

Handbook

FioranoMQ

Entire contents © Fiorano Software and Affiliates. All rights reserved. Reproduction of this document in any

form without prior written permission is forbidden. The information contained herein has been obtained from

sources believed to be reliable. Fiorano disclaims all warranties as to the accuracy, completeness or

adequacy of such information. Fiorano shall have no liability for errors, omissions or inadequacies in the

information contained herein or for interpretations thereof. The opinions expressed herein are subject to
change without prior notice.

Copyright (c) 1999-2007, Fiorano Software Private Limited. and Affiliates

Copyright (c) 2008-2014, Fiorano Software Pte Ltd. and Affiliates

All rights reserved.

This software is the confidential and proprietary information of Fiorano Software ("Confidential Information"). You shall not disclose
such Confidential Information and shall use it only in accordance with the terms of the license agreement enclosed with this product or
entered into with Fiorano.

Contents

Chapter 1: Configuring FioranoMQ Through JMX Tools 19

1.1 RMI Connector URL .. 19
1.2 Fiorano JMX Browser .. 20
1.3 MC4J ... 21
1.4 JConsole ... 22
1.5 Java Code ... 24
1.6 Using the FMQTerminal ... 25

1.6.1 How to Log in .. 25
1.6.2 Command to view a list of all Commands ... 26
1.6.3 Help Command to Print Command and their Help .. 27
1.6.4 Description and Example for Command .. 27
1.6.5 Print Usage on Parameter Mismatch .. 27
1.6.6 Comment Command ... 28
1.6.7 Run List of Commands from File ... 28
1.6.8 Adding more Commands to a Terminal .. 28
1.6.9 Exiting the Terminal ... 29

Chapter 2: Using Scripts .. 30

2.1 Configuration Files ... 30
2.2 Reference Matrix - UNIX .. 31
2.3 Common Scripts Usage - UNIX ... 32
2.4 Reference Matrix - Windows ... 39
2.5 Common Scripts Usage - Windows .. 40

Chapter 3: Naming Manager ... 50

3.1 XML ... 50
3.2 Configuring ... 51
3.3 LDAP ... 52
3.4 RDBMS ... 53

Chapter 4: Connection Management 54

4.1 Modifying the Port Number .. 54
4.2 Setting Protocol to HTTP.. 55
4.3 Modifying the Thread Management Policy ... 56
4.4 Adding a Socket Acceptor .. 57

4.4.1 Configuring Single Socket Acceptor for Admin ... 58

4.5 Enabling SSL in FioranoMQ Messaging Server ... 60
4.5.1 Starting FMQ Server in SSL Mode ... 65
4.5.2 Generating ‘Keystores’ of ‘type’ JKS, provided by SUN 65
4.5.3 Server Side Configurations .. 67

4.5.3.1 Compiling the Security Manager ... 68
4.5.3.2 Adding the Security Manager class to the Server’s classpath 69

4.5.4 Client Side Configuration ... 70
4.5.4.1 Compiling the Security Manager ... 75
4.5.4.2 Adding the Security Manager class to the Client’s classpath 75

4.5.5 Creating Certificates for OpenSSL in C++ ... 76
4.6 Looking up .. 78

4.6.1 JNDI Environment .. 78
4.6.2 Looking up from Server Running on HTTP Protocol ... 79
4.6.3 Viewing from Server Running on JSSE Protocol ... 79
4.6.4 Looking up from Server Running on LPC Protocol ... 79

4.7 Connection Factory... 80
4.7.1 Creating a Connection Factory .. 80
4.7.2 Creating an HTTP Enabled Connection Factory .. 81

4.8 Pinging ... 81
4.8.1 How to Enable Pinging .. 81
4.8.2 Modifying Ping Timeout Interval ... 82
4.8.3 Verifying Ping Setup ... 83

4.9 FioranoMQ HTTP Support ... 83
4.9.1 Using HTTP with FioranoMQ ... 83

4.10 Client Side Requirements ... 84
4.11 Using Proxies ... 84

4.11.1 Proxy Authentication ... 84
4.12 Tunneling Through Firewalls ... 85
4.13 Configure Maximum Client Connections .. 89

Chapter 5: Durable Connections 90

5.1 Durable Connections in the Server .. 90
5.1.1 Enabling Durable Connections for a Client Application 90

5.2 Auto Revalidation ... 91
5.2.1 Enabling Auto-Revalidation for a Client Application... 92

5.3 Setting MaxDurableConnectionReconnectAttempts in Server...................................... 93
5.3.1 Online Mode .. 93

5.4 Setting MaxDurableConnectionReconnectAttempts from Client Application 94

Chapter 6: Configuring Message Store 95

6.1 Enabling RDBMS .. 95
6.2 Sample Configuration ... 96

6.2.1 DB2 ... 96

6.2.2 Oracle .. 96
6.2.3 MSSQL ... 96
6.2.4 MySQL ... 97
6.2.5 Cloudscape ... 97

6.3 Additional Configuration .. 97
6.4 Creating a Default Database .. 98

6.4.1 Command Line Parameters .. 98
6.4.2 Pre-configured Profile ... 98

6.5 Clearing a Database ... 99
6.6 Creating a Destination on RDBMS ... 99

Chapter 7: FioranoMQ Security 101

7.1 Security Related MBeans .. 101
7.2 How to Enable ACL Based Security ... 102
7.3 How to Turn ON ACL Checks ... 103
7.4 Modifying ACLManager Implementation .. 104
7.5 Modifying Principal Manager Implementation ... 104
7.6 Editing Destination Level Security Through ACL’s .. 105
7.7 Configuring NT Based security ... 107

7.7.1 Pre-requisites ... 107
7.7.2 Setting up ... 107

7.8 RDBMS Realm .. 109
7.8.1 Setting up ... 109

7.8.1.1 Additional Configuration ... 109
7.8.1.2 Sample Configurations ... 110
7.8.1.3 Verifying ... 111

7.9 LDAP Security Realm ... 111
7.9.1 Sample Configuration – Netscape Directory Server ... 112
7.9.2 Sample Configuration – ApacheDS1.5.4 .. 113

7.9.2.1 Setting up the Directory Service .. 113
7.9.2.2 Setting up the profile for use with ApacheDS1.5.4 115

7.9.3 Sample LDAP Configuration for ACLs, Users and Groups 115
7.9.3.1 Configuration for Users and Groups .. 115
7.9.3.2 Configuration for Access Control Lists (ACLs) ... 117

7.10 XML Security Realm ... 118
7.10.1 Configuring Principal Manager and ACL Manager ... 118

7.10.1.1 Principal Manager .. 118
7.10.1.2 ACL Manager .. 119

7.10.2 Sample xml files ... 119
7.10.7.1 User.xml .. 119
7.10.7.2 Group.xml.. 120
7.10.7.3 acl.xml .. 120

7.11 Plug-in Based Authentication Support ... 121
7.11.1 Enabling Plug-in Based User Authentication in Server 121
7.11.2 Using Authentication Modules to Authenticate a User 121

7.11.2.1 Login Configuration ... 121
7.11.2.2 LoginModule ... 122

Chapter 8: Large Message Support 124

8.1 Using FioranoMQ LMS APIs ... 124
8.1.1 Interface ILargeMessage .. 124
8.1.2 Interface ILMConnection .. 126
8.1.3 Class LMTransferStatus .. 126
8.1.4 Interface LMStatusListener ... 127
8.1.5 Class FioranoLMErrorCodes ... 128

8.2 LMS Samples ... 130
8.2.1 Sending a large message ... 130
8.2.2 Receiving a large message ... 130
8.2.3 Resuming a message transfer on the send side .. 130
8.2.4 Resuming a message transfer on the receive side ... 131

Chapter 9: HA .. 133

9.1 Default HA Profiles .. 133
9.2 Configuration Steps ... 133

9.2.1 Step 1: FioranoMQ Server(s) Installation .. 134
9.2.2 Step 2: HA Configuration.. 135

9.2.2.1 Configuring FioranoMQ Replicated HA ... 141
9.2.2.2 Configuring FMQ Shared HA .. 144

9.2.3 Step 3: Configuring Admin Store ... 147
9.2.4 Step 4: Configuring Common Security Store .. 147
9.2.5 Step 5: Configuring Database ... 148

9.2.5.1 File Based DataStore ... 148
9.3 Launching .. 149
9.4 Verifying the HA Setup ... 149
9.5 Shutdown the Active Server .. 149
9.6 Sample ... 150
9.7 Logging and Tracing .. 151

9.7.1 Logging ... 151
9.7.2 Tracing ... 151

9.8 Limitations of HA .. 151

Chapter 10: Dispatcher ... 153

10.1 How to Configure Dispatcher ... 153
10.2 Adding Servers to Dispatcher Cluster .. 157
10.3 Configuring Client Applications to Use Dispatcher .. 158
10.4 Using Preferred-Server Configuration .. 158

Chapter 11: Repeater ... 160

11.1 Launching Repeater in Stand-Alone Mode .. 160
11.2 Configuring Repeater in the Off-line Mode.. 160

11.2.1 Editing a Link ... 161
11.2.2 Adding a Link ... 162
11.2.3 Deleting a Link.. 164
11.2.4 Adding a Topic Propagation Link .. 164
11.2.5 Deleting or Editing a Topic Propagation Link ... 166
11.2.6 Hierarchical Topics .. 166

11.2.6.1 Wild Character Support .. 166
11.2.6.2 Replicate topics with a pattern ... 167

11.2.7 Configuring Request/Reply through Repeater ... 167
11.2.7.1 Adding a Reply Topic Link ... 167

11.2.8 Running a Repeater on secure protocol ... 168
11.2.9 Configuring Replication on Demand .. 169
11.2.10 Configuring Monitoring Support .. 169

11.2.10.1 To Change the RMI Port Number .. 170
11.2.10.2 To Monitor FioranoMQ Standalone Repeater using JMS Connector 170

11.3 Configuring/Monitoring Repeater in Online Mode ... 171
11.3.1 Online Configuration of Repeater Through Studio .. 171
11.3.2 Online Configuration of Repeater Through JMX ... 171

11.3.2.1 Adding StandAloneRepeater node in the Server Explorer 171
11.3.2.2 Adding a Link ... 172
11.3.2.3 Adding a Link Topic ... 175
11.3.2.4 Adding a Reply Topic ... 177
11.3.2.5 Removing a Link ... 179
11.3.2.6 Removing a Link Topic ... 180
11.3.2.7 Removing a Reply Topic ... 181
11.3.2.8 Viewing Durable Subscribers for a Repeater ... 181

Chapter 12: Bridge .. 183

12.1 Launching Bridge in Stand-Alone Mode.. 183
12.2 Configuring Bridge in Off-line Mode .. 183

12.2.1 Editing a Link ... 185
12.2.2 Adding a Link ... 186
12.2.3 Deleting a Link.. 187
12.2.4 Running a Bridge on Secure Protocol .. 188
12.2.5 Configuring Monitoring Support ... 189

12.2.5.1 To Change the RMI port number of a Profile ... 189
12.2.5.2 To Monitor the FioranoMQ Standalone Bridge using the JMS Connector 189

12.3 Configuring Bridge in Online Mode .. 190
12.3.1 Configuring Through FMQ-JMX Login ... 190
12.3.2 Configuring Through the FMQ Login .. 193

12.4 Configuring FioranoMQ Bridge for other Messaging Servers..................................... 195

12.4.1 To Configure the Bridge .. 196
12.4.1.1 MSMQ Instructions .. 198
12.4.1.2 OpenMQ Instructions ... 198
12.4.1.3 JBoss Messaging Instructions .. 198

Chapter 13: Dead Message Queue 200

13.1 Editing Global/Default DMQ Configuration .. 200
13.2 Disabling DMQ on the message level.. 201
13.3 Enabling Notifications for Expired Messages ... 201
13.4 Subscribing to Notifications for Expired Messages ... 202
13.5 Disabling Expiry Notifications on a message level .. 202

Chapter 14: Named Configuration 203

Chapter 15: Hierarchical Topics 204

15.1 Creating a Hierarchical Topic ... 204
15.1.1 Admin API .. 204
15.1.2 Studio ... 205

15.2 Deleting a Hierarchical Topic ... 208
15.3 Setting up Security on a HT .. 209
15.4 Looking Up a HT .. 209

15.4.1 Wild Characters * or # ... 209
15.5 Prerequisites .. 209

15.5.1 Events to be turned on for dynamic topic creation support.............................. 209
15.6 HT Limitations .. 210

Chapter 16: Snooper ... 211

16.1 Editing the Snooper Configuration on a Destination ... 211
16.1.1 Editing the snooper Configuration on a Destination in the Offline Mode 211
16.1.2 Editing the snooper Configuration on a Destination in the Online Mode 212

16.2 Viewing Snooped Messages ... 214
16.2.1 Studio ... 214
16.2.2 Programmatically .. 215

16.3 Editing the Default (Global) Configuration .. 216
16.3.1 Editing the Default Configuration in the Offline Mode 216
16.3.2 Online Mode ... 217

16.4 Snooping Related Admin APIs .. 218

Chapter 17: Message Journaling 219

17.1 Using Message Journaling Feature .. 219
17.2 Configuring Message Journaling ... 219

17.2.1 Enabling Journaling flag.. 219
17.2.1.1 Online Mode ... 219

17.2.2 JournalingQueuePrefix Parameter ... 220
17.2.2.1 Online mode ... 220
17.2.2.3 Offline mode .. 221

17.3 Message Journaling with HA .. 222
17.4 Points to Remember .. 223

Chapter 18: Last Value Caching 225

18.1 Introduction ... 225
18.2 Configuring Last-value Caching .. 225

18.2.1 Parameters used for Last-value Caching .. 227
18.2.1.1 EnableLastValueCache ... 227
18.2.1.2 CacheKeyPropertyName ... 227
18.2.1.3 CachePropertyName .. 227
18.2.1.4 ParConsumptionLVCache .. 228
18.2.1.5 LoadLVCIndicesAtLookup .. 228
18.2.1.6 IgnoreNullLVCKey ... 228
18.2.1.7 FlushLVCDataAtStartup .. 228
18.3 Using Last-value Caching ... 229

18.4 Points to Note ... 230

Chapter 19: Message Grouping 231

19.1 Introduction ... 231
19.2 Salient Features of Message Grouping ... 231
19.3 Configuring Message Grouping... 231

19.3.1 Parameters used for Message Grouping ... 232
19.3.1.1 MessageGroupingEnabled ... 232
19.3.1.2 MinConsumersCount .. 233
19.3.1.3 MaxWaitTime .. 233
19.3.1.4 WaitIntervalTime .. 233

19.4 Using Message Grouping... 233
19.4.1 Preferred Groups ... 234

Chapter 20: Message Encryption 236

20.1 Key Generation ... 236
20.1.1 public String generateKey (String algoName) ... 236

20.2 Per Message Encryption .. 236

20.2.1 public void enableEncryption () .. 236
20.2.2 public void enableEncryption (String algo, String key) 236
20.2.3 public void decrypt () ... 237
20.2.4 public void decrypt (String algo, String key) .. 237

20.3 Per Destination Encryption .. 237
20.3.1 public void setEncryption () ... 237
20.3.2 public void setEncryption (String algo, String key) .. 237

20.4 Note on Installation and Samples ... 238

Chapter 21: Message Compression 239

21.1 Per Message Compression ... 239
21.1.1 public void enableCompression() .. 239
21.1.2 public void enableCompression (int compressionLevel, int compressionStrategy) 239
21.1.3 public int getCompressionRatio () .. 239
21.1.4 public void setCompressionLevel (int compressionLevel) 239
21.1.5 public void setCompressionStrategy (int compressionStrategy) 240
21.1.6 public int getCompressionLevel () .. 240
21.1.7 public int getCompressionStrategy () .. 240

21.2 Per Destination Compression ... 240
21.2.1 public void enableCompression () ... 240
21.2.2 public void enableCompression (int level, int strategy)................................... 240

21.3 Message Decompression ... 241
21.4 Proprietary Compression Implementation Plug-in Support 241

21.4.1 public byte[] compress(byte[] input) .. 241
21.4.2 public byte[] decompress(byte[] input) ... 241
21.4.3 public void setCompressionLevel (int level) .. 241
21.4.4 public void getCompressionLevel () .. 241
21.4.5 public void setCompressionStrategy (int strategy) .. 241
21.4.6 public void getCompressionStrategy () .. 241
21.4.7 public float getCompressionRatio () .. 242
21.4.8 public void setCompressionManager (string Manager) 242
21.4.9 public string getCompressionManager () .. 242

Chapter 22: Logger ... 243

22.1 Offline Configuration .. 243
22.2 Online Configuration .. 245
22.3 Fiorano Client Logger ... 248

Chapter 23: XA .. 249

23.1 How to Enable XA .. 249
23.2 XA Prerequisites .. 251
23.3 XA Enabled Admin Objects .. 252

23.3.1 Default Admin Objects ... 252
23.3.2 Creating XA Enabled Connection Factories ... 253
23.3.3 Creating RDBMS Enabled Destinations .. 253

23.4 Usage Scenarios of XA Transactions ... 254
23.4.1 As a Standalone Application .. 254

23.5 Using FioranoXA with a Pluggable Transaction Manager.. 256
23.6 Using Fiorano XA with the Oc4j Transaction Manager ... 257
23.7 Using FioranoXA with the Borland Transaction Manager.. 260

23.7.1 Sample Details.. 260
23.7.2 Integrate Fiorano with Borland Enterprise server .. 260
23.7.3 Configure Classpath ... 260

23.8 Transactions with J2EE ... 262
23.8.1 Integrating with WebLogic 7.0 Application Server ... 262
23.8.2 Integrating with Oracle 9i Application Server .. 265

23.9 Admin APIs .. 266
23.9.1 Creating XA Connection Factories ... 266
23.9.2 Creating a XA Queue Connection Factory ... 267
23.9.3 Creating a XA Topic Connection Factory .. 267
23.9.4 Creating a Unified XA Connection Factory .. 268
23.9.5 Deleting XA Connection Factories ... 269
23.9.6 Deleting a XA Queue Connection Factory ... 269
23.9.7 Deleting a XA Topic Connection Factory... 269
23.9.8 Deleting a Unified XA Connection Factory .. 270

23.10 Destinations ... 270
23.11 Queues .. 271
23.12 Topics.. 272
23.13 Transactions ... 273

23.13.1 Get All Transactions ... 273
23.13.2 Get Transaction Status ... 274

Chapter 24: JMX Notification 276

24.1 JMX Notifications generated by the server ... 276
24.2 Enabling/Disabling Notifications ... 277
24.3 Notification Classes .. 278

Chapter 25: Online Configuration Through Studio 281

25.1 Connecting to the FioranoMQ Server ... 281
25.1.1 Over Default Configuration .. 281
25.1.2 Over HTTP Protocol .. 282

25.2 Working with Connection Factories ... 282
25.2.1 Adding a Connection Factory ... 282
25.2.2 Deleting a Connection Factory ... 284

25.3 Working with Durable Subscriptions .. 285

25.3.1 Viewing Durable Subscriptions ... 285
25.3.2 Purging Messages of the Durable Subscriptions .. 286
25.3.3 Refreshing Durable Subscriptions ... 287

25.4 Working with Destinations .. 287
25.4.1 Managing Topics ... 287
25.4.2 Adding a New Topic ... 287
25.4.3 Editing Access Control List (ACL) .. 289
25.4.4 Removing a Topic .. 291
25.4.5 Managing Queues .. 291
25.4.6 Adding a New Queue.. 291
25.4.7 Browsing a Queue ... 293
25.4.8 Editing Access Control List (ACL) and Removing a Queue 294
25.4.9 Setting and Configuring OnTheFlyCreationOfDestinations 295

25.5 Working with Security .. 295
25.5.1 Managing Users .. 295
25.5.2 Adding a New User .. 295
25.5.3 Changing User Password .. 297
25.5.4 Removing a User ... 298
25.5.5 Managing Groups .. 298
25.5.6 Adding a New Group .. 298
25.5.7 Adding a Member to a Group ... 300
25.5.8 Removing Member from Group .. 301
25.5.9 Removing a Group ... 301

25.6 Working with Snooper .. 301
25.6.1 Adding Destinations in Snooper ... 301
25.6.2 Snooping Messages ... 303
25.6.3 Refreshing and Saving Snooper ... 304
25.6.4 Refreshing Snooper ... 304
25.6.5 Saving Snooper .. 304

25.7 Working with Repeater ... 305
25.7.1 Adding a Link ... 305
25.7.2 Adding a Link Topic ... 306
25.7.3 Adding a Reply Topic ... 308
25.7.4 Removing a Link ... 310
25.7.5 Removing a Link Topic ... 310
25.7.6 Viewing Durable Subscribers for a Repeater ... 310
25.7.7 Refreshing Repeater .. 310

25.8 Working with Dispatcher ... 310
25.8.1 Adding a Server .. 310
25.8.2 Removing a Server .. 312
25.8.3 Setting the Preferred Server.. 313
25.8.4 Setting Number of Client Connections ... 313
25.8.5 Refreshing Dispatcher .. 314

25.9 Working with Bridge .. 315
25.9.1 Adding the Bridge to the FioranoMQ Profile .. 315
25.9.2 Adding a Link ... 317

25.9.3 Removing a Link ... 318
25.9.4 Starting a Link .. 319
25.9.5 Stopping a Link ... 319
25.9.6 Adding a Channel to a Link ... 319
25.9.7 Removing a Channel from a Link .. 321

Chapter 26: Performance Tuning And Deployment
Parameters ... 322

26.1 Performance Tuning Parameters .. 322
26.1.1 PTP Configuration Parameters ... 322

26.1.1.1 In-Memory Persistent Message Buffer ... 322
26.1.1.2 In-Memory Non-Persistent Message Buffer .. 323
26.1.1.3 Prefetch Count .. 323
26.1.1.4 Prefetch Threshold .. 324
26.1.1.5 PTP Prefetch size ... 324
26.1.1.6 Queue Sender Blocking Interval ... 325
26.1.1.7 Queue Behavior On Buffer Overflow.. 325

26.2 PubSub Configuration Parameters .. 326
26.2.1 Setting the Message Receipt Acknowledgement .. 326
26.2.2 Setting In-Memory Buffers for Subscribers... 326
26.2.3 Setting Parameters for New Pubsub Algorithm to Handle Slow Subscribes 327

26.3 Calculating Memory Requirements for FioranoMQ Server .. 330

Chapter 27: Administrating the FioranoMQ Server Using
APIs ... 332

27.1 Introduction ... 332
27.2 Creating an Admin Connection ... 332

27.2.1 MQNamingService ... 333
27.2.2 MQAdminService ... 333
27.2.3 MQRealmService ... 334
27.2.4 MQSnooperService .. 335
27.2.5 MQDispatcherService ... 335
27.2.6 MQMonitoringService ... 335

Chapter 28: DB Recovery Tool 337

28.1 Overview of FioranoMQ’s file based Database ... 337
28.2 Typical Structure of FioranoMQ File Based DB ... 337
28.3 Using FioranoMQ DB Recovery Tool .. 339

28.3.1 Using Windows ... 339
28.3.2 Using Unix/Linux ... 339
28.3.3 Parameters .. 339

28.3.4 Configuration File Parameters .. 340
28.4 Steps to Run DBRecovery Tool... 341

28.4.1 Parameter Configuration and Execution ... 341
28.4.2 DBRecovery ... 341

Chapter 29: Application Server Integration 343

29.1 Implementing Advanced JMS APIs .. 343
29.2 Message Driven Beans ... 343
29.3 FioranoMQ - EJB Application Server Integration .. 343

29.3.1 Asynchronous Method Invocation using Delegation Model 344
29.3.2 EJB JMS Sample Application .. 344
29.3.3 Event Generator .. 345
29.3.4 Delegator ... 346
29.3.5 Enterprise Java Beans .. 346
29.3.6 Limitations of Enterprise Java Beans ... 346

29.4 FioranoMQ Client Logging ... 346
29.5 Integrating FioranoMQ with J2EE Servers .. 347

29.5.1 How Resource Adapter Works .. 348
29.5.2 Deployment of FioranoMQ Resource Adapter .. 348
29.5.3 Configuring the Resource Adapter .. 349

29.5.3.1 Sample Activation Configuration .. 350
29.5.4 Configuring FioranoMQ Resource Adapter in JBoss 4.2.2 359

29.5.4.1 Changes Required for Inbound Communications (Message Inflow Contracts)
 .. 359
29.5.4.2 Changes required for Outbound Communication 360

29.5.5 Configuring FioranoMQ RA in JBoss 4.2.2-XA .. 361
29.5.6 Configuring MDBs for XA or NONXA ... 363

29.6 FioranoMQ - JBOSS Application Server .. 364
29.6.1 Integrating FioranoMQ with JBoss Application Server 4.2.2 365
29.6.2 Integrating FioranoMQ with JBoss Application Server 4.3 365
29.6.3 Integrating FioranoMQ with JBoss Application Server 5.1.0 365
29.6.4 Integrating FioranoMQ with JBoss Application Server 6.1.0 366
29.6.5 Using EJB3 compliant MDB while integrating FioranoMQ 9 with JBoss Application
Server... 366

29.7 FioranoMQ - ATG Dynamo Message Service ... 366
29.7.1 Configuring the Dynamo Message System ... 367

29.7.1.1 General Architecture .. 367
29.7.1.2 Creating Messaging Sources and Sinks .. 367

29.8 FioranoMQ - Oracle Weblogic Application Server 9.0 .. 368
29.8.1 Integrating FioranoMQ with Oracle Weblogic Application Server 368
29.8.2 Troubleshooting .. 369

29.8.2.1 Setting up the Bean as a Durable Subscriber with ClientID and Subscriber ID
 .. 369
29.8.2.2 IncompatibleClassChangeError .. 369

29.9 FioranoMQ - Borland Enterprise Server 5.1 .. 369

29.9.1 Deploying of FioranoMQ Libraries ... 370
29.9.2 Environment Variables ... 370
29.9.3 Samples .. 371

29.10 FioranoMQ - Orion Application Server .. 372
29.11 FioranoMQ - IBM WebSphere Application Server 5.1 .. 373

29.11.1 Assumptions ... 373
29.11.2 Configuring WS Application Developer for FioranoMQ 373

29.11.2.1 Define a WebSphere Test Server .. 373
29.11.2.2 Configure WS to use FioranoMQ as JMS provider 374
29.11.2.3 Create/Configure MDB in WebSphere application developer 375
29.11.2.4 Deploy/Test the MDB ... 376

29.12 FioranoMQ - IPlanet Application Server 7 ... 377
29.12.1 Installing and Setting up the Iplanet Application Server 7 377
29.12.2 Configuring FioranoMQ Server for IPlanet Integration 378
29.12.3 Configuring IPlanet Application Server 7 for the FioranoMQ Server 379
29.12.4 Registering JMS Resources with IPlanet Application Server 7 380
29.12.5 Compiling and Deploying the Sample mdb-simple.ear 381
29.12.6 Running the Sample Application ... 381

29.13 FioranoMQ - OC4J Application Server .. 382
29.13.1 Deploy the MDB Application ... 382
29.13.2 Test the MDB .. 383

29.14 FioranoMQ – Sun GlassFish Enterprise v2.1 .. 383
29.15 FioranoMQ – Apache Tomcat integration .. 384
29.16 To Run JMS Java Applications .. 384

Chapter 30: Create Custom MBean Service 386

30.1 Creating Custom MBean Service for the FioranoMQ Server 386
30.2 Custom MBean Service Common Problems and Solutions 390

Chapter 31: Miscellaneous Features 392

31.1 Support for Destination Level Configuration ... 392
31.2 N Failover URL Support .. 392
31.3 Advisory Message Listener .. 394
31.4 Message Browser Support in FioranoMQ .. 398
31.5 FioranoMQ - XML Interoperability ... 398

31.5.1 JMS Message to XML .. 399
31.5.2 XML to JMS Message .. 399
31.5.3 Using XMLAdapter Toolkit of FioranoMQ with other JMS Vendors 400

31.6 XMLMapMessageAdapter... 402
31.7 IProviderSpecificMessageAdapter ... 403
31.8 Integration with Spring Framework .. 403
31.9 Integration with Seasar Framework .. 404

31.9.1 Outbound Communication ... 405

31.9.2 Inbound Communication ... 406
31.10 Message Expiry ... 407

31.10.1 Purging Expired Messages in Queues .. 407
31.11 Poison Message Handling .. 409

31.11.1 Poison Messages ... 409
31.11.2 Configurable Parameters at Queue Subsystem Level 409
31.11.3 Logging ... 410

31.12 Shared Subscriptions.. 410
31.12.1 Online Configuration .. 410
31.12.2 Offline Configuration .. 411

31.13 JMSXDeliveryCount .. 412
31.14 Sending Messages Asynchronously ... 412

Chapter 32: FioranoMQ Web Management Tool 414

32.1 What is Web Management Tool .. 414
32.2 Configuring Web Manager ... 414
32.3 Connecting to Web Management Tool ... 415

Chapter 33: Fiorano Directory Services 443

33.1 Introduction ... 443
33.1.1 Profile Management ... 443
33.1.2 Components / Terminology ... 444

33.2 FDS Concepts ... 444
33.2.1 FioranoMQ Management Server ... 444

33.2.1.1 Cluster Manager .. 444
33.2.1.2 How to run FioranoMQ Management Server ... 444
33.2.1.3 Propagation of modified attributes to FMQ Messaging Servers 446
33.2.1.4 Registering & De-Registering Servers ... 446
33.2.1.5 Handling Network Failure .. 446

33.2.2 FMQ Messaging Server ... 447
33.2.2.1 How to run FioranoMQ Messaging Server ... 447

33.3 Managing Profiles Using Web Console ... 449
33.3.1 Operations Performed using the web console ... 449

33.3.1.1 Adding Profile ... 449
33.3.1.2 Editing Profile ... 451
33.3.1.3 Deleting Profile ... 451
33.3.1.4 Uploading Profile ... 452
33.3.1.5 Get Registered Servers .. 452
33.3.1.6 Get All Registered Servers .. 453

33.4 Troubleshooting .. 453
33.5 FAQ’s .. 453

Chapter 34: Audit Management 456

34.1 Audit Events ... 456
34.2 Audit Policies .. 456
34.3 Enabling Auditing .. 456
34.4 Disabling Auditing ... 457
34.5 ACLS for Audit Management .. 458
34.6 Viewing Audit Events ... 458
34.7 Configuring File Store... 458

34.7.1. Through Studio .. 459
34.7.2 Through Configs.cfg ... 460
34.7.3 Through Configs.xml .. 460

Chapter 35: Monitoring FioranoMQ Server 461

35.1 Message Throughput .. 461
35.1.1 Server Side Configuration ... 461
35.1.2. Client Side Configuration ... 467
35.1.3 Performance graphs ... 470
35.1.4 Logging server Monitoring information .. 471

35.2 Depth Monitoring .. 472
35.2.1 Configuring Through Configuration files ... 472
35.2.2 Configuring Through Studio... 473

36.1 Parameters to Configure ... 477
36.1.2 Parameters Used While Adding Routes .. 477

36.2 Configuring Parameters Through Fiorano Studio ... 478
36.2.1 List/Add/Remove Routes .. 479

36.3 Configuring Parameters Through WMT .. 480
36.4 Configuring Parameters Through XML file .. 482

36.4.1 Command to Create/Remove Routes .. 482
36.4.2 Modifying routes.xml to Add/Delete Routes .. 482

Chapter 37: JVM Arguments .. 484

37.1 Heap Memory Settings ... 484
37.2 Stack Size settings .. 484
37.3 Jconsole .. 484
37.4 PermGen space ... 485
37.5 -d64 ... 485
37.6 Garbage Collection .. 485

37.6.1 GC Algorithms .. 486
37.6.2 GC logging ... 486

37.7 Heap Dump Settings .. 487
37.8 Debugging ... 487
37.9 CoreDump on Application or JVM Error .. 487

Chapter 38: Admin Object’s Configurations 488

38.1 Introduction ... 488
38.2 Enabling XML based configuration .. 488
38.3 Limitations with Admin Objects feature ... 492

38.3.1 Connection Factory Parameters.. 492
38.3.2 Queue Parameters ... 493
38.3.3 Queue Subsystem Parameters ... 494

Chapter 39: Frequently Asked Questions 495

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 19

Chapter 1: Configuring FioranoMQ
Through JMX Tools

FioranoMQ comes with full JMX support that enables management through standard JMX tools.
FioranoMQ is comprised of a number of JMX enabled components running within the Fiorano
container. Each component performs particular operations while displaying its attributes and
enabling administration and monitoring through standard JMX tools.

The next section explains how to use the JMX based tools listed below through the
RMIConnector:

 Fiorano JMX Browser

 MC4J

 JConsole

Fiorano Studio is bundled with the JMX browser, which creates a JMX connection with
FioranoContainer via either RMI or JMS connectors.

1.1 RMI Connector URL

RMIConnector connect URL – service:jmx:rmi:///jndi/rmi://<Server>:<Port>/fmq. The server
can be either the machine name or the IP and the port where the RMIConnector Server is
running.

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 20

1.2 Fiorano JMX Browser

Fiorano Studio supports a JSR 160 connection to the FioranoMQ Server through the
RMIConnector. Please follow the instructions given below to create a JMX Connection.

1. Launch Fiorano Studio shipped with the FioranoMQ.

2. In the Server explorer, right-click on the pre-existing Fiorano JMX Connection and
select login. Once connected, the JMX tree is exposed with FioranoMQ MBeans as
nodes.

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 21

1.3 MC4J

MC4J is an open source JMX browser used for connecting to FioranoMQ. To connect to
FioranoMQ, perform the steps below:

1. Install MC4J from https://sourceforge.net/projects/mc4j/ and launch the same.

2. Create a new Server connection metadata object by choosing a JSR 160 type
connection.

3. You must provide the JMX Connect URL and JMX jars in the classpath. You can also
provide FioranoMQ jars in the classpath as some of the exposed JMX operations can
depend on them.

4. Provide the FioranoMQ Admin username and password to connect. This results in the
MBean Tree view.

https://sourceforge.net/projects/mc4j/�

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 22

1.4 JConsole

JConsole is a JMX browser from Sun Microsystems (now Oracle) and comes bundled with
jdk1.5.

1. Add the following lines in the '$FIORANOHOME/fmq/bin/fmq.conf' under
<java.system.props> tag.
com.sun.management.jmxremote.port=portNum
com.sun.management.jmxremote.authenticate=false
com.sun.management.jmxremote.ssl=false

2. Start the FioranoMQ Server

3. Run JConsole from JDKInstallation\bin\JConsole

4. Create a server connection using one of the three ways.

a. Local Monitoring: Jconsole can be used to monitor a local Java platform, that is,
a JVM running on the same machine as shown below

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 23

b. Remote Monitoring: Give the Host IP Address, portNum, FioranoMQ
Admin username and password, and connect as shown in the figure
below:

c. Advanced Option: Provide the JMX URL as shown where HostIP is the
IPAddress of the server machine. PortNum is the port number provided in
fmq.conf. Give the FioranoMQ Admin username and password, and
connect.

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 24

5. This results in MBeans explorer opens up as shown below

1.5 Java Code

Since FioranoMQ is JSR 160 compliant, the user can write simple code for working with
exposed components. FioranoMQ samples for working with exposed components can be found
at FIORANO_HOME\fmq\samples\JMX.

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 25

1.6 Using the FMQTerminal

The FMQTerminal uses a third party library jline http://jline.sourceforge.net/. It is not a pure
java library as it ships with some native code. The FMQTerminal works perfectly on the
platforms below:

 Microsoft Windows

 RedHat Linux 9.0

 Debian Linux 3.0

 Macintosh OS X 10.3

1.6.1 How to Log in
1. Navigate to %FIORANO_HOME%\fmq\terminal\FMQConsole.bat for Windows and

$FIORANO_HOME/fmq/terminal/FMQConsole.sh for UNIX systems.

2. The command without any arguments connects to the FioranoMQ Server running on
localhost. A request for login and password appears. Enter login and password details.

Note: The password (typed) is not visible on the screen.

The FMQTerminal works similar to normal telnet emulators like puttytel and others.

You can specify the FioranoMQ Server to connect to by passing the parameter mars to the
executable fmq-terminal.bat (fmq-terminal.sh for Unix)

FMQConsole mars

This command searches for mars.properties in the %FIORANO_HOME%\fmq\terminal
directory. If no argument is specified the default the localhost.properties file in the
%FIORANO_HOME%\fmq\terminal directory is used.

localhost.properties is shown below:

 jmx.service.url=service:jmx:rmi://localhost/jndi/fmq

 java.naming.factory.initial=com.sun.jndi.rmi.registry.RegistryContextFactory
 java.naming.provider.url=rmi://localhost:1858

http://jline.sourceforge.net/�

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 26

 java.naming.security.principal=admin
 java.naming.security.credentials=passwd

It is possible to create a properties file for each fmq server of interest and use it by passing
the file name (without the extension) as an argument.

