens on the queue "SampleQueue", and prints
out the received messages.

To run these samples using FioranoMQ, perform the following steps:
a. Compile each of the source files.

The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script called
cppclientbuild.bat which compiles the C++ program.

b. Run the Sender by executing the Sender.exe executable file.

c. Run the asynchronous receiver by executing the Receiver.exe file.

Reqrep

This directory contains two folders Basic and timeout

Basic

This directory contains two samples which illustrate JMS Request-Reply mechanism over Queues.

¢ QueueRequestor.cpp - Reads strings from standard input and sends the text messages
on the queue "PrimaryQueue".

¢ QueueReplier.cpp - Implements an asynchronous listener, which listens on the queue
"PrimaryQueue", and replies to the received message. The reply is sent on
TemporaryQueue.

Chapter 8: Native C++ Runtime Examples Page 167



FioranoMQ C++ RTL Native Guide

To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the Replier by executing the QueueReplier.exe executable file.

3. Run the requestor by executing the QueueRequestor.exe file.

TimedOut
This directory contains two sample programs which illustrate Timed Request-Reply mechanism over
Queues using the FioranoMQ C++ Runtime Library.

¢ TimedQueueRequestor.cpp - Reads strings from standard input and sends the text
messages on the queue "PrimaryQueue". The Requestor waits for a specified time for the
reply. If the reply is not received within the stipulated time requestor times out.

¢ TimedQueueReplier.cpp - Implements an asynchronous listener, which listens on the
queue "PrimaryQueue", and replies on a TemporaryQueue.
To run these samples using FioranoMQ, perform the following:

1. Compile each of the source files. The %FMQ_DIR%)\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the replier by executing the QueueReplier.exe executable file.

3. Run the timed requestor by executing the TimedQueueRequestor.exe file.

RevalidateConnections
This directory contains two sample programs which illustrate connection revalidation functionality
using the FioranoMQ CPP Runtime Library.

1. Sender.cpp

Reads strings from standard input and use it to send a request message on the topic
"PrimaryQueue". Also, revalidate the connection with the server.

2. Receiver.cpp

Implements an asynchronous listener, which listens on the queue "PrimaryQueue", and prints
out the received messages. Also, revalidate the connection with the server.

To run these samples using FioranoMQ, perform the following steps:
a. Compile each of the source files.

The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script called
cppclientbuild.bat which compiles the C++ program.

b. Run the Sender by executing the Sender.exe executable file.

c. Run the Receiver by executing the Receiver.exe file.

Chapter 8: Native C++ Runtime Examples Page 168



FioranoMQ C++ RTL Native Guide

ServerlessMode
This directory contains two sample programs which illustrate server less mode implementation of JMS
Sender/Receiver functionality using the FioranoMQ C++ Runtime Library.
1. Sender.cpp
Reads strings from standard input and sends them on the topic "PrimaryQueue".
2. Receiver.cpp

Implements an asynchronous listener, which listens on the topic "PrimaryQueue", and prints
out the received messages.

To run these samples using FioranoMQ, perform the following steps:
a. Compile each of the source files.

The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script called
cppclientbuild.bat which compiles the C++ program.

b. (b) Run the Sender by executing the Sender.exe executable file.

c. (c) Run the asynchronous Receiver by executing the Receiver.exe file.

SSL
This directory contains two sample programs which illustrate the basic JMS Send/Receive functionality
over Secure Socket Layer using the FioranoMQ C++ Runtime Library.

e Sender.cpp - Reads strings from standard input and sends them on the queue
"PrimaryQueue".

¢ Receiver.cpp - Implements a synchronous listener, which listens on the queue
"PrimaryQueue", and prints out the received messages.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the Sender by executing the Sender.exe executable file.

3. Run the synchronous receiver by executing the Receiver.exe file.

Transaction
This directory contains a sample programs which illustrate JMS Transaction functionality using the
FioranoMQ C++ Runtime Library.
¢ QTransaction.cpp - Implements the sender and receiver, and uses the commit/rollback
functionality to demonstrate JMS Transactions
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the sample by executing the QTransaction.exe executable file. For proper results from
the sample, ensure that there are no messages in the primaryQueue.

Chapter 8: Native C++ Runtime Examples Page 169



FioranoMQ C++ RTL Native Guide

PubSub Samples

Admin
This directory contains one sample program which illustrates basic JMS Administration API
functionality using the FioranoMQ C++ Runtime Library.

e AdminTest.cpp - Creates an Admin Connection with the MQServer and gets an
MQAdminService object to create and delete Topics and TopicConnectionFacotries and
retrieves information of users connected from the server.