If multiple servers need to be administered from a single location, the prompt can be
customized to identify the target server.

FMQConsole localhost Mars

Here, the third argument specifies the prompt name.

1.6.2 Command to view a list of all Commands

Type a few characters and press the <tab> key for auto completion.

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 27

1.6.3 Help Command to Print Command and their Help

1.6.4 Description and Example for Command

The examples above show how arguments can be passed.

1.6.5 Print Usage on Parameter Mismatch

 Invalid commands are displayed as ‘not recognized’:

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 28

1.6.6 Comment Command

All lines starting with # (a Hash or Pound sign) are treated as a comment and do not perform
an action.

1.6.7 Run List of Commands from File

If there is a file named mysetup.cmds with the following contents:
 # Some commands on QCF
 createQCF myQCF http://localhost:8090
 deleteQCF myQCF

 # Commands continued
 createXAQCF myXAQCF http://localhost:8090
 deleteXAQCF myXAQCF
 createQueue myQueue 0

Then, it is possible to run the following commands on this file:

In the above example, -quiet can be specified as a second argument if commands are not to
be echoed.

1.6.8 Adding more Commands to a Terminal

 All the available commands can be viewed in the commands.xml file:

%FIORANO_HOME%\fmq\terminal\commands.xml

 A snippet of commands.xml is shown below:

http://localhost:8090/�
http://localhost:8090/�

FioranoMQ 9 Handbook

Chapter 1: Configuring FioranoMQ Through JMX Tools Page 29

The Mbean operations are found in the studio and can be added to the commands.xml file.
This function ensures not being limited to the built-in commands that ship with the installer.

1.6.9 Exiting the Terminal

To exit the FMQTerminal, following commands can be used:

 exit, quit, bye, or pressing ctrl+D

 This returns you to the standard prompt command.

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 30

Chapter 2: Using Scripts

This chapter explains the new scripts introduced in FioranoMQ that manage and configure the
FioranoMQ Server. These scripts replace previous scripts, with the following benefits:

 A common configuration file is now used to specify properties such as classpath,
memory settings, and system properties in OS, in independent manner.

 OS specific files like .bat and .sh do not need to be modified given a change in
configuration. Changes are now specified in configuration file.

 The Configuration file can be reused across different servers and tools.

 No prior knowledge of OS specific details required to configure the server/tools
properties, since the configuration file supports a simple and easy to use syntax.

2.1 Configuration Files

Each script in FioranoMQ is associated with a specific configuration file (.conf) in the same
directory as the script file. This has the same name as the script file followed with .conf
extension. This configuration file includes configuration properties of server/tools, as listed
below:

Config Property/Block Usage

<java.classpath> Specifies any additional jar files required in classpath in separate
lines at the end of this block.

<java.endorsed.dirs> Specifies the jars to be considered other than the default jars in
separate lines at the end of this block.

<java.ext.dirs> Specifies the external jar files to be loaded along with default
system jars in separate lines as the end of the block.

<java.library.path> Specifies the folders containing dll/so files to be loaded in
separate lines at the end of the block.

<java.system.props> Specifies any additional system properties, in separate lines at
the end of the block.

<jvm.args> Specifies arguments to the JVM such as memory settings, debug
info etc. in separate lines at the end of the block.

Note the following points about the configuration file:

 A line starting with '#' is treated as a comment.

 The Conf file can have empty lines. These empty lines are ignored by the launcher.

 Environment variables can be used in the conf file. (Using environment variables
makes conf file OS dependent).

 Wild-cards are not supported. Example: lib/*.jar is disallowed.

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 31

2.2 Reference Matrix - UNIX

The table below summarizes all the scripts/configurations that are changed in FioranoMQ for
UNIX:

Functionality Old Script (Before FioranoMQ
2008)

New Script (From
FioranoMQ 2008)

FioranoMQ Server

Memory settings of
FioranoMQ Server /fiorano_vars.sh /fmq/bin/fmq.conf

External jar files /fmq/bin/fmq.sh /fmq/bin/fmq.conf

Startup /fmq/bin/fmq.sh /fmq/bin/fmq.sh

Shutdown /fmq/bin/shutdownFMQ.sh /fmq/bin/shutdown-fmq.sh

Tools and Miscellaneous Scripts

Fiorano Studio /Studio/bin/Studio.sh /Studio/bin/Studio.sh

Compile Client /fmq/bin/compClient.sh /fmq/bin/compile-client.sh

External Jar files for
Client /fmq/bin/compClient.sh

/fmq/bin/compile-
client.conf

Run Client /fmq/bin/runClient.sh /fmq/bin/run-client.sh

External Jar files for
Client /fmq/bin/runClient.sh /fmq/bin/run-client.sh

Memory settings for
Client /fiorano_vars.sh /fmq/bin/run-client.conf

Run Standalone Bridge /fmq/bin/runStandaloneBridge.sh
/fmq/bin/fmq.sh –profile
StandAloneBridge

Run Standalone
Repeater /fmq/bin/runStandaloneRepeater.sh

/fmq/bin/fmq.sh –profile
StandAloneRepeater

Database related scripts

Create Database /fmq/bin/createDB.sh
/fmq/bin/create-
database.sh

External Jar files to
Create Database /fmq/bin/createDB.sh

/fmq/bin/create-
database.conf

DB Recovery Tool /fmq/bin/runDBRecoveryTool.sh
/fmq/bin/recover-
database.sh

External Jar files for
Database Recovery /fmq/bin/ runDBRecoveryTool.sh

/fmq/bin/recover-
database.conf

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 32

2.3 Common Scripts Usage - UNIX

Scripts present under <fiorano_installation_dir>

fiorano_vars.sh

Used to set Environment Variable which are used throughout the Fiorano
server scripts. It is also used to set the Endorsed libraries.

setScriptPermissions.sh

 Script used to set executable permissions for all the scripts present in the
 FioranoMQ Installation.

Scripts present under <fiorano_installation_dir>/fmq/bin

• backupDB.sh: This script is used to backup the database of the profile specified
by the user. This script moves the existing database from the profile directory to
the backup database directory.

Usage: backupDB.sh <profileName> <FMQ DB path> <DB Backup Path>

Example: backupDB.sh
FioranoMQ/profiles/FioranoMQ/run/profiles/FioranoMQ_backupDB

This moves the existing database from the FioranoMQ/run directory to a specified
directory. By default, a backup of the FioranoMQ database is taken and a new
directory inside the profiles/FioranoMQ directory is created using the current date
of the system.

• ClearDB.sh: This script is used to clear the existing database of the FioranoMQ
Server.

Usage: ClearDB.sh [– profile <profileName>] [-DBDir <FMQ DB path>] [-
profilesDir <Profiles directory>]. By default, the database of FioranoMQ profile is
cleared upon this command.

o -profile <profilename>: Profilename from profiles directory to the
profile to be deployed. Defaults to FioranoMQ.

o –DBDir <FMQ DB path>: Database directory for configured profile.
Defaults to <fiorano_installation_dir>\fmq\profiles\<profile>\run"

o -profilesDir <Profiles directory>: Directory where profiles are present.
Defaults to <fiorano_installation_dir>\fmq\profiles

Warning: Clearing the database removes all user created information, including
all Topics/Queues/ConnectionFactories created, as well as User permissions and
Groups. If the user wants to clear the database only partially, the option to clear
Admin Storage, Data Storage, and ACL Storage can be chosen instead.

• compile-client.sh: This script is used to compile Java samples which are included
within the installer. External jars can be added to classpath in
<fiorano_installation_dir>/fmq/bin/complie-client.conf

Usage: compile-client.sh <sampleName>.java

• create-database.sh: This script is used to create a database. There are two ways
by which databases can be created.

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 33

a) Using FioranoMQ Configuration:

The database section of the FioranoMQ profile has to be configured. Refer
to the chapter Configuring Message Store for information on configuring
the database section.

Usage: create-database.sh -fmq.profile <profileName> -dataBaseType
<dataBaseType>

Example: The following command creates a database using message
store configuration for MSSQL in FioranoMQ_SQL profile:

create-database.sh -fmq.profile FioranoMQ_SQL -dataBaseType mssql

b) From command line arguments

Database configuration details are provided as options in the command
line.

Usage: Usage: create-database -dataBaseType <DataBase> -driver
<Driver> - url <URL> -userName <UserName> -password <Password> -
dataTypesFileName <cfgFileName>

Please refer to the chapter on Configuring Message Store

Example: The following command creates a database using message
store configuration for MSSQL:

create-database.sh -dataBaseType mssql -driver
com.microsoft.jdbc.sqlserver.SQLServerDriver -url
jdbc:microsoft:sqlserver://server:1433;SelectMethod=Cursor -
userName admin -password passwd -dataTypesFileName
jdbc_mssqls.cfg

• fmq.sh: Launches the FioranoMQ server. By default, FioranoMQ profile is launched
if no other profile is specified.

Usage: fmq.sh [-profilesDir <dir>] [-profile <path>] [-dbPath <dir>] [-configPath
<dir>] [-saveConfigs <boolean>]

o -profile <path>: Relative path from profiles directory to the profile to be
deployed. Defaults to FioranoMQ.

o -profilesDir <dir>: Directory where profiles are present.
Defaults to <fiorano_installation_dir>/fmq/profiles

o -configPath <dir>: Conf directory path for the configured profile.
Defaults to <fiorano_installation_dir>/fmq/profiles/<profile>/conf

o -dbPath <dir>: Database path for configured profile.
Defaults to <fiorano_installation_dir>/fmq/profiles/<profile>/run"

o -saveConfigs <boolean>: Persists server configurations on shutdown.
Defaults to false.

o –nobackground: Option to not start the server in the back ground.

o –help: Displays all available options.

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 34

Example: Following command starts FioranoMQ HA primary server.
fmq.sh –profile FioranoMQ_HA_rpl/HAPrimary

• recover-database.sh: This script is used to recover the database in the event
that the FioranoMQ proprietary File based database is corrupt.

This launches the script and, by default, recovers the PTP database. For more
information on the usage of the script refer to Chapter 24: Fiorano DB Recovery
Tool.

Usage: recover-database.sh [–propertiesFile <path>] [-fmq.profile <path>] [-h]

o –propertiesFile: Configuration file. Default configuration file is located at
<fiorano_installation_dir>/fmq/profiles/recovery.properties

o -fmq.profile <path>: Relative path from the profiles directory to profile
to be deployed. Defaults to FioranoMQ.

o -h: display help

• run-client.sh: This script is used to run Java samples which are included in the
FioranoMQ installation. External jars can be added to classpath in
fiorano_installation_dir>/fmq/bin/run-client.conf

Usage: run-client.sh <sampleName>

• build-all-clients.sh

This script is used to compile all the Java samples which are included within the
installer. The script makes use of compile-client.sh internally to compile each of
the samples. External jars can be added to classpath in
<fiorano_installation_dir>/fmq/bin/complie-client.conf

Usage: build-all-clients.sh

• migrate.sh and convert-database.sh

The migrate.sh script file is used for migrating the FioranoMQ2007 database to a
FioranoMQ 9.0 or higher versions, which uses the FioranoMQ9 compatible format.
This script uses convert-database.sh for converting the database table files and
data files to the FioranoMQ9 compatible format. It is recommended that the
readme.txt file be referred to for instructions on using this utility.

• startCluster.sh

The startCluster.sh script file is used for running the FioranoMQ Management
server using FioranoMQ_Clustering profile. For more information on the FioranoMQ
Management server and its functions refer to Chapter 32: Fiorano Directory
Services.

• routeUtility.sh

routeUtility.sh script file is used for creating/removing multiple routes between
destinations (Queues/Topics) based on the configuration file specified while
running the ‘route’ utility. The configuration file (routes.xml) contains properties of
each route to be created.

A sample route configuration file can be found at
$FIORANO_HOME/fmq/Utilities/RouteUtility/conf folder.

Usage: $FIORANO_HOME/fmq/bin/routeUtility.sh [-operation <operation> -
configFile <routeConfigsFile>]

where:

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 35

configFile: Includes the XML file that contains the configuration of the routes. If
no configuration file is specified when running the route Utility then 'routes.xml'
will be taken as the default configuration file.

Operation: Operation that needs to be executed using the route utility.

Valid Values: createRoutes OR removeRoutes. If no operation is specified, then
this will take 'createRoutes' as its operation.

• shutdown-fmq.sh

This script is used to shutdown the FioranoMQ server This script internally creates
a JMXConnection based on arguments passed. If none of the arguments are
passed, then the default parameters are used. If the arguments passed are
invalid, then an exception is shown on the console.

Usage: ./shutdown-fmq.sh [-options] (For Linux)

Where options include:

Parameter
Name

Description Legal Values

connectorType Type of connector that needs to be created
for making a jmx connection with the
FioranoMQ server.

RMI (Default Value), JMS

host

URL of the machine where the server is
running. If the server is running on a
machine on which a user executes a
shutdown script, the host need not be
specified.

localhost (Default Value),
IPAddress

port The port on the FioranoMQ server that will
accept JMS connections. This value should
be specified only if the connector ‘type’ is
JMS.

 1856 (Default Value)

user Name of the user trying to shutdown the
FioranoMQ server. This user should have
permission to create a JMX connection.

admin (Default Value),
anonymous, ayrton

passwd Password of the user trying to shutdown the
FioranoMQ Server.

passwd(Default Value for
admin), anonymous (for user
anonymous), senna (for user
ayrton)

transportProtocol Transport protocol to be used for making a
connection with the FioranoMQ server. This
value should be specified only if the
connector ‘type’ is JMS.

TCP (Default Value), HTTP, LPC

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 36

Parameter
Name

Description Legal Values

securityProtocol Security protocols that need to be used for
making a connection with the FioranoMQ
server. By default there is no security
protocol. This value should be specified only
if the connector ‘type’ is JMS.

null (Default Value), SUN_SSL.

securityManager Security Manager which to be used for
making a connection with the FioranoMQ
server. By default there is no security
Manager. This value should be specified only
if the connector ‘type’ is JMS.

Null (Default Value),
DefaultJSSESecurityManager

rmiPort RMIConnector port on which the FioranoMQ
server JMX connection can be created. This
value should be specified only if the
connector ‘type’ is RMI.

1858(Default value), 2059 is
default value for Repeater

Example:

The commands below stop the FioranoMQ server running on a FMQLinux1 machine on default
port 1856 with user as admin and password as passwd.

./shutdown-fmq.sh -host FMQLinux1 -port 1856 -user admin -passwd passwd -
transportProtocol TCP -securityProtocol null -securityManager null.

No securityManager or securityProtocol is required in this case and both are specified as null.
This script creates an RMIBasedJMXConnector since the connector type is not specified.

Note: If a user has configured the FioranoMQ server to accept JMSBasedJMXConnector
connections, shutting down the FioranoMQ server is possible only by using this same
connector. Otherwise, by default, the RMIBasedJMXConnector will be used.

Scripts present under <fiorano_installation_dir>/fmq/clients/c/crosscomp/scripts

• cclientbuild.sh: This script is used to compile the C Cross Comp samples.

• Usage: cclientbuild.sh ../samples/<sample_type>/<sampleName>.c

Scripts present under <fiorano_installation_dir>/fmq/clients/c/native/scripts

• cclientbuild.sh: This script is used to compile the C Native samples.

• Usage: cclientbuild.sh ../samples/<sample_type>/<sampleName>.c

Scripts present under <fiorano_installation_dir>/fmq/clients/cpp/jni/scripts

• cppclientbuild.sh: This script is used to compile the Cpp JNI samples using fmq-jni-
cpprtl.lib.

• Usage: cppclientbuild.sh ../samples/<sample_type>/<sampleName>.cpp

Scripts present under <fiorano_installation_dir>/fmq/terminal

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 37

• fmq-terminal.sh: This script is used to perform most of the admin operations that
can be performed through the Studio.

• Usage: fmq-terminal.sh. Queries the username and password needed to log onto the
server.

Note:

• help command lists all the commands/operations supported by the terminal

• <command/operation> -help displays usage of the command or its operation

Below is a list of operations supported by fmq-terminal:

Operation Description

addMemberToGroup adds a member to a Group

Bye exits the console

changePwd changes password for the specified User

clearQueue clears messages in the Queue specified

createACF creates the specified AdminConnectionFactory

createCommonCF creates the specified CommonConnectionFactory

createGroup creates the Group specified

createQCF creates the specified QueueConnectionFactory

createQueue creates the Queue specified

createTCF creates the specified TopicConnectionFactory

createTopic creates the Topic specified

createUser creates a new User

createXAQCF creates the specified XAQueueConnectionFactory

createXATCF creates the specified XATopicConnectionFactory

deleteACF deletes the specified AdminConnectionFactory

deleteCommonCF deletes the specified CommonConnectionFactory

deleteGroup deletes the Group specified

deleteQCF deletes the specified QueueConnectionFactory

deleteQueue deletes the Queue specified

deleteTCF deletes the specified TopicConnectionFactory

deleteTopic deletes the Topic specified

deleteUser deletes a specified user

deleteXAQCF deletes the specified XAQueueConnectionFactory

deleteXATCF deletes the specified XATopicConnectionFactory

exit Exits the console

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 38

Operation Description

help
prints the ‘help’ topics/instructions for all available
commands

list lists all available commands

listACFs lists names of all available Admin Connection Factories

listClientIDs lists names of all Client IDs

listCommonCFs lists names of all available Common Connection Factories

listDomains list all domains

listGroups lists all server groups

listQCFs lists names of all available QueueConnectionFactories

listQueues lists names of all available Queues

listSubscriberIDs lists SubscribterIDs of specified ClientIDs

listTCFs lists names of all available TopicConnectionFactories

listTopics lists names of all available Topics

listUsers lists all Users of the server

listXAQCFs lists names of all available XAQueueConnectionFactories

listXATCFs lists names of all available XATopicConnectionFactories

mbeanCount prints mbeans count

quit exits the console

restartFMQ restarts FioranoMQ server running on the Fiorano Container

run runs the commands in the specified file

serverInfo prints the server information

shutdownFMQ
Shuts down the FioranoMQ server running in the relevant
Fiorano Container

shutdownJBoss
Shuts down the FioranoMQ Server running in the relevant
JBoss Container

Scripts present under
<fiorano_installation_dir>/framework/tools/LicenseManager/bin

runLM.sh: This script is used for running the license manager. For more information on the
license manager refer to SOA Platform License Manager Guide.pdf in the
<fiorano_installation_dir>/framework/tools/LicenseManager/doc directory.

Scripts present under <fiorano_installation_dir>/Studio/bin

Reset.sh: This script is used to reset all cached data from <user_dir> that defaults to
/<Installation_Dir> /runtimedata/studio/<build_no>, and delete the <user_dir>.

Usage: Reset.sh

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 39

Studio.sh: This script is used to launch the FioranoMQ Studio.

Usage: Studio.sh --jdkhome <jdk_home>

The <jdk_home> should point to the JDK_HOME since it is required for launching the Fiorano
Studio.

2.4 Reference Matrix - Windows

The table below summarizes all the FioranoMQ scripts/configurations modified on Windows:

Functionality Old Script (Pre FioranoMQ 2008) New Script (FioranoMQ 2008
onwards)

FioranoMQ Server

Memory settings of
FioranoMQ Server /fiorano_vars.bat /fmq/bin/fmq.conf

External jar files /fmq/bin/runContainer.bat /fmq/bin/fmq.conf

Startup /fmq/bin/runContainer.bat /fmq/bin/fmq.bat

Shutdown /fmq/bin/shutdownFMQ.bat /fmq/bin/shutdown-fmq.bat

FioranoMQ Server as Windows Service

Install /fmq/bin/ntservice/bin/install-nt.bat /fmq/bin/service/install-fmq.service.bat

Uninstall /fmq/bin/ntservice/bin/uninstall-nt.bat
/fmq/bin/service/uninstall-
fmq.service.bat

Install a profile
/fmq/bin/ntservice/bin/install-nt.bat
../conf/<profile_name>.conf

/fmq/bin/service/install-fmq.service.bat
–profile <profile_name>

Uninstall a profile
/fmq/bin/ntservice/bin/uninstall-nt.bat
../conf/<profile_name>.conf

/fmq/bin/service/uninstall-
fmq.service.bat –profile <profile_name>

Default log location /fmq/bin/ntservice/logs
/fmq/<profiles_dir>/<profile_name>/se
rvice

Tools and Miscellaneous Scripts

Fiorano Studio /Studio/bin/Studio.exe /Studio/bin/Studio.exe

Fiorano Console /fmq/bin/fmq-console.bat /fmq/bin/fmq-console.bat

Compile Client /fmq/bin/compClient.bat /fmq/bin/compile-client.bat

External Jar files for
Client /fmq/bin/compClient.bat /fmq/bin/compile-client.conf

Run Client /fmq/bin/runClient.bat /fmq/bin/run-client.bat

External Jar files for /fmq/bin/runClient.bat /fmq/bin/run-client.conf

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 40

Functionality Old Script (Pre FioranoMQ 2008) New Script (FioranoMQ 2008
onwards)

Client

Memory settings for
Client /fiorano_vars.bat /fmq/bin/run-client.conf

Run Standalone Bridge /fmq/bin/runStandaloneBridge.bat
/fmq/bin/fmq.bat –profile
StandAloneBridge

Run Standalone
Repeater /fmq/bin/runStandaloneRepeater.bat

/fmq/bin/fmq.bat –profile
StandAloneRepeater

Database related scripts

Create Database /fmq/bin/createDB.bat /fmq/bin/create-database.bat

External Jar files used
for creating Databases /fmq/bin/createDB.bat /fmq/bin/create-database.conf

DB Recovery Tool /fmq/bin/runDBRecoveryTool.bat /fmq/bin/recover-database.bat

External Jar files used
for Database Recovery /fmq/bin/ runDBRecoveryTool.bat /fmq/bin/recover-database.conf

2.5 Common Scripts Usage - Windows

Scripts present under <fiorano_installation_dir>

1. fiorano_vars.bat: Used to set the Environment Variable which is used throughout
Fiorano server scripts. It is also used to set Endorsed libraries.

2. uninstall.bat: Script used to uninstall the FioranoMQ installation.

Scripts present under <fiorano_installation_dir>\fmq\bin

1. backupDB.bat: This script is used to backup the database of the profile specified
by the User. This script moves the existing database from the profile directory to
the backup database directory.

Usage: backupDB.bat <profileName> <FMQ DB path> <DB Backup Path>

Example: backupDB.bat
FioranoMQ\profiles\FioranoMQ\run\profiles\FioranoMQ_backupDB

This moves the existing database from the FioranoMQ\run directory to the
directory specified by the User. By default, a backup of the FioranoMQ database is
taken and a new directory created inside profiles\FioranoMQ directory using the
current date of the system.

2. ClearDB.bat: This script is used to clear the existing database in the FioranoMQ
server.

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 41

Usage: ClearDB.bat [– profile <profileName>] [-DBDir <FMQ DB path>] [-
profilesDir <Profiles directory>]. By default, this clears the FioranoMQ profile
database.

o -profile <profilename>: Profilename from profiles directory to the
profile to be deployed. Defaults to FioranoMQ.

o –DBDir <FMQ DB path>: Database directory of the profile configured.
Defaults to <fiorano_installation_dir>\fmq\profiles\<profile>\run"

o -profilesDir <Profiles directory>: Directory where profiles are present.
Defaults to <fiorano_installation_dir>\fmq\profiles

Warning: Clearing the database removes all user created information, including
all Topics/Queues/ConnectionFactories created, as well as User permissions and
Groups. If the user wants to clear the database only partially, the option to clear
Admin Storage, Data Storage and ACL Storage can be chosen instead the whole
database.

Example:

3. compile-client.bat: This script is used to compile Java samples included in the
installer.

Usage: compile-client.bat <sampleName>.java

4. create-database.bat: This script is used to create a database. There are two
ways by which databases can be created.

a) Using FioranoMQ Configuration:

The database section of the FioranoMQ profile has to be configured. Refer
to the Chapter 4: Configuring Message Store for information on configuring
the database section.

Usage: create-database.bat -fmq.profile <profileName> -dataBaseType
<dataBaseType>

Example: The following command creates a database using message
store configuration for MSSQL in the FioranoMQ_SQL profile:

create-database.bat -fmq.profile FioranoMQ_SQL -dataBaseType mssql

b) From command line arguments

Database configuration details are provided as an option on the command
line.

Usage: Usage: create-database -dataBaseType <DataBase> -driver
<Driver> - url <URL> -userName <UserName> -password <Password> -
dataTypesFileName <cfgFileName>

Please refer to the Chapter 4: Configuring Message Store

Example: The following command creates a database using message
store configuration for MSSQL.

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 42

create-database.bat -dataBaseType mssql -driver
com.microsoft.jdbc.sqlserver.SQLServerDriver -url
jdbc:microsoft:sqlserver:\\server:1433;SelectMethod=Cursor -
userName admin -password passwd -dataTypesFileName
jdbc_mssqls.cfg

5. fmq.bat: Launches the FioranoMQ server. By default, the FioranoMQ profile is
launched if no other profile is specified.

Usage: fmq.bat [-profilesDir <dir>] [-profile <path>] [-dbPath <dir>] [-
configPath <dir>] [-saveConfigs <boolean>]

o -profile <path>: Relative path from profiles directory to the profile to be
deployed. Defaults to FioranoMQ.

o -profilesDir <dir>: Directory where profiles are present.
Defaults to <fiorano_installation_dir>\fmq\profiles

o -configPath <dir>: Conf directory path for the configured profile.
Defaults to <fiorano_installation_dir>\fmq\profiles\<profile>\conf

o -dbPath <dir>: Database path for configured profile.
Defaults to <fiorano_installation_dir>\fmq\profiles\<profile>\run"

o -saveConfigs <boolean>: Persists server configurations on shutdown.
Defaults to false

o –help: Displays all available options.

Example: The command below starts the FioranoMQ HA primary server.
fmq.bat –profile FioranoMQ_HA_rpl\HAPrimary

6. fmq-console.bat: This script is used to setup the class path for the Java samples
included within the FioranoMQ installation.

Usage: fmq-console.bat

Once run, it sets the classpath for the samples and moves the command prompt to
the %fiorano_installation_dir %\fmq\samples directory.

7. fstart.bat: This script displays a new console with the command specified as
‘command line argument’. If nothing is specified it opens a new command prompt
within the same current directory.

Usage: fstart.bat <command>

For Example: fstart.bat fmq.bat.

This launches the FioranoMQ server with the default profile, that of FioranoMQ.

8. recover-database.bat: This script is used to recover the database in the event
that the FioranoMQ proprietary File based datastore is corrupt.

On launch, the script recovers the PTP database by default. For more information
on the usage of the script refer to the chapter on Fiorano DB Recovery Tool.

Usage: recover-database.bat [–propertiesFile <path>] [-fmq.profile <path>] [-h]

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 43

o –propertiesFile: Configuration file. The default configuration file is
located at <fiorano_installation_dir>\fmq\profiles\recovery.properties

o -fmq.profile <path>: Relative path from the profiles directory to the
profile expected to be deployed. Defaults to FioranoMQ.

o -h: Displays help topics

9. run-client.bat: This script is used to run Java samples included in the FioranoMQ
installation. External jars can be added to classpath in
fiorano_installation_dir>\fmq\bin\run-client.conf

Usage: run-client.bat <sampleName>

10. build-all-clients.bat

This script is used to compile all Java samples included in the installer. The script
makes use of compile-client.sh to compile each of the samples internally. External
jars can be added to classpath in <fiorano_installation_dir>/fmq/bin/complie-
client.conf

Usage: build-all-clients.bat

11. migrate. bat and convert-database.bat

migrate.bat script file is used for transferring the FioranoMQ2007 database to the
FioranoMQ9 format. This script uses convert-database.bat for converting the
database table files and data files to FioranoMQ9 format. It is recommended that
the ‘readme.txt’ file be referred to for instructions on using this utility.

12. startCluster.bat

startCluster.bat script file is used for running the FioranoMQ Management server
using the FioranoMQ_Clustering profile. For more information on FioranoMQ
Management Server and its functions refer to Chapter 32: Fiorano Directory
Services.

13. routeUtility.bat

routeUtility.sh script file is used for creating/removing multiple routes between
destinations (Queues/Topics) based on the configuration file specified on the route
utility. The configuration file (routes.xml) contains the properties of each route to
be created.

A sample route configuration file can be found at
$FIORANO_HOME/fmq/Utilities/RouteUtility/conf folder.

Usage:

$FIORANO_HOME/fmq/bin/routeUtility.sh [-operation <operation> -configFile
<routeConfigsFile>]

where,

configFile:

XML file that contains configurations of routes. If no configuration file is specified
when the route Utility is run, then 'routes.xml' becomes the default configuration
file.

Operation:

The operation that needs to be executed using the route utility.

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 44

Valid Values: createRoutes OR removeRoutes. If no operation is specified,
'createRoutes' is chosen by default.

14. shutdown-fmq.bat

This script is used to shutdown the FioranoMQ server.

This script creates a JMXConnection based on the arguments passed. If none of
the arguments are passed, then default parameters are used. If the arguments
passed are invalid, then an exception is displayed on the console.

Usage: shutdown-fmq.bat [-options] (For Windows)

Where options includes:

Parameter
Name

Description Legal Values

connectorType Type of the connector which need to be
created for making a jmx connection with
FioranoMQ server.

RMI (Default Value), JMS

host

URL of the machine where the server is
running. If the server is running on the
machine as the shutdown script, the host
name does not need to be specified.

localhost (Default Value),
IPAddress

port The port of the FioranoMQ server that will
accept JMS connections. This value should
be specified only if the connector ‘type’ is
JMS.

 1856 (Default Value)

user Name of the user trying to shutdown the
FioranoMQ server. This user should have
permission to create a JMX connection.

admin (Default Value),
anonymous, ayrton

passwd Password of the user trying to shutdown the
FioranoMQ Server.

passwd(Default Value for
admin), anonymous (for user
anonymous), senna (for user
ayrton)

transportProtocol Transport protocol which should be used for
making a connection with the FioranoMQ
server. This value should be specified only if
the connector ‘type’ is JMS

TCP (Default Value), HTTP, LPC

securityProtocol Security protocol which needs to be used to
make a connection with the FioranoMQ
server. By default there is no security
protocol. This value should be specified only
if the connector ‘type’ is JMS.

null (Default Value), SUN_SSL.

securityManager Security Manager which need to be used for
making a connection with FioranoMQ Server.

null(Default Value),

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 45

Parameter
Name

Description Legal Values

By default there will not be any security
Manager. This value should be specified only
if the connector type is JMS

DefaultJSSESecurityManager

rmiPort RMIConnector port on which the FioranoMQ
server JMX connection is to be created. This
value should be specified only if the
connector type is RMI.

1858(Default value), 2059 is
default value for Repeater

Example:

The commands below stop the FioranoMQ server running on a FMQWIN01 machine on default
port 1856 by entering user as admin and password as passwd.

shutdown-fmq.bat -host FMQWIN01 -port 1856 -user admin -passwd passwd -
transportProtocol TCP -securityProtocol null -securityManager null.

No securityManager or securityProtocol is required in this case and both are set as null. This
script creates an RMIBasedJMXConnector since theconnector ‘type’ is not specified.

Note: If a user has configured the FioranoMQ server to accept JMSBasedJMXConnector
connections, shutting down the FioranoMQ server is possible only by using this connector.
Otherwise, by default, the RMIBasedJMXConnector will be used.

Scripts present under %fiorano_installation_dir %\fmq\bin\service

1. install-fmq-service.bat: This script launches the FioranoMQ server as an NT
service. This script can be used where the FioranoMQ sever needs to start along
with the system services.

Usage: install-fmq-service.bat -profile %PROFILE_NAME%

Example: install-fmq-service.bat -profile FioranoMQ_XA

 FioranoMQ, when started as an NT Service, by default, takes on the FioranoMQ profile.

uninstall-fmq-service.bat: This script is used to remove the entry made in the registry of
the system after install-fmq-service.bat has installed a serviceto start the FioranoMQ Server.

Usage: uninstall-fmq-service.bat -profile %PROFILE_NAME%

Example: uninstall-fmq-service.bat -profile FioranoMQ_XA

 FioranoMQ, when started as an NT Service, by default, takes on the FioranoMQ profile.

Scripts present under <fiorano_installation_dir>\fmq\clients\c\crosscomp\scripts

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 46

1. build_samples.bat: This script is used for compiling all the C Cross Comp
samples present under %fiorano_installation_dir
%\fmq\clients\c\crosscomp\samples.

Usage: build_samples.bat.

2. cclientbuild.bat: This script is used for compiling C Cross Comp samples one at a
time.

Usage: cclientbuild.bat ..\samples\<sample_type>\<sampleName>.c

Scripts present under <fiorano_installation_dir>\fmq\clients\c\native\scripts

1. build_samples.bat: This script is used for compiling all the C Native samples
present under %fiorano_installation_dir %\fmq\clients\c\native\samples

Usage: build_samples.bat

2. cclientbuild.bat: This script is used to compile the C Native samples one at a
time.

Usage: cclientbuild.bat ..\samples\<sample_type>\<sampleName>.c

Scripts present under <fiorano_installation_dir>\fmq\clients\cpp\jni\scripts

1. build_samples.bat: This script is used for compiling all the Cpp JNI samples
present under %fiorano_installation_dir %\fmq\clients\cpp\jni\samples.

Usage: build_samples.bat.

2. cppclientbuild.bat: This script is used for compiling the Cpp JNI samples, one at
a time, using fmq-jni-cpprtl.lib.

Usage: cppclientbuild.bat ..\samples\<sample_type>\<sampleName>.cpp

3. cppclientbuildcc.bat: This script is used for compiling the Cpp JNI samples, one
at a time, using fmq-crosscomp-cpprtl.lib.

Usage: cppclientbuildcc.bat
..\samples\<sample_type>\<sampleName>.cpp

Scripts present under %fiorano_installation_dir %\fmq\clients\cpp\native\scripts

1. build_samples.bat: This script is used for compiling all the Cpp Native samples
present under %fiorano_installation_dir %\fmq\clients\cpp\native\samples.

Usage: build_samples.bat.

2. cppclientbuild.bat: This script is used to compile the Cpp Native samples one at
a time.

Usage: cppclientbuild.bat ..\samples\<sample_type>\<sampleName>.cpp

Scripts present under %fiorano_installation_dir %\fmq\clients\csharp\scripts

1. build_samples.bat: This script is used for compiling all the unmanaged C#
samples present under %fiorano_installation_dir %\fmq\clients\csharp\samples.

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 47

Usage: build_samples.bat

2. csclientbuild.bat: This script is used to compile the unmanaged C# samples one
at a time.

Usage: csclientbuild.bat ..\samples\<sample_type>\<sampleName>.cs

3. ginstall.bat: This script is used to install the fmq-native-cpprtl.dll, fmq-native-
cpprtl-https.dll, fmq-csharprtl.dll and fmq-csharprtl-https.dll dll files into the
system assembly using gacutil.exe which is shipped with the DOT NET
Installation.

Usage: ginstall.bat

4. vbclientbuild.bat: This script is used for compiling the unmanaged VB samples
one at a time.

Usage: csclientbuild.bat ..\samples\<sample_type>\<sampleName>.vb

Scripts present under %fiorano_installation_dir
%\fmq\clients\nativecsharp\scripts

1. build_samples.bat: This script is used for compiling all the C# Native samples
present under %fiorano_installation_dir %\fmq\clients\csharp\samples.

Usage: build_samples.bat

2. cppclientbuild.bat: This script is used to compile the C# Native samples one at a
time.

Usage: csclientbuild.bat ..\samples\<sample_type>\<sampleName>.cs

Scripts present under <fiorano_installation_dir>\fmq\terminal

1. fmq-terminal.bat: This script is used for performing admin operations through
the Studio. The list of operation supported by fmq-terminal are:

Usage: fmq-terminal.sh. The username and password are queried for logging
onto the server.

Note:

• help command lists all the commands/operations supported by the terminal

• <command/operation> -help displays usage of the command or operation

The list of operations supported by fmq-terminal follows:

Operation Description

addMemberToGroup adds a member to a Group

bye exits the console

changePwd changes password for the specified User

clearQueue clears messages in the Queue specifed

createACF creates the specified AdminConnectionFactory

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 48

Operation Description

createCommonCF creates the specified CommonConnectionFactory

createGroup Creates the Group specified

createQCF creates the specified QueueConnectionFactory

createQueue creates the Queue specified Queue

createTCF creates specified TopicConnectionFactory

createTopic creates the Topic specified

createUser

creates new User and a new Password

createXAQCF Creates the specified XAQueueConnectionFactory

createXATCF creates the specified XATopicConnectionFactory

deleteACF deletes the specified AdminConnectionFactory

deleteCommonCF deletes the specified CommonConnectionFactory

deleteGroup deletes the Group specified

deleteQCF deletes the specified QueueConnectionFactory

deleteQueue deletes the specified Queue

deleteTCF deletes the specified TopicConnectionFactory

deleteTopic deletes the Topic specified

deleteUser deletes a specified User

deleteXAQCF deletes the specified XAQueueConnectionFactory

deleteXATCF deletes the specified XATopicConnectionFactory

exit exits the console

help prints the ‘help’ topic/instructions for all available commands

list lists all available commands

listACFs lists names of all available Admin Connection Factories

listClientIDs lists names of all Client IDs

listCommonCFs lists names of all available Common Connection Factories

listDomains Lists all domains

listGroups lists all server groups

listQCFs lists names of all available QueueConnectionFactories

listQueues lists names of all available Queues

listSubscriberIDs lists SubscribterIDs of specified ClientIDs

listTCFs lists names of all available TopicConnectionFactories

listTopics lists names of all available Topics

FioranoMQ 9 Handbook

Chapter 2: Using Scripts Page 49

Operation Description

listUsers lists all Users of the server

listXAQCFs lists names of all available XAQueueConnectionFactories

listXATCFs lists names of all available XATopicConnectionFactories

mbeanCount prints mbeans count

quit exits the console

restartFMQ
restarts FioranoMQ server running in the relevant Fiorano
Container

run runs specific commands in the specified file

serverInfo prints the server information

shutdownFMQ
Shuts down the FioranoMQ server running in the relevant
Fiorano Container

shutdownJBoss
Shuts down the FioranoMQ server running on the JBoss
Container

Scripts present under
<fiorano_installation_dir>\framework\tools\LicenseManager\bin

runLM.bat: This script is used to run the license manager. For more information on the
license manager, refer to Fiorano SOAPlatform License Manager Guide available at:
<fiorano_installation_dir>\framework\tools\LicenseManager\doc.

Scripts present under <fiorano_installation_dir>\Studio\bin

1. InputMethodHotKey: This script is used for configuring the InputMethod HotKey
that invokes the keyboard panel to insert international characters (Japanese,
Chinese, etc.).

2. Log.bat: This script opens the log file that stores all logs.

Usage: Log.bat

3. Reset.bat: This script is used to reset all Studio logs and the Studio settings

Usage: Reset.bat

4. UserDir.bat: This script opens the Windows Explorer at the same location as the
Studio log file.

Usage: UserDir.bat

FioranoMQ 9 Handbook

Chapter 3: Naming Manager Page 50

Chapter 3: Naming Manager

3.1 XML
1. Open the profile for off-line editing through the Profile Manager using Studio by

clicking on the Profile Manager pane. Right-click the Profile node and select Open
Profile from the pop-up menu. Select the desired profile and click on the Open button

2. Navigate to NativeFileNamingManager under the jndi node in the FioranoMQ
hierarchy.

3. In the properties panel, change the implementation ‘type’ from FILE to XML, as
shown in the figure below.

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 3: Naming Manager Page 51

3.2 Configuring
1. Open the profile for off-line editing through the Profile Manager. Right-click the

Profiles node and select Open Profile from the pop-up menu. Select the FioranoMQ
profile and click on the Open button.

2. Navigate to the instance of XMLFile NamingManager under the jndi node in the
FioranoMQ hierarchy.

3. In the Properties of XMLFileNamingManager panel, change the Filename property
to the desired value as shown in the figure below.

4. In the Properties of XMLFileNamingManager change the property Path for the xml
file.

5.
Right-click on the FioranoMQ node and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 3: Naming Manager Page 52

3.3 LDAP
1. Open the profile for off-line editing through the Profile Manager. Right-click the

Profile node and select Open Profile from the pop-up menu. Select the desired
profile and click on the Open button

2. Navigate to NativeFileNamingManager under the jndi node in the FioranoMQ
hierarchy.

3. In the Properties of XMLFileNamingManager panel, change the implementation
‘type’ from FILE to LDAP as shown in the figure below.

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 3: Naming Manager Page 53

3.4 RDBMS
1. Open the profile for off-line editing through the Profile Manager. Right-click the

Profile node and select Open Profile from the pop-up menu. Select the desired
profile and click on the Open button.

2. Navigate to NativeFileNamingManager under the jndi node in the FioranoMQ
hierarchy.

3. In the Properties of XMLFileNamingManager pane, change the implementation
‘type’ from FILE to RDBMS, as shown in the figure below.

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 54

Chapter 4: Connection Management

This chapter discusses Connection Management in FioranoMQ. At the outset, the following
points must be noted:

• Add the JAR files, for the database configured in the FioranoMQ Server, to the
Configuration file of the server, fmq.conf, present at fmq_installation_dir\fmq\bin.

• To start the FioranoMQ Server with one of the databases, create-database.bat/sh
needs to be started after adding the required JAR in the classpath of create-
database.conf.

4.1 Modifying the Port Number

Note: This configuration is done in the offline mode.

For information about configuring the FioranoMQ profile through a text based file, see
FioranoMQ Getting Started.

1. Launch Fiorano Studio. Select the Profile Manager pane and open the profile whose
port number is to be changed.

2. Navigate to the Connection Manager instance in the profile.

3. Edit the port number in the Properties Panel as shown in the figure above.

4. Right-click on the FioranoMQ node and select the Save option from the pop-up
menu.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 55

Note: Changing port number can require the default connection factories created by the
server to be re-bound.

4.2 Setting Protocol to HTTP
1. Launch the Fiorano Studio. Select the Profile Manager pane and open the profile

whose protocol is to be set.

2. Navigate to the Connection Manager instance in the profile. The figure below shows
the default profile.

3. Set the protocol to HTTP from the drop-down list in the Properties Panel as shown
in the figure above.

4. Right-click the FioranoMQ node and select the Save option from the pop-up menu.

Note: Changing protocol can require the default connection factories created by the server to
be re-bound.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 56

4.3 Modifying the Thread Management Policy
1. Launch the Fiorano Studio. Open the Profile Manager and open the profile whose

thread management policy is to be modified.

2. Navigate to the Connection Manager instance in the profile. As with the default
profile, this is at the node Fiorano -> socketAcceptors -> port-1 ->
Connection Manager.

3. From the list of dependencies, right-click on SocketReadHandler and select
Locate in Tree to reach the instance of SocketReadHandler used by the connection
manager.

4. In the Properties of the NativeSocketReadHandler pane, select NIO2 from the
drop-down list of the Implementation options, as shown in the figure below.

5. Right-click the FioranoMQ node and select the Save option from the pop-up
menu. Then run the server.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 57

4.4 Adding a Socket Acceptor

Note: This configuration is done in the offline mode

1. Launch the Fiorano Studio. Open the Profile Manager and open the profile where
the Socket Acceptor is to be added.

2. In the profile, select the domain to which the new Socket Acceptor is added. The
default FioranoMQ profile has socket acceptors at the following nodes in the tree
Fiorano -> socketAcceptors. Fiorano recommends adding a new sub-domain
(for instance, port-2) to this domain along with a new socket acceptor.

3. Right-click on the desired domain and select Add Components. The Add
Components to Profile dialog box appears. Navigate to Fiorano -> FioranoFw
-> Services

4. Select the component Connection Manager1 from the new dialog box.

Note: More than one instance can be added by specifying the desired Instance Count in the
properties panel.

5. Click the OK button to add the selected instance(s) to the profile. The
dependencies of the newly added component(s) have to be resolved. All un-
resolved dependencies are marked with an error icon which is red in color.

Note: In addition to the Manager instance, an instance of the SocketReadHandler
is added to the profile as well.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 58

6. To resolve dependencies, open the DependsOn property of the newly added
Connection Manager and the associated SocketReadHandler. For each dependency
marked with a red colored icon, select the desired instance from the drop-down
list from the Properties field.

Note: Any existing instance for a dependency could be used to resolve it.

7. Right-click on the profile root node and select Validate to ensure that all
dependencies are resolved.

8. Modify the port number for the newly added Socket Acceptor so that it is different
from the port number in use by existing socket acceptor.

9. Right-click on the profile root node and select Save to save the profile.

4.4.1 Configuring Single Socket Acceptor for Admin

Note: This configuration can be done only in offline mode.

1. Open the Studio and open the FiranoMQ profile.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 59

2. Navigate to FioranoMQ -> Fiorano -> etc -> FMQConfigLoader ->
UseSingleSocketForAdmin.

By default the value is set to ‘yes’. Turning on this flag results in starting a thread
for admin connection that would wait for data on the socket. Any loss of
connection is detected immediately.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 60

4.5 Enabling SSL in FioranoMQ Messaging Server

1. TCP with JSSE Security

• Launch the Fiorano Studio for offline configuration of the FioranoMQ server.

• Select Tools > Configure Profile from the menu bar and open the profile
needed. Navigate to %selectedProfile% > Fiorano > SocketAcceptors >
Port1 > ConnectionManager in the Server Explorer.

• Change the Protocol property to SUN_SSL.

• Change the UseSystemPropsForSSL to true (Optional)

Note : The public/private keys and/or certificates used by the
FioranoMQ Server can be loaded by specifying the related system
properties or by installing the appropriate security managers which
can load the certificates. Please see the note at the start of Section
4.5.1

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 61

• Navigate to %selectedProfile% > Fiorano > etc > FMQConfigLoader. Right-
click on FMQConfigLoader and select Add Attribute from the pop-up menu. Add
an additional attribute with the name SSLEnabled and with a value that is ‘true’.

• Navigate to %selectedProfile% > Fiorano > socketAcceptors > port-1 >
ConnectionManager. Check the default value of property ManagerClassName.
Ensure that the default value of ManagerClassName is
fiorano.jms.ex.sm.def.DefaultJSSESecurityManager. (Optional)

Note : This parameter is deprecated. Alternatively, in order to load the KeyStore and
TrustStore for initializing the context in which SSL Sockets are created,
corresponding system properties should be set and UseSystemPropsForSSL
should be set to true.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 62

• Navigate to Fiorano > jmx > connector > JMSBasedJMXConnector2 and set the
following properties to allow the JMSConnector to connect to the secure server.

a. Protocol: TCP

b. SecurityManagerClass:
fiorano.jmx.connector.fmq.security.JSSESecurityManager

c. SecurityProtocol: SUN_SSL

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 63

• Right-click the FioranoMQ domain in the Profile Manager and select the Save
option from the pop-up menu. Changes are saved in the Configs.xml file.

• Clear the existing database using script ClearDB.bat located in
%FIORANO_HOME%\fmq\bin directory.

ClearDB.bat %selectedProfile%

• Start the Server again using script file fmq.bat located in
%FIORANO_HOME%\fmq\bin directory.

fmq.bat –profile %selectedProfile%

The server starts accepting connections on TCP in the SSL (JSSE) mode.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 64

2. HTTP with JSSE Security

1. Launch the Fiorano Studio for offline configuration of the FioranoMQ server.

2. Select Tools > Configure Profile from the menu bar, and open the profile
needed. Navigate to %selectedProfile% > Fiorano > SocketAcceptors >
Port1 > ConnectionManager.

3. Change the protocol property from TCP to HTTPS_SUN.

4. Navigate to %selectedProfile% > Fiorano > etc > FMQConfigLoader. Right-
click on FMQConfigLoader and select Add Attribute from the pop-up menu. Add
an additional attribute with the name SSLEnabled and with the value ‘true’.

5. Navigate to %selectedProfile% > Fiorano > socketAcceptors > port-1 >
ConnectionManager. Check the default value of property ManagerClassName.
Ensure that the default value of Security manager is
fiorano.jms.ex.sm.def.DefaultJSSESecurityManager.

6. Navigate to Fiorano > jmx > connector > JMSBasedJMXConnector2 and set
the following properties to allow JMSConnector to connect to the secure server:

a. Protocol: HTTP

b. SecurityManagerClass:
fiorano.jmx.connector.fmq.security.JSSESecurityManager

c. SecurityProtocol: SUN_SSL

7. Right-click the FioranoMQ domain in the Server Explorer and select the Save
option from the pop-up menu. Changes are saved in the Configs.xml file.

8. Clear the existing database using script ClearDB.bat located in the
%FIORANO_HOME%\fmq\bin directory.

ClearDB.bat %selectedProfile%

9. Start the Server again using script file fmq.bat located in
%FIORANO_HOME%\fmq\bin directory.

fmq.bat –profile %selectedProfile%

The server starts accepting connections on HTTPS in the SSL (JSSE) mode.

Note:

1. To enabling SSL for FES/FPS servers, steps taken are similar to the ones above.
For FPS profiles the Protocol, SecurityProtocol and SecurityManagerClass
properties for Fiorano > jmx >Engine > ClientJMXEngine also need to be changed.

2. When FioranoMQ server is running with HTTPS_SUN protocol, pinging is enabled at
the server. Also, the client connecting to server must enable ping.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 65

4.5.1 Starting FMQ Server in SSL Mode

The basic configurations for the FMQ server consist of changing the default TCP protocol to
'SUN_SSL' in the connection manager properties and turning on the SSL flag in the
FMQConfigLoader.

In order to use System properties to specify the KeyStore, TrustStore and the corresponding
password which are used to load and initialize the “context” in which the SSL-enabled Server
Socket is created, enable UseSystemPropsForSSL parameter in the Connection Manager
configuration by following the similar steps followed to configure Port Number in Section 4.1 .
If this parameter is enabled, then the following system properties should be set before starting
the FioranoMQ Server:

− javax.net.ssl.keyStore

− javax.net.ssl.keyStorePassword

− javax.net.ssl.keyStoreType (Optional, if not set JDK default will be used)

− javax.net.ssl.trustStore

− javax.net.ssl.trustStorePassword

− javax.net.ssl.trustStoreType (Optional, if not set JDK default will be used)

− javax.net.debug (Optional, if not set JDK default will be used)

These system properties should be specified in the file -
“%INSTALLER_HOME%/fmq/bin/fmq.conf” - under the section <java.system.props>

Alternatively, if UseSystemPropsForSSL is not enabled, by default, the FMQ server uses
'DefaultJSSEKeys', the Java keystore file for authenticating the client connections. This
keyStore is loaded in the Client or Server process using the Security Managers installed for
client and server respectively. Other certificate files can be ignored as they are not in used. To
check which certificates are in a Java keystore, the 'keytool' utility which comes along with the
JDK installed is used. To check which certificates are stored in the Java keystore
‘DefaultJSSEKeys’ file the following command can be used:

keytool -list -v -keystore DefaultJSSEKeys

Note: 'keytool' can be found at %JAVA_HOME%\bin\keytool

4.5.2 Generating ‘Keystores’ of ‘type’ JKS, provided by SUN

Java Keytool is a key and certificate management utility. It allows users to manage their own
public/private key pairs and certificates. It also allows users to cache certificates. Java Keytool
stores the keys and certificates in a ‘keystore’.

The following command can be used to create a ‘keystore’:

keytool -genkey -alias sampleKS -keyalg RSA -keystore C:\keystore

Where,

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 66

• -‘genkey’- is used to generate a key pair (a public key and associated private
key). This wraps the public key into an X.509 v1 self-signed certificate that is
stored as a single-element certificate chain. This certificate chain and the private
key are stored in a new keystore entry identified by an alias.

• -alias - is the unique alias for accessing keystore entries (key and trusted
certificate entries). Typically, the company name or hostname of the Server forms
the alias.

• -keyalg - specifies the algorithm to be used to create the key pair.

• -keystore - is used for specifying the name and location of the persistent keystore
file for keystore that is managed by the keytool.

Note: keytool –help to reveal other options of keytool.

Once the above command is executed for creating the certificate, information related to the
creation of the certificate needs to be provided as shown below:

Enter keystore password: passwd

What is your first and last name?

 [Unknown]: John

What is the name of your organizational unit?

 [Unknown]: FMQ

What is the name of your organization?

 [Unknown]: Fiorano

What is the name of your City or Locality?

 [Unknown]: Los Gatos

What is the name of your State or Province?

 [Unknown]: CA

What is the two-letter country code for this unit?

 [Unknown]: US

Is CN=John, OU=MQ, O=Fiorano, L= Los Gatos, ST= CA, C=US correct?

 [no]: yes

Enter key password for <sampleKS>

(RETURN if same as keystore password):

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 67

This keystore acts as a self-signed certificate. A certificate request can be generated in the
event that the certificate needs to be signed by Certification Authorities such as Verisign or
eTrust.

4.5.3 Server Side Configurations

The Security Manager loads the certificates/keys from the Keystore that has been created.
Please note that this section describes the procedure to create and install the Server security
manager, only when UseSystemPropsForSSL is disabled. In case, this property is enabled,
this section can be skipped and the KeyStore and TrustStore location and related properties
can be provided directly as system properties for the FioranoMQ Server.

Security manager class should implement fiorano.jms.ex.sm.IExSecurityManager.

The server, by default, uses fiorano.jms.ex.sm.def.DefaultJSSESecurityManager class as
a Security Manager. This value can be modified from the Studio using Profile Manger at:

Profiles->FioranoMQ->socketAcceptors->port-1->ConnectionManager[properties]-
>ManagerClassName

A sample Security Manager Class is displayed below:

JSSESecurityManager.java

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 68

4.5.3.1 Compiling the Security Manager

1. compile-client.sh script present in %Fiorano_Home%\fmq\bin folder is used to
compile the Security Manager class.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 69

2. The following line should be added to compile-client.conf (located at the same
place as .sh/.bat) file [Under <java.classpath> properties] prior to compilation.

%FIORANO_HOME%\fmq\lib\server\fmq-sm-api.jar

3. Compile the Security Manager by,

$> compile-client.sh JSSESecurityManager.java

4.5.3.2 Adding the Security Manager class to the Server’s classpath

After compiling the Security Manager class, please add the path under java.classpath [in the
fmq.conf (located at %Fiorano_Home%\fmq\bin) file, the class path is specified as:

 <java.classpath>

 ../lib

 ../lib/fmq-kernel.jar

 ../../extlib/derby/derby.jar

 ../../licenses

 ../../xml-catalog

The folder containing the security manager class can be added to this list (or) the security
manager class can be copied to one of the folders listed.

Enforce Client Authentication. (Refer to the profile screenshot below.): If the
EnforceJSSEAuthentication parameter is enabled in Connection Manager Configurations
then:

The server validates the certificates provided by the client.(To enable this, the keystore
created should be added to the trusted Stores.

The fmq.conf file used here.

By default the value is:

javax.net.ssl.trustStore=../profiles/FioranoMQ/certs/jssecacerts. This can be changed
to the keystore created,

javax.net.ssl.trustStore=<path - is the path to the keystore>

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 70

4.5.4 Client Side Configuration

In order to provide transport layer security on operations involved between the Clients and the
FioranoMQ server, the SECURITY_PROTOCOL must be enabled. This can be done by setting
the environment variable using the parameter Context.SECURITY_PROTOCOL to
FioranoJNDIContextConstants.PROTOCOL_JSSE_SSL

 or MetaDataConstants.PROTOCOL_JSSE_SSL before creating InitialContext. For example:

 env.put(Context.SECURITY_PROTOCOL,
FioranoJNDIContextConstants.PROTOCOL_JSSE_SSL);

(or)

env.put(Context.SECURITY_PROTOCOL, MetaDataConstants.PROTOCOL_JSSE_SSL);

Whenever this variable is set, FMQ's Client library tries to load the Public/Private
keys/certificates. This can be done in two different ways – one is to set the System property –
USE_SYSTEM_PROPERTIES_FOR_SSL_TLS

and provide the system properties for specifying KeyStore and TrustStore locations like :

− javax.net.ssl.keyStore

− javax.net.ssl.keyStorePassword

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 71

− javax.net.ssl.keyStoreType (Optional, if not set JDK default will be used)

− javax.net.ssl.trustStore

− javax.net.ssl.trustStorePassword

− javax.net.ssl.trustStoreType (Optional, if not set JDK default will be used)

− javax.net.debug (Optional, if not set JDK default will be used)

Alternatively, an installed Client Security Manager can be used to load the required certificates
into Client process (described next in this section). In this case, The Security Manager loads
the certificates/keys from the Keystore that has been created and the Security manager class
should implement fiorano.jms.runtime.IFMQSecurityManager. FMQ Client Libraries search
for the environment variable set by using
FioranoJNDIContextConstants.SSL_SECURITY_MANAGER which stores the fully qualified
class name of the SecurityManager that implements this interface. For example:

env.put(FioranoJNDIContextConstants.SSL_SECURITY_MANAGER,
"com.xxx.yyy.zzz.SomeSecurityManagerImpl");

 Please check the Java docs for the class fiorano.jms.runtime.IFMQSecurityManager for
more information on this API that needs to be implemented.

Certain samples are provided in the fmq/samples/SSLSamples directory for reference on how
the class implementing fiorano.jms.runtime.IFMQSecurityManager can be used while
performing SSL enabled communication with the FioranoMQ Server. Those samples by default
use JSSESecurityManager class (also provided along with the samples) as a Security Manager.
The fully qualified class name is passed as an environment variable

FioranoJNDIContext.SSL_SECURITY_MANAGER

while creating the InitialContext from the client. A sample Security Manager Class is shown
below for your convenience.

JSSESecurityManager.java

/**

 * Copyright © 2008-2010, Fiorano Software Pte. Ltd. and affiliates.

 *

 * All rights reserved.

 *

 * This software is the confidential and proprietary information

 * of Fiorano Software ("Confidential Information"). You

 * shall not disclose such Confidential Information and shall use

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 72

 * it only in accordance with the terms of the license agreement

 * enclosed with this product or entered into with Fiorano.

 */

import fiorano.jms.common.FioranoException;

import fiorano.jms.runtime.IFMQSecurityManager;

import javax.net.ssl.KeyManagerFactory;

import javax.net.ssl.SSLContext;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.net.Socket;

import java.security.KeyStore;

import java.security.SecureRandom;

/**

 * Install a server certificate handler callback which is

 * invoked at the time of creating connection to server.

 * This is used for server authentication by Client.

 *

 * @author FSIPL

 * @version 1.0

 * @created December 31, 2007

 */

public class JSSESecurityManager implements IFMQSecurityManager {

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 73

 // Set this path to your installation of FMQ_DIR

 //

 static String FMQ_INSTALL_DIR = System.getProperty("FMQ_DIR");

 static String FMQ_CERTS_DIR = System.getProperty("CERTS_DIR");

 // This lookup Dir assumes that default profile from whcih certs should be

 // fetched is "FioranoMQ"

 static String lookUpDir = FMQ_INSTALL_DIR + File.separator + "profiles" + File.separator +
"FioranoMQ" +

 File.separator + "certs" + File.separator;

 /**

 */

 public JSSESecurityManager() {

 // Initialize all SSL parameters

 try {

 }

 catch (Exception e) {

 System.out.println("Unable to create SSL parameters: exiting");

 }

 }

 /**

 * @return the SSLParams used for handshake while initializing

 * secure connection to the Fiorano EMS Server.

 */

 public Object getSecurityContext() {

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 74

 SSLContext ctx = null;

 try {

 KeyManagerFactory kmf;

 KeyStore ks;

 char[] passphrase = "passphrase".toCharArray();

 ctx = SSLContext.getInstance("TLS");

 kmf = KeyManagerFactory.getInstance("SunX509");

 ks = KeyStore.getInstance("JKS");

 String certsDir = FMQ_CERTS_DIR;

 certsDir = (certsDir == null) ? lookUpDir : certsDir + File.separator;

 ks.load(new FileInputStream(certsDir + "DefaultJSSEKeys"), passphrase);

 kmf.init(ks, passphrase);

 SecureRandom sec = new SecureRandom(new
Long(System.currentTimeMillis()).toString().getBytes());

 ctx.init(kmf.getKeyManagers(), null, sec);

 }

 catch (FileNotFoundException ex) {

 ex.printStackTrace();

 }

 catch (Exception e) {

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 75

 System.out.println("Could not initialise the Context object.");

 }

 return ctx;

 }

 /**

 * @param socket

 * @throws FioranoException

 * @throws JMSException if the certificate received is not

 * from a valid server.

 */

 public void checkExecute(Socket socket)

 throws FioranoException {

 return;

 }

}

4.5.4.1 Compiling the Security Manager

1. compile-client.sh script present in %Fiorano_Home%\fmq\bin folder is used to compile
the Security Manager class.

2. The following line should be added to compile-client.conf (located at the same place as
.sh/.bat) file [Under <java.classpath> properties] before compiling.

%FIORANO_HOME%\fmq\lib\client\fmq-common-api.jar

3. 3. Compile the Security Manager by, $> compile-client.sh JSSESecurityManager.java

4.5.4.2 Adding the Security Manager class to the Client’s classpath

After compiling the Security Manager class, please add the path under java.classpath. In run-
client.conf (this file is also located at %Fiorano_Home%\fmq\bin) file, the class path is
specified as following:

<java.classpath>

%FMQ_DIR%/lib/fmq-rtl.jar

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 76

%FMQ_DIR%/samples/jndiProperties

%JAVA_HOME%/lib/jndi.jar

%JAVA_HOME%/lib/tools.jar

%JAVA_HOME%/lib/classes.zip

If you are using TibEms bridge

#path-to-TibEMS/clients/java/tibjms.jar

Either the folder or jar that contains security manager class can be added to this list.

Important: From FioranoMQ 9.3.0 release onwards, the classes which are used for initializing
Key and Trust managers while loading the keys from the KeyStore have been changed from
com.sun.net.ssl.* package to javax.net.ssl.* package. This is as per the changes involved in
the Sun’s JDK 5 as the APIs provided in com.sun.net.ssl.* package have been deprecated.
Henceforth, FioranoMQ only supports the usage of javax.net.ssl.* package’s classes. These
classes include:

com.sun.net.ssl.SSLContext  javax.net.ssl.SSLContext

com.sun.net.ssl.KeyManager  javax.net.ssl.KeyManager

com.sun.net.ssl.KeyManagerFactory  javax.net.ssl.KeyManagerFactory

com.sun.net.ssl..TrustManager  javax.net.ssl.TrustManager

com.sun.net.ssl.TrustManagerFactory  javax.net.ssl.TrustManagerFactory

4.5.5 Creating Certificates for OpenSSL in C++

.pem format or converting the above generated keystore to PEM encoding

Portcele is a java tool with an UI for managing the Java certificates. It can be downloaded at
http://sourceforge.net/projects/portecle/. This tool is used to convert java certificates into other
compatible formats.

To start this tool, type in the command,

java -jar portecle.jar

http://sourceforge.net/projects/portecle/�

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 77

1. Open the keystore that needs converting to the .PEM format using Portcele. All the
information related to the certificate can be viewed here.

2. Navigate to File >> Open KeyStore File. Choose the keystore that was created.

3. Enter the password provided at the time of the creation of the keystore.

4. Right-click on certificate and choose export. Select the export ‘type’ as “Private
Key and Certificates" and the export format as "PEM Encoding".

5. Enter the password after clicking 'OK'.

6. Enter the password that was used to create the keystore using the java keytool.

7. Save the file as clientCert.pem or any other name.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 78

This file is used by the C++ RTL for SSL communication.

The client side configurations in C++ lies within the environment variables used in
creating the initial context as shown below:

m_env->Put(SSL_CERT_FILE,certfile);

m_env->Put(SSL_PRIVATE_KEY_FILE,keyfile);

m_env->Put(SSL_PRIVATE_KEY_PASSWORD,newMqString("passwd"));

In the code above, certfile and keyfile refer to the location of the clientCert.pem created using
portcele.

By default, the C++ samples use the 'dsa-client-cert.pem' for the certificate and 'enc-dsa-
client-key.pem' for the private key.

'passwd', is the password that is used when creating the certificate.

Default certificates are located at %Fiorano_Home%\fmq\clients\c\native\certs.

4.6 Looking up

4.6.1 JNDI Environment

The following parameters should be specified within the environment passed to JNDI when
looking up an admin object from the FioranoMQ Server. The FioranoMQ Server would be
running on the default socket acceptor configuration.

// Modify the IP, Port according to the server’s socket acceptor configuration

String url = “http://localhost:1856”;

// environment passed to jndi

Hashtable env = new Hashtable ();

env.put (Context.SECURITY_PRINCIPAL, “anonymous”);

env.put (Context.SECURITY_CREDENTIALS, “anonymous”);

env.put (Context.PROVIDER_URL, url);

env.put(Context.INITIAL_CONTEXT_FACTORY,”fiorano.jms.runtime.naming.FioranoInitialConte
xtFactory”);

Note:

• An application can use the actual string values of the static variables defined in
javax.naming.Context class.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 79

• An application can also specify these parameters in a file called jndi.properties, located
in the working directory of the application. The user code does not need to pass any
parameters programmatically.

4.6.2 Looking up from Server Running on HTTP Protocol

In addition to specifying the jndi parameters, as mentioned in the preceding section, the
application needs to specify the protocol as HTTP.

This is done by adding the following line to the application code:

env.put(FioranoJNDIContext.TRANSPORT_PROTOCOL, FioranoJNDIContext.PROTOCOL_HTTP);

Note: Since the code uses the FioranoJNDIContext class, the following must be added to the
code:

import fiorano.jms.runtime.naming.FioranoJNDIContext;

Code modifications are not required when viewed from an external JNDI repository or when
picking up environment variables from jndi.properties.

4.6.3 Viewing from Server Running on JSSE Protocol

When viewing from a server running on JSSE protocol, the application, besides specifying the
jndi parameters specified above, should also specify the protocol as JSSE_SSL. In addition, it
should specify the security manager. This can be done by adding the following line to the
application code:

env.put (Context.SECURITY_PROTOCOL, FioranoJNDIContext.PROTOCOL_JSSE_SSL);

env.put (FioranoJNDIContext.SSL_SECURITY_MANAGER, "JSSESecurityManager");

Note: Since the code uses the FioranoJNDIContext class, the following must be added to the
code:

import fiorano.jms.runtime.naming.FioranoJNDIContext;

4.6.4 Looking up from Server Running on LPC Protocol

When viewing from a server running on LPC protocol, the application should specify the
protocol as LPC in addition to specifying the jndi parameters mentioned above.

This is done by adding the following line to the application code:

env.put(FioranoJNDIContext.TRANSPORT_PROTOCOL, FioranoJNDIContext.PROTOCOL_LPC);

Note: Since the code uses the FioranoJNDIContext class, the following must be added to the
code:

import fiorano.jms.runtime.naming.FioranoJNDIContext;

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 80

4.7 Connection Factory

4.7.1 Creating a Connection Factory
1. Launch the Fiorano Studio and click on the Server Explore pane. Select the

desired server and right-click. Select Login from the pop-up menu.

2. Right-click on the Connection Factories node in the selected tree and select Add
Connection Factory from the pop-up menu. Specify the connection factory
Name, Connection URL and other parameters as desired, and click the OK button.

Note: The default connection factory parameters are configured for the default socket
acceptor settings (TCP, non SSL).

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 81

4.7.2 Creating an HTTP Enabled Connection Factory
1. Create a connection factory as explained in Section 4.7.1.

2. Modify the Protocol to HTTP and click the OK button.

4.8 Pinging

4.8.1 How to Enable Pinging

Note: This configuration is done in the offline mode

1. Launch the Fiorano Studio and open the Profile Manager. Right-click the Profiles
node and select Open Profile from the pop-up menu. Select the desired profile
and click the Open button.

2. Navigate to FMQConfigLoader MBean. It can be found in domain Fiorano ->
etc.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 82

3. In the properties panel set the parameter PingEnabled to ‘yes’.

4. Save the profile.

Note: From FioranoMQ 9.1.0 release onwards, the PingEnabled parameter is set to 'true' as
its default value. This property can be controlled if client connections are automatically pinged.
Pinging is essential for detecting Network problems. Enabling ‘pinging’ will make sure that
connections that are no longer valid are properly closed and the resources they use are
cleaned up in the FioranoMQ Server.

4.8.2 Modifying Ping Timeout Interval

Note: This configuration is done in offline mode.

1. Launch the Fiorano Studio. Open the Profile Manager and open the desired
profile as explained in section 4.8.1 How to Enable Pinging.

2. Navigate to PingManager MBean. It can be found in domain Fiorano -> etc.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 83

3. Modify the parameter Pinger Timeout as shown in the properties panel of Mbean
to the desired value (in milliseconds).

4. Right-click on the FioranoMQ node and select Save option from the pop-up menu.

4.8.3 Verifying Ping Setup

Ping can be verified by following any one of the approaches mentioned below:

Increase the trace level for Logger named Fiorano -> FMQ -> Ping. In the Properties of
Ping pane change the LogLevel to Verbose. This results in generating ping related logs in
the server.

Using an application, create a connection. Set an exception listener and start the connection.
Disable the network connection. Exception listener’s onException should be carried out within
the ping timeout interval.

4.9 FioranoMQ HTTP Support

4.9.1 Using HTTP with FioranoMQ

For more details about Using HTTP with FioranoMQ, please refer to section 23.2.1 Adding a
Connection Factory.

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 84

4.10 Client Side Requirements

While switching the protocol in the server from TCP to HTTP, the following changes must be
made at the application level:

• Pass additional parameters as JNDI environment if viewed from FioranoMQ. These
parameters are described in section 23.1.2 Over HTTP Protocol.

• Use an HTTP Enabled Connection factory. Instructions for creating an HTTP Enabled
connection factory can be found in section 4.7.2 Creating an HTTP Enabled Connection
Factory

• Include HTTPClient.zip in the classpath if not already included.

4.11 Using Proxies

Connecting an application to the HTTP Proxy Server 192.168.100.37 on port 8080 can be done
in the following ways:

(a) By setting the host and port as parameters in client applications:

env.put (FioranoJNDIContext.HTTP_PROXY_URL, "http://192.168.100.37:8080");

If the client is to connect to the SOCKS proxy Server

env.put (FioranoJNDIContext.SOCKS_PROXY_URL, "http://192.168.100.37:1080");

(b) By setting JVM parameters through the run-client.bat (run-client.sh for UNIX Systems)
file:

Modify the run-client.bat (run-client.sh on UNIX Systems) so as to add the following
arguments to the VM (VM properties):

-Dhttp.proxyHost=192.168.100.37 -Dhttp.proxyPort=8080

If the client is to connect to the SOCKS proxy Server 192.168.100.37 on port 1080, modify
run-client.bat (run-client.sh on UNIX Systems):

-Dhttp.socksHost=192.168.100.37 -Dhttp.socksPort=1080

Client applications can be customized for popular proxy servers such as MicrosoftISAProxy and
Netscape Proxy, using the HTTP_PROXY_TYPE parameter. This parameter can be specified in
client applications:

env.put (FioranoJNDIContext.HTTP_PROXY_TYPE,FioranoJNDIContext.MS_ISA_PROXY);

4.11.1 Proxy Authentication

Various Proxy Authentication parameters such as the Authentication Realm username and
password can be specified from the client application as JNDi environment variables:

env.put (FioranoJNDIContext.PROXY_AUTHENTICATION_REALM, "LDAP");

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 85

env.put (FioranoJNDIContext.PROXY_PRINCIPAL, "fiorano");

env.put (FioranoJNDIContext.PROXY_CREDENTIALS, "fiorano");

4.12 Tunneling Through Firewalls

Consider a scenario where client applications are protected by a corporate firewall and need to
use the services of FioranoMQ server through SOCKS tunneling. The following code illustrates
how the clients’ applications, even when protected by firewalls, can access the services of the
FioranoMQ server by tunneling through client side firewalls.

// This code fragment expects the args[] to contain

// clientproxyName, clientProxyPort, FioranoMQ 9ServerAddress,

// FioranoMQ 9Server Port.

public void sendData(String[] args)

{

try

{

//Initialize firewall Settings

String proxyName = args[0];

int proxyPort = Integer.parseInt (args[1]);

//Initialize FioranoMQ 9 Server Settings

String serverName = args[2];

int serverPort = Integer.parseInt (args[3]);

// 1. Create the InitialContext Object used for

// looking up JMS administered objects

// Set the Client Proxy Address/port,

// The 1st argument is set to NULL to indicate

// that there is no security parameter that has

// been set. This parameter is set for

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 86

// SSL Tunneling

FioranoInitialContext ic = new FioranoInitialContext ();

// Set System property to indicate proxyHost and

// proxy Port. All calls now get routed through

// the SOCKS Server

Properties property = System.getProperties();

property.put ("socksProxyPort",""+proxyPort);

property.put ("socksProxyHost",proxyName);

System.setProperties (property);

// Bind the InitialContext to Server

ic.bind (InetAddress.getByName(serverName),

serverPort);

// Lookup Connection Factory and Topic names

TopicConnectionFactory tcf =(TopicConnectionFactory) ic.lookup("primaryTCF");

Topic topic = (Topic)ic.lookup("primaryTopic");

// 4.2 Dispose the InitialContext resources

//

ic.dispose();

// 2. Create and start a topic connection

System.out.println("Creating topic connection");

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 87

TopicConnection tc = tcf.createTopicConnection();

tc.start ();

// 3. Create a topic session on this connection

TopicSession ts = tc.createTopicSession(false,1);

// 4. Create a publisher for this topic

TopicPublisher tp = ts.createPublisher(topic);

System.out.println ("Ready to publish messages :

Enter Q to Quit...");

// 5. Create a text message for use in the ‘while’

// loop

TextMessage textmsg1 = ts.createTextMessage();

// 6. Read in data from standard input and publish

// it in a loop

while (true)

{

BufferedReader br = new BufferedReader

(new InputStreamReader(System.in), 1);

System.out.print("Enter a Message to be

published : ");

String str = br.readLine();

// Set and Publish the message

textmsg4.setText(str);

tp.publish(textmsg1);

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 88

// Break out of this loop when done

if (str.equalsIgnoreCase ("Q"))

break;

}

System.out.println("Closing topic session and topic connection");

ts.close();

tc.close();

}

catch(Exception ex)

{

 ex.printStackTrace();

}

FioranoMQ 9 Handbook

Chapter 4: Connection Management Page 89

4.13 Configure Maximum Client Connections

To configure maximum client connections do the following:

1. Open the desired profile for off-line editing through the Profile Manager in Studio
as explained in section 4.8.1 Navigate to the Profile Manager. Select Fiorano-
>socketAcceptors->port1->ConnectionManager as shown in the figure
below:

2. In the Properties of ConnectionManager pane, change the property of
MaxClientConnectionsCount to the value desired.

3. Right-click on the FioranoMQ node and select Save from the pop-up menu.

Note: The same can be configured through JMX at FMQ-JMX Connection->Fiorano-
>socketAcceptors->port-1->ConnectionManager->ConnectionManager->config.