To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the AdminTest by executing the AdminTest.exe executable file.

Basic
This directory contains two sample programs which illustrate basic JMS Publisher/Subscriber
functionality using the FioranoMQ C++ Runtime Library.

e Publisher.cpp - Reads strings from standard input and sends them on the topic
"PrimaryTopic".

e Subscriber.cpp - Implements a synchronous listener, which listens on the topic
"PrimaryTopic", and prints out the received messages.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the Publisher by executing the Publisher.exe executable file.

3. Run the synchronous subscriber by executing the Subscriber.exe file.

CspBrowser
This directory contains two sample programs which illustrate basic JMS CspBrowser functionality using
the FioranoMQ CPP Runtime Library.

1. Publisher.cpp: Reads strings from standard input and sends them on the queue
"PrimaryTopic".

2. Browser.cpp: Implements a browser, which is used to browse the messages on the cspcache,
and prints out the received messages.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cclientbuild.bat which compiles the CPP program.

2. Run the Sender by executing the Publisher.exe executable file. Send some messages before
running the browser application

Chapter 8: Native C++ Runtime Examples Page 170



FioranoMQ C++ RTL Native Guide

3. Run the asynchrounous receiver by executing the Browser.exe file.

Dursub
This directory contains two sample programs which illustrate basic JMS DurableSubscriber functionality
using the FioranoMQ C++ Runtime Library.

e DurPublisher.cpp - Reads strings from standard input and publishes PERSISTENT
messages on the topic "PrimaryTopic".

e DurSubscriber.cpp - Implements a durable subscriber using the client ID "DS_Client_1"
and durable subscriber name "Sample_Durable_Subscriber", listening on the topic
"PrimaryTopic".

To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Start the DurableSubscriber program first, so that the subscriber can register with the
FioranoMQ Server.

3. Next, start the Publisher_d program. When the program comes up, type in a few strings,
pressing the Enter key after each string. The string is published and is received by the
Durable Subscriber started in step (2) above.

4. Now, shut down the Durable Subscriber, but keep typing in messages into the Publisher
program. These messages are automatically stored by the FioranoMQ Server, since a
Durable Subscriber was previously registered on the topic to which the messages are
being published.

5. After a while, restart the DurableSubscriber program. On restart, you would find that all
messages that were published during the time that the durable subscriber was down are
now made available to the subscriber.

6. Repeat steps (4) and (5) over. Each time, you would find that all messages published
during the time that the Subscriber is down are immediately made available to the
Subscriber when it restarts.

HierarchicalTopics
This directory contains two sample programs which illustrate basic JMS Publisher/Subscriber
functionality using the FioranoMQ CPP Runtime Library.
1. Publisher.cpp: Reads strings from standard input and sends them on the hierarchical topics.
2. Subscriber.cpp: Receives messages from hierarchical topics.
3. createHierarchicalTopics.cpp: Creates required hierarchical topics that are used in Publisher
and Subscriber.

To run these samples using FioranoMQ, perform the following steps:

Compile each of the source files.

1. The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script called
cppclientbuild.bat which compiles the CPP program.

Chapter 8: Native C++ Runtime Examples Page 171



FioranoMQ C++ RTL Native Guide

2. Run createHierarchicalTopics that creates topics
3. Run the Publisher by executing the Publisher.exe executable file.

4. Run the asynchrounous subscriber by executing the Subscriber.exe file.

HTTP
This directory contains four sample programs which illustrate the use of HTTP protocol for basic JMS
PubSub functionality using the FioranoMQ C++ Runtime Library.

e Subscriber.cpp - Receives messages synchronously published on "PrimaryTopic". This
program implements an synchronous listener to listen for messages published on
“PrimaryTopic".

e Publisher.cpp - Implements a client application publishing user specified data on
"PrimaryTopic". This program reads strings from standard input and publishes them on
“PrimaryTopic”.

To run this sample using FioranoMQ, perform the following steps:

1. Compile the source file. The %FMQ_DIR%\clients\cpp\native\scripts directory contains a
script called cppclientbuild.bat which compiles the C++ program.

2. Run the HttpSubscriber by executing the Subscriber.exe executable file.

3. Run the HttpPublisher by executing the Publisher.exe executable file.

LMS
This directory contains sample programs which illustrate the use of Large Message Support - LMS for
basic JMS ptp functionality using the FioranoMQ CPP Runtime Library.