FioranoMQ 9 Handbook

Chapter 5: Durable Connections Page 90

Chapter 5: Durable Connections

For information about configuring profiles through a text-based file, see ‘Getting Started’ in
FioranoMQ.

5.1 Durable Connections in the Server

The following steps enable durable connections in the server:

1. Launch the admin studio and open the profile (which by default is FioranoMQ) in
the offline mode.

2. Navigate to FioranoMQ -> Fiorano -> etc -> FMQConfigLoader. In the
properties pane, set the AllowDurableConnections property to ‘yes’.

3. Save the configuration.

5.1.1 Enabling Durable Connections for a Client Application

// Create the InitialContext Object used for looking up

// JMS administered objects on the Fiorano/EMS

// located on the default host.

//

Hashtable env = new Hashtable();

FioranoMQ 9 Handbook

Chapter 5: Durable Connections Page 91

env.put(Context.SECURITY_PRINCIPAL, "anonymous");

env.put(Context.SECURITY_CREDENTIALS, "anonymous");

env.put(Context.PROVIDER_URL, m_url);

env.put(Context.INITIAL_CONTEXT_FACTORY,
"fiorano.jms.runtime.naming.FioranoInitialContextFactory");

env.put(FioranoJNDIContext.ALLOW_DURABLE_CONNECTIONS, "true");

InitialContext ic = new InitialContext(env);

System.out.println("Created InitialContext :: " + ic);

5.2 Auto Revalidation

Follow the steps mentioned below to enable auto-revalidation:

1. Launch the admin studio and open the profile (which by default is FioranoMQ) in
the offline mode.

2. Navigate to FioranoMQ -> Fiorano -> etc -> FMQConfigLoader. In the
properties pane, set the EnableAutoRevaildation property to ‘yes’.

3. Save the configuration.

FioranoMQ 9 Handbook

Chapter 5: Durable Connections Page 92

Note: Auto-revalidation is turned on automatically if Durable Connections are enabled. If
auto-revalidation-enabled or durable connection is disconnected by the server (using WMT or
Studio), the disconnection will not persist for a long duration. This is because, by definition,
properties (EnableAutoRevalidation, AllowDurableConnections) dictate that the client should
re-establish connection with the server. Therefore, a connection can only be disconnected
when a client closes the connection.

5.2.1 Enabling Auto-Revalidation for a Client Application

// 1. Create the InitialContext Object used for looking up

// JMS administered objects on the FioranoMQ 9

// located on the default host.

//

Hashtable env = new Hashtable();

env.put(Context.SECURITY_PRINCIPAL, "anonymous");

env.put(Context.SECURITY_CREDENTIALS, "anonymous");

env.put(Context.PROVIDER_URL, url);

FioranoMQ 9 Handbook

Chapter 5: Durable Connections Page 93

env.put(Context.INITIAL_CONTEXT_FACTORY,
"fiorano.jms.runtime.naming.FioranoInitialContextFactory");

env.put(FioranoJNDIContext.ENABLE_AUTO_REVALIDATION, "true");

InitialContext ic = new InitialContext(env);

System.out.println("Created InitialContext :: " + ic)

5.3 Setting MaxDurableConnectionReconnectAttempts in Server

This parameter denotes the maximum number of reconnection attempts made by a client if it
is unable to connect to server. This flag will be used only if durable connections are enabled on
the server. If set to a finite positive number, the client will try to revalidate the durable
connection the specified number of times after which it will stop revalidating the connection
and throw an exception. By default, this number is set to '-1'. This -1 denotes that the client
will try indefinitely to reconnect to the server.

5.3.1 Online Mode

Steps to set MaxDurableConnectionReconnectAttempts in the metadata of a
ConnectionFactory, say primaryQCF, are listed below.

1. Launch the admin studio and make sure that FioranoMQ Server is running.

2. Login to the server using FioranoMQ login and go to ConnectionFactories.

3. Right-click on ConnectionFactories and click on the Edit option.

4. Enter a valid value for MaxDurableConnectionReconnectAttempts and click OK.

5. Save the Configuration.

FioranoMQ 9 Handbook

Chapter 5: Durable Connections Page 94

5.4 Setting MaxDurableConnectionReconnectAttempts from Client
Application

MaxDurableConnectionReconnectAttempts can also be specified from the client
application:

In the client application, prior to creating the InitialContext and lookup the
ConnectionFactory, add the line below to the code to set the environment property for
MaxDurableConnectionReconnectAttempts.

..

env.put(Context.PROVIDER_URL, Jndi.PROVIDER_URL);

env.put(Context.INITIAL_CONTEXT_FACTORY, Jndi.INITIAL_CONTEXT_FACTORY);

env.put("BackupConnectURLs", Jndi.BACKUP_CONNECT_URLS);

env.put("MaxDurableConnectionReconnectAttempts", "3"); //Newly added Line

FioranoMQ 9 Handbook

Chapter 6: Configuring Message Store Page 95

Chapter 6: Configuring Message
Store

Note:

• Add the corresponding JAR files for the database to be configured for the FioranoMQ
Server, to the Configuration file of the server, fmq.conf. This file is present at
fmq_installation_dir\fmq\bin.

• To start the FioranoMQ Server with one of the database, run
create-database.bat/sh file after adding the required JAR to the classpath of create-
database.conf.

6.1 Enabling RDBMS
By default, RDBMS Support is turned Off. RDBMS can be enabled by following the steps
below:

1. Open the profile for offline editing through the Profile Manager using Studio as
explained in section 4.1.

2. Navigate to bean Fiorano -> etc -> RdbmsManager and set the property
EnableRdbms to yes as shown in the figure below:

3. Edit the configuration specifying the JDBC parameters for the database. (A sample
configuration for some common databases can be found in the next section.)

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 6: Configuring Message Store Page 96

6.2 Sample Configuration

6.2.1 DB2

URL: jdbc:db2://<DBServer>:6789/sample

JdbcDriver: COM.ibm.db2.jdbc.net.DB2Driver

Username: <username>

Password: <password>

PropertiesFilename: jdbc_db2.cfg

MaxConnections: 200

6.2.2 Oracle

URL: jdbc:oracle:thin:@<machine Ip>:1521:<sid>

JdbcDriver: oracle.jdbc.driver.OracleDriver

Username: <username>

Password : <password>

PropertiesFilename: jdbc_oracle.cfg

MaxConnections: 200

6.2.3 MSSQL

URL:
jdbc:microsoft:sqlserver://<machineName>:1433;SelectMethod=Cursor;databaseName=<dat
abase_name>

If using the Microsoft SQL 2005 or later Server driver, the URL is:

URL:
jdbc:sqlserver://<machineName>:1433;SelectMethod=Cursor;databaseName=<database_na
me>

JdbcDriver: com.microsoft.jdbc.sqlserver.SQLServerDriver

Ifusing the Microsoft SQL 2005 or later Server driver, the JdbcDriver is:

JdbcDriver: com.microsoft.sqlserver.jdbc.SQLServerDriver

Username: <username>

FioranoMQ 9 Handbook

Chapter 6: Configuring Message Store Page 97

Password: <password>

PropertiesFilename: jdbc_mssqls.cfg

MaxConnections: 200

Note : If using the MS SQL 2005 or later Server drive, the DB_TABLE_NOT_FOUND should be
changed from jdbc_mssqls.cfg to S0002, or else the default value of 42S02 will remain.

6.2.4 MySQL

URL: jdbc:mysql://localhost/mysql

JdbcDriver: com.mysql.jdbc.Driver

Username: <username>

Password: <password>

PropertiesFilename: jdbc_mysqls.cfg

MaxConnections: 200

6.2.5 Cloudscape

URL: jdbc:cloudscape:mydb;create=true

JdbcDriver : COM.cloudscape.core.JDBCDriver

Username: <username>

Password: <password>

PropertiesFilename: jdbc_cloudscape.cfg

MaxConnections: 200

6.3 Additional Configuration

The Database Driver used should be made available in the classpath when launching the
server. This can be done by editing the respective configuration files in launch scripts - that is,
fmq\bin\fmq.conf, fmq\bin\ClearDB.conf, and fmq\bin\create-database.conf,
respectively.

FioranoMQ 9 Handbook

Chapter 6: Configuring Message Store Page 98

6.4 Creating a Default Database

FioranoMQ comes with a script (fmq/bin/ create-database) that allows the creation of a
default database for the server. This script accepts input from the database in the following
ways:

• Through Command Line Parameters

• Through a pre-configured Fiorano Profile

6.4.1 Command Line Parameters

The following command lines are accepted through the create-database script

driver

This parameter specifies the class name of the driver class for the database.

url

This parameter specifies the URL of the database.

username

This parameter specifies the login name of the User that the database script uses to
connect to the database.

password

This parameter specifies the Password of the User that the database script uses to connect
to the database.

dataTypesFileName

This parameter specifies the complete path name of the file that contains the mapping of the
Java data ‘types’ to SQL data ‘types’. Please see the Sample configuration section for various
databases to know the complete property file name for a specific database. If a different
database is being used, please send a mail to: presales@fiorano.com.

databaseType

This parameter specifies the name of the database being used. Valid database ‘types’ include
oracle, mssql, mysql, db2, and cloudscape. If a different database is being used, please send a
mail to: presales@fiorano.com.

6.4.2 Pre-configured Profile

Configure the server to enable RDBMS as explained in the section on Enabling RDBMS.

Run the create-database script and specify the profile directory. Enter the ‘type’ of database
being used.

mailto:presales@fiorano.com�
mailto:techsupport@fiorano.com�

FioranoMQ 9 Handbook

Chapter 6: Configuring Message Store Page 99

create-database -profile <FMQProfile> -dataBaseType <DataBaseType>

Note:

• Ensure that the database driver classes are present in the classpath.

• FioranoMQ ships the library that contains the jdbc driver for HSQL.

Profile Directory is relative to the profiles directory.

If profile is not specified, the default profile, which is FioranoMQ, is used.

6.5 Clearing a Database

To clear the database run the ClearDB.bat file from a Windows platform or the ClearDB.sh
file from a UNIX platform. This script accepts the name of the profile for the message store
implementation as a system variable. Both, RDBMS and File-based databases are cleared.

6.6 Creating a Destination on RDBMS

FioranoMQ provides the option to configure the store of a destination and set it to either a
File-based or a RDBMS based database.

The administrator is free to use both databases by creating destinations on Files and on
RDBMS. To create RDBMS based destinations, follow the steps below:

1. Launch Studio and right-lick and select the server. Select Login from the pop-up
menu.

2. To create a new destination, navigate to the Destinations node.

FioranoMQ 9 Handbook

Chapter 6: Configuring Message Store Page 100

3. Right-click on either ‘Queue’ or on ‘Topic’ and select Add Queue or Add Topic. The
dialog box that appears displays properties for the destination. Select storage type as
RDBMS Based Destination, as shown in the figure below:

4. Click on the OK button.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 101

Chapter 7: FioranoMQ Security

For information about configuring profiles through text-based files, refer to FioranoMQ Getting
Started.

7.1 Security Related MBeans

Security related components are found in the default MQ profiles located under the Fiorano-
>Security domain. The Object Names for these components are:

• Fiorano.security:ServiceType=RealmManager,Name=SecuritySubSystem

• Fiorano.security.AclManager:ServiceType=AclManager,Impl=FILE,Name=NativeFileBas
edAclManager

• Fiorano.security.PrincipalManager:ServiceType=PrincipalManager,Impl=FILE,Name=N
ativeFilePrincipalManager

The figure above shows the position of these components in the component tree as seen by an
off-line configuration tool (the Profile Manager).

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 102

7.2 How to Enable ACL Based Security

By default, ACL based security is turned OFF in FioranoMQ, but can be turned ON, as shown in
the steps below:

1. Open the profile for off-line editing through the Profile Manager as explained in
section 4.8.1 How to Enable Pinging

2. Go to Fiorano -> etc -> FMQConfigLoader.

3. In the property panel change the value of the AclBasedDestinationSecurity
property to ‘yes’ as shown in the figure below:

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 103

7.3 How to Turn ON ACL Checks

By default, ACL’s are checked only time of performing an action such as creating a
publisher/subscriber on a topic. If an ACL is modified, clients connected to it are not affected.
To get connected clients to check ACL when modified, the steps below may be followed:

1. Open the profile for off-line editing through the Profile Manager using Studio, as
explained in 4.8.1 How to Enable Pinging

2. Go to Fiorano -> etc -> FMQConfigLoader.

3. In the property panel change the value of the AllowOnTheFlyAclCheck property to
‘yes’ as shown in the figure below:

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

Note:

The AllowOnFlyAclCheck flag works for all permissions except when:

1. A publisher is publishing non-persistent messages on a topic.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 104

2. The permission to create publisher should be revoked for a topic.

3. No exception is thrown even though the User is not allowed to publish since messages
are sent in batch mode.

Work Around 1:

For NP messages, batching is enabled by default which leads to the behavior explained above.
To view this Exception at the ‘send’ API location, set the BatchingEnabled parameter in the
ConnectionFactory to ‘FALSE’.

Work Around 2:

Add the following line to the client code environment while performing the lookup function:

env.put("BatchingEnabled", "false")

Here ‘env’ is the environment passed while performing a JNDI lookup. This will disable
batching for that particular client.

7.4 Modifying ACLManager Implementation
1. Open the profile for off-line editing through the Profile Manager as explained in

section 4.8.1

2. Browse to reach the node Fiorano -> security -> AclManager. Click on the current
ACL Manager MBean.

3. In the properties panel, click on the value of the Implementation property and
choose a value from the drop-down menu.

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

7.5 Modifying Principal Manager Implementation
1. Open the profile for off-line editing through the Profile Manager using Studio as

explained in section 4.8.1

2. Browse to reach Fiorano -> security -> PrincipalManager and click on the current
Principal Manager Mbean as shown in the figure below.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 105

3. In the property panel, click on the value of the Implementation property and choose
a value from the drop-down list.

4. Right-click on the FioranoMQ node and select Save from the pop-up menu

7.6 Editing Destination Level Security Through ACL’s

The administrator can grant users access permissions to work on different destinations (Topics
and queues). Permissions for Users and User Groups may be edited by performing the steps
below:

1. Launch the Studio and click on the Server Explorer pane. Right-click on the desired
server and select Login from the pop-up menu.

2. Navigate to the required destination through Destinations > Topics/Queues.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 106

3. Right-click the required topic/queue and select the EditACL option from the pop-up
menu. The EditACL dialog box is displayed, as shown in the figure below:

4. Permissions for a new principal may be added by clicking on the Add button.

5. An existing entry for a principal can be removed by clicking on the Remove button.

6. Select the ACL Entry (for any principal) in the dialog box and click the Edit button. The
Edit Permissions dialog box, shown below, will be displayed.

7. Modify the permissions for various actions such as Publish, Subscribe, Unsubscribe,
and Durable Subscribe and click on the OK button.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 107

7.7 Configuring NT Based security

This section describes how to set up and configure the FioranoMQ Windows NT security realm
(Fiorano NT Realm) for the FioranoMQ server. Fiorano NT Realm works both on Windows NT
4.0 and Windows 2000.

7.7.1 Pre-requisites

Fiorano NT Realm requires that the FioranoMQ server is run by a Windows administrative User
able to read security-related data from the Windows NT Domain Controller. To use the Fiorano
NT Realm, FioranoMQ is run on the Windows NT domain.

To manage User and User Group information, the FioranoMQ server must be able to make
system calls to the Windows NT computer on which the FioranoMQ server runs. To perform
authentication, FioranoMQ needs the privileges that would allow it to communicate with the
Primary Domain Controller.

7.7.2 Setting up
1. Launch the Fiorano Studio. Configure the NT based PrincipalManager as explained

in the section Modifying Principal Manager Implementation.

2. Right-click on the FioranoMQ domain from the Server Explorer and select the Save
option from the pop-up menu.

Configuring Windows NT

1. Login to Windows NT using Administrator permissions. Navigate to User Manager in
the Administrative Tools program group from the Windows NT machine on which
FioranoMQ is installed.

2. Select a User that is enabled to run the FioranoMQ server. Choose User Rights
from the Policies menu.

3. Select the Show Advanced User Rights from the Rights list and click Add. Enter
the name of the User who is to execute FioranoMQ.

4. Select Replace Process Level Token from the Rights list. Click Add and enter the
name of the ser who is to execute FioranoMQ.

5. Restart the System. The new permissions for the User take effect.

Configuring Windows 2000

1. Login with Administrator permissions onto the Windows 2000 machine where the
FioranoMQ Server is installed.

2. Open Control Panel > Administrative Tools >Local Security Policy.

3. Open the Local Policies tree.

4. Click User Rights Assignments.

5. On the right-hand pane, right-click Act.

6. Select Security from the menu.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 108

7. On the next panel, click Add and choose the name of the User who is to execute
FioranoMQ.

8. Click on the OK button. Restart the System. The new permissions for the User take
effect.

Additional Configuration – Adding FioranoMQ Users to Administrators Group

In the NT Principal Manager, only users registered with the Administrators group have the
rights to open/create AdminConnection. Other Users may be given these rights by
adding/registering them with the default Administrators’ group as explained below:

1. Open Control Panel > Administrative Tools >Users and Passwords.

2. Browse to reach Local Users and Groups > Groups > Administrators.

3. Click on Add to display a list of all the Users that exist in the WinNT Realm. Users can
be included in the Administrators group by adding them from the list.

The User admin used by default to create admin connections is not a member of the
Administrators group for the FioranoMQ NT Realm. In order to use FioranoMQ default admin
tools and APIs, the admin User must register with the Administrators’ group.

Verifying

When starting the FioranoMQ Server after installing and configuring FioranoNTRealm, the
verification checks listed below need to be performed:

1. Open a Command-shell. Navigate to the Samples\Realm folder.

2. Compile the test case by using compile-client TestFioranoNTRealm.java.

3. Run the test case by using run-client TestFioranoNTRealm. On successful
execution, the test case displays a message.

4. Run the AdminGUI. Check that the list of Windows NT Users and Groups are
displayed on the User and Group Panel.

Limitations

Below is a list of those ‘aspects’/’functions’ not supported by the FioranoMQ 9 version of the
Fiorano NT Realm. However, these functions are supported within the File-based
Implementation of the FioranoMQ Realm:

1. A Group cannot have a Group as a member.

2. Changing the password for a User through FioranoNTRealm API is not allowed.

 Troubleshooting FioranoMQ NT Realm

The most common configuration problems encountered with Fiorano NT Realm are related with
Windows NT policies and specifically with the User who runs the FioranoMQ server. The User
requires special permissions to access the Windows NT domain. The steps for granting these
permissions are in configuration instructions as mentioned in the section 7.7.2 Setting up.
Another common problem is the inability of the FioranoMQ server to load the fioranorealm.dll
file. If FioranoMQ is unable to load the fioranorealm.dll, the following message is displayed:

java.lang.UnsatisfiedLinkError: no fioranorealm in java.library.path

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 109

at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1312)

at java.lang.Runtime.loadLibrary0(Runtime.java:749)

at java.lang.System.loadLibrary(System.java:820)

at fiorano.jms.realm.principal.nt.FioranoNTManager.init(FioranoNTManager.java:82)

at fiorano.jms.realm.principal.nt.FioranoNTManager.(FioranoNTManager.java:51)

at fiorano.jms.realm.principal.nt.PrincipalManagerImpl.startup(PrincipalManager-

Impl.java:61)

at fiorano.jms.realm.RealmManagerImpl.startup(RealmManagerImpl.java:77)

at fiorano.jms.ex.Executive.startup(Executive.java:647)

at fiorano.jms.ex.Kernel.startup(Kernel.java:61)

at fiorano.jms.ex.fmpmain.main(fmpmain.java:60)

fiorano.jms.common.FioranoException: REALM_NOT_SUPPORTED :: NT realm support is not
available

7.8 RDBMS Realm

7.8.1 Setting up
1. Open the profile for off-line editing through the Profile Manager as explained in

section 4.8.1 How to Enable Pinging.

2. Modify Principal Manager [Modifying Principal Manager Implementation] and ACL
Manager implementation [Modifying ACLManager Implementation] to RDBMS

3. Configure these components as per the database used. A sample configuration for
some common databases is provided in later sections.

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

7.8.1.1 Additional Configuration

The database driver needs to be added to the Container classpath.

To force the FioranoMQ server to create default Destinations and Users in the recently
configured RDBMS server, the existing database is to be cleared (run folder of profile) prior to
restarting the server.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 110

7.8.1.2 Sample Configurations

The list below provides sample configurations for various databases. These parameters can be
specified for the ACLManager as well as for the PrincipalManager.

7.8.1.2.1 Oracle

URL: jdbc:oracle:thin:@164.164.128.113:1521:orcl

Database Driver: oracle.jdbc.driver.OracleDriver

Username: scott

Password: tiger

7.8.1.2.2 MySQL

URL: jdbc:mysql://localhost/mysql

DatabaseDriver: com.mysql.jdbc.Driver

Username: <user name>

Password: <password>

7.8.1.2.3 HSQL

URL: jdbc:hsqldb:d:\FMQDB

DatabaseDriver: org.hsqldb.jdbcDriver

Username: sa

Password: <password>

7.8.1.2.4 MSSQL

URL: jdbc:microsoft:sqlserver://qalab01:1433

DatabaseDriver: com.microsoft.jdbc.sqlserver.SQLServerDriver

Username: sa

Password: <password>

Note: The MS-SQL driver has to be added to the Container
classpath(msutil.jar,mssqlserver.jar,msbase.jar)

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 111

7.8.1.2.5 DB2

URL: jdbc:db2://localhost:7777/sample

DatabaseDriver: COM.ibm.db7.jdbc.net.DB2Driver

Username: user

Password: passwd

The parameter named PropertiesFile should point to principalsqlstatements properties when
configuring PrincipalManager, and to aclsqlstatements properties when configuring
ACLManager. These files can be found in the conf folder of the profile being used.

7.8.1.3 Verifying

Use a Query tool provided by the database vendor (SQLWorksheet for Oracle) and verify the
creation of the following tables with their default values:

7.8.1.3.1 Principal Manager

TableName - users (stores all Users related information)

TableName - groupmembers (stores all Group related information)

7.8.1.3.2 ACL Manager

TableName - aclentries (stores ACL Entries for all users)

The following is a sample SQL query executed in a SQLWorksheet:

SQLWKS> select * from users;

SQLWKS> select * from aclentries;

7.9 LDAP Security Realm
1. Open the profile for off-line editing through the Profile Manager using Studio by

clicking on the Profile Manager pane, explained in section 4.8.1 How to Enable
Pinging

2. Modify the Implementation property of the ACL Manager and the Principal Manager to
LDAP. For more information on how to modify ACL Manager and Principal Manager
refer to the section Modifying ACL Manager Implementation and Modifying Principal
Manager Implementation.

3. Configure the Principal Manager as per the Directory Server in use. A sample
configuration for the Netscape Directory Server is shown in the figure Directory Server
Settings.

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 112

7.9.1 Sample Configuration – Netscape Directory Server

Setting the Name

The ‘name’ is the name of the admin of the LDAP server, since the Initial Context may only be
started by the Admin.

PRINCIPAL = uid=admin, ou=Administrators, ou=TopologyManagement, o=NetscapeRoot

Setting the password

Enter the password for the Admin of the LDAP Server with whom a connection is to be make
as shown in the Figure below:

Figure: iPlanet Console Login Dialog Box

LDAP Initial Context Factory

The Initial Context Factory to be used, corresponding to the directory server.

LdapInitialCtxFactory = com.sun.jndi.ldap.LdapCtxFactory

LDAP Provider URL

Is set in accordance with the Directory Server being used.

LdapProviderUrl = ldap://ldapserver:389

LDAP Provider DN

This is to be set to the suffix variable set up while installing the LDAP Server as shown in the
figure Directory Server Settings:

: LdapProviderDn = dc=modena, dc=stpn, dc=soft, dc=net

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 113

Figure: Directory Server Settings

LDAP security authentication

Set this variable to:

LdapSecurityAuthentication = Simple

LDAP User and Group Object classes

7.9.2 Sample Configuration – ApacheDS1.5.4

Note: The steps mentioned here require the installation of the Apache Directory Studio.

7.9.2.1 Setting up the Directory Service

To setup the directory service, the steps below are to be performed:

1. Stop any running instance of ApacheDS.

2. Take a backup of server.xml

/var/lib/apacheds-1.5.4/default/conf/server.xml (DEFAULT PATH. If the DS instances
were installed in a location different, server.xml will be available inside the directory at
that location.)

3. Modify server.xml by adding the line below within the tag </partitions> ...
</partitions>

 <jdbmPartition id="fiorano" cacheSize="100" suffix="o=fiorano,c=US"
optimizerEnabled="true" syncOnWrite="true"/>

4. Run apacheds

/etc/init.d/apacheds start

5. Login through the Apache Directory Studio.

User : uid=admin,ou=system. (Default)

Password : secret. (Default)

6. Import the LDIF content below using Apache Directory Studio. (Menu: LDAP -> New
LDIF File)

dn: o=fiorano,c=us

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 114

objectclass: top

objectClass: organization

o: fiorano

dn: cn=FMQServerConfigFiles,o=fiorano,c=us

objectclass: top

objectClass: organizationalRole

cn: FMQServerConfigFiles

dn: cn=FioranoMQUsers,o=fiorano,c=us

objectClass: top

objectClass: organizationalRole

cn: FioranoMQUsers

dn: cn=FioranoMQGroups,o=fiorano,c=us

objectClass: top

objectClass: organizationalRole

cn: FioranoMQGroups

dn: cn=ACL,o=fiorano,c=US

objectclass: top

objectClass: organizationalRole

cn: ACL

dn: cn=FMQRoot,o=fiorano,c=us

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: person

objectClass: top

cn: FMQRoot

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 115

cn: system administrator

sn: administrator

displayname: Directory Superuser

userpassword:: c2VjcmV0

7. Re-login through Apache Directory Studio to see the added children.

7.9.2.2 Setting up the profile for use with ApacheDS1.5.4

Note: Make sure that the steps mentioned in section 7.9 have been completed before moving
on to the steps listed below:

1. Open the profile for off-line editing through the Profile Manager using Studio, as
explained in section 4.8.1 How to Enable Pinging

2. Reset all properties except the LdapProviderUrl to their original values.

3. In the LDAP Provider URL, the port number is 10389 and the ip address is that of
the server that running ApacheDS.

7.9.3 Sample LDAP Configuration for ACLs, Users and Groups

7.9.3.1 Configuration for Users and Groups

Here is an example of how FioranoMQ profile can be configured to store principal realms
(users and groups) related to the FioranoMQ server. As an example, the view of how the users
and groups are stored in the LDAP provider is extracted using the Apache Directory Studio.

LDAP for Principal store in FioranoMQ can be configured in the following way. After opening the
profile in Fiorano Studio for offline editing and changing the Principal Manager implementation
to LDAP as given in Section 7.5, changes have to be made at the following node –

Fiorano > security > PrincipalManager > LdapPrincipalManager

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 116

Figure – LDAP_Conf 1

For more information on the parameters given in the above picture, refer to the FioranoMQ
parameter reference guide which can be downloaded from the location
http://www.fiorano.com/devzone/documentation.php.

Once the FioranoMQ is configured to use LDAP to store users and groups and the server is
started, it sequentially creates them. The way in which the users and groups are stored in the
LDAP-provider is illustrated using the following figure.

Figure – LDAP_Browser 1

http://www.fiorano.com/devzone/documentation.php�

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 117

7.9.3.2 Configuration for Access Control Lists (ACLs)

Here is an example of how FioranoMQ profile can be configured to store Access Control Lists
(ACLs) related to the FioranoMQ Admin Objects like Queues, Topics, Connection Factories and
other ACLs related to Lookup, AdminConnection etc. in the LDAP-provider. As an example, the
view of how the ACLs are stored in the LDAP provider is extracted using the Apache Directory
Studio.

LDAP for ACL store in FioranoMQ can be configured in the following way. After opening the
profile in Fiorano Studio for offline editing and changing the ACL implementation to LDAP as
given in Section 7.4, changes have to be made at the following node –

Fiorano > security > AclManager > LdapBasedAclManager

Figure – LDAP_Conf2.png goes here

For more information on the parameters given in the above picture, refer to the FioranoMQ
parameter reference guide which can be downloaded from the location
http://www.fiorano.com/devzone/documentation.php.

Once the FioranoMQ is configured to use LDAP to store Access Control Lists (ACLs) and the
server is started, it sequentially creates the ACLs for each of the destinations. The way in
which the ACLs are stored in the LDAP-provider is illustrated using the following figure.

http://www.fiorano.com/devzone/documentation.php�

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 118

Figure – LDAP_Browser 2

7.10 XML Security Realm
1. Open the desired profile for off-line editing through the Profile Manager using

Studio, as explained in section 4.8.1 How to Enable Pinging

2. Modify the Implementation property of the Principal Manager and the ACL Manager to
XML. For more information on how to modify the Principal Manager and the ACL
Manager, refer to the sections Modifying ACL Manager Implementation and Modifying
Principal Manager Implementation .

3. Configure Principal Manager and ACL Manager.

4. Right-click on the FioranoMQ node and select Save from the pop-up menu.

7.10.1 Configuring Principal Manager and ACL Manager

7.10.1.1 Principal Manager

UserFileName

The name and path of the xml file containing ‘User’ information. The default file is user.xml.

GroupFileName

The name and path of the xml file containing ‘Group’ information. The default file is group.xml.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 119

Path

This is the absolute or the relative path where User and Group files are stored. User and User
Group files are saved to the location specified in the absolute path, whereas specifying a
relative path saves User and User Group files to [FMQ_DB_PATH]\[relative path entered]. The
default relative path is
%FIORANO_HOME%\fmq\profiles\%selectedProfile%\run\realm\principal.

7.10.1.2 ACL Manager

FileName

The name and path of the xml file containing ‘User’ information. The default file is acl.xml.

MaxAcePerACL

Maximum number of entries that an ACL can store. The default number is 100.

Path

This is the absolute or the relative path where xml files are stored. User and User Group files
are saved to the location specified in the absolute path, whereas specifying a relative path
saves User and User Group files to [FMQ_DB_PATH]\[relative path entered]. The default
relative path is %FIORANO_HOME%\fmq\profiles\%selectedProfile%\run\realm\principal.

7.10.2 Sample xml files

7.10.7.1 User.xml

<?xml version="1.0"?>

<UserManager>
<User>
 <Name>ADMIN</Name>
 <Password></Password>
 </User>
 <User>
 <Name>Anonymous</Name>
 <Password></Password>
 </User>
 </UserManager>

Here:

• <UserManager> Is the root element of the UserManager.

• <User> The UserManager may consist of one or more users.

• <Name> The name of the user. This is used to identify the user entry and is used in
the ACLS and Groups.

• <Password> Is the password of the user. This is stored in encrypted form. It,
therefore, cannot be specified from outside the system.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 120

7.10.7.2 Group.xml

<?xml version="1.0"/>

<GroupManager>
<Group>
 <Name>EVERYONE</Name>
 </Group>
 </GroupManager>

Where:

• <GroupManager> Root element of the GroupManager.

• <Group> The GroupManager may consist of one or more groups.

• <Name> This is the name of the group. It is used to identify the group entry and is
used in the ACL table.

• <Member> A group can consist of one or more members. These members must exist
in the user table.

7.10.7.3 acl.xml

</AclManager>
 <ACL>
 </Name>LOOKUP</Name>
 <AclEntry Type="POS">
 <Principal>EVERYONE</Principal>
 <Permission>LOOKUP</Permission>
 </AclEntry>
 </ACL>
 </AclManager>

Where:

• <AclManager> Root element of the ACL dtd.

• <ACL> The ACL Manager consists of one or more ACLs and holds information about
all the ACLs. <Name> Specifies the name of the ACL.

• <AclEntry> An ACL consists of one or more ACL Entries, which may be either
negative (NEG) or positive (POS).

• <Principal> An ACL Entry consists of a Principal, which can be a User or a User
Group.

• <Permission> An ACL Entry consists of 0 permissions or 1 permission to perform a
task.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 121

7.11 Plug-in Based Authentication Support

7.11.1 Enabling Plug-in Based User Authentication in Server

Following are the steps to enable plug-in based authentication in FioranoMQ Server-

1. Launch the admin studio and open the profile (by default FioranoMQ) in offline mode.

2. Navigate to FioranoMQ -> Fiorano -> security -> SecuritySubSystem. In the
properties pane, set UseAuthenticationModules property to 'yes'.

3. Save the configuration.

7.11.2 Using Authentication Modules to Authenticate a User

Using JAAS modules, FioranoMQ server is able integrate with an external pluggable security
service provider like a local UNIX/Linux operating system and for LDAP based authentication
which can store the user login information. The implementation w.r.t. interaction with this
external security service provider (like creating the JDBC connection, creating the SSL-enabled
LDAP connection and querying the RDBMS/LDAP-provider to validate the user authentication
information etc.,) and thereby getting the required authentication information (PASSED?
FAILED?) is to be done externally using the JAAS modules and FioranoMQ calls these APIs to
get the required authentication information (PASSED? FAILED?) and based on it authenticate
the user for performing one of the above operations. This section will demonstrate how the
necessary plug-in modules need to be provided for the authentication purpose.

7.11.2.1 Login Configuration

JAAS authentication is performed in a pluggable fashion. This permits Java applications (in this
case FioranoMQ Server) to remain independent from underlying authentication technologies.
New or updated technologies can be plugged in without requiring modifications to the
application itself. An implementation for a particular authentication technology to be used via
LoginModule(s) is determined at runtime. The implementation is specified in a login
configuration file.

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 122

The configuration file to be used can be specified in one of two ways:

1. Through server configuration (preferred)

a. Launch the admin studio and open the profile (by default FioranoMQ) in offline
mode.

b. Navigate to FioranoMQ -> Fiorano -> security -> SecuritySubSystem. In the
properties pane, set ConfigurationFileName property to 'the location of a
desired configuration file'.

c. Save the configuration.

2. Server start-up parameters

a. Open %FIORANO_HOME%/fmq/bin/fmq.conf file and under
<java.system.props> tag, add the following line:

i. java.security.auth.login.config=%location of a desired configuration
file%

As a login configuration file can consist of one or more entries, each specifying which
underlying authentication technology should be used for a particular application or
applications, the particular configuration entry to be used by the FioranoMQ server is specified
as follows:

1. Launch the admin studio and open the profile (by default FioranoMQ) in offline mode.

2. Navigate to FioranoMQ ->Fiorano ->security ->SecuritySubSystem. In the properties
pane, set ConfigurationName property to 'desired configuration name'.

3. Save the configuration.

For more information as to what a login configuration file is, what it contains, see online
documentation for JAAS.

7.11.2.2 LoginModule

LoginModule describes the interface implemented by authentication technology providers
(system administrators). LoginModules are plugged in under applications to provide a
particular type of authentication. While FioranoMQ invokes the LoginContext API,
authentication technology providers should implement the LoginModule interface. As
mentioned in previous section, the Configuration specifies the LoginModule(s) to be used with
a particular login application i.e., FioranoMQ server. Therefore different LoginModules can be
plugged in seamlessly under the FioranoMQ server without any server-side configurations. A
sample LoginModule must implement the following methods of
javax.security.auth.spi.LoginModule

• boolean abort()

• boolean commit()

• void initialize(Subject subject, CallbackHandler callbackHandler, Map sharedState, Map
options)

• boolean login()

• boolean logout()

FioranoMQ 9 Handbook

Chapter 7: FioranoMQ Security Page 123

Once the necessary implementations of the LoginModule interface are done, they should be
included in the class path of the FioranoMQ Server such that when the server invokes the
LoginContext API while authenticating the user credentials, the LoginModules (as per
configuration) and inherently invoked successfully. This should be done as follows:

1. Locate the jar file which contains the class files of the implementation classes of
LoginModule.

2. Open %FIORANO_HOME%/fmq/bin/fmq.conf file and under “3RD PARTY LIBRARIES”
as the location to the above jar file.

Example implementation

Detailed explanation and an example implementation of LoginModule
com.fiorano.jms.auth.SampleLoginModule is provided in
%FIORANO_HOME%/fmq/Utilities/ExternalAuthnModule directory. More details of the class
and other dependencies are present the readme file in the same directory.

FioranoMQ 9 Handbook

Chapter 8: Large Message Support Page 124

Chapter 8: Large Message Support

For information about configuring profiles through text-based files, refer to FioranoMQ Getting
Started.

8.1 Using FioranoMQ LMS APIs

8.1.1 Interface ILargeMessage

Purpose

The ILargeMessage interface provides APIs with the ability to transfer large files. It also
provides APIs with the ability to check the status of a file transfer and to resume a file
transfer.

Method Summary

public LMTransferStatus getMessageStatus()

Retrieves the status of the message. ‘Status’ refers to the number of bytes
transferred, the number of bytes left to be transferred, and so on.

public void setLMStatusListener(LMStatusListener listener, int updateFrequency);

Sets the status listener for the message. This API detects the status of a message
being transferred, asynchronously.

public LMStatusListener getLMStatusListener();

Retrieves the status listener for the message.

public void saveTo(String fileName, boolean isBlocking) throws FioranoException;

Saves the contents of the message in the file specified.

public void resumeSaveTo(boolean isBlocking) throws FioranoException;

Resumes an incomplete transfer. This API resumes the process of saving the contents
of a message in the file specified.

public void resumeSend() throws FioranoException;

Resumes an incomplete transfer. This API resumes the process of sending a message.
It is used when this process could not be completed due to an internal error or due to
a problem originating at the client’s side.

public void cancelAllTransfers() throws FioranoException;

Cancel all messages transfer in process for transferring this large message. Cancelling
a transfer removes the ‘resume’ information related to that transfer. A transfer once
cancelled, cannot be resumed.

FioranoMQ 9 Handbook

Chapter 8: Large Message Support Page 125

public void cancelTransfer(int consumerID) throws FioranoException;

Cancels the transfer process of the message belonging to the consumer identified by
the consumer ID. Every consumer has a unique consumer ID assigned by the producer
when the transfer starts. The API can be used by the sender and by the receiver.

Canceling a transfer removes the ‘resume’ information related to that transfer. A
transfer, once cancelled, cannot be resumed.

public void suspendAllTransfers() throws FioranoException;

Suspends all message transfers transferring this large message, temporarily.
Suspending a transfer only stops the thread that is performing the message transfer.
No ‘resume’ related information is deleted. A transfer that is suspended can be
resumed using resumeSend () and resumeSaveTo() APIs.

public void suspendTransfer(int consumerID) throws FioranoException;

Suspends the message transfer specified by the consumer ID, temporarily.
Suspending a transfer only stops the thread that is performing the message transfer.
No ‘resume’ related information is deleted. Hence a suspended transfer can be
resumed using resumeSend () and resumeSaveTo() APIs.

public void setFragmentSize(int size)

Sets the fragment size of the message.

public int getFragmentSize()

Retrieves the fragment size of the message.

public void setWindowSize(int size)

Sets the window size for the message. Window size indicates the time interval after
which the receiver sends an acknowledgement for message fragments received.

public int getWindowSize()

Retrieves the window size of the message.

public void setRequestTimeoutInterval(long timeout)

Sets the time duration for which the sender waits for large message requests sent by
the receiver.

public long getRequestTimeoutInterval()

Retrieves the duration for which the sender waits for the receiver's request.

FioranoMQ 9 Handbook

Chapter 8: Large Message Support Page 126

public void setResponseTimeoutInterval(long timeout)

Sets the time duration for which the receiver waits for a message fragment sent by
the sender.

public long getResponseTimeoutInterval()

Retrieves the time duration for which the receiver waits for a message fragment from
the sender.

8.1.2 Interface ILMConnection

Purpose

ILMConnection provides APIs to retrieve messages that could not be entirely sent or received.

Method Summary

public void setResumeDirectory(java.lang.String dir)

Sets the User directory within which the resume file is saved

public String getResumeDirectory()

Retrieves the user directory in which the resume file is saved

public java.util.Enumeration getUnfinishedMessagesToSend ()

Retrieves the enumeration of ILargeMessages that could not be sent in entirety.

public java.util.Enumeration getUnfinishedMessagesToReceive ()

Retrieves the enumeration of ILargeMessages that fail to be transferred in their
entirety.

public boolean hasTransfersInExecution ()

Indicates whether a connection has any ongoing transfers. This API is used by the
application to close the connection depending upon whether or not the connection has
transfers in execution.

8.1.3 Class LMTransferStatus

Purpose

Class LMTransferStatus provides the status of a message transfer. The ‘status’ of a message
transfer refers to the number of bytes transferred, the number of bytes to be transferred, the
last fragment of bytes transferred successfully, the percentage of progress of the transfer,
and so on.

Constants Summary

public static final byte LM_TRANSFER_NOT_INIT=0x01;

Indicates that the transfer has not yet started.

FioranoMQ 9 Handbook

Chapter 8: Large Message Support Page 127

public static final byte LM_TRANSFER_IN_PROGRESS=0x02;

Indicates that the transfer is currently in progress.

public static final byte LM_TRANSFER_DONE

Indicates that the transfer is complete.

public status LM_TRANSFER_ERR

Indicates that an error had occurred during the transfer.

Method Summary

public long getBytesTransferred()

Returns the number of bytes transferred.

public long getBytesToTransfer()

Returns the number of bytes left to be transferred.

public long getLastFragmentID()

Returns the fragment number of the last fragment sent successfully.

public float getPercentageProgress()

Returns the progress of the message transfer, as a percentage.

public byte getStatus()

Returns the status of the message transfer. The status of a message can be any one
of the ‘status’ mentioned above.

public boolean isTransferComplete()

Returns a boolean value indicative of whether the transfer was completed successfully
or not.

public ILargeMessage getLargeMessage ()

Returns the reference of a large message whose status is displayed by
LMTransferStatus.

8.1.4 Interface LMStatusListener

Purpose

The LMStatusListener interface is used to detect, asynchronously, the status of a message
being transferred.

Method Summary

public void onLMStatus(fiorano.jms.lm.LMTransferStatus status, FioranoException exception)

Method callback is invoked in the event of a message transfer status change or in the
event of an exception that occurs during message transfer.

FioranoMQ 9 Handbook

Chapter 8: Large Message Support Page 128

8.1.5 Class FioranoLMErrorCodes

Purpose

Class FioranoLMErrorCodes defines the error codes and error messages used by LMS.

LM_INVALID_SOURCE_FILE

This exception is encountered if the source file specified in the message is invalid.

LM_CSP_ENABLED

This exception is encountered if CSP/Durable connections are enabled when using
LMS.

LM_REQUEST_TIMEOUT

This exception is encountered if a request for a large message is not received from any
consumer in the time specified.

LM_DECODE_LMS_PROPERTIES_FAILURE

This exception is encountered if an error occurs while decoding LMS properties.

LM_ACK_NOT_RECEIVED

This exception is encountered if the producer does not receive any acknowledgement
of message fragments from the consumer in the time specified.

LM_FRAGMENT_SEND_FAILURE

This exception is encountered if the producer is not able to send the message
fragment to the consumer.

LM_ACK_PROCESS_FAILURE

This exception is encountered if the producer is not able to process the
acknowledgement received from the consumer.

LM_MESSAGE_TRANSFER_ERROR

This exception is encountered if an error occurs on the producer's side during a
message transfer.

LM_INITIALIZATION_ERROR

This exception is encountered if an error occurs while initializing the message transfer.

LM_REQUEST_PROCESS_FAILURE

This exception is encountered if an error occurs while processing the message request
received from the consumer.

LM_SEND_AVAILABILITY_FAILURE

This exception is encountered if the producer is not able to send denoting availability
of a message to the consumer. The ‘availability’ message is a message that is sent by
the producer to the consumer if there are any unfinished messages to resume.

FioranoMQ 9 Handbook

Chapter 8: Large Message Support Page 129

LM_READ_DATA_ERROR

This exception is encountered if an error occurs while reading data from the source
file.

LM_RECEIVE_FRAGMENT_ERROR

This exception is encountered if an error occurs while receiving message fragments
sent by the producer.

LM_RECEIVE_FRAGMENT_TIMEOUT

This exception is encountered if the consumer is not able to receive the message
fragment within the period of the specified ‘timeout’.

LM_UNABLE_TO_SEND_FRAGMENT_ACK

This exception is encountered if the consumer is not able to the send an
acknowledgement regarding a message fragment to the producer.

LM_UNABLE_TO_RESUME_SEND

This exception is encountered when the producer is not able to resume a message
transfer.

LM_INVALID_TARGET_FILE

This exception is encountered if the target file specified by the consumer is not valid.

LM_UNABLE_TO_SAVE_TARGET_FILE

This exception is encountered if an error occurs while saving the target file due to the
unavailability of free disk space.

LM_UNABLE_TO_RESUME_RECEIVE

This exception is encountered when the consumer is not able to resume the message
transfer.

LM_WRITE_DATA_ERROR

This exception is encountered if an error occurs while writing data onto the target file.

LM_UNABLE_TO_SAVETO_FILE

This exception is encountered when saveTo() API is invoked for a message that is not
considered a large message.

LM_TRANSFER_NOT_STARTED

This exception is encountered when cancellation of a transfer is invoked for a message
that is not considered a large message.

FioranoMQ 9 Handbook

Chapter 8: Large Message Support Page 130

8.2 LMS Samples

8.2.1 Sending a large message

//create the large message

TextMessage lmsg = session.createTextMessage();

lmsg.setStringProperty("JMSX_LM_PATH", "D:\\batch\\lms_samples\\send.zip");

//register status listener

((ILargeMessage) lmsg).setLMStatusListener(new TrackStatus());

//start the message transfer

msgProducer.send(lmsg);

8.2.2 Receiving a large message

//receive the normal JMS message containing a reference to the large message

ILargeMessage lmsg = (ILargeMessage) qReceiver.receive();

//register status listener

lmsg.setLMStatusListener(new TrackStatus());

//start the message transfer

lmsg.saveTo("received.zip");

8.2.3 Resuming a message transfer on the send side

Enumeration enum =

((ILMConnection)jmsConnection).getUnfinishedMessagesToSend ();

while(enum.hasMoreElements())

{

//get the reference for the large unfinished message

ILargeMessage lmsg = (ILargeMessage)enum.nextElement();

//register status listener

lmsg.setLMStatusListener(new TrackStatus());

FioranoMQ 9 Handbook

Chapter 8: Large Message Support Page 131

//resume the transfer

lmsg.resumeSend(); ;

}

8.2.4 Resuming a message transfer on the receive side

Enumeration enum =

((ILMConnection)jmsConnection).getUnfinishedMessagesToReceive ();

while(enum.hasMoreElements())

{

//recreate the large message

ILargeMessage lmsg = (ILargeMessage)umEnum.nextElement();

//registering status listener

lmsg.setLMStatusListener(new TrackStatus());

//resume the transfer

lmsg.resumeSaveTo ();

}

The time duration that the receiver waits till resuming the interrupted message transfer can be
configured through the wait period in the parameter ‘ResumeTimeoutInterval’. By default, the
receiver waits for 15 seconds.

The resume timeout interval value can be set by following the steps below:

1. Launch Admin Studio. Launch Fiorano Studio. Open the Profile Manager. Right-
click the Profiles node and select Open Profile from the pop-up menu. Select the
desired profile for editing in the offline mode and click on the Open button.

2. In the Profile Manager pane navigate to FioranoMQ > Fiorano >etc >
FMQConfigLoader. In the properties pane, set the value corresponding to the
Resumetimeoutinterval, as shown in the figure below.

FioranoMQ 9 Handbook

Chapter 8: Large Message Support Page 132

3. After making the above change, right-click the FioranoMQ domain in the Profile
Manager and select the Save option from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 9: HA Page 133

Chapter 9: HA

FioranoMQ Server within an Enterprise Server are required to have similar backend databases.
This can be achieved by using a common or Shared database, or by setting up Replication
between database instances. The first decision to be taken while setting up HA is the selection
of one of these two options. The FioranoMQ installer comes with pre-built profiles for both
Shared and Replication modes that are pre-configured to demonstrate HA on a single machine.

9.1 Default HA Profiles

This section of the document provides details about pre-configured HA profiles.

For information about configuring profiles through a text-based file, see FioranoMQ Getting
Started.

These profiles can be found in the %FIORANO_HOME%\fmq\profiles\FioranoMQ_HA_rpl and
FioranoMQ_HA_shared directories respectively. Primary and Secondary Servers are started by
booting the container available in these profiles. The table below lists the profiles to use for
the Primary and the Secondary Servers when setting up HA in Replication mode or Shared
mode.

Mode Profile Directory Meant For

Replication Fmq\profiles\FioranoMQ HA_rpl\HAPrimary Primary Server

Replication Fmq\profiles\FioranoMQ_HA_rpl\HASecondary Secondary
Server

Shared fmq\profiles\FioranoMQ_HA_shared\
HAPrimary

Primary Server

Shared fmq\profiles\FioranoMQ_HA_shared\
HASecondary

Secondary
Server

Note: This document refers to the profile (in the FioranoMQ _HA_rpl or FioranoMQ_HA_shared
directories) as %SELECTED_HA_PROFILE%. The possible values for
%SELECTED_HA_PROFILE% are as shown in the table above.

9.2 Configuration Steps

Configuring HA in a FioranoMQ Server basically involves configuration of the modules below:

• HA Layer

• Admin Objects Store

• Security Store

• Message Store

FioranoMQ 9 Handbook

Chapter 9: HA Page 134

The HA Layer configuration deals with the configuration of the Peer Server. The important
configuration parameters defined in this layer are isPrimary (TRUE or FALSE), HA Port,
Backup server's IP Address, Backup server's Client Port, and Backup server's HA
Port. Configuration is required in both the Replication and the Shared HA mode. Additionally,
Admin Objects Store, Security Store and Message Store must be configured for setting up
Shared HA. When configuring HA, one of the following sets of instructions must be followed,
depending on whether it is for Replication mode or for Shared mode.

Replication Mode

Step 1: Install FioranoMQ Servers

Step 2: HA Configuration

HA Shared Mode

Step 1: Install FioranoMQ Servers

Step 2: HA Configuration

Step 3: Admin Store Configuration

Step 4: Security Store Configuration

Step 5: Message Store Configuration

Configuring FioranoMQ HA in Replication mode is much easier, as the pre-created profiles are
ready to be used; only the gateway IP needs to be modified. These profiles are pre-configured
to demonstrate HA on a single machine. However, it is easy to setup HA on two different
machines by configuring the HA Layer, as described below.

When setting up the server in Shared mode, in addition to setting up the HA Layer, the server
configuration needs to be modified so as to point it to the Shared Admin Store, Security Store
and Message Store. Instructions for these modifications can be found in Steps 3 to 5 in the
sections below.

9.2.1 Step 1: FioranoMQ Server(s) Installation

The FioranoMQ Server(s) that forms the Enterprise Server can be installed on a single machine
or on two separate machines, varying in hardware and/or software configuration. When
setting up HA on a single machine, no changes are required; the default configuration (for
primary and Secondary Server) is ready to be used. However, when setting up HA on different
machines, the IP addresses of the Peer Servers have to be configured in the HA Layer. The
following section provides step by step instructions for configuring the HA Layer.

Note: The pre-created profile is configured to run HA on a single machine. Fiorano does not
recommend setting up HA on just a single machine.

FioranoMQ 9 Handbook

Chapter 9: HA Page 135

9.2.2 Step 2: HA Configuration

The HA Layer within a FioranoMQ server is responsible for creating a dedicated connection
with the peer Backup Server. This dedicated connection is used for exchanging health and
state information between peers being used. The following section provides details concerning
the configuration of an HA Layer in a FioranoMQ Server and is applicable to both, Primary and
Secondary Servers.

1. Launch Fiorano Studio, and click on the Profile Manager pane. Right–click the
Profiles node, and select Open Profile from the pop-up menu. Select the required
profile, and click on the Open button (%SELECTED_HA_PROFILE%) for offline editing,
using the Profile Manager.

2. Configure self HA port: This port refers to the port number on which the HA Layer
accepts a connection from its Peer Server. The HA port of the default HA profiles
configured for the Primary Server is 2000 while that of the Secondary Server is 3000.
In order to modify these values, navigate to the node mentioned below, and change
the port number in the PropertiesOf FioranoHAConnectionManager pane.

%SELECTED_HA_PROFILE%-> Fiorano->HA->HAConnectionManager ->
FioranoHAConnectionManager

Note: The screen-shot above shows the path for the HAConnectionManager node in
Replication mode. The same path can be found when configuring the Connection Manager in
Shared HA mode.

FioranoMQ 9 Handbook

Chapter 9: HA Page 136

3. Configure the IP and HA port of the remote server: HA layer of a FioranoMQ Server
connects to the Backup Server's HA layer. In order to configure the Backup Server's IP
and its port, navigate to the node specified below, and set the values of
BackupHAIPAddress and BackupHAPort displayed in the Properties of
FioranoHAKRPCProvider pane.

%SELECTED_HA_PROFILE%-> Fiorano -> HA ->HAKRPCProvider -> FioranoHAKRPCObject

Note: The screen-shot above shows the path for the HAKRPCProvider node in the
Replication mode. The same path can be found while configuring HAKRPCProvider in the
Shared HA mode.

The backup HA IP address of the default profiles is configured to localhost. Their backup HA
port is configured to 3000 in the Primary Server and to 2000 in the Secondary Server. In
other words, by default, the Primary Server's HA layer tries to connect at localhost on port
3000, while the Secondary's HA Layer tries to connect to a localhost on port 2000.

The BackupHA port here does not refer to the port on which the Backup Server accepts client
connections, but to the port on which it’s HA Layer listens. The value here should be the same
as the value of HAConnectionManager's port, configured in the Peer Server.

FioranoMQ 9 Handbook

Chapter 9: HA Page 137

4. Configure Gateway Server: HA Layer pings the gateway machine to determine the
status of the network connectivity. The default profiles have Gateway configured to
localhost and should be changed to a third independent reliable machine (preferably to
the physical router machine on the network). In order to configure Gateway Server,
navigate to the node specified below, and modify the value of
GatewayServerIPAddress and GatewayServerPort in the Propertiesof
FioranoHAManager pane.

%SELECTED_HA_PROFILE%-> Fiorano -> HA->FioranoHAManager

Note: The screen-shot above shows the path for the FioranoHAManager node in the
Replication mode. This path can be found when configuring FioranoHAManager in the
Shared HA mode.

5. Configure isPrimary: Set isPrimary to yes for the Primary FioranoMQ Server and no
for the Backup Server by modifying its value, as shown in the properties pane, by
clicking on the node specified below:

%SELECTED_HA_PROFILE%-> Fiorano ->HA->HAManager -> FioranoHAManager

FioranoMQ 9 Handbook

Chapter 9: HA Page 138

Note: The screen-shot above shows the path for the FioranoHAManager node in the
Replication mode. This path can be found when configuring FioranoHAManager in the
Shared HA mode.

6. Common Configuration: HA requires enabling Durable Connections, Pinging and Auto
Revalidation support in the FioranoMQ Server. This can be done by navigating to and
modifying the parameters specified below, located in the properties pane.

%SELECTED_HA_PROFILE%-> Fiorano ->etc -> FMQConfigLoader

• Set AllowDurableConnections property to yes.

• Set PingEnabled to yes.

• Set EnableAutoRevalidation to yes.

FioranoMQ 9 Handbook

Chapter 9: HA Page 139

Note: The screen-shot above shows the path for HAManager node in the Replication mode.
This path can be found when configuring HAManager in the Shared HA mode. Pre-created
profiles are set to this configuration, and require no change when working with them.

7. Configure the Backup Server’s IP and Port: Specify the BackUpServerIP and
BackupServerPort used by clients in the event of a connection failure. This IP Port
should refer to the backup FioranoMQ Server’s IP Address and to the Port on which it
accepts client connections. This is done by navigating to the node specified below, and
modifying the Backup Server’s IP address and the Backup Server’s port parameters
within the Properties of the MQDefObjCreator pane.

%SELECTED_HA_PROFILE%->Fiorano->etc -> MQDefObjCreator

8. The FioranoMQ Server uses these parameters to set a Backup Server URL in the
default connection factories. For client connections to fail-over, it is important that the
Backup Server URL is properly configured. If the configuration is changed for the
default connection factories, the database should be recreated, or a self-created
connection factories database with correct URLs should be used.

The IP address of the default profiles is configured for localhost, for Primary and
Secondary Servers. The backup port is configured to 1956 in the Primary Server and
to 1856 in the Secondary Server.

Note: In the default profile, the Secondary Server accepts client connections on port 1956,
and the Primary Server accepts client connections on port 1856.

FioranoMQ 9 Handbook

Chapter 9: HA Page 140

Note: The screenshot above shows the path for the MQDefObjCreator node in the
Replication mode. This path can be found when configuring HAManager in the Shared HA
mode.

9. Right-click on the %SELECTED_HA_PROFILE% root, and select the Save option
from the pop-up menu to save this configuration.

Example Configuration

Parameter Primary Server Backup Server

URL http://164.164.129.128:1856 http://164.164.129.108:1956

HAKRPCProvider

BackupHAIPAddress 164.164.129.108 164.164.129.128

BackupHAPort 3000 2000

HAConnectionManager

Port 2000 3000

Common Config

Backup IP Address 164.164.129.108 164.164.129.128

Port 1956 1856

EnableDurableConnections Yes yes

FioranoMQ 9 Handbook

Chapter 9: HA Page 141

Parameter Primary Server Backup Server

PingEnabled Yes yes

HAManager

isPrimary Yes no

Gateway IP Address 164.164.129.225 164.164.129.225

10. After changing the HA Layer’s configuration, clear the server’s existing database prior
to re-starting the server. The existing Data Store can be cleared by executing the
ClearDB script in fmq/bin folder of the installation directory, with the profile name as
an argument.

For example:

• clearDb FioranoMQ_HA_rpl/HAPrimary

• clearDb FioranoMQ_HA_shared/HAPrimary

These are required to re-create connection factories to include the backup of the IP address of
the Peer Server. If clearing the entire Data Store is not possible, use only newly created
connection factories for HA enabled applications.

9.2.2.1 Configuring FioranoMQ Replicated HA

1. To use Replicated HA, open FioranoMQ_HA_rpl/HAPrimary, and open the
FioranoMQ_HA_rpl/HASecondary profile in the Studio Profile Manager. Right-
click on the profile, and select FMQ Replicated HA. The FMQ Replicated HA wizard
appears.

FioranoMQ 9 Handbook

Chapter 9: HA Page 142

2. All required values can be configured using the wizard. After configuration, right-click
on the node, and select the Save option from the pop-up menu.

The properties listed below are available in the FMQ Replicated HA wizard.

BackupServerIp

This IP represents the URL of FioranoMQ Backup Server. In the event of server failure,
the server clients connect to the Backup Server.

BackupServerPort

This port represents the Backup Server port on which the Backup FioranoMQ Server
runs.

BackupHAIPAddress

This IP represents the URL where another FioranoMQ HA Server runs. In the event of a
failure of this HA Server, all the required synchronized data is available in the Backup
HA Server. Here the HA Layer connects to the Backup HA Server.

BackupHAPort

This port represents the backup machine HA port on which another FioranoMQ Server
can run.

Port

This port represents the FioranoMQ Server’s HA port on which the HA Server runs.

PingInterval

This interval represents the time period, after which, the HA Server pings the HA
Backup Server to determine if the server is running properly.

GatewayServerIPAddress

This value represents the IP address of the third machine present in the network. This
value must not represent the machine on which the FioranoMQ Server runs.

FioranoMQ 9 Handbook

Chapter 9: HA Page 143

 GatewayServerPort

This value represents the port to which the HA Server pings. This port can be used
only for this function.

ActiveLockAcquisitionInterval:

This parameter indicates the wait interval between each attempt to acquire the lock
for Active Server. This value should be in multiples of half of the PingInterval value
(PingInterval / 2). Otherwise, the server can try to acquire the lock on the next
multiple of pingInterval/2.

PassiveLockAcquisitionInterval:

This parameter indicates the wait interval for the Passive Server to acquire the lock
when the link between active and Passive Server is down. This value should be greater
than twice the value of the ActiveLockAcquisitionInterval, i.e.

2 * ActiveLockAcquisitionInterval, or an exception will be thrown. The server will
not start if this value is not set properly.

All IP addresses and ports should represent the correct values. Even without the modification
of any of the values, the HA Primary Server and the HA Secondary Server can run on a single
machine.

For example, if the HA Primary Server is running on a machine with IP Address
192.169.1.157., and the HA Secondary Server, on a machine with IP Address 192.169.1.159.,
the Gateway server address is given as 192.169.1.159. After configuration, the HA Primary
Server the wizard should display the values, as shown in the figure below:

After configuration of the HA Secondary Server, the wizard should display the values, as
shown in the figure below:

FioranoMQ 9 Handbook

Chapter 9: HA Page 144

9.2.2.2 Configuring FMQ Shared HA

1. If a Shared HA needs to be used, open the FioranoMQ_HA_shared/HAPrimary and
the FioranoMQ_HA_shared/HASecondary profiles in the Studio Profile Manager.
Right-click on the profile, and click on FMQ Shared HA to display the FMQ Shared
HA wizard.

2. All required values can be configured using the wizard. Upon completing configuration,
right-click the node, and select the Save option from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 9: HA Page 145

The following properties are available in the FMQ HA Replicated wizard.

BackupServerIp

This IP represents the URL where the FioranoMQ Backup Server runs. In the event of a
server failure, clients connect to the Backup Server.

BackupServerPort

This port represents the backup machine server port on which the Backup FioranoMQ
Server runs.

BackupHAIPAddress

This IP represents the URL of the additional FioranoMQ HA Server. In the event that
this HA Server fails, all required synchronized data is available in the Backup HA
Server and HA Layer that connects to Backup HA Server.

BackupHAPort

This port represents the Backup machine HA port on which another FioranoMQ Server
runs.

Port

This port represents the FMQ server HA port on which the HA Server runs.

PingInterval

This interval represents the duration within which the HA Server pings the HA Backup
Server to determine whether the server is running.

GatewayServerIPAddress

This value represents the IP address of the third machine that is always present in the
network. This value must not represent the machine on which the FioranoMQ Servers
run.

GatewayServerPort

This value represents the port where the HA server pings. This port cannot be used
for another purpose.

ActiveLockAcquisitionInterval:

FioranoMQ 9 Handbook

Chapter 9: HA Page 146

This parameter indicates the wait interval between each attempt to acquire the lock
for Active Server. This value should be in multiples of half of the PingInterval value
(PingInterval / 2). Otherwise, the server may try to acquire the lock on the next
multiple of this value

PassiveLockAcquisitionInterval:

This parameter indicates the wait Interval for the Passive Server to acquire the lock
when the link between active and Passive Server is down. This value should be greater
than '2*ActiveLockReacquisitionInterval', otherwise an exception will be thrown.
The server will not start if this value is not set properly.

All IP addresses and ports should represent the correct values. Even without the modification
of any of the values, the HA Primary Server and the HA Secondary Server are able to run on a
single machine.

For example in running the HA Primary Server on a machine with IP Address: 192.169.1.157
and the HA Secondary Server on a machine with IP Address: 192.169.1.159, the Gateway
Server is given as 192.169.1.159 which is present in the network. After configuration, the
HAPrimary wizard looks as shown below:

The HA Secondary wizard displays:

FioranoMQ 9 Handbook

Chapter 9: HA Page 147

9.2.3 Step 3: Configuring Admin Store

To configure Admin Store, decide on the type of Shared Admin Object Store to be used with
the FioranoMQ Server. Choose from the options given below:

• File Based (Fiorano’s proprietary file format) – default option

• RDBMS Server

• XML File

• LDAP Server

Fiorano recommends the RDBMS or LDAP Server, as per instructions provided in chapter 2.

Naming Manager

Note: If the default implementation or xml-based implementation in Shared HA mode is used,
the path attribute for the Naming Manager Server should point to the same physical
location. This requires mapping a drive locally on the machine, given that both servers that
are a part of the Enterprise Server are running on separate machines.

9.2.4 Step 4: Configuring Common Security Store

The FioranoMQ Security Realm can be categorized into two domains.

• Principal – user management

• ACL – Access Control List

The FioranoMQ Server provides a pluggable component for both the above domains. These
components, namely, the Principal Manager and ACL Manager, provide user management and
ACL Management services to the server respectively. Both of these components require a data
Store in order to store the security information that they manage.

FioranoMQ 9 Handbook

Chapter 9: HA Page 148

The options for storage media are:

• File Based (Fiorano’s proprietary file format) – default option

• RDBMS Server

• XML File

• LDAP Server

When configuring a FioranoMQ Server in HA Shared mode, the Data Store used by both the
servers (in an Enterprise Server) should point to the same physical location. When setting up
the Enterprise Server, it is recommended that an RDBMS or an LDAP server be used as the
store for security managers.

Note: Instructions for configuring Security Realms to use the above types of storage media
can be found in the Chapter FioranoMQ Security.

If using default implementation or xml-based implementation in Shared HA mode, the path
attribute for the Principal Manager or the ACL Manager should point to the same physical
location. This requires mapping a drive locally on a machine, given that servers that are part
of the Enterprise Server are running on separate machines.

9.2.5 Step 5: Configuring Database

For storing messages, the FioranoMQ Server provides the option of using either an RDBMS
server or a file based database. When using an Enterprise Server, both of the servers are
required to point to the same database (RDBMS or File Based).

Instructions for configuring both types of databases are given below.

RDBMS Server:

Note: Refer to Chapter 5: Configuring Message Store for instructions on setting up a single
instance of FioranoMQ so as to use an RDBMS Server as the back-end message store.

Instructions for several commonly used databases are provided. When setting up an
Enterprise Server, configure both the server instances with the same set of database
parameters.

When using an RDBMS Server, ensure that the Data Store of the destination being used as
RDBMS is specified, instead of the default File-based Data Store.

9.2.5.1 File Based DataStore

In the default mode, FioranoMQ creates a proprietary file-based database for storing
messages. This database is created by default in the run folder of the profile being used.

For example, in the default profile, the database directory can be navigated to, using the path
below:

%FMQ_DIR%\fmq\profiles\FioranoMQ\run

FioranoMQ 9 Handbook

Chapter 9: HA Page 149

Within an Enterprise Server, both of the servers should have their databases pointing to the
same physical directory. The database directory can be specified through the command line
option –fmq.db.path when running the server. For example, assuming that a shared database
is to be created in \fmq-db directory, the command line to launch both the servers would be:

%FMQ_DIR%\bin > fmq.bat–fmq.db.path c:\fmq-db

Note: If both servers are to run on separate machines, the database directory must be made
available to both of the machines by mapping the drive locally.

9.3 Launching

When launching the Enterprise Server, the launch sequence within the two servers is not
important. Either of the servers (primary or backup) can be started first. On start up, the
servers establish a communication path between each other, in order to exchange information
regarding the proper functioning of all servers. The servers can be launched by using the
runContainer script (available in the fmq/bin directory of the installation package) and
through supplying the %SELECTED_HA_PROFILE% as the argument.

For example, when launching the Primary HA Server in Replicated mode, the command line
would be:

fmq.bat –profile FioranoMQ_HA_rpl/HAPrimary

9.4 Verifying the HA Setup

On starting a FioranoMQ Server which is part of an HA Server, the server prints the debugging
information about its own state (ACTIVE, PASSIVE, WAITING). The FioranoMQ Server also
prints information about the Peer Server’s state when it detects a change in the peer’s state.

The console displays statements such as those shown below:

Local Server switched to ACTIVE

Or

Local Server switched to PASSIVE

9.5 Shutdown the Active Server

When started, one of the servers within the Enterprise Server is in ACTIVE state while the
other is in PASSIVE state. Upon shutting down the Active Server, its peer will switch to active
state.

Changes are indicated within debug statements, similar to those shown below:

Created MBeanServer with ID: -584310c9:1075597caaf:-8000:ashish:1
[03/Nov/2005 15:36:52] license INFO The fiorano-mq.lic license for
the product MQ ver 8x is valid and its details are Type = Eval, Days left = 42,
Locale specific = false, CPU based = false, Node locked = false
RmiConnectorServer Listening Port: 1858

FioranoMQ 9 Handbook

Chapter 9: HA Page 150

Local Server switched to WAITING
Profile D:\fioranodev_installer\fmq\profiles\FioranoMQ 9_HA_rpl/HAPrimary successfully
deployed on Thu Nov 03 15:37:06 GMT+05:30 2005
Old status of remote server = DEAD
New status of remote server = PASSIVE
Product Name: {FioranoMQ 9} Version: {9.1} Build No: {4000} Build Date: {November
3 2005}
Fiorano Server accepting connections at http://164.164.129.131:1856
Server Protocol = {TCP}
Local Server switched to ACTIVE
Old status of remote server = PASSIVE
New status of remote server = DEAD
Local Server switched to STANDALONE

9.6 Sample

Once both the Primary and the Secondary Servers are running in HA mode, in order to verify
the installation, perform the following steps:

1. Open \fmq\samples\pubsub\DurableSubscribers\Publisher.java and
DurableSubscriber.java in the same directory as your preferred Java IDE.

2. Include the parameter BackupConnectURLs in the environment being passed to
InitialContext. This variable should point to the Backup Server’s URL. For example, if
the Backup Server is running on a host called ‘backup-server’ on port 1856, the
following tag should be added to the environment.

env.put (“BackupConnectURLs”, “http://backup-server:1856”);

 Make this modification in both Publisher.java as well as in DurableSubscriber.java .

3. Start the Durable Subscriber and Publisher applications using the following command
line:

run-client DurableSubscriber [-topicName]

Note: When using a central RDBMS database as the backend data store for FioranoMQ,
ensure that an RDBMS based destination is used. By default, FioranoMQ creates
‘primaryRDBMSTopic’ during startup (if the RDBMS database is enabled) which can be used for
this purpose. Alternatively, another RDBMS based topic can be created through the Admin
GUI.

4. To publish a message, type a string through the console and press enter. These
messages are received by the subscriber, which prints the text on the console.

5. Now, shutdown the Primary Server using the shutdown script.

6. The Secondary Server initiates its startup sequence within the HA. ping_interval as set
in Fiorano Studio.

7. If another message is published before the Backup Server completes its start up, the
message is not delivered to the subscriber immediately.

8. As soon as the Secondary Server starts up, the durable subscriber’s connection is re-
established, and any pending messages are delivered.

FioranoMQ 9 Handbook

Chapter 9: HA Page 151

9.7 Logging and Tracing

9.7.1 Logging

Just like the base FioranoMQ Server, the HA Server can log files, consoles, or use any other
custom-made logger. This type of logging is controlled through the Loggers module in Fiorano
Studio. The option to log all information on the console or save all logs onto a log file or an
error file is provided through Console-based and File-based logging, respectively.

9.7.2 Tracing

The amount of information that is logged by the HA Server can be controlled through the trace
variable for HA. Upon startup, the server initializes the value of various trace components.
Integers between 0-6 are valid and are considered acceptable values. Higher values of the
trace variable for HA in this file results in more information logged.

HA=0 /** No Log **/

HA=1 /** Default Log **/

HA=2 /** Displays State Info of HA Server **/

HA=4 /** Displays intra server communication info **/

HA=6 /** Maximum HA log **/

9.8 Limitations of HA
• Client level transactions do not span across servers in the Enterprise Server when

running on the Shared mode. Transacted sessions involving Receivers are rolled back
in the event that the Primary Server crashes. The messages delivered in that
transaction are redelivered to the Receivers once connected to the Backup Server.

• Distributed transactions that are in execution during the transition phase become in
doubt transactions. These transactions are rolled back and can be recovered after the
client connects to the Secondary Server.

• JMS Topic Requestor cannot receive its intended reply if a failover occurs after a
request is sent. This occurs because the JMS Topic Requestor creates a non-durable
subscriber, which can miss a message during failover. However, if a topic requestor
creates a durable subscriber to listen to replies, then it functions successfully even
during a failover.

• If both HA Servers (primary as well as backup) go down, the requestor receives a
duplicate reply (with redelivered Flag = true) for the request made immediately after a
failover.

FioranoMQ 9 Handbook

Chapter 9: HA Page 152

• Since each server has its own configuration, which includes independent Dispatcher
cluster information, configuration of the dispatcher in HA is allowed only when all the
member server information is provided in offline mode for each Dispatcher-enabled
server in the HA pair. Since the information of member servers added to the cluster in
online mode will be persisted only in the Active Server and will not be available to the
Passive Server, no new nodes should be added to the cluster after the servers are
started. Please note that the configuration changes are done in the Active Server and
will not be replicated to the Stand-by Server, even in normal Replicated HA mode
servers.