1. LmPublisher.cpp: Accept filename to be send from standard input and send them on queue,
"PrimaryTopic".

2. LmSubcriber.cpp: Implements an asynchronous listener, which listens on the queue
"PrimaryTopic", and creates a received message file (default output fileName, "received.zip").
To run this sample using FioranoMQ, perform the following steps:

1. Compile the source file. The %FMQ_DIR%\clients\CPP\native\scripts directory contains a
script called cclientbuild.bat which compiles the CPP program.

2. Run the Receiver by executing the LmSubscriber.exe executable file.

3. Run the Sender by executing the LmPublisher.exe executable file.

Chapter 8: Native C++ Runtime Examples Page 172



FioranoMQ C++ RTL Native Guide

Message Compression

This directory contains two folders PerDestination and PerMessage.

PerDestination

This directory contains three sample programs which illustrate the message compress/uncompress
abstraction supplied by the JMS API using a C++ Publisher application and Subscriber application.

1. TPublisher.cpp - Sends a file as a compressed message to the server on the
"CompressedTopic".

2. TSubscriber.cpp - Implements an asynchronous listener, which listens on the topic
“"CompressedTopic". Receives the message sent by the producer in the uncompressed original
form and writes the data in the message to a file.

3. CreateTopic.cpp - Creates a topic called "CompressedTopic" that has compression enabled on
it which means that all messages sent on this topic will be compressed by default.
To run this sample using FioranoMQ, perform the following steps:

1. Compile the source file. The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script
called cppclientbuild.bat which compiles the C++ program.

2. Run the CreateTopic by executing the CreateTopic.exe executable file.
3. Run the TPublisher by executing the TPublisher.exe executable file.

4. Run the TSubscriber by executing the TSubscriber.exe executable file.

PerMessage

This directory contains two sample programs which illustrate the message compress/uncompress
abstraction supplied by the JMS API using a C++ Publisher application and Subscriber application

1. TPublisher.cpp - Sends a file as a compressed message to the server on the "PrimaryTopic".

Compression is enabled for every message and the default compression level and strategy are
used.

2. TSubscriber.cpp - Implements an asynchronous listener, which listens on the topic
"PrimaryTopic". Receives the message sent in the uncompressed original form and writes the
data in the message to a file.

To run this sample using FioranoMQ, perform the following steps:

1. Compile the source file. The %FMQ_DIR%\clients\cpp\native\scripts directory contains a script
called cppclientbuild.bat which compiles the C++ program.

2. Run the TPublisher by executing the TPublisher.exe executable file.

3. Run the TSubscriber by executing the TSubscriber.exe executable file.

Chapter 8: Native C++ Runtime Examples Page 173



FioranoMQ C++ RTL Native Guide

Msgsel
This directory contains two sample programs which illustrate the use of message selectors using the
FioranoMQ C++ Runtime Library.

e SelSend.cpp - Selector sends messages with the string property "name" and an int
property "value", set differently for 3 consecutive messages.

e SelRecv.cpp - Implements a synchronous listener, which listens on the topic
"PrimaryTopic" for the messages which match the criteria specified in the message
selector, and prints out the received messages.

To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the Sender by executing the SelSend.exe executable file.

3. Run the synchronous receiver by executing the SelRecv.exe file.

Mtpubsub
This directory contains one sample programs which illustrate basic JMS Publish/Subscribe functionality
using the FioranoMQ C++ Runtime Library multithreading support.

¢ mtPubSub.cpp - The multithreaded version of basic PubSub. Single Publisher is created,
publishes 10 text messages on ‘PrimaryTopic’and a single subscriber blocking receive with
timewait of 1 second reads the messages. Each executes on a separate thread. On receipt
of 10 messages, the subscriber notifies the main thread to end. Publisher and Subscriber
threads are joined to the main thread.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the mtPubSub by executing the mtPubSub.exe executable file.

NonJndi

This directory contains samples to create Topic connection Factory and Topic without using JNDI:

1. Publisher.cpp: Reads strings from standard input and publishes them on the topic
"SampleTopic" created without using JNDI.

2. Subscriber.cpp: Implements an asynchronous listener, which listens on the topic
"SampleTopic", and prints out the received messages.
To run these samples using FioranoMQ, perform the following step:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

Chapter 8: Native C++ Runtime Examples Page 174



FioranoMQ C++ RTL Native Guide

2. Run the Publisher by executing the Publisher.exe executable file.

3. Run the asynchrounous subscriber by executing the Subscriber.exe file.

Reqrep

This directory contains two folders basic and timeout.

Basic
This directory contains two sample programs which illustrate JMS Request-Reply mechanism over
Topics using the FioranoMQ C++ Runtime Library.