FioranoMQ 9 Handbook

Chapter 10: Dispatcher Page 153

Chapter 10: Dispatcher

The FioranoMQ Dispatcher is the solution to the problem of load balancing the incoming client
connections between a group of servers. The Dispatcher server is connected to multiple
servers belonging to a “cluster”. The dispatcher services this “cluster”.

FioranoMQ Dispatcher maintains a persistent connection with each FioranoMQ server in a
cluster. This persistent connection is used to pass information from the server to the
dispatcher, enabling the dispatcher to maintain real-time in-memory statistics about the
precise load in terms of the number of connections on each server. The dispatcher uses this
information to determine the least loaded server in the cluster and routes the new incoming
client requests to it.

The dispatcher is a normal FioranoMQ Server with an additional dispatcher component. Once
the dispatcher functionality is turned ON in the server, it automatically routes connection
requests to the least loaded server.. That is the sole difference between a plain vanilla server
and a dispatcher enabled server. An advantage of using Fiorano Dispatcher is that no changes
are required in the client application to use the Dispatcher since the client application is
transparent to internal re-routing taking place inside the dispatcher.

However, as mentioned before, a dispatcher server is perfectly capable of handling connection
client requests as well as any MQ server. Even if none of the servers in the dispatcher's cluster
are alive, the client's connection request would still be served by the dispatcher server itself.

To make use of the dispatcher functionality, the user can either use the preconfigured
Dispatcher enabled FioranoMQ profile named FioranoMQ_Dispatcher or enable Dispatcher in a
profile by following the steps given in the next section.

For information about configuring profiles through a text based file, see FioranoMQ Getting
Started.

10.1 How to Configure Dispatcher
1. Launch admin studio and open the profile to be configured in offline mode.

2. Navigate to FioranoMQ > Fiorano. Right-click and select Add Components. A
new window opens.

3. Navigate to Components > Fiorano > JMS > Clustering, and select
Dispatcher. Click the OK button.

FioranoMQ 9 Handbook

Chapter 10: Dispatcher Page 154

4. In the studio window, navigate to FioranoMQ > Fiorano > JobManager>
FioranoJobManager25> DependsOn > ThreadManager. In the Properties
pane, navigate to the ‘Instance’ property and select the ThreadManager.

5. Navigate to FioranoMQ>Fiorano>Dispatcher>DependsOn>TimerService. In
the properties pane, navigate to the Instance property and select the timer
service.

FioranoMQ 9 Handbook

Chapter 10: Dispatcher Page 155

6. Navigate to FioranoMQ > Fiorano > etc> AdminService >
DispatcherManager. In the properties pane, navigate to the Instance property
and select the DispatcherManager.

7. Navigate to FioranoMQ > Fiorano > etc> ExServiceMaanger > DependsOn
and right-click on DependsOn. From the drop-down list that appears, select Add
Component. A new window appears. From this window select Dispatcher and
press OK.

FioranoMQ 9 Handbook

Chapter 10: Dispatcher Page 156

8. Navigate to the added Dispatcher component in the ExServiceManager. In the
properties pane, navigate to the Instance property, and select Dispatcher.

FioranoMQ 9 Handbook

Chapter 10: Dispatcher Page 157

10.2 Adding Servers to Dispatcher Cluster

To add the dispatcher component to a profile follow the steps below:

1. Navigate to FioranoMQ > Fiorano> Dispatcher and right-click on it. From the
drop-down, select Add. Select either the preferred server tab or the server tab.
Selecting the preferred server tab creates an entry under Dispatcher for the
preferred server in the dispatcher cluster. Selecting the server tab creates an
entry under Dispatcher for another server in the dispatcher cluster. Multiple
servers may be configured by adding them to the dispatcher cluster.

2. Navigate to FioranoMQ > Fiorano> Dispatcher > Server, and fill in the
appropriate details for that particular server. Follow the same procedure to
configure all the servers (including the preferred server) in the dispatcher cluster.

The specific details of a particular server are as follows:

Name Description

Name Represents the name of the Server

BackupUrl Specifies the backup url in case the Server given in Url parameter is
down.

LoginName Represents the login name used by the dispatcher to connect to the
Member MQ server. The login should have admin privileges.

Password Represents the password used by the dispatcher to connect to the
Member MQ server.

AdminConnectionFactory Specifies the Admin Connection Factory used by the dispatcher to
connect to the Member MQ server.

MaximumConnection Specifies the weight associated with a member server of a cluster. A
member server with MaxClientConnections set to 2 allows twice the
number of connections that can be created by member server with
weight of ‘1’.

FioranoMQ 9 Handbook

Chapter 10: Dispatcher Page 158

Name Description

Url Specifies the URL of the server in the cluster (Format:
http://hostname:port).

10.3 Configuring Client Applications to Use Dispatcher

The advantage of using the Fiorano Dispatcher configuration is that no changes are required
on the Client end to connect through the Dispatcher server. The Dispatcher server internally
routes requests to the least loaded server (server load is calculated internally by the
dispatcher based on the maximum connections allowed on a particular server, and the number
of active connections), rendering the client application wholly unaware of the final MQ server
that it will be connected to. The server to which the createConnection call of an application has
been routed may be determined using the APIs below. The APIs below may also be used to
get connectURLonce the connection has been established by the User.

ConnectionMetaData connectionMetaData = connection.getMetaData();

ConnectionFactoryMetaData connectionFactoryMetaData = ((MQConnectionMetaData)
connectionMetaData).getConnectionFactoryMetaData();

Now connectionFactoryMetaData.getConnectURL() will give the ConnectURL of the server. The
User has to import the following Fiorano Specific classes for calling these apis
fiorano.jms.md.ConnectionFactoryMetaData, fiorano.jms.md.MQConnectionMetaData.

User can refer to the $FMQ_INSTALLER/fmq/samples/PTP(or)PubSub/Dispatcher samples
foradditional information.

This API returns the string equivalent of the URL used to create the connection. At times, a
given client application might want to connect to a particular server in a cluster. This can be
done by setting the variable LookupPreferredServer to ‘true’ in the environment settings:

env.put ("LookupPreferredServer", "true");

Other statements remain the same as specified above.

10.4 Using Preferred-Server Configuration

The preferred-server is typically used by client applications that have previously created
durable subscriptions on a particular FioranoMQ server within a known server cluster, and wish
to reconnect to the same server to retrieve messages. The preferred server may be set using
Fiorano Studio.

The FioranoMQ cluster may be set using the Fiorano Admin Studio. Log onto the FioranoMQ
server (with Dispatcher enabled).A Dispatcher node in the Explorer tree is displayed which
may be used to manage the FioranoMQ cluster. Servers from the cluster managed by this
dispatcher may be added or removed. The status of existing servers in the cluster may be
viewed. Managing the Dispatcher includes:

o Adding and removing servers connected to the cluster.

o Setting the Preferred Server in the Cluster managed by the Dispatcher

FioranoMQ 9 Handbook

Chapter 10: Dispatcher Page 159

o Setting the maximum number of client connections (as a weightage) to a Server.

Note: For more information on how to perform the above tasks using Fiorano Studio, refer to
the section 23.8 Working with Dispatcher.

In addition to the above, FioranoMQ provides comprehensive APIs to control and manage the
dispatcher and the cluster associated with it.

Note: Detailed information on these APIs is available in the JavaDocs provided with the
FioranoMQ installation package.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 160

Chapter 11: Repeater

11.1 Launching Repeater in Stand-Alone Mode

The Repeater can be launched in Stand-Alone Mode as described below:

Start the FioranoMQ Console.

Navigate to the %FIORANO_HOME% \fmq\bin directory.

A ready-to-use batch file to launch the Repeater is now available. Instructions for using it are
given below:

To run StandaloneRepeater on windows systems: : [Platform? Or system?]

fmq.bat -profile StandAloneRepeater

To run StandaloneRepeater on non-windows systems: [Platform? Or system?]

fmq.sh -profile StandAloneRepeater

11.2 Configuring Repeater in the Off-line Mode

In the offline mode, the administrator is able to add links to the repeater and configure the
source and target servers for message replication. Cluster administrators are provided with a
template configuration file (Configs.xml located in
%FIORANO_HOME%\fmq\profiles\StandAloneRepeater\conf directory of the FioranoMQ
installation package) to simplify the Repeater configuration. Two links are added to the
Repeater configuration linking the source and the target servers bi-directionally. The tool
displays the Repeater with these default links. These links can be configured as described
below:

For information about configuring profiles through a text based file, see FioranoMQ Getting
Started.

1. Launch Fiorano Studio using Studio.bat (or Studio.sh) located in
%FIORANO_HOME%\Studio\bin
On windows, this may be launched selecting Start > Programs > Fiorano >
FioranoMQ > Fiorano Studio for offline configuration of the FioranoMQ server.

2. Select Tools > Configure Profile from the menu bar, and select the
%FIORANO_HOME%\fmq\profiles\StandAloneRepeater directory from the Select Profile
Directory dialog box. Click on the Open button.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 161

3. Navigate to StandAloneRepeater > Repeater >FioranoRepeaterManager node in the
Server Explorer. The properties of the repeater are displayed in the Properties Pane
(marked ‘X’ in the figure). Configure them as required.

11.2.1 Editing a Link

You can edit the properties related to this default link before creating and managing additional
links in the online mode. The Link element within the Repeater Manager MBean contains the
following elements:

Status - Specifies whether the link is running or not.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 162

SourceServer - Specifies the server on which subscriptions are created. The Source Server
contains the ConnectionInfo.

TargetServer - Specifies the Server on which publishers are created. The TargetServer
contains the ConnectionInfo.

To edit:

1. Navigate to the desired Link and expand its components.

2. Selecting a link causes its properties to be displayed in the Properties Pane (marked ‘X’ in
the figure), where the corresponding Properties may be edited.

3. Save the configuration for changes to take effect.

11.2.2 Adding a Link

The repeater replicates messages in the link specified between the source and the target
server. A repeater can have a number of links configured. By default, the server sets up only a
single link to the repeater. A new link may be added to the Repeater when it configured in
offline mode, as shown in the steps below:

1. Navigate to StandAloneRepeater > Repeater >FioranoRepeaterManager node in the Server
Explorer. Right-click the FioranoRepeaterManager node and select Add > Link option from
the short-cut menu.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 163

2. A new Link can be added to the FioranoRepeaterManager.

3. Other parameters, such as Status, SourceServer, TargetServer, LinkTopicInfo, and
ReplyTopicInfo may be added to this Link.

4. Provide unique names for each link, source & target servers.

5. Provide the Username/Password in the connectionInfo of the source and target server, the
specified user need not have admin privilege but must have access to the topic (i.e., +ve
perm in topics ACL).

Separate links are to be provided for each topic which has different ACLs.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 164

6. Save the configuration to render it effective and embed the changes into Configs.xml file.

11.2.3 Deleting a Link

Unwanted Links may be deleted by executing the steps given below:

1. Navigate to the Link to be deleted and right-click on it.

2. Select Delete from the shortcut menu. A Confirm Object Deletion dialog box is
displayed. Click on the Yes button.

11.2.4 Adding a Topic Propagation Link

To add a LinkTopicInfo, right-click on the Link node and select LinkTopicInfo from the
shortcut menu. A new LinkTopicInfo is added to the selected link. The properties for the
LinkTopicInfo are displayed in the Properties Pane.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 165

A description of the LinkTopicInfo properties is given below:

• IsDurable: Specifies whether the link between the source and target is durable or
not. A durable link can be used to ensure that no messages are lost across the
repeater in case of network failure. The possible values for this variable are yes and
no

• ConnectionMode: This parameter specifies whether same JMS connection should be
used for replicating the data across JMS servers or whether a separate connection for
each link is needed. The two possible values for this are 'shared'(default) or 'exclusive'

• Type: Specifies whether the link should be permanently connected to the target
server or only replicate if a subscriber exists. The two possible and valid entries for
this property are SUBSCRIBEREXISTS and ALWAYS.

• ReplyOn: Specifies the topic name on which the repeater listens for the replies which
it receives for the requests it forwards.

• SourceTopic Name: Specifies the name of the topic on which subscriptions are made
on the source server of the link. This name supports the wild character, ‘*’, which, if
specified, enables the repeater to create subscriptions on all the topics that match the
source Topic. For the source topic name ‘ABC*’, subscriptions are made on topics
ABC1, ABC12, ABCDEF and so on.

• Target Topic Name: The name of the topic on which messages received for the
above subscription are forwarded onto the target server of the link.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 166

• Message Selector: Specifies the selector that is set on a link between servers so that
only messages that are required/necessary are exchanged between them.

11.2.5 Deleting or Editing a Topic Propagation Link

Editing a Topic Propagation Link can be done by changing values in the properties parameters,
as shown in the figure above.

To delete a Topic Propagation Link, right-click on LinkTopicInfo and select Delete from the
shortcut menu. A Confirm Object Deletion dialog box is displayed. Click on the Yes button.

11.2.6 Hierarchical Topics

11.2.6.1 Wild Character Support

FioranoMQ provides support for wild-card characters such as ‘*’ within the repeater
configuration so that separate links need not be added for each topic in turn. A user can
specify wild-card characters in the source topic. All topics starting with the string mentioned in
the source topic may be repeated.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 167

11.2.6.2 Replicate topics with a pattern

The repeater may be configured to replicate messages that match a particular pattern. The
pattern can be specified in the source topic name located in the Properties Pane. For example,
if the Source Topic Name is “ABC*”, the topics which match this pattern (all the topics starting
with the string “ABC” on the source server) are repeated across two servers. Hence, all
subscribers subscribing on ABC, ABC1, ABCZ and so on are able to receive messages
published on source topics ABC, ABC1 and ABCZ respectively, via the FioranoMQ repeater.
Dynamically created topics that match the pattern ‘ABC*’ are replicated. For example, if
‘ABC2’ is created after the repeater has started, a replication link for ‘ABC2’ (topic on source
server) to ‘ABC2’ (topic on target server) is created dynamically. If a topic name that does
not match the pattern (such as ‘ABD1’), is created, the replication link (‘ABC*’) is not be
added.

11.2.7 Configuring Request/Reply through Repeater

11.2.7.1 Adding a Reply Topic Link

To add ReplyTopicInfo, right-click the Link node and select ReplyTopicInfo from the
shortcut menu. A new ReplyTopicInfo is added to the selected link. The properties for the
ReplyTopicInfo are displayed in the Properties Pane.

A description of the ReplyTopicInfo properties is given below:

• IsDurable: Specifies whether the link between the source and target is durable. A
durable link can be used to ensure that no messages are lost across the repeater in
the event of a network failure. The possible values for this variable are yes and no.

• ReplyTopicName: Specifies the name of the ReplyTopic.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 168

• Message Selector: Specifies the selector that is set on a link between servers so that
only the required/necessary messages are exchanged between the servers.11.2.7.2
Deleting or Editing a Reply Topic Link

Editing a Reply Topic Link can be done by changing the values in the properties parameters,
as shown in the figure above.

To delete a Reply Topic Link, right-click on ReplyTopicInfo and select Delete from the
shortcut menu. The Confirm Object Deletion dialog box is displayed. Click on the Yes
button.

11.2.8 Running a Repeater on secure protocol

FioranoMQ supports servers that run on a secure protocol. The Repeater may be run on a
secure protocol so as to connect to a FioranoMQ server running on a secure protocol. The
parameters listed below need to be configured in order to run the FioranoMQ Repeater on a
protocol with security:

The Protocol Type of Source/Target servers must be the same as the protocol on which the
Server is running. Possible values are:

• TCP with no security

• HTTP with no security

• SUN_SSL TCP with JSSE security

• HTTPS_SUN HTTP with JSSE security

ServerSecurityManager must be set to the name of the class that is used in the process of
authenticating the client with the server. By default, FioranoMQ runtime provides one
implementation each for JSSE enabled SSLs.

fiorano.jms.runtime.sm.JSSESecurityManager for JSSE.

Change these properties in the repeater and save all the changes.

When the security enabled repeater runs, it connects to the server running on a secure
protocol so as to replicate messages.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 169

11.2.9 Configuring Replication on Demand

To configure replication on demand, the Type property available with LinkTopicInfo
applicable to the target server should be set as SUBSCRIBEREXISTS. If this is not done, it
remains passive.

11.2.10 Configuring Monitoring Support

FioranoMQ comes with two different types of Connector mechanisms that can be used to
monitor and administer FioranoMQ or its tools such as the dispatcher/bridge/repeater etc. The
Connectors are the:

• RMI Connector

• JMS Connector

The RMI Connector is used by default and it is recommended that it be used at all times for
monitoring and administrating the FioranoMQ server and/or its tools because of its easy,
generic configuration and faster access compared to the JMS Connector. By default, the
FioranoMQ RMI Connector component uses port 1858 for administration and monitoring and
by default the Repeater RMI Connector uses port 1858. If two or more instances of the RMI
Connector are running on the same system, the port number of all RMI Connectors must be
unique.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 170

11.2.10.1 To Change the RMI Port Number

To change the RMI Port number the steps listed below need to be followed:

1. Select the required profile from the Select Profile Directory dialog box.

2. Navigate to %selectedProfile%>jmx>connector>RMIBasedJMXConnector and
change the port number from 1858 to the desired port number.

3. Once the changes are made in the Properties Pane, right-click on the %selectedProfile%
in the Profile Manager and select the Save option. Changes are saved in the
Configs.xml file.

11.2.10.2 To Monitor FioranoMQ Standalone Repeater using JMS Connector

To Monitor FioranoMQ Standalone Repeater using the JMS connector the steps listed below
need to be followed:

1. Run the JMS Connector service with the standalone repeater. This can be done by adding
services\JMXConnector\JMS\JMXConnector1-service.xml to the FMQRepeater.lst
file.

2. The JMS Connector service running with the standalone repeater should connect to any
remote FioranoMQ server in which no Connector service is currently running.

3. To monitor the FioranoMQ server with the repeater, launch Fiorano Studio using
%FIORANO_HOME%\Studio\bin\Studio.bat (Studio.sh on UNIX Systems) or, if
using Windows, through selecting the Start > Programs > Fiorano > FioranoMQ >
Fiorano Studio

4. Connect to the FioranoMQ server using Admin Studio. The repeater node along with all
the other server nodes will be displayed. The repeater node corresponds to the standalone
repeater that is being run.

5. The standalone repeater may, therefore, be monitored online and various operations such
as add Link or remove Link can be performed on the standalone repeater

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 171

11.3 Configuring/Monitoring Repeater in Online Mode

11.3.1 Online Configuration of Repeater Through Studio

For instructions regarding configuring and monitoring the repeater in the on-line mode refer
to the section 23.7 Working with Repeater.

11.3.2 Online Configuration of Repeater Through JMX

This section describes all the configurations of Repeaters using the JMX connection.

11.3.2.1 Adding StandAloneRepeater node in the Server Explorer

To add a new StandAloneRepeater node, the steps listed below need to be followed:

1. From the Server Explorer pane, select the FMQ-JMX node. Right-click the mouse and
click on the Copy option from the drop-down menu.

2. Select the Servers node and right-click the mouse and click on the Paste option.

3. Rename the new FMQ-JMX_1 to StandAloneRepeater.

4. In the properties window, change the RMIConnector’s ConnectorPort to 2059:

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 172

11.3.2.2 Adding a Link

The administrator can create new replication links dynamically. This enables the applications
to replicate messages on topics that are created after the repeater has started. Information
such as the name of the link name, the source and target servers between the link, the
protocol to be used for connection and login information, need to be provided when a new link
is added to the repeater. To add a new link, follow the steps below:

1. Run the FMQ Server and run the StandAloneRepeater.

2. From the Server Explorer pane, login into StandAloneRepeater.

3. Navigate to Fiorano->Repeater->RepeaterManager->FioranoRepeaterManager and select
the FioranoRepeaterManager node.

4. Right-click the mouse and select the addLink(LinkConfig) from the drop-down menu.
The Invoke addLink(LinkConfig) dialog box is displayed.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 173

5. Click the editor button of parameter LinkConfig. The addLink(LinkConfig) –
LinkConfig dialog box is displayed.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 174

6. Enter all required details. These include:

Parameter Default value

linkName Link-1

sourceServerName FMQ

sourceServerPassword anonymous

sourceServerProtocol TCP

sourceServerSecurityManager Repeater

sourceServerURL http://localhost:1856

sourceServerUserName anonymous

targetServerName FMQ

targetServerPassword anonymous

targetServerProtocol TCP

targetServerSecurityManager Repeater

targetServerURL http://localhost:1856

targetServerUserName anonymous

7. Click OK and Invoke the operation.

8. Close the addLink operation dialogue box.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 175

11.3.2.3 Adding a Link Topic

It is possible for the administrator to add one or more link topics to an existing topic. To add a
link topic to an existing topic information such as the source topic name, the target topic name
and the message selector need to be provided. To add a link topic follow the steps below::

1. Navigate to Fiorano->Repeater->Link, right-click the mouse and click the Refresh
option. The link added is displayed.

2. Click upon the link displayed and select RepeaterLink MBean as shown in the figure
below:

3. Right-click on the RepeaterLink MBean and select operation
addLinkTopic(LinkTopicConfig). The Invoke addLinkTopic(LinkTopicConfig) dialog
box is displayed.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 176

4. Click editor button of parameter LinkTopicConfig. The
addLinkTopic(LinkTopicConfig) - LinkTopicConfig dialog box is displayed .

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 177

5. Fill out the required parameters. Click OK and the Invoke.

11.3.2.4 Adding a Reply Topic

It is possible for the administrator to add one or more reply topics to existing topics. To add
one or more reply topics to existing topics information such as the source topic name, the
target topic name and message selector need to be provided. To add a Reply topic, follow the
steps below:

1. Navigate to Fiorano->Repeater->Link->(LinkName) and select theRepeaterLink MBean.

2. Right-click on the RepeaterLink MBean and select operation
addReplyTopic(ReplyTopicConfig). The Invoke addReplyTopic(ReplyTopicConfig)
dialog box is displayed.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 178

3. Click the editor button of the parameter ReplyTopicConfig. The
addReplyTopic(ReplyTopicConfig)- ReplyTopicConfig dialog box is displayed.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 179

4. Specify the properties and click the OK button and Invoke the operation.

11.3.2.5 Removing a Link

The administrator needs to follow the steps below to remove links from a repeater:

1. Navigate to Fiorano->Repeater->RepeaterManager->FioranoRepeaterManager and select
the FioranoRepeaterManager node.

2. Right-click on the FioranoRepeaterManager node and select operation
removeLink(LinkName). The Invoke removeLink(LinkName) dialog box is displayed.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 180

3. Specify the link name and click Invokebutton.]

11.3.2.6 Removing a Link Topic

1. The administrator needs to follow the steps below to remove a link topic from the
repeater. Navigate to Fiorano->Repeater->Link->(LinkName) and select the RepeaterLink
MBean.

2. Right-click on the RepeaterLink MBean and select
removeLinkTopic(LinkTopicConfig).

3. Other steps are similar to the addLinkTopic.

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 181

11.3.2.7 Removing a Reply Topic

The administrator needs to follow the steps below to remove the selected link topic from the
repeater:

1. Navigate to Fiorano->Repeater->Link->(LinkName) and select the RepeaterLink
MBean.

2. Right-click on the RepeaterLink MBean and select
removeReplyTopic(ReplyTopicConfig).

For additional steps please refer to addReplyTopic.

11.3.2.8 Viewing Durable Subscribers for a Repeater

1. Navigate to Fiorano->Repeater->RepeaterManager->FioranoRepeaterManager and
select the FioranoRepeaterManager node.

2. Right-click on FioranoRepeaterManager node and select findDurSubscriptionInfo().

FioranoMQ 9 Handbook

Chapter 11: Repeater Page 182

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 183

Chapter 12: Bridge

12.1 Launching Bridge in Stand-Alone Mode

To launch the Bridge in Stand-Alone Mode follow the stepsbelow:

1. Openthe FioranoMQ console.

2. Navigate to %FIORANO_HOME%\fmq\bin directory.

A ready-to-use batch file to launch the Bridge is now available.

To run StandaloneBridge, follow the commands below:

fmq.bat -profile StandAloneBridge

On UNIX, use

fmq.sh -profile StandAloneBridge

12.2 Configuring Bridge in Off-line Mode

In offline mode, the administrator is able to add links to the Bridge and configure the same to
source and target servers for message replication. Cluster administrators are provided with a
template configuration file (Configs.xml located in
%FIORANO_HOME%\fmq\profiles\StandAloneBridge\conf directory of the FioranoMQ
installation package) to simplify the Bridge configuration. This provides the default Bridge
configuration with two links, thus linking the source and the target servers bi-directionally.
This file must be renamed Configs.xml before starting Fiorano Admin Studio in offline mode.
The tool displays the Bridge with the default links. The links can be configured using the steps
below:

For information about configuring profiles through a text based file, refer to FioranoMQ
Getting Started.

1. For offline configuration of the FioranoMQ server, launch Fiorano Studio using
%FIORANO_HOME%\Studio\bin\Studio.bat (Use /Studio.sh if using UNIX
). If using Windows, select Start > Programs > Fiorano > FioranoMQ >
Fiorano Studio > Fiorano Studio

2. Select Tools > Configure Profile from the menu bar, and select the
StandAloneBridge folder from the Select Profile Directory dialog box and click
the Open button. The StandAloneBridge profile is opened in the Profile
Manager pane.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 184

3. Navigate to StandAloneBridge > Bridge > FioranoConnectorManager node in
the Server Explorer. The properties of the Bridge are displayed in the Properties
Pane. Configure these as required.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 185

12.2.1 Editing a Link

Properties related to the default link can be edited before creating and managing additional
links in the online mode. The Link element within the Bridge Manager MBean contains
theelements listed below:

1. SourceServer - Specifies the server on which subscriptions are created. The
Source Server element contains the ConnectionInfo.

2. TargetServer - Specifies the Server on which publishers are created. The
TargetServer contains the ConnectionInfo.

To edit follow the steps below:

1. Navigate to the desired Link and expand its components.

2. Selecting one of the components causes its properties to be displayed in the
Properties Pane (marked X in the figure). Properties can now be edited.

3. Save the configuration for the changes to take effect.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 186

12.2.2 Adding a Link

The Bridge sends messages on the link specified between a source and a target server. A
Bridge can have a number of links configured. By default, the server sets up only a single link
to the Bridge. A new link can be added to the Bridge when it is configured in the offline mode,
by following the steps below:

1. Navigate to StandAloneBridge > Bridge > FioranoConnectorManager node in
the Server Explorer. Right-click the FioranoConnectorManager node and
select the Add Link option from the pop-up menu. A new Link is added to the
FioranoConnectorManager.

2. Now add other parameters such as SourceServer, TargetServer and Channel to
this new Link.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 187

3. Configure SourceServer and TargetServer by adding ConnectionInfo (right-click
over the node and select Add ConnectionInfo from the pop-up menu) and
setting its properties, as shown in the figure below.

4. Configure the Channel by adding SrcQueue and TargetQueue (right-click over
the node and select Add > SrcQueue/TargetQueue from the pop-up menu) and
set its properties.

5. Save the new configuration to render it effect and embed this into Configs.xml file.

12.2.3 Deleting a Link

Unwanted Links can be deleted by following the steps below:

1. Select the Link to be deleted..

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 188

2. Right-click and select Delete from the shortcut menu. A Confirm Object
Deletion dialog box is displayed. Click on Yes to delete the link.

12.2.4 Running a Bridge on Secure Protocol

FioranoMQ supports running the server on secure protocols. A Bridge can be run on a secure
protocol to connect to a FioranoMQ server that runs on secure protocols. The parameters listed
below need to be configured to run a FioranoMQ Bridge on protocols with security.

The Protocol Type of Source/Target servers must be the same as the protocol on which the
Server is running. Possible values are:

• TCP with no security

• HTTP with no security

• SUN_SSL TCP with JSSE security

• HTTPS_SUN HTTP with JSSE security

ServerSecurityManager must be set to the name of the class that is used for authenticating
the client with the server. By default, FioranoMQ runtime provides one implementation for
each JSSE enabled SSLs.

fiorano.jms.runtime.sm.JSSESecurityManager for JSSE.

Change properties in the Bridge, Save all changes.

The security enabled Bridge should be able to runs and connect to a server running on a
secure protocol in order to replicate messages.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 189

12.2.5 Configuring Monitoring Support

FioranoMQ comes with two different types of Connector mechanisms that can be used to
monitor and administer FioranoMQ and/or its tools like the dispatcher/bridge/repeater etc. The
Connectors are:

• RMI Connector

• JMS Connector

By default the RMI Connector is used. It is recommend that the RMI Connector always be
used for monitoring and administrating the FioranoMQ server or its tools given its generic
configuration and fast access, as compared to the JMS Connector. By default, the FioranoMQ
RMI Connector component uses port 1858 for administrating and monitoring while the Bridge
RMI Connector uses port 1899. If two or more instances of the RMI Connector are running on
the same system, the port number of each RMI Connectors must be unique.

12.2.5.1 To Change the RMI port number of a Profile

To change the RMI port number of a profile follow the steps below:

1. Select the required profile from the Select Profile Directory dialog box.

2. Navigate to %selectedProfile%>jmx>connector>RMIBasedJMXConnector and
change the port number from 1858 to the required value.

3. From the Properties Pane, right-click on the %selectedProfile% in the Profile
Manager. Select the Save option from the menu that is displayed. Changes get saved
in the Configs.xml file.

12.2.5.2 To Monitor the FioranoMQ Standalone Bridge using the JMS Connector

To monitor the FioranoMQ Standalone Bridge using the JMS Connector follow the steps below:

1. Run the JMS Connector service with the Standalone Bridge. This can be done by
adding services\JMXConnector\JMS\JMXConnector1-service.xml to the
FMQRepeater.lst file.

2. The JMS Connector Service running with the standalone bridge is able to connect to
any remote FioranoMQ server on which no other Connector service is running.

3. To monitor the FioranoMQ server with the bridge, launch Fiorano Studio using
%FIORANO_HOME%\Studio\bin\Studio.bat (use /Studio.sh if using UNIX).If
using Windows, select Start > Programs > Fiorano > FioranoMQ > Fiorano
Studio.

4. Connect to the FioranoMQ server using Admin Studio. The Bridge node along with all
the other server nodes is displayed. The Bridge node should correspond to the
Standalone Bridge that running.

• The standalone Bridge can, thus, be monitored online and various operations like
add Link, remove Link can be performed on the Bridge.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 190

12.3 Configuring Bridge in Online Mode

The Bridge can be configured in two ways though the online mode. All added configurations
work as long as the Bridge is running. Once the Bridge is stopped, all configurations are lost.

12.3.1 Configuring Through FMQ-JMX Login
1. To configure the Bridge online, login to the Bridge through FMQ-JMX from the

Studio. The User can perform a RMI based JMX login to the Bridge from Studio by
providing the RMI Port. After a FMQ-JMX login from Studio, Navigate to JMX
Connection-->Fiorano-->Bridge-->FioranoConnectorManager.

2. Right-click the FioranoConnectionManager and select the
addLink(LinkConfiguration) option from the pop-up menu. A
LinkConfiguration dialog box is displayed, as shown in the figure below.

3. Invoke the addLink operation by assigning appropriate values to
LinkConfiguration.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 191

4. Once theLink is created, navigate to JMX Connection-->Fiorano-->Bridge--
>Link-->LinkName. The LinkName is provided by the User when creating the
link. (If the Link runtime MBean is not displayed via Studio, right-click on Link to
refresh it). Perform the addChannel operation by assigning appropriate values in
the configuration wizard.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 192

5. The add channel ‘function’ is visible to the user at the end of performing the add
channel operation. A User can modify the link configuration by performing the
editLinkConfiguration operation. All offline operations can be performed here
while corresponding operations are performed at appropriate locations.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 193

12.3.2 Configuring Through the FMQ Login
1. To configure the StandAloneBridge through the FMQ login, change the RMI

ConnectorPort to the port on which the Bridge is running. By default, the
ConnectorPort is 1858. Change the ConnectorPort to 1899 for
StandAloneBridge. Log into the FMQ server through Studio.

2. After logging into the FMQ server, right-click on the Bridge and click the Add
Link option from the pop-up menu. The New Link Properties dialog box is
displayed.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 194

3. In the New Link Properties dialog box, click the show expert properties icon
(which is yellow in color) displayed at the top of the property sheet.

All the required properties are shown on the property sheet.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 195

• Add the appropriate values to the required properties. Server Advanced Params’
can remain empty. Studio will display the new configurations. Detailed
configurations are shown only if show expert property is enabled.

4. Right-click on the new link and perform the add channel operation.

5. Assign the appropriate valued through the input wizard. Properties are non
editable. Once the configuration is added, a User is unable to edit parameter
values. If the User needs to alter these values then the link or the channel should
be deleted and replaced with a link and/or a channel that has the required
parameters.

12.4 Configuring FioranoMQ Bridge for other Messaging Servers

The next section explains the steps needed to configure the FioranoMQ Bridge connecting the
FioranoMQ with other messaging servers.

Note: Tested using the following versions of other vendors

• ActiveMQ 5.3

• Jboss 5.0.1GA

• MQSeries 7.1

• MSMQ version 3

• OpenMQ 4.4

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 196

12.4.1 To Configure the Bridge

Execute the following steps:

Rename the configuration .xml file as Configs.xml. FioranoMQ ships the following .xml files to
configure the FioranoMQ Bridge with other messaging servers:

• Bridge(Jboss).xml

• Bridge(ActiveMQ).xml

• Bridge(OpenMQ).xml

• Bridge(ibmMQ).xml

• Bridge(Tibrv).xml

• Bridge(TibEms).xml

• Bridge(MSMQ).xml

These xml files are available in the fmq\profiles\StandAloneBridge\conf directory in the
FioranoMQ installation package.

Note: Since FioranoMQ's 2008SP2 release, a text based configuration file called Configs.cfg
has been added to the fmq\profiles\StandAloneBridge\conf folder. For more information
on this, please refer to Chapter 2 of FioranoMQ Getting Started guide. This file has not yet
been modified to automatically provide configurations when Fiorano's Bridge is used to
connect to other vendors. When FioranoMQ server boots up, configuration parameters are
picked up from the Configs.cfg file. It is mandatory that the Configs.cfg file be renamed so
as to avoid undesirable results. Parameters will be picked up only from the Configs.xml file.

Configuration Steps

The StandAloneBridge profile comes up with a set of pre-configured Bridge links between the
FioranoMQ server and other JMS vendors. The configuration steps below can be applied to any
of the above .xml files for sending messages from one server to another.

FioranoMQ StandAloneBridge can be used by JMS providers supported by FioranoMQ.

• The default Configs.xml file links two FioranoMQ servers transferring messages from
one Queue to a different Queue. In order to use the pre-configured configuration file
Bridge (SonicMQ).xml, please rename this file as Configs.xml.

Each configuration file links a Queue formed in the FioranoMQ server to a Queue formed in the
corresponding non-FioranoMQ messaging server. [

Open the StandAloneBridge profile through the Fiorano Studio to configure the links or to
check the configuration of the FMQToSonicMQ (considering Bridge()SonicMQ.xml file)
links.

• Each link is configured with a 'Source Server' and a 'Target Server' along with
connection information (connectionInfo as in the diagram) as well as a Channel, as
shown in the figure below:

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 197

The 'SourceServer' component is configured as FioranoMQ and does not require additional
parameters.

The 'TargetServer' component is configured for the 'SonicMQ' server with 5 additional (Name,
Value) pair parameters. Please note that a new parameter can be created by right-clicking on
'ConnectionInfo' and selecting the 'Add Parameter'. By default NO Parameters are added to a
new Link.

The Channel component should have SrcQueue (FioranoMQ) and the TargetQueue (SonicMQ).

Add the following jars to the fmq.conf file under '<java.classpath>' tag with their path set to:

• mfcontext.jar

• sonic_Client.jar

Please note that the vendor's client jars and libraries should be in the classpath that is
defined at the time of running the FioranoMQ Bridge. Modify the fmq.conf file available in the
fmq\bin directory of the FioranoMQ installation package.

Under the java.classpath tag there are different sets of jar files for each vendor. Uncomment
the set of files corresponding to the vendor after modifying it to point to the right path.

• Start the FioranoMQ server and then start the
SonicMQ/JBoss/OpenMQ/ActiveMQ/IBM MQ/Tibrv messaging servers.

• Test the Bridge by running the samples while taking care of the source and target
servers.

• The Bridge can be configured either offline or online using the Admin Studio.

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 198

12.4.1.1 MSMQ Instructions

In the MSMQ Bridge, private Queues can be created only on the local computer. Queue name
in the Configs.xml file should be private$\QueueName. Public Queues can be created only
when the MSMQ installed computer is in the domain since public queues use Active Directory
Services provided by the domain controller. Public queues can be created on local and as well
as remote computers with Queue names as QueueName in the Configs.xml file.