¢ TopicRequestor.cpp - Reads strings from standard input and sends the text messages
on the topic "PrimaryTopic".

¢ TopicReplier.cpp - Implements an asynchronous listener, which listens on the topic
"PrimaryTopic", and replies to the received. The reply is sent on TemporaryTopic.
To run these samples using FioranoMQ, perform the following:

1. Compile each of the source files. The %FMQ_DIR%)\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the Replier by executing the TopicReplier.exe executable file.

3. Run the requestor by executing the TopicRequestor.exe executable file.

TimedOut
This directory contains two sample programs which illustrate Timed Request-Reply mechanism over
Topics using the FioranoMQ C++ Runtime Library.

¢ TimedTopicRequestor.cpp - Reads strings from standard input and sends the text
messages on the topic "PrimaryTopic". The Requestor waits for a specified time for the
reply. If the reply is not received within the stipulated time requestor times out.

¢ TopicReplier.cpp - Implements an asynchronous listener, which listens on the topic
"PrimaryTopic", and replies on a TemporaryTopic.
To run these samples using FioranoMQ, perform the following:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the replier by executing the TopicReplier.exe executable file.

3. Run the timed requestor by executing the TimedTopicRequestor.exe file.

RevalidateConnections
This directory contains two sample programs which illustrate connection revalidation functionality
using the FioranoMQ CPP Runtime Library.

1. Publisher.cpp: Reads strings from standard input and use it to send a request message on the
topic "PrimaryTopic". Also, revalidate the connection with the server.

Chapter 8: Native C++ Runtime Examples Page 175



FioranoMQ C++ RTL Native Guide

2. Subscriber.cpp: Implements an asynchronous listener, which listens on the queue
"PrimaryTopic", and prints out the received messages. Also, revalidate the connection with the
server.

To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the Publisher by executing the Publisher.exe executable file.

3. Run the Subscriber by executing the Subscriber.exe file.

ServerlessMode
This directory contains two sample programs which illustrate server less mode implementation of JMS
Publisher/Subscriber functionality using the FioranoMQ C++ Runtime Library.
1. Publisher.cpp: Reads strings from standard input and sends them on the topic "PrimaryTopic".
2. Subscriber.cpp: Implements an asynchronous listener, which listens on the topic
"PrimaryTopic", and prints out the received messages.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the Publisher by executing the Publisher.exe executable file.

3. Run the asynchrounous subscriber by executing the Subscriber.exe file.

SSL
This directory contains two sample programs which illustrate basic JMS Publisher/Subscriber
functionality using the FioranoMQ C++ Runtime Library.

e Publisher.cpp - Reads strings from standard input and sends them on the topic
"PrimaryTopic".

e Subscriber.cpp - Implements a synchronous listener, which listens on the topic
"PrimaryTopic", and prints out the received messages.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%)\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the Publisher by executing the Publisher.exe executable file.

3. Run the asynchronous subscriber by executing the Subscriber.exe file.

Transaction

This directory contains a sample programs which illustrate JMS Transaction functionality using the
FioranoMQ C++ Runtime Library.

Chapter 8: Native C++ Runtime Examples Page 176



FioranoMQ C++ RTL Native Guide

¢ Transaction.cpp - Implements the sender and receiver, and uses the commit/rollback
functionality to demonstrate JMS Transactions
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%/\clients\cpp\native\scripts directory
contains a script called cppclientbuild.bat which compiles the C++ program.

2. Run the sample by executing the Transaction.exe executable file. For proper results from
the sample, ensure that there are no messages in the primaryTopic

Unified Samples

NonJndi
This directory contains samples to create Unified connection Factory, Topic, and Queue without using
JNDI:

1. UnifiedProducer.cpp: Reads strings from standard input and sends them on to the queue
"SampleQueue" and to the topic "SampleTopic".

2. UnifiedConsumer.cpp: Implements an asynchronous listener, which listens on the queue
"SampleQueue" and on the topic "SampleTopic" and prints out the received messages.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\c\native\scripts directory contains
a script called cclientbuild.bat which compiles the C++ program.

2. Run the Sender by executing the UnifiedProducer.exe executable file.

3. Run the asynchronous receiver by executing the UnifiedConsumer.exe file.

SendReceive
This directory contains two sample programs which illustrate basic JMS Send/Receive functionality
using the FioranoMQ C++ Runtime Library.

1. UnifiedProducer.cpp: Reads strings from standard input and sends them on to the queue
"PrimaryQueue" and to the topic "PrimaryTopic".