12.4.1.2 OpenMQ Instructions

In the OpenMQ bridge, configure Object store and add the administrated objects (Connection
Factory and Destination) which are to be used. In the default Setting of the
Bridge(OpenMQ).xml, the connection factory used is- MyConnection Factory and the
Destination used is MyQueue. therefore, prior to running the Bridge profile, add the two
objects in the object store. Create this destination or any other destination to be Bridged on
the OpenMQ broker. For more information on configuring OpenMQ refer to:
http://docs.sun.com/app/docs/doc/819-7755/6n9m8u57v?a=view#aeoay.

Note: If the ForeignMQ version is supported on jdk1.6 or later versions, change the
environmental variable (JAVA_HOME and JDK_HOME) accordingly. Windows system provides
the new JAVA_HOME path in fiorano_vars.bat.

12.4.1.3 JBoss Messaging Instructions

JBoss Messaging supersedes JBoss MQ as the default Java Message Service (JMS) provider in
JBoss Application Server (JBoss AS) 5. The jars to be added in the classpath while starting
FioranoMQ Bridge are, therefore, slightly different for JBoss Messaging. These jars are:,

• $JBOSS_HOME/client/jboss-messaging-client.jar

• $JBOSS_HOME/client/jnp-client.jar

• $JBOSS_HOME/client/jboss-aop-client.jar

• $JBOSS_HOME/client/xmlsec.jar

• $JBOSS_HOME/client/jboss-serialization.jar

• $JBOSS_HOME/client/jboss-mdr.jar

• $JBOSS_HOME/client/jboss-logging-spi.jar

• $JBOSS_HOME/client/jboss-remoting.jar

• $JBOSS_HOME/client/trove.jar

• $JBOSS_HOME/client/javaassist.jar

• $JBOSS_HOME/client/concurrent.jar

• $JBOSS_HOME/client/log4j.jar

Note: JBOSS_HOME is the location where JBoss AS is extracted/installed.

http://docs.sun.com/app/docs/doc/819-7755/6n9m8u57v?a=view#aeoay�

FioranoMQ 9 Handbook

Chapter 12: Bridge Page 199

The JBoss Messaging queue specified in the Configs.xml of the FioranoMQ Bridge profile must
exist. This can be done by editing the file
$JBOSS_HOME/server/default/deploy/jms/jbossmq-destinations-service.xml to
include the queue with the appropriate properties. For example, to create testQueue with
permission for Users to send messages on it, the following Mbean must be added:

 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=testQueue"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-
name="ServerPeer">jboss.messaging:service=ServerPeer</depends>

 <attribute name="SecurityConfig">
 <security>

 <role name="publisher" read="true" write="true" create="false"/>

 </security>

 </attribute>

 <depends>jboss.messaging:service=PostOffice</depends>

 </mbean>

FioranoMQ 9 Handbook

Chapter 13: Dead Message Queue Page 200

Chapter 13: Dead Message Queue

This section of the document provides instructions on enabling DMQ and expired message
notifications.

13.1 Editing Global/Default DMQ Configuration
• Launch Fiorano Studio and open the appropriate profile through the Profile Manager

• The tree displayed shows all the queues and topics created under the node ptp ->
queues is displayed.

Note: The queues are shown in off-line mode only if the server has been started with the
same profile at least once before.

• Navigate to Fiorano -> mq -> ptp -> QueingSubSystem.

• DMQ related properties that are editable through the properties panel of this node are
listed in the table below:

S.No Parameter Description

1 DMQExpiryTime
The amount of time (in milliseconds) thatmessages
live on DMQ.

2 CleanupDmqAtStartup
If set to Yes, all DMQ messages are deleted upon
server startup.

3 EnableDMQOnAllQueues
Boolean value of DMQ status (yes/no) for all queues
that have the DMQEnabled property configured to
“Default”.

FioranoMQ 9 Handbook

Chapter 13: Dead Message Queue Page 201

13.2 Disabling DMQ on the message level

An application can disable the DMQ function on a ‘per message’ basis by invoking the API,
below, on a message prior to sending the message.

public void setStoreWhenDead(boolean value)

 throws FioranoException

Note: Since this is a proprietary API, using it requires that the application include the import
statements below:

import fiorano.jms.services.msg.def.FioranoMessage;

import fiorano.jms.common.FioranoException;

This API is effective only when the DMQ is enabled. If DMQ is not enabled, using this API with
the boolean value set to true will not have any effect.

13.3 Enabling Notifications for Expired Messages
• Launch Fiorano Studio and open the appropriate profile usingthe Profile Manager

tab.

• The tree displayed shows all the queues and topics created under the node ptp ->
queues & pubsub -> Topics, as shown in the figure below.

Note: The queues are shown in the off-line mode only if the server has been started
with the same profile at least once before.

• Navigate to Fiorano -> mq -> ptp -> QueingSubSystem, as shown in the figure below,
and edit the property EnableNotificationsOnDeadMessage.

FioranoMQ 9 Handbook

Chapter 13: Dead Message Queue Page 202

13.4 Subscribing to Notifications for Expired Messages

When a message expires, the server, if configured (as above), publishes a notification in the
form of a JMS Text message on a system topic named ADMINISTRATOR_TOPIC. In order to
receive this notification, a simple Subscriber can be created on this topic as per the JMS
Semantics.

13.5 Disabling Expiry Notifications on a message level

An application can disable the notification function on a ‘per message’ basis by invoking the
following API on a message before sending the same.

public void setNotifyWhenDead(boolean value)

throws FioranoException

Note:

Since this is a proprietary API, using it requires that the application include the import
statements below:

import fiorano.jms.services.msg.def.FioranoMessage;

import fiorano.jms.common.FioranoException;

This API is effective only when the DMQ and the ‘notification’ are enabled on the queue.

FioranoMQ 9 Handbook

Chapter 14: Named Configuration Page 203

Chapter 14: Named Configuration

Named configurations are predefined configurations that are assigned a name and stored for
later reuse. These named configurations ease the process of Event Process Orchestration and
Change Management within the Fiorano Event Processes. For example, if a particular
connection configuration for SMTP or JMS components is reused in multiple Event Processes,
each such Service Instance will have its own copy of the configuration. If a change in
configuration is required at a later point of time, then all such Service Instances have to be
reconfigured. Using named configuration support, configurations can be predefined and the
name of the predefined configuration can be linked/transferred to all Service Instances. Since
the actual configuration has only one location but is referred to by multiple Service Instances,
making changes to the named configuration will affect all Service Instances automatically
(without the need to reconfigure the Service Instances again). The route
messaging/selector/transformation configuration, port messaging/workflow configuration and
runtime arguments/connection factory properties of service instances follow the same principle
stated above.

Terminology

Below is a glossary of terms used in this Chapter.

Term Used Meaning

Named Configuration /
Named Object

A name-value pair that stores the configuration given against the
name specified

Registry A location within which all named configurations are stored

Artifact An artifact can refer to any entity in an Event Process that
requires configuration. For example, service instances, routes,
ports are some artifacts.

FioranoMQ 9 Handbook

Chapter 15: Hierarchical Topics Page 204

Chapter 15: Hierarchical Topics

15.1 Creating a Hierarchical Topic

15.1.1 Admin API

The User can create Hierarchical Topics with the help of AdminAPIs. The code snippet below
demonstrates the process of the creation of topics in Hierarchical name spaces.

Note:

1. Queue, Topic and ConnectionFactory names cannot have any of these characters * #
\\ / : | ? " < >

2. To create a Topic, it is necessary that the parent to the topic exists:

To create a Topic, it is necessary that the parent to the topic exists:

public void testHierarchicalTopics ()

{

// create the initial context and connect to FioranoMQ 9

Hashtable env = new Hashtable ();

env.put (Context.SECURITY_PRINCIPAL, "anonymous");

env.put (Context.SECURITY_CREDENTIALS, "anonymous");

env.put (Context.PROVIDER_URL, "http://localhost:1856");

env.put
Context.INITIAL_CONTEXT_FACTORY,"fiorano.jms.runtime.naming.FioranoInitialContextFactor
y");

InitialContext ic = new InitialContext (env);

System.out.println ("Created InitialContext:: " + ic);

MQAdminConnectionFactory acf =

(MQAdminConnectionFactory) ic.lookup ("primaryACF");

MQAdminConnection ac = acf.createMQAdminConnection ("admin", "passwd");

System.out.println ("Created Admin Connection...");

FioranoMQ 9 Handbook

Chapter 15: Hierarchical Topics Page 205

MQAdminService adminService = ac.getMQAdminService ();

System.out.println ("Received handle to Admin services:: " + adminService);

// Create a topic named primaryTopic.subTopic1

String topicName = "primarytopic.subtopic1";

TopicMetaData tMetaData = new TopicMetaData();

tMetaData.setName (topicName);

adminService.createTopic (tMetaData);

Topic topic = (Topic) ic.lookup (topicName);

System.out.println (“Looked up the Hierarchical Topic “, topic.getName());

//create a topic named primarytopic.subtopic2

String topicName = "primarytopic.subtopic2";

TopicMetaData tMetaData = new TopicMetaData ();

tMetaData.setName (topicName);

adminService.createTopic (tMetaData);

topic = (Topic) ic.lookup (topicName);

System.out.println (“Looked up the Hierarchical Topic “, topic.getName());

}

15.1.2 Studio

The User can create Hierarchical Topics with admin Studio. To create hierarchical topics with
studio, follow the steps below:

3. Launch Fiorano Studio and connect Studio to the FioranoMQ Server.

4. To create a topic, navigate to the Topics sub node under the Destinations node of
the tree

5. Right-click on the Topics node and select Add Topic

FioranoMQ 9 Handbook

Chapter 15: Hierarchical Topics Page 206

The window below is displayed:

6. Enter the Destination parameter and other relevant parameters necessary for the
creation of the topic. In this example, the Topic name is ABC.1

FioranoMQ 9 Handbook

Chapter 15: Hierarchical Topics Page 207

Note: For the creation of topicName ABC.1, a parent topic should exist. In the
absence of ABC, the following error is displayed on the console:

7. In the same manner, the user can create the topics hierarchy

Once a hierarchy is created, all the topics are displayed in the Topic List.

FioranoMQ 9 Handbook

Chapter 15: Hierarchical Topics Page 208

15.2 Deleting a Hierarchical Topic

Deletion of a topic/subtopic from the hierarchical name space depends on the value of the
parameter AllowDeletionOfSubTopics, which can be configured through Fiorano Studio. If
this value is set to true, then deletion of a topic/subtopic deletes all the children of this
topic/subtopic. However, if it is set to false, the following exception is raised, indicating that
the User needs to first delete the children of the topic/subtopic before deleting the topic itself.

By default, this variable is set to false. Follow the steps given below to delete a hierarchical
topic\subtopic.

1. Start Fiorano eStudio/Studio and login to FMQ-JMX

2. Select the Topic config from JMX Connection-->Fiorano-->mq-->PubSub--
>Topic-->${TopicName}-->config

3. Enable the value of the parameter named AllowDeletionOfSubtopics
(GeneralPropeties) by setting it up to TRUE from the drop-down list.

FioranoMQ 9 Handbook

Chapter 15: Hierarchical Topics Page 209

15.3 Setting up Security on a HT

FioranoMQ supports ACL settings for Hierarchical topics. An ACL can be set for any topic,
irrespective of the level at which the topic exists. These ACLs are checked at the time of
creating a publisher as well as at the time of creating a subscriber. While creating a subscriber
on multiple topics (a topic that involves a template character in its name), the ACLs of all
subtopics are also checked. In addition, the subscriber is modified so that it does not receive
messages from subtopics that have a negative permission set for that particular User.

15.4 Looking Up a HT

A client application can look up a topic in the FioranoMQ Server using either JNDI APIs or a
bound object of type FioranoInitialContext. Criteria for looking up Hierarchical topics are given
below:

15.4.1 Wild Characters * or #

The topic being looked up contains a wildcard character ‘*’ or ‘#’ with any number of
delimiters. A delimiter (.) can not be the last character of a topic name that is looked up.

The look up call succeeds only if the root topic has been created by the administrator at an
earlier stage. If the topic being looked up contains a ‘*’ or ‘#’ then this call is successful only
when there is at least one topic existing in the server whose name matches the criterion. For
example: If the user tries to look up “primarytopic.a.*” or “primarytopic.a.#” then the look up
call is successful only if “primarytopic.a” exists.

15.5 Prerequisites

In FioranoMQ Hierarchical Topics support, the user can create a subtopic in a hierarchy on a
server that is running. For dynamic topic creation support, Events should be turned when the
server is running.

15.5.1 Events to be turned on for dynamic topic creation support

If a topic is created on a running server instance and its name matches any subscription
expressions (if they exist) then this topic becomes a member of the maintained hierarchy for
subscription on Hierarchical topics.

Example

Subscription expression: ABC.*

Topics existing on the system: ABC, ABC.1, ABC.2, ABC.1.1

A subscriber looks up a topic with the expression ABC.* and receives messages from matching
topics. At runtime a new topic named ‘ABC.3’ (which does not exist in the created hierarchy) is
created. This new topic becomes part of the hierarchy and published messages on ABC.3 are
also received by the Subscriber created on ABC.*.

FioranoMQ 9 Handbook

Chapter 15: Hierarchical Topics Page 210

15.6 HT Limitations

Topic names cannot contain a wildcard character. For subscription expressions, no other
template character (‘*’ ‘or’ # with any number of dots “.”) is used. Usage of any other
template character throws an exception in the look up call. All attempts to delete hierarchical
topics are successful whether or not the topic has active publishers/subscribers present. It is,
therefore, important to be careful so as not to delete hierarchical topics while they contain any
active publishers or active subscribers.

A publisher cannot publish on multiple topics. A publisher has to specify the complete name of
the hierarchical topic on which it wants to publish data. Creation of a publisher on a topic,
which contains an asterisk ‘*’, throws an exception. Similarly, an exception is thrown if a
publisher tries to publish on a topic which contains an asterisk ‘*’. If a subscriber subscribes
on hierarchical topics with a subscription expression and, while receiving messages, the
administrator changes the ACL of one of the children of the hierarchy, then the subscriber will
not be affected by this change. However, all new subscribers with a subscription expression
will be affected.

There is a performance degradation associated with hierarchical topics. Users are, therefore,
advised not to use hierarchical topics for applications where performance is a major
requirement.

1. A Hierarchical Topic is not supported by the following flags:

• UseOptimizedTCPReceive = true

• This implies that the Hierarchical Topic is not supported by the 7.2 runtime Layer.

2. Un-subscription for Hierarchical topics does not work. The User has to unsubscribe the
subscribers created on behalf of hierarchical support manually, through Studio.

FioranoMQ 9 Handbook

Chapter 16: Snooper Page 211

Chapter 16: Snooper

This section of the document provides detailed instructions regarding the Snooper function in
FioranoMQ.

16.1 Editing the Snooper Configuration on a Destination

16.1.1 Editing the snooper Configuration on a Destination in the Offline Mode

For information about configuring profiles through a text based file, refer to FioranoMQ Getting
Started.

1. Launch Fiorano Studio and open the required profile for offline editing through the
Profile Manager tab. The tree displayed shows all queues and topics created under
the node ptp and pubsub as shown in the figure below.

2. Navigate to QueuingSubSystem or TopicSubSystem and edit the property
EnableSnooperOnAllQueues or EnableSnooperOnAllTopics entering the value
required.

3. Right-click the profile and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 16: Snooper Page 212

16.1.2 Editing the snooper Configuration on a Destination in the Online Mode
1. Launch the Admin Studio and connect to the appropriate Server through the Server

Explorer pane.

2. Select the Snooper node in the tree, right-click and select Add /Remove
Destinations from the pop-up menu. The Add/Remove dialog box is displayed
showing all the destinations for which Snooper is currently configured.

FioranoMQ 9 Handbook

Chapter 16: Snooper Page 213

3. Click on the Add button and another dialog box Add... is displayed showing the
remaining destinations for which snooper is displayed.

4. Select the desired destination(s) (multiple selections are allowed by pressing the Ctrl
key on the keyboard) and then click the OK button.

5. Right-click on the FMQ node and select Save Configurations from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 16: Snooper Page 214

16.2 Viewing Snooped Messages

16.2.1 Studio
1. Launch Admin Studio and connect to a FioranoMQ Server through the Server

Explorer Pane.

2. Select the Snooper node in the tree and right-click and select Snoop Messages from
the pop-up menu as shown in the figure below,.

FioranoMQ 9 Handbook

Chapter 16: Snooper Page 215

3. This opens a new window displaying Snooped messages.

4. Selecting a message in this window displays all the properties as well as the body of
the incoming message.

Note:

• To verify this setup, right-click on a queue (that has Snooper enabled) and select
produce a message. This message should be visible in the Snooper window
described above.

• The parameter MaximumBufferSize refers to the maximum amount of data that
Studio holds for viewing. If the total data being stored exceeds this value, it clears
the existing messages (or clears new incoming messages if the checkbox Discard
Incoming Messages if buffer full is checked).

16.2.2 Programmatically

If an application Snoops messages on a destination, it needs to create Subscriber(s) on the
System Snooper Topic, which is:

SYSTEM_MESSAGE_SNOOPER_QUEUE

The subscriber gets all messages published on a topic or a queue that has Snooper configured

on it.

FioranoMQ 9 Handbook

Chapter 16: Snooper Page 216

16.3 Editing the Default (Global) Configuration

16.3.1 Editing the Default Configuration in the Offline Mode
1. Launch Fiorano Studio and open the Profile Manager. Right-click on the Profiles

node and select Open Profile from the pop-up menu. Select the required profile and
click on the Open button.

2. In the component tree select the bean under the pubsub node as shown in the figure
below.

3. Edit the parameter EnableSnooperOnAllTopics by entering the value required in
the Properties Panel.

4. In the tree shown in the figure above select the bean corresponding to ptp.

5. Modify the parameter EnableSnooperOnAllQueues as required in the Properties
Panel.

6. Right-click the FioranoMQ node and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 16: Snooper Page 217

16.3.2 Online Mode
1. Launch the Admin Studio and connect to a running FioranoMQ Server through the

Server Explorer pane.

2. From the tree shown in the figure below, navigate to the Snooper node and click on it.

3. Modify the values of the parameters Queues Snoopable and Topics Snoopable as
shown in the figure below.

FioranoMQ 9 Handbook

Chapter 16: Snooper Page 218

16.4 Snooping Related Admin APIs

Almost all Snooper configuration settings can be accessed or edited through a program using
Admin APIs. For an application to access this function, it must create an admin connection and
obtain a reference for the MQSnooperService. The steps in establishing this connection are
given below:

// Lookup Admin Connection Factory

AdminConnectionFactory acf =

(AdminConnectionFactory) ic.lookup (“primaryACF”);

// Create Connection

MQAdminConnection ac = acf.createAdminConnection (“admin”, “password”);

// Get MQ Snooper Service

MQSnooperService snooperService = ac.getSnooperService ();

// do the desired operations through snooper Service

Details of APIs available in the Snooper Service can be found in Java Docs supplied along with
the FioranoMQ installer.

FioranoMQ 9 Handbook

Chapter 17: Message Journaling Page 219

Chapter 17: Message Journaling

Message Journaling is a FioranoMQ 2009 feature that allows an application to replicate the
messages arriving at a destination to a destination of a similar ‘type’. For example, if
messages are sent to a Queue named 'PRIMARYQUEUE' and 'MessageJournaling' is enabled on
this queue, then all the incoming messages are replicated and then sent to a journaling
destination, say 'JOURNAL_PRIMARYQUEUE', which is also a Queue.

17.1 Using Message Journaling Feature

Message Journaling essentially means to copy a message from one destination to another
destination of similar ‘types’. So, when Journaling is enabled, a console-based application can
be written in order to consume messages from the original destination as well as from the
journaling destination. This application can programmatically receive the original produced
message and inspect this message in any manner required.

17.2 Configuring Message Journaling

17.2.1 Enabling Journaling flag

In order to replicate messages on a destination, the Journaling function on that destination
has to be turned ON. This can be done through Studio in online mode or from the Fiorano
Web Management Tool. Given below is the procedure that can be followed to enable
journaling on Queues. Similar procedures can be followed for Topics also.

17.2.1.1 Online Mode

1. Launch Admin Studio and connect to a FioranoMQ 9 Server that is running through
the Server Explorer pane.

2. Navigate to QueueingSubSystem node and right-click on it. From the list of APIs
displayed, select setEnableJournalingOnQueue(queueName, enableJournaling).

3. Modify the values of the parameters queueName and enablejournaling as shown in
the figure below.

FioranoMQ 9 Handbook

Chapter 17: Message Journaling Page 220

4. Click the Close button.

To use the Web Management Tool, click on JMX > ConfigureFMQServer and go through
the path Fiorano > mq > ptp > PtPManager > QueueingSubSystem to click on the
Operations tab. Call on the operation setEnableJournalingOnQueue and set the values
for the parameters queueName and enablejournaling.

17.2.2 JournalingQueuePrefix Parameter

An additional parameter used in the MessageJournaling, that is,
JournalingQueuePrefix/JournalingTopicPrefix. This is used as the prefix for a name when
creating Journaling destination for a particular destination. This can be configured from Studio
in both Offline and Online modes. As an example, if the prefix is JOURNAL_, and is its default
value as well, then the journaling destination corresponding to the PRIMARYQUEUE will be
JOURNAL_PRIMARYQUEUE.

17.2.2.1 Online mode

1. Launch Admin Studio and connect to a FioranoMQ Server through the Server
Explorer pane.

2. Navigate to the QueueingSubSystem and select the config node, as shown in figure
below.

3. Modify the values of the parameter JournalingQueuePrefix.

FioranoMQ 9 Handbook

Chapter 17: Message Journaling Page 221

For setting the JournalingTopicPrefix parameter through Studio in the online mode login to
the FioranoMQ server using the FMQ-JMX login. Go to Fiorano > mq > pubsub >
PubSubManager > TopicSubSystem > config and set the JournalingTopicPrefix flag to
'JOURNAL_'.

17.2.2.3 Offline mode

1. Launch the Fiorano Studio and open the Profile Manager. Right-click the Profiles
node and select Open Profile from the pop-up menu. Select the required profile and
click on the Open button.

2. Navigate within the component tree to select the bean under the ptp >
QueueingSubSystem node.

3. In the properties panel, edit the parameter JournalingQueuePrefix entering the
required value.

4. Navigate within the component tree to select the bean corresponding to pubsub >
TopicSubSystem node.

5. In the properties panel, edit the parameter JournalingTopicPrefix entering the
required value.

6. Right-click the node and select Save from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 17: Message Journaling Page 222

Note: By default, on System Topics, such as SNOOPER TOPICS
(SYSTEM_MESSAGESNOOPER_QUEUE and SYSTEM_MESSAGESNOOPER_TOPIC) and Events
Topic (EVENTS_TOPIC), message journaling is COMPLETELY DISABLED. The user cannot
Enable/Disable the EnableJournaling flag on these topics.

Note: By default, the EnableJournaling flag is set to FALSE for each destination in the Server.

17.3 Message Journaling with HA

If using Message Journaling with HA (Replicated or Shared), the EnableJournaling flag must be
enabled at both the PRIMARY as well as the SECONDARY HA servers beforehand to avoid any
message loss during failovers.

This is because, when the EnableJournaling flag is enabled through online/offline mode on a
queue which is in the ACTIVE server, the configurations will not be replicated to the PASSIVE
server. The journaling status for the queue in the PASSIVE server will remain false. Untill
Journaling is enabled for the Queue in the 'ONCE PASSIVE NOW ACTIVE' server, the messages
that are sent to this queue are not 'journaled' and message losses can be observed in the
Journaling Queue. Therefore, the flag must be enabled, explicitly, prior to starting the servers
to avoid message losses.

This can be done by making the following changes in the Configs.cfg file of both the HA
servers. This is the block defining the destination parameters for the queue 'PRIMARYQUEUE'.

FioranoMQ 9 Handbook

Chapter 17: Message Journaling Page 223

ObjectName=Fiorano.mq.ptp.Queues:Name="PRIMARYQUEUE",ServiceType=Queue,type=con
fig

ClassName=fiorano.jms.common.config.QueueConfig

EnableJournaling=true // This must be newly added/uncommented before starting servers.

ObjectName=Fiorano.mq.ptp.Queues:Name="PRIMARYQUEUE",ServiceType=Queue,type=con
fig

17.4 Points to Remember
• When the EnableJournaling flag is set to true on a destination, for example

SAMPLE_DEST, a new Journaling destination is created in the FioranoMQ server. All
incoming messages to the SAMPLE_DEST destination are replicated to the new
journaling destination.

• The file storage ‘type’ for this new journaling destination is dependent on the
configurable parameter 'DefaultStorageTypeForQueues/DefaultStorageTypeForTopics'
which is present in Queue/Topic at the Subsystem level.

o Take the example of enabling Journaling on the queue SAMPLE_QUEUE which
has the default File-based message storage. Reset the parameter from
'DefaultStorageTypeForQueues' to 'rdbms'. It may be necessary to enable the
flag 'EnableRDBMS' and specify the RDBMS parameters in the profile. Please
refer to Chapter 6 Configuring Message Store for more information.

Set the flag EnableJournaling on the SAMPLE_QUEUE by following the
procedure mentioned in the previous sections. This will create the Journaling
Destination JOURNAL_SAMPLE_QUEUE which has the RDBMS based message
store.

Similarly, a File based storaged journaling queue can be created for a RDBMS
based queue.

• By default, the EnableJournaling flag is set to ‘false’ for each destination in the
FioranoMQ server and thus WILL NOT effect the performance of the MQ server when it
is in the default mode. When the EnableJournaling flag is enabled, the performance of
the MQ server is decreased significantly since this enables replicating all messages
targeted on a destination to a different destination.

• Security ACLs are pre-defined for Journal Destinations based on the flag
'CreateDefaultACL' of Fiorano -> etc -> FMQConfigLoader. For more information on
this parameter and on Security refer to Chapter 2 of FioranoMQ Reference Guide and
Chapter 7 FioranoMQ Security. If this flag] is set to ‘true’, the default ACL is set is
not set to ‘true’, no ACL is defined for the Journaling destination. They behave
normally like any other newly created destination in the Server.

• Persistent as well as Non-persistent messages can be journaled to a journaling
destination.

• The EnableJournaling property is basically set at the destination level in the Server.
Irrespective of the ‘types’ of subscribers created (Durable/Non-Durable) on particular
topics, the incoming messages to a Topic are journaled to a different topic, if the
'EnableJournaling' flag is set to ‘true’.

FioranoMQ 9 Handbook

Chapter 17: Message Journaling Page 224

• Various FioranoMQ features such as Large Message support, Context Based Routing,
XA etc work as expected in case of Journaling destinations.

• When EnableJournaling is enabled on a Queue, messages will be persisted, if
necessary, for the Journaling destination as well. Therefore, these messages need to
be consumed immediately or the disk space will decrease at twice the normal rate
compared to when EnableJournaling is not enabled.

• This feature can be used when an administrator needs to Snoop all the messages that
are incoming on a destination of any ‘type’. This is different from the EnableSnooper
function, which is supported on both Queues and Topics.The messages Snooped on all
destinations will be replicated onto a single topic. By using this feature messages will
be replicated to a destination of a similar ‘type’.

FioranoMQ 9 Handbook

Chapter 18: Last Value Caching Page 225

Chapter 18: Last Value Caching

18.1 Introduction

This feature is based on requirements that come from the pricing infrastructure world. To
elaborate more, in the pricing world the last-value cache is based on a record with multiple
fields. A pricing update message may only update at most all fields in this record, identified by
keys for fields, which are analogous to updating a row in a database table. Applications
registered to the trading broker receive the messages as sent, but when a new application
comes along, the first thing it gets from the broker is the complete record (as cached at the
time of subscription) followed by the messages updated to the record. This enables trading
applications to easily build upon the latest or current trend of trading and thereon to join the
stream.

In FioranoMQ context, this is analogous to - each JMS Topic can be used to store the last-
value cache or a snapshot of data that can be viewed as current data and each new client
subscriber application will obtain the current snapshot first and then get updates to whatever
was in the snapshot on an ongoing basis. It should be noted that each update message,
before being sent to the subscribers on a particular Topic on which Last-value caching is
enabled is also stored in the last-value cache for that Topic.

It should be noted that the snapshot is simply a set of JMS messages, exactly as they were
sent by the JMS MessageProducer.

18.2 Configuring Last-value Caching

In FioranoMQ, last-value caching can be enabled on a JMS Topic. This section explains how
this can be configured and thereby used along the various parameters used to enable and
support last-value caching on the FioranoMQ Topics. All the related configurations for this
feature are done either at the Topic Subsystem Level or at the Topic Level. Below description
and corresponding figures explain how a parameter can be configured at the Topic Subsystem-
Level and Topic-Level using Fiorano Studio. The same configuration can also be done from the
Topics tab of the FioranoMQ Web Management Console, procedures are detailed in the
corresponding chapter for Web Console.

To modify a parameter at the Topic Subsystem-Level in FioranoMQ Server Online mode, follow
the steps described below:

1. Launch Fiorano Studio using the executable (bat/sh) from
%INSTALLER_HOME%/Studio/bin.

2. Make sure that the FioranoMQ Server process is running.

3. Login to the FioranoMQ Server using FMQ-JMX after providing the necessary Host
Address, RMI Port, User Name and Password.

4. Navigate to JMX Connection > Fiorano > mq > pubsub > PubSubManager >
TopicSubSystem > config.

FioranoMQ 9 Handbook

Chapter 18: Last Value Caching Page 226

5. Select the required parameter and modify the value in the right-side parameters
panel.

Figure: Topic Subsystem-Level Configuration

To modify a parameter at the Topic-Level in FioranoMQ Server Online mode, follow the steps
described below:

1. Launch Fiorano Studio using the executable (bat/sh) from
%INSTALLER_HOME%/Studio/bin.

2. Make sure that the FioranoMQ Server process is running.

3. Login to the FioranoMQ Server using FMQ-JMX after providing the necessary Host
Address, RMI Port, User Name and Password.

4. Navigate to JMX Connection > Fiorano > mq > pubsub > Topics > Topic >
%TOPIC_NAME% > config.

FioranoMQ 9 Handbook

Chapter 18: Last Value Caching Page 227

5. Select the required parameter and modify the value in the right-side parameters
panel.

Figure – Topic-Level Configuration

18.2.1 Parameters used for Last-value Caching

18.2.1.1 EnableLastValueCache

Identifies the topic as being capable of caching a snapshot of messages which will be delivered
to all new subscribers of the topic. This parameter can be configured at the Topic-Level
following the way described in the earlier section of this chapter.

18.2.1.2 CacheKeyPropertyName

Message header property name that contains the Key (String) under which the message will
be cached. This parameter determines the property name used to define the last-value cache
Key in the JMS Message using which the message is stored in the Topic's last-value cache.

18.2.1.3 CachePropertyName

Message header property name that contains a Boolean value instructing the broker to add or
remove from the cache any message under the specified Key. This parameter determines the
property name used to define whether the JMS Message should be considered to be stored in
the Topic's last-value cache.

FioranoMQ 9 Handbook

Chapter 18: Last Value Caching Page 228

18.2.1.4 ParConsumptionLVCache

This parameter determines whether to enable parallel consumption of last-value cache
messages from Subscriber's copy. When the Subscriber is created, it initiates a creation of
Subscriber's copy of the Topic's last-value cache. If set to false (default), the consumption of
messages will start only after the Subscriber completely creates the Topic's last-value cache
copy. If set to true, the time the copy is created, a parallel mechanism is enabled to consume
the messages from the Subscriber's last-value cache copy.

Note: The total time taken to create the Subscriber's copy of Topic's last-value cache might
be slightly higher when this parameter is set to true. This is because, in this case, the access
to the Subscriber's copy is shared in mutually exclusive manner between the push and pop
operations on the Queue data structure that is being used as copy.

18.2.1.5 LoadLVCIndicesAtLookup

This parameter determines the instance when the last-value cache indices are read from the
file storage into the Server's in-memory buffer. These indices are stored in a Hash structure to
uniquely identify the current portfolio of a particular equity. For example, if set to true, the
last-value cache indices are loaded at the time of the Topic lookup and when set to false,
these are loaded at the time when the MessageProducer sends the first JMS Message to the
Topic.

18.2.1.6 IgnoreNullLVCKey

This parameter determines whether to ignore the message sent to a JMS Topic on which last-
value cache is enabled with cache-key property not set. This key is set in the JMS Message
Header as a property with name defined by CacheKeyPropertyName. If this parameter is set to
true, the JMS Message will be ignored at the time of caching, but will be sent to the listening
subscribers on the Topic. If this is set to false, an exception is thrown if the message has no
cache-key set.

Note: This is particularly useful when sending Persistent messages on the Topic, since the
Exception needs to be propagated to the JMS MessageProducer so that necessary steps can be
taken accordingly.

18.2.1.7 FlushLVCDataAtStartup

This parameter determines whether to clean-up LVC data stores at the time of start-up of the
FioranoMQ Server. This parameter accepts boolean values - 'true' or 'false'. Default value is
'false', which means that when the messages stored in the last-value cache are not deleted
and any new Subscribers will get those messages.

Note: This flag can be used to potentially start the last-value caching afresh and to flush the
data stored in the Topics' last-value cache after the Server's each run.

FioranoMQ 9 Handbook

Chapter 18: Last Value Caching Page 229

18.3 Using Last-value Caching

Producer Applications should be changed to use Last-value caching on a Topic. This section
explains the procedure with an example. Consider a Topic named STOCK_UPDATES is
configured with last-value caching enabled. The following properties are set on it:

• EnableLastValueCache: true

• CacheKeyPropertyName: (left as default LVCacheKey)

• CachePropertyName: (left as default IsLVCache)

The MessageProducer that currently generates STOCK_UPDATE messages is modified as below
to add two new properties to each JMS Message being placed on the Topic.

1. Producer calls message.setStringProperty(“LVCacheKey”, “COM-1”); where “COM-1” is
the identifier of the equity.

2. Producer calls message.setBooleanProperty(“IsLVCache”, true); using true if the
holding amount is > 0, or false otherwise.

The producer can implement the rule that if holding value is 0, the equity should no longer be
considered part of the portfolio. If it is > 0, then the equity is part of the portfolio. With the
pseudo-code above, the last-value cache on the Topic is added to (if “COM-1” is a new
holding) or updated (if a previous holding has been adjusted). If the holding was 0, the
producer would have set the IsLVCache property to false, thereby causing the broker to
remove COM-1 from the Topic's last-value cache.

The code block in the MessageProducer looks like this to add or adjust an entry in the Topic's
last-value cache:

/**

…

...

 Code for creating TopicConnection, TopicSession, TopicPublisher

…

...

*/

 TextMessage textMessage = topicSession.createTextMessage();

 textMessage.setBooleanProperty("IsLVCache", true);
 textMessage.setStringProperty("LVCacheKey", "COM-A");

 textMessage.setIntProperty("CurrHoldingValue", 123);

 topicPublisher.publish(

FioranoMQ 9 Handbook

Chapter 18: Last Value Caching Page 230

 textMessage,

 javax.jms.DeliveryMode.PERSISTENT,

 javax.jms.Message.DEFAULT_PRIORITY,

 javax.jms.Message.DEFAULT_TIME_TO_LIVE);

…

...

18.4 Points to Note
• DurableSubscriber creation is disabled on a Topic on which Last-value caching is

enabled. This is to ensure that when the Subscriber is started, it will only get the latest
snapshot from the Topic and any incoming updates to it from that time onwards.

• Sometimes it might be necessary to compact the file storage used for the Topic's last-
value cache because of its size. Generally, when the message is deleted from the FMQ
database files, it is only marked as 'deleted' temporarily but it is actually removed
from the hard storage when all the messages in the same file are marked as deleted.
When the compaction is done, the file storage will only have the readily deliverable
and will not have any messages that are already marked as deleted. For this, a JMX-
based operation is provided on Topic Runtime Mbean, which can be invoked from
Fiorano Studio or Web Management Console.

• No changes are required for Subscriber applications to accommodate Last-value
caching changes.

FioranoMQ 9 Handbook

Chapter 19: Message Grouping Page 231

Chapter 19: Message Grouping

19.1 Introduction

Let’s say there is an order processing grid on 10 nodes, each of which needs to load customer
account data into a cache. Each node can hold 10% of the customer data. Every node
subscribes to the “ORDERS” queue at the broker. When the producer to the ORDERS queue
produces a message, it sets the customer ID in the JMSXGroupID header. If the broker sees
that this ID is unallocated, it selects a consumer from the 10 on the queue and delivers the
message to it. Now ALL future messages with that ID will go to the same consumer which
means it goes to the consumer with that account in its cache. This happens forever unless the
consumer goes away. In that event, the broker will select a new consumer from the available
ones the next time that account ID is seen in the JMSXGroupID header and that consumer
will have to load the account data into cache.