2. UnifiedConsumer.cpp: Implements an asynchronous listener, which listens on the queue
"PrimaryQueue" and on the topic "PrimaryTopic" and prints out the received messages.
To run these samples using FioranoMQ, perform the following steps:

1. Compile each of the source files. The %FMQ_DIR%\clients\c\native\scripts directory contains
a script called cclientbuild.bat which compiles the C++ program.

2. Run the Sender by executing the UnifiedProducer.exe executable file.

3. Run the asynchrounous receiver by executing the UnifiedConsumer.exe file.

Chapter 8: Native C++ Runtime Examples Page 177



	FioranoMQ C++ RTL Native Guide
	Content 
	Chapter 1: Introduction
	Messaging Domains
	Connection Factory
	Connection
	Destination
	Session
	JMS Message
	Message Producer
	Message Consumer


	Chapter 2: Datatypes and Constants
	Basic Data Types and their Sizes
	C++RTL Constants
	Naming convention

	Chapter 3: Writing Applications in C++
	Namespaces in C++
	Error Handling
	Message listeners in C++
	Connection Start and Stop
	Connection Close
	Exception listeners in C++
	Advisory Message listeners in C++
	Lookup of Administered Objects
	Object Deletion
	Getting Message Properties

	Chapter 4: FioranoMQ C++ RTL – Classes
	CLookupHelper
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CInitialContext
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CAdvisoryMessage
	Inheritance Hierarchy
	Constructors
	Subclasses
	Methods

	CAdvisoryMsgListener
	Inheritance Hierarchy
	Subclasses
	Methods

	CFioranoException
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CJMSException
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CExceptionListener
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CMessageListener
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CAdminConnectionFactory
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CConnectionFactory
	Inheritance Hierarchy
	Subclasses
	Methods

	CFioranoConnectionFactory
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CQueueConnectionFactory
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods
	Inherited Methods

	CTopicConnectionFactory
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods
	Inherited Methods

	CAdminConnection
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CConnection
	Inheritance Hierarchy
	Subclasses
	Methods

	CFioranoConnection
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CQueueConnection
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CTopicConnection
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CJMSSession
	Inheritance Hierarchy
	Subclasses
	Methods

	CFioranoSession
	CQueueSession
	CTopicSession
	CMessageProducer
	Inheritance Hierarchy
	Subclasses
	Methods

	CFioranoMessageProducer
	Inheritance Hierarchy
	Subclasses
	Constructors

	CQueueSender
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CTopicPublisher
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CQueueRequestor
	Inheritance Hierarchy
	Subclasses
	Constructor
	Methods

	CTopicRequestor
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CMessageConsumer
	Inheritance Hierarchy
	Subclasses
	Methods

	CFioranoMessageConsumer
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CQueueReceiver
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CTopicSubscriber
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CTopicMetaData
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CQueueMetaData
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CDestination
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CQueue
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CTopic
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CTemporaryQueue
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CTemporaryTopic
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CProperty
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CMessage
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CTextMessage
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CByteMessage
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CMapMessage
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CStreamMessage
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CMQAdminService
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CHashTable
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CHashTableEnumerator
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CLogHandler
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CCSPManager
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CCSPBrowser
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CCSPEnumeration
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods


	Chapter 5: Large Message Support
	CFioranoConnection
	CRecoverableMessagesEnum
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CLargeMessage
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CLMStatusListener
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods

	CLMTransferStatus
	Inheritance Hierarchy
	Subclasses
	Constructors
	Methods


	Chapter 6: Message Compression
	Message Compression Characteristics

	Chapter 7: Using Sample Programs
	Organization of Samples Provided
	Compiling and Running the Samples
	Operating Environments
	Limitations of C++ RTL

	Chapter 8: Native C++ Runtime Examples
	Platforms Supported
	Building and Running C++ Applications
	PTP Samples
	Admin
	Basic
	Browser
	Csp Browser
	DeadMessageQueue
	HTTP
	LMS
	Message Compression
	PerDestination
	PerMessage

	MsgSel
	Mtptp
	NonJndi
	Reqrep
	Basic
	TimedOut

	RevalidateConnections
	ServerlessMode
	SSL
	Transaction

	PubSub Samples
	Admin
	Basic
	CspBrowser
	Dursub
	HierarchicalTopics
	HTTP
	LMS
	Message Compression
	PerDestination
	PerMessage

	Msgsel
	Mtpubsub
	NonJndi
	Reqrep
	Basic
	TimedOut

	RevalidateConnections
	ServerlessMode
	SSL
	Transaction

	Unified Samples
	NonJndi
	SendReceive