19.2 Salient Features of Message Grouping

Messages in a message group share the same group id, i.e., they have the same group
identifier property JMSXGroupID and an integer property to identify the group sequence.

Messages in a message group are always consumed by the same consumer, even if there are
many consumers on a queue. They pin all messages with the same group id to the same
consumer. If that consumer is closed another consumer is chosen and will receive all
messages with the same group id.

A message group can be assigned to a different consumer by having the producer send a
message which has “message group signal close”, which is a boolean parameter, set to true.
The same parameter can be used to indicate that the consumer handling this message group
can be coupled with a different message group.

19.3 Configuring Message Grouping

In FioranoMQ, Message Grouping can be enabled on a JMS Queue. This section explains how
this can be configured and thereby used along the various parameters used to enable and
support Message Grouping on the FioranoMQ Queues. All the related configurations for this
feature are done either at the Queue Level. Below description and corresponding figures
explain how a parameter can be configured at the Queue-Level using Fiorano Studio. The
same configuration can also be done from the Queues tab of the FioranoMQ Web Management
Console; procedures are detailed in the corresponding chapter for Web Console.

To modify a parameter at the Queue-Level in FioranoMQ Server Online mode, follow the steps
described below:

1. Launch Fiorano Studio using the executable (bat/sh) from
%INSTALLER_HOME%/Studio/bin.

2. Make sure that the FioranoMQ Server process is running.

FioranoMQ 9 Handbook

Chapter 19: Message Grouping Page 232

3. Login to the FioranoMQ Server using FMQ-JMX after providing the necessary Host
Address, RMI Port, User Name and Password.

4. Navigate to JMX Connection > Fiorano > mq > ptp > Queues > Queue >
$QUEUE_NAME > config.

5. Select the required parameter and modify the value in the right-side parameters
panel.

19.3.1 Parameters used for Message Grouping

19.3.1.1 MessageGroupingEnabled

This parameter determines the Queue behavior for MessageGrouping. If enabled, messages
belonging to the same group identified by the property JMSXGroupID will be sent to the same
consumer.

FioranoMQ 9 Handbook

Chapter 19: Message Grouping Page 233

19.3.1.2 MinConsumersCount

Determines the minimum number of consumers on the queue before the message groups are
distributed between them.

19.3.1.3 MaxWaitTime

Determines the maximum wait time before the message groups are distributed among the
existing consumers on a queue.

19.3.1.4 WaitIntervalTime

Determines the wait interval time in case of Message Grouping, after which the minimum
number of consumers or maximum wait time is checked until one of the conditions is satisfied.

19.4 Using Message Grouping

Fiorano Queues should be configured with the parameter, MessageGroupingEnabled to denote
that the messages that arrive onto this destination should be grouped and sent to the
consuming applications. And from the client application point of view, JMS producers should be
changed to fill in the JMSXGroupID message header with some String value of any choice and
a message sequence property JMSXGroupSeq with positive integer values e.g.

MessageProducer producer = session.createProducer(“sample_destination”);

Message message = session.createTextMessage("sample_text");

message.setStringProperty("JMSXGroupID", "sample_group_index");

message.setIntProperty("JMSXGroupSeq", 0); //1, 2, 3...

producer.send(message);

In order to close a message group, you can add a negative sequence number in the JMS
producer. A sequence close signal should be on the LAST message of a group and the
message is sent to the original owner

MessageProducer producer = session.createProducer(“sample_destination”);

Message message = session.createTextMessage("sample_text");

message.setStringProperty("JMSXGroupID", "sample_group_index");

message.setIntProperty("JMSXGroupSeq", -1); // used as int property here

producer.send(message);

This will close the message group so if another message is sent in the future with the same
message group ID it will automatically be re-assigned to a new consumer.

FioranoMQ 9 Handbook

Chapter 19: Message Grouping Page 234

19.4.1 Preferred Groups

In addition to the above mentioned Message grouping, the consuming applications can
optionally indicate the list of message groups it might be interested in, so that the server will
assign those groups to it, if they weren't assigned already to any other consumer. This should
be included in String format while creating a message consumer (in place of MessageSelector
expression) and understandable by the FioranoMQ Server such that it can parse the
expression and note the MessageGroups that the MessageConsumer is interested in. The
preferred groups should be mentioned in the following way:

// Consumer 1 is interested in Odd-numbered groups

String preferredGroupsExpr1 =

“jms_fiorano_preferred_message_groups=

MGROUP_1; MGROUP_3; MGROUP_5”;

// Consumer 2 is interested in Even-numbered groups

String preferredGroupsExpr2 =

“jms_fiorano_preferred_message_groups=

MGROUP_2; MGROUP_4; MGROUP_6”;

// Create Consumer #1

javax.jms.QueueSession queueSession1 =

queueConnection.createQueueSession(false, javax.jms.Session.

AUTO_ACKNOWLEDGE);

javax.jms.QueueReceiver queueReceiver1 =

queueSession1.createReceiver(queue, preferredGroupsExpr1);

// Create Consumer #2

javax.jms.QueueSession queueSession2 =

 queueConnection.createQueueSession(false, javax.jms.Session.

 AUTO_ACKNOWLEDGE);

javax.jms.QueueReceiver queueReceiver2 =

FioranoMQ 9 Handbook

Chapter 19: Message Grouping Page 235

queueSession2.createReceiver(queue, preferredGroupsExpr2);

As mentioned above, each “Preferred Group” is separated by the semi-colon (;) character.

This mechanism is particularly helpful when working with High Availability when the
Consuming applications fail-over to the Backup HA Server. In the event of Primary Server
failure, the Backup server takes over and triggers the consuming applications to failover their
corresponding JMS Connections to the Backup server. In case Preferred Groups are set for a
QueueReceiver, the MessageGroups which were handled by a consumer before the PRIMARY
SERVER FAILURE event were re-assigned to the same consumer even after the Backup Server
takes over.

FioranoMQ 9 Handbook

Chapter 20: Message Encryption Page 236

Chapter 20: Message Encryption

20.1 Key Generation

To generate a key, FioranoMQ comes bundled with a utility class called EncryptorImpl. This
utility class allows applications to create keys for specified algorithms.

The methods within this utility class that support this function are given below:

20.1.1 public String generateKey (String algoName)

This API can be used to generate a key as shown below:

EncryptorImpl em = new EncryptorImpl ();

String key = em.generateKey (“DES”);

Using this class requires adding the statement below to the application:

import fiorano.jms.services.msg.Encryption;

20.2 Per Message Encryption

FioranoMQ provides ‘per message’ encryption that allows JMS applications to selectively
encrypt messages before distributing them over the network.

Support for encryption has been added to the FioranoMessage class. APIs added to the
FioranoMessage class are:

20.2.1 public void enableEncryption ()

Throws a FioranoException.

This is used to encrypt a message prior to distributing it over the network. DES is the default
algorithm used.

20.2.2 public void enableEncryption (String algo, String key)

Throws a FioranoException.

This API views the algorithm and the key as string parameters to be used to encrypt messages
to be distributed over the network.

FioranoMQ 9 Handbook

Chapter 20: Message Encryption Page 237

20.2.3 public void decrypt ()

Throws a FioranoException.

This API is used to decrypt received messages using the default algorithm.

20.2.4 public void decrypt (String algo, String key)

Throws a FioranoException.

This API is used to decrypt received messages using the same algorithm and key that was
provided during the encryption of the message.

20.3 Per Destination Encryption

A destination (topic or queue) can be marked as encrypted at the time of their creation. All the
messages that are sent to this destination will be encrypted. The encryption information is
maintained in the metadata associated with the destination. For this purpose, the following
APIs have been added to the TopicMetaData and QueueMetaData classes:

20.3.1 public void setEncryption ()

Throws a FioranoEncryption.

This API encrypts messages intended for the destination using the default encryption
algorithm.

20.3.2 public void setEncryption (String algo, String key)

Throws a FioranoEncryption.

This API encrypts messages intended for the destination by using the input parameters of the
encryption algorithm and the encryption key.

An application program does not need to explicitly decrypt a message associated with a
destination. Messages are delivered in decrypted form to all subscribing applications.

FioranoMQ 9 Handbook

Chapter 20: Message Encryption Page 238

20.4 Note on Installation and Samples

The FioranoMQ installation comes bundled with samples that illustrate the use of encryption
and decryption.

These samples are located in the fmq\samples\PubSub\MessageEncryption and
fmq\samples\PTP\MessageEncryption directories within the FioranoMQ installation.

It is recommended that these samples be run to understand the encryption and the decryption
support provided by FioranoMQ.

For message encryption support the file cryptix.jar must be present in the classpath while
using encryption in JMS client applications. This file comes bundled within FioranoMQ 7.1 and
later versions.

The file java.security file located in \j2sdk1.4.0\jre\lib\security must be modified and the
following should be appended to the file:

Security.provider.n=cryptix.provider.Cryptix

FioranoMQ 9 Handbook

Chapter 21: Message Compression Page 239

Chapter 21: Message Compression

21.1 Per Message Compression

In per message Compression, clients can enable or disable compression for each message.
This function has been added to the FioranoMessage class.

Relevant public methods are listed below:

21.1.1 public void enableCompression()

Message compression is enabled for a message using the default compression level and the
default compression strategy.

21.1.2 public void enableCompression (int compressionLevel, int
compressionStrategy)

Message compression is enabled for a message with the required compression level and
strategy provided as input parameters.

Note - Please refer to Message Compression Specifications for an explanation of the possible
values for compression levels and compression strategies. Constants are available in the
Fiorano.jms.services.lFioranoConstants class and have to be imported into the client
application to be used.

21.1.3 public int getCompressionRatio ()

This is used to retrieve the compression ratio (expressed as a percentage) achieved after the
message has been sent. The computation for the ratio is: :

Compression Ratio = ((uncomp – comp)/comp) * 100

‘Uncomp’ represents the uncompressed message body size and ‘comp’ represents the
compressed message body size.

Depending on this ratio, clients have the option of deciding the optimum compression level
and strategy for particular scenarios. This value is available after the send/publish call returns
and also after a message is received.

21.1.4 public void setCompressionLevel (int compressionLevel)

This API is used to set the compression level for a message.

FioranoMQ 9 Handbook

Chapter 21: Message Compression Page 240

21.1.5 public void setCompressionStrategy (int compressionStrategy)

This API is used to set the compression strategy for a message.

21.1.6 public int getCompressionLevel ()

This API retrieves the compression level as an integer value.

21.1.7 public int getCompressionStrategy ()

This API retrieves the compression strategy as an integer value.

Samples illustrating message compression are bundled within FioranoMQ. Please refer to the
/MessageCompression/PerMessage directory of the /fmq/samples/PubSub and
/fmq/samples/PTP directory of the FioranoMQ installation directory/package. It is
recommended that these samples be run to understand the usage of the APIs better.

21.2 Per Destination Compression

Compression on a per destination basis requires that all messages sent on a particular
destination be compressed using the compression level and strategy specified by the client.

Compression support on a per destination basis is provided through enabling compression in
the corresponding metadata used to create a destination on the Admin Connection such as in
the TopicMetadata and the QueueMetadata classes.

The methods listed below exist in these classes to support compression:

21.2.1 public void enableCompression ()

This API enables message compression on a topic/queue using the default compression level
and strategy.

21.2.2 public void enableCompression (int level, int strategy)

This API enables message compression on a topic/queue using the input parameters of the
compression level and strategy.

To change the compression level or strategy for messages on the destination on which
compression has been enabled, a client application can call upon the setCompressionLevel ()
and setCompressionStrategy () APIs of the FioranoMessage class, to perform this function.

Samples illustrating message compression on a per destination basis are bundled within
FioranoMQ. Please refer to the /MessageCompression/PerDestination directory of the
/fmq/samples/PubSub and /fmq/samples/PTP directory of the FioranoMQ installation
directory/package. It is recommended that these samples be run to understand the usage of
the APIs better.

FioranoMQ 9 Handbook

Chapter 21: Message Compression Page 241

21.3 Message Decompression

FioranoMQ handles decompression of messages internally. Client applications do not have to
explicitly use any APIs to decompress a compressed message. At runtime, decompression is
automatically performed if the message is compressed and then delivered to the message
consumers.

21.4 Proprietary Compression Implementation Plug-in Support

For providing plug-in support for proprietary compression implementations, APIs within the
public interface Fiorano.jms.services.msg.compression.lCompressionManager have to be
implemented. The default CompressionManager interface used by FioranoMQ implements the
APIs within this interface. The APIs within the CompressionManager interface are listed below.

21.4.1 public byte[] compress(byte[] input)

This method returns the compressed byte array for the input byte array.

21.4.2 public byte[] decompress(byte[] input)

This method returns the decompressed byte array from the input compressed byte array.

21.4.3 public void setCompressionLevel (int level)

This method sets the compression level that is to be used by the CompressionManager
instance.

21.4.4 public void getCompressionLevel ()

This method retrieves the compression level that is being used by the CompressionManager
instance.

21.4.5 public void setCompressionStrategy (int strategy)

This method sets the compression strategy, provided as an input parameter, that is to be used
by the CompressionManager instance.

21.4.6 public void getCompressionStrategy ()

This method retrieves the compression strategy being used by the CompressionManager
instance.

FioranoMQ 9 Handbook

Chapter 21: Message Compression Page 242

21.4.7 public float getCompressionRatio ()

This method retrieves the ratio of the compression achieved, which isexpressed as a
percentage.

The proprietary CompressionManager interface is called upon by setting its name in the
ConnectionFactoryMetadata class. The ConnectionFactoryMetadata class is used to create new
ConnectionFactory objects using the Admin Connection. The proprietary CompressionManager
implementation is applied to messages sent on connections that have been created using the
ConnectionFactory object for which proprietary ConnectionManager is set.

For more information about the methods present in ConnectionFactoryMetadata, refer to the
ConnectionFactoryMetadata class present in the Java docs.

21.4.8 public void setCompressionManager (string Manager)

This API sets the CompressionManager class name that is to be used for message compression
. The default value of the CompressionManager is
Fiorano.jms.services.msg.compressionManagerImpl.

For example, if the new implementation is named
Fiorano.jms.services.compression.mycomp.MyCompressionManager, the above API for a
connection factory metadata object cfMD will be called upon using:

cfMD.setCompressionManager
(“Fiorano.jms.services.compression.mycomp.MyCompressionManager”).

21.4.9 public string getCompressionManager ()

This API is used to retrieve the CompressionManager instance that is being used by a
Connection Factory object.

FioranoMQ 9 Handbook

Chapter 22: Logger Page 243

Chapter 22: Logger

FioranoMQ incorporates tracing and logging facilities for easy detection of errors in the
messaging system. The FioranoMQ Administrator can dynamically set different tracing levels
for each individual FioranoMQ components.

22.1 Offline Configuration

The path of log files and the log levels of the server instance have to be set in the current
profile of the server. These properties can be located in the file Configs.xml located under the
‘conf’ directory of each profile, i.e., $Fiorano_Home/fmq/profiles/<profileName>/conf

Examples:

• $Fiorano_Home/fmq/ profiles/FioranoMQ/ conf/Configs.xml

• $Fiorano_Home/ fmq/profiles/FioranoMQ_HA_rpl/HAPrimary/conf/Configs.xml

The various log levels of the Server are:

• Fatal - 1

• Error - 2

• Warning - 3

• Info - 4

• Debug - 5

• Trace - 6

FioranoMQ 9 Handbook

Chapter 22: Logger Page 244

The following figure illustrates a section in Configs.xml which contains the Logger node.

There are two Logger Nodes present in the Configs.xml. Each Logger has one appender called
‘LogAppender’. These appenders are file based Appenders. The log level can be changed by
changing the LogLevel attribute. The default log level of the logger has the objectName -
Fiorano is 3. The default log level of the logger has the objectName - Monitoring is 6. The
default names of the log files onto which the appenders log data, are server.log, and
monitor.txt.

The default location of these files is $Fiorano_Home/fmq/profiles/<profile_name>/run/logs
where profile_name is the profile on which the server is run.

Note: If the Server is running in a shared HA profile, the logs directory gets created in the
path of the directory specified as the -dbPath parameter.

Example:

fmq.bat/sh –profile FioranoMQ_HA_shared/HAPrimary –dbPath /home/Fiorano/db

fmq.bat/sh –profile FioranoMQ_HA_shared/HASecondary –dbPath /home/Fiorano/db

Here the logs directory gets created in the location /home/Fiorano/db. Please note that in the
instance of Shared HA that uses the above commands, both the Primary and the Secondary
servers log their data to the same location.

If the absolute path is not specified the log files are created in the location mentioned above.
You can provide an absolute path to the FileName attribute like /home/Fiorano/server.log, in
which case the log file is created in the path specified.

Note: The changes, above, have to be made offline.

FioranoMQ 9 Handbook

Chapter 22: Logger Page 245

22.2 Online Configuration

Modifying log levels for each logger under ‘Fiorano’ can also be done while the server is
running. This doesn’t require a server restart to get them affected and one can do these
operations by logging into FMQ Server through JMX. JMX login can be done in two ways:
through Fiorano Studio which provides the login in the server explorer tab and through
logging in through the web console (WMT).

The logger structure, below, appears in Fiorano Studio once a user logs in through FMQ-JMX:

FioranoMQ 9 Handbook

Chapter 22: Logger Page 246

Select the ‘Fiorano’ logger (circled above) and expand it by clicking on the config node. In the
properties window change the log level of the logger, as shown in the figure below.

FioranoMQ 9 Handbook

Chapter 22: Logger Page 247

After modifying the log level, save the configurations by right clicking on ‘FMQ-JMX’ node.

Several other operations can be done each logger node, for instance like adding a file
appenders, console appenders, list all appenders, removing appenders etc. For instance right
click on the ‘Fiorano’ logger node and you choose from the list of operations as shown below:

The detailed description of these operations and executing them from Web console (WMT) can
be found in Chapter 8 Logger Configuration of FioranoMQ Reference Guide.

FioranoMQ 9 Handbook

Chapter 22: Logger Page 248

22.3 Fiorano Client Logger

FioranoMQ Client Logger uses SLF4J which serves as a simple facade or abstraction for
various logging frameworks, such as java.util.logging, logback and log4j. So any logging
implementation can be plugged in as per customer's preference. For this to work, slf4j-api-
<version>.jar along with the jars used by the chosen underlying logging framework (log4j,
Logback, JUL, etc) needs to be placed in the application's classpath. By default, slf4j-api-
1.7.5.jar is shipped and its classpath is mentioned in run-client.conf under
%FIORANO_HOME%\fmq\bin. To switch logging frameworks, just replace slf4j bindings on
your class path. For example, to switch from java.util.logging to log4j, just replace slf4j-jdk14-
1.7.5.jar with slf4j-log4j12-1.7.5.jar.

In order to use log4j framework, slf4j-api-<version>.jar along with slf4j-log4j12-
<version>.jar and log4j.jar need to be placed in the java classpath. Loggers can be configured
using log4j.properties. By default, the log4j.properties file can be located under
%FIORANO_HOME%\fmq\bin.However, the log4j.properties can be placed anywhere and the
path should be given under <java.classpath>. If the log4j.properties is in
D:\Logger_properties\, then D:\Logger_properties\ should be mentioned in the classpath.
<java.classpath> can be mentioned using " -cp " command in javac/java (or) can be given in
run-client.conf present under %FIORANO_HOME%\fmq\bin.

Examples:

1. javac -cp D:\Logger_properties\ app_name.java

2. java -cp D:\Logger_properties\ app_name

Parent-child relationship in FioranoMQ Client Logger:

FioranoClientLogger follows a naming hierarchy. The logger named
"log4j.logger.Fiorano.FMQ.Services.ClientRootLoggerServices.FMQClientLoggerServices" is the
parent of the logger named
log4j.logger.Fiorano.FMQ.Services.ClientRootLoggerServices.FMQClientLoggerServices.Admin”.
The inherited level for a given logger say logger_name, is equal to the first non-null level in
the logger hierarchy, starting at logger_name and proceeding upwards in the hierarchy
towards the root logger. If logger named
"log4j.logger.Fiorano.FMQ.Services.ClientRootLoggerServices.FMQClientLoggerServices.Admin"
is not assigned any log level, then it will inherit its level from
"log4j.logger.Fiorano.FMQ.Services.ClientRootLoggerServices.FMQClientLoggerServices"
(provided this logger has been assigned a level. Otherwise it will inherit from its parent logger
and so on).

A logging request is said to be enabled if its level is higher than or equal to the level of its
logger. Otherwise, the request is said to be disabled. The levels are as follows: ALL < DEBUG
< INFO < WARN < ERROR < FATAL < OFF.

Note: For more information on Appender, MaxFileSize, MaxBackupIndex, Append, Levels and
layout, please refer to Chapter 8 Logger Configuration in FioranoMQ Reference Guide.

FioranoMQ 9 Handbook

Chapter 23: XA Page 249

Chapter 23: XA

Note:

• Add the corresponding JAR files for the database configured for the FioranoMQ server
in the Configuration file of the server: fmq.conf present under
fmq_installation_dir\fmq\bin.

• Start the FioranoMQ server with one of the database, you have to run
create-database.bat/sh after adding the required JAR in the classpath of create-
database.conf.

23.1 How to Enable XA

Note: XA c can be configured in offline mode only.

For information about configuring profiles through a text based file, see FioranoMQ Getting
Started.

FioranoMQ comes with a preconfigured XA enabled FioranoMQ profile named FioranoMQ_XA.
XA can be enabled in the default profile by following the steps given below:

1. Launch Fiorano Studio and open FioranoMQ (default profile) using the
ProfileManager

2. Navigate to FioranoMQ>Fiorano>mq. Right-click and select New Domain from the
pop-up menu.

FioranoMQ 9 Handbook

Chapter 23: XA Page 250

3. Enter the domain name in the Input pane displayed and click on the OK button. This
domain is named XA in the example .

4. Right-click the new domain and select Add Components from the pop-up menu. An
Add Components to the Profile window is displayed.

FioranoMQ 9 Handbook

Chapter 23: XA Page 251

5. Navigate to Fiorano>Jms>XA>etc and check the XAResourceManager component
and click on the OK button.

6. Resolve all the unresolved dependencies (which are marked with a RED icon). Select
the unresolved dependencies. In the property pane choose the right value for this
service instance.

7. Navigate to Fiorano>Fiorano>mq>XA> FileDBManager> FileDBManager8 and
in the Properties of FileDBManager8 enter the path name XA. XA requires RDBMS
based storage. Enable this as shown below:

8. Add the XAResourceManager component to the dependency list of Fiorano -> etc ->
ExServiceManager. This can be done by right-clicking the Dependson node under
the ExServiceManager. An Add Component as Dependency dialog box is
displayed. Check XAResourceManager and click on the OK button.

9. Right-click the profile and select the Save option from the pop-up menu.

23.2 XA Prerequisites

XA requires RDBMS based storage, and can be configured as explained in the 7th point in
Section 23.1 - How to Enable XA.

FioranoMQ 9 Handbook

Chapter 23: XA Page 252

23.3 XA Enabled Admin Objects

The FioranoMQ server creates some XA admin objects in addition to those created in the
default profile.

23.3.1 Default Admin Objects

Below are admin objects created when XA is enabled in the server.

Besides the XA enabled connection factory, an RDBMS based default topic and a queue are
also created.

FioranoMQ 9 Handbook

Chapter 23: XA Page 253

23.3.2 Creating XA Enabled Connection Factories

The user can create XA enabled connection factories by connecting Fiorano Studio to the
FioranoMQ server. Perform the following steps:

1. Launch Fiorano Studio and connect to the MQ server using the Fiorano Server
connection.

2. Right-click on the Connection Factories node and select the Add Connection
Factory option. The New Connection Factory Properties dialog box is displayed.

3. Provide information about parameters such as connection URL, XA Enabled, and so on
in the New Connection Factory Properties dialog box.

23.3.3 Creating RDBMS Enabled Destinations

As explained earlier XA requires RDBMS based message storage to be enabled. The steps
below explain the procedure for creating an RDBMS enabled destination:

1. Launch Fiorano Studio and connect to the MQ server using the Fiorano Server
connection.

2. Navigate to Destinations -> Queues/Topics and click on Add Queue/Topic. The
New Queue Properties dialog box appears.

3. Edit the properties and specify the storage type as RDBMS Based Database in the
New Queue Properties dialog box.

FioranoMQ 9 Handbook

Chapter 23: XA Page 254

Note: For details on how to create XA connection factories using Admin APIs, please refer to
23.9 Admin APIs.

23.4 Usage Scenarios of XA Transactions

23.4.1 As a Standalone Application

A standalone JMS application can use FioranoMQ‘s implementation of JMS XA API (JMS XA SPI)
to participate in a distributed transaction. The JMS application should write the XA specific
code to run a XA transaction.

Figure: A stand-alone application uses FioranoMQ XA Support

As shown in the diagram above, the JMS application should:

FioranoMQ 9 Handbook

Chapter 23: XA Page 255

• Use JMS XA interfaces (XAConnectionFactory, XAConnection, XASession) instead of
non-XA interfaces (ConnectionFactory, Connection, Session).

• Use the XAResource interface (XAResource.start() and XAResource.end()) to
demarcate transaction boundaries.

• Explicitly commit/rollback the transaction (XAResource.commit() or XARe-
source.rollback()) as per the business logic.

• Examine the changes that need to be made to the JMS Client application that
participates in a distributed transaction.

Follow the steps describe below:

1. Lookup ConnectionFactories and create related JMS resources.

As the implementation stack for XA-related resources is distinct from non-XA resources,
XA connectionFactories need to be created. The Admin API sections of this document
explain the creation of ConnectionFactories.

XAQueueConnectionFactory m_xaQueueConnectionFactory =

(XAQueueConnectionFactory) ic.lookup(“primaryXAQCF”);

The lookup call for these connectionFactories returns an instance of the XACon-
nectionFactory.

XAQueueConnection m_xaQueueConnection =

m_xaQueueConnectionFactory.createXAQueueConnection();

Customize all the other JMS-specific resources to either send or receive data. Note the
use of the createXAQueueConnection method. The above JMS API call results in the
creation of a XAQueueConnection with the MQServer.

XAQueueSession m_xaQueueSession = m_xaQueueConnection.createXAQueueSession();

Create an instance of XAQueueSession. All distributed transactions are associated with
a session context. Any operation performed on a session can potentially take part in a
distributed transaction.

2. Using XA resources and creating XID.

The next critical step involves retrieving the XAResource that identify the session context.
A uniqueID (XID) is associated with every XAResource to uniquely identify each instance
of a distributed transaction. The XID is used to recover failed transactions as well.

XAResource m_xaResource = m_xaQueueSession.getXAResource();

String branchId = "BranchID11";

String globalId = “globalId1”;

Xid m_xid = new FioranoXid(globalId,branchId.getBytes(),0);

FioranoMQ 9 Handbook

Chapter 23: XA Page 256

3. Marking the Start and the end transactions.

Mark the beginning and end of transactions. All operations performed on the session
between the start and end statements can be part of distributed transactions.

m_xaResource.start(m_xid,XAResource.TMNOFLAGS);

// Perform all operations on the associated Session

m_xaResource.end(m_xid,XAResource.TMSUCCESS);

4. Completing the transaction

int type0= m_xaResource.prepare(m_xid);

m_xaResource.commit(m_xid,false);

These APIs are typically used by the Transaction Co-ordinator that manages the
transaction across XA Resources. The commit or rollback call completes the transaction.
Where applications control distributed transactions, the APIs are used directly by the
applications.

Users are strongly urged to use the JTA specification and read up literature on distributed
transactions in order to understand the implementation and usage of the JTA APIs. This
section only illustrates the use of JMS APIs for a client application that needs to use
distributed transactions. Please view the distributed transaction samples, which are
available with the installation package, for more details.

Normally, a stand-alone application takes part in a distributed transaction when a single
server is involved in the transaction. Where more than one server (or different parties) are
involved in the distributed transaction, the application must use a third-party external
Transaction Manager to co-ordinate the transaction.

23.5 Using FioranoXA with a Pluggable Transaction Manager

In a true distributed transaction, one needs a manager that manages the state of the
transaction as it proceeds. With FioranoMQ, any transaction manager that implements the JTA
specifications can be used.

• A JMS application uses a Transaction Manager to manage the resources taking part in
the transaction.The steps listed below need to be followed to execute a transaction:

o Acquire the resource providers that take part in the XA transaction. The JMS
application gets the resource objects and the XAResource object that takes
part in the transaction. For FioranoMQ, it can get the resource object from the
XASession object. (XAConnectionFactory->XAConnection->XASession-
>XAResource)

o Acquire a new transaction object from the Transaction Manager.

o Enlist the resources in the transaction object. The Transaction Manager
internally starts the resources to mark the beginning of the distributed
transaction.

FioranoMQ 9 Handbook

Chapter 23: XA Page 257

o Perform zero or more operations with the various resources. The operations
performed constitute the work done in the transaction.

o De-list the resources to mark the end of the transaction.

o Commits/Rollbacks the transaction.

Figure: FioranoMQ XA SPI with an external Transaction ManagerFioranoMQ XA support
can be used with all available JTA compliant transaction managers. FioranoMQ XA has been
successfully integrated with various Transaction Managers by Oracle, oc4j, Orion, and Borland
(Visitrans Transaction Manager).

In case you are using a different transaction manager, please contact support@fiorano.com for
step-by-step integration instructions.

The following sections explain how to use Orion Transaction Manager and Borland Transaction
Manager to manage FioranoXA transactions.

23.6 Using Fiorano XA with the Oc4j Transaction Manager

Using Fiorano XA with the Oc4j Transaction Manager is explained in this section with the help
of an example. In this example, a session bean is used with oc4j transaction manager and the
oracle 9i application server. The bean client invokes the transact() method of the bean being
executed in the oc4j application server.

The work done in this distributed transaction includes:

mailto:support@fiorano.com�

FioranoMQ 9 Handbook

Chapter 23: XA Page 258

• Messages are pushed on a Queue residing on the FioranoMQ server.

• Messages are inserted into a table in the Cloudscape database.

• The tasks above are performed in the same distributed transaction.

• The transaction manager manages the transaction and ensures that both the
processes are completed successfully.

• Clicking the link and unzipping the file TestBean.zip. This zip file contains all the class
files of the samples discussed in this guide.

To run the above bean sample with the Orion application server, follow the instructions given
below:

For more information on how to configure FioranoMQ with the cloudscape database, please
refer to Chapter 6: Configuring Message Store.

1. Install the oracle application server:

2. Install JDeveloper or the oc4j Application server.

3. Configure the Cloudscape database. Configure the orion application server

4. Replace server.xml in %JDEVELOPER%\j2ee\home\config directory with
%UNZIP_DIR%\server.xml. If the server.xml file has applications deployed, add the
tag:

<application name="FMQ samples" path="../demo/fmq"/>

5. Copy the cloudscape libraries, cloudscape.jar and cloudview40.jar in
%JDEVELOPER%\j2ee\home\lib directory.

6. Copy classes12.zip in %JDEVELOPER%\j2ee\home\lib and %JDEVEL-
OPER%\j2ee\home directory.

7. Add the files <Fiorano_install_dir>\fmq\lib\client\all\\fmq-client.jar to the oc4j.jar
file, found in %JDEVELOPER%\j2ee\home directory.

On a Windows platform, this is usually equivalent to \Program Files\Fiorano\FMQ. Here
the JDEVELOPER variable represents the base directory of the Orion Application
server.

8. Extract the Bean Sample. Unzip the file fmq.zip, found in %UNZIP_DIR% where the
file TestBean.zip in the /demo directory of OC4J_HOME directory is to be unzipped as
well. This creates a folder fmq in /demo dir.

9. Deploy the Bean Sample. Restart OC4J using java -jar oc4j.jar. OC4J deploys the new
application called FioranoMQ Samples and the bean TestJmsXa with it. The following
output is observed if the bean is deployed successfully:

Auto-deploying FMQ samples (Assembly had been updated)...
Auto-deploying test (Class 'TestJmsXaRemote' had been updated)... done.

10. Run the Bean Sample. Run the EJB client using run-client TestJmsXaClient. (This
client can be found in jdeveloper\j2ee\home\demo\fmq\test.) Ensure that theoc4j.jar,
jass.jar and ejb.jar files are in the classpath before running the client.

Examine the details of the bean as well as its client to see how the distributed transaction
involving the transaction manager work.

FioranoMQ 9 Handbook

Chapter 23: XA Page 259

1. Lookup of the Home Interface and invoking methods of EJB.

The reference to the home interface of the deployed bean can be accessed through the
JNDI lookup calls. The lookup of the bean returns the home interface of the deployed
bean. A remote interface is created from the home interface.

homeInterface = (TestJmsXaHome) ctx.lookup("java:comp/env/TestJmsXa");

remoteInterface = homeInterface.create();

The various methods of the bean can be invoked through its remote interface. The
transact method, which performs all the steps required for running the distributed
transaction in the test bean, can be invoked using:

remoteInterface.transact();

2. Transaction Reference

In implementating the transact method, reference to the transaction object can be
obtained through the bean context. This transaction object is used to define the
transaction boundaries.

transactionManager = (TransactionManager) ctx.getUserTransaction();

transactionManager.begin();

transaction = transactionManager.getTransaction();

3. Enlisting a Transaction

Resources should be enlisted within the transaction to inform the transaction about their
participation. Reference to the resources can be acquired through the application server or
directly from the resource provider. Please check the section ‘To run as Standalone
application’ to obtain the XA resource from the resource provider.

transaction.enlistResource(xaresource);

4. Begin Transaction

Begin the transaction after enlisting the participating resources. All the work done after
starting the transaction is associated with the transaction. One example of such work
could be publishing a message on a queue.

transaction.begin();

5. Delisting Transaction

After performing the task in the transaction, the resources should be removed from the
transaction. Delisting the resources informs the transaction that any work performed after
delisting should not be made part of the transaction.

{

transaction.delistResource(xaresource,XAResource.TMSUCCESS);

The parameter, XAResource.SUCCESS indicates that the transaction has ended
successfully. If an exception occurs while a task is being performed, the application can
remove the resource with XAResource.FAIL.

FioranoMQ 9 Handbook

Chapter 23: XA Page 260

6. Committing Transaction

Committing a transaction commits the work performed by all the participating resources.
The transaction is committed by a two-phase commit protocol:

{

transactionn.commit() ;

23.7 Using FioranoXA with the Borland Transaction Manager

FioranoMQ can be used to run the distributed transaction in which the Borland Transaction
manager is the co-ordinator. Consider a scenario where an enterprise application takes part in
a distributed transaction in which it receives a message from a JMS queue and inserts that
message in the cloudscape database. The implementation of this scenario can be downloaded
from the fiorano_borland.zip link.

23.7.1 Sample Details

Unzip the file sample downloaded from fiorano_borland.zip. This file contains all the necessary
files required to run the sample.

CreateCloudScapeDB.java - This file creates the database on the cloudscape database.

TestXaCloudScapeSampleWithTM.java - This file runs the distributed transaction in which
messages received from a queue are inserted into the cloudscape database tables.

23.7.2 Integrate Fiorano with Borland Enterprise server

Integrate the Borland Application server with FioranoMQ using the instructions present in
Chapter 27 Application Server Integration.

23.7.3 Configure Classpath
1. Configure the classpath by adding the following Borland related files to the run-

client.bat (run-client.sh on UNIX Systems) file, which is available in the fmq/bin/
directory of the FioranoMQ installation package. The files asrt.jar, vbjorb.jar, lm.jar,
vbsec.jar, xmlrt.jar, jsse.jar, jaas.jar, jcert.jar, jnet.jar, vbejb.jar are available in the
library directory of the Borland installation. The sample run-client.bat (run-client.sh)
can be downloaded as well.

2. Modify the FMQ_DIR variable and BORLAND_DIR variable within the script before
using it. Add the cloudscape related files to the classpath.

cloudview40.jar, cloudscape.jar.

FioranoMQ 9 Handbook

Chapter 23: XA Page 261

3. Modify the CLOUDSCAPE_DIR in the downloaded script file.

Database Creation:

Create two instances of cloudscape databases using run-client COM.CloudScape.tools.cview

Create tables in the database using the sample CreateCloudscapeDB available from the
downloaded zip file.

Usage:

run-client CreateCloudScapeDB <databasepath>

<databasepath> represents the path of the cloudscape database.

Run the distributed transaction:

Run the distributed transaction using the sample TestXaCloudScapeSample with TM available
in the downloaded zip file.

Usage:

run-client TestXaCloudScapeSampleWithTM [host-no] [port-no] [num-of-msgs] [xaqcf-name]
[queue-name]

Given below is a description of the command line parameters:

<host-no> This parameter specifies the machine name or IP address on which the FioranoMQ
server is running.

<port-no> This parameter specifies the port number of the machine on which the FioranoMQ
server is running.

<num-of-messages> This parameter specifies the number of messages that should be
received from the queue and inserted into the cloudscape database in a distributed
transaction.

<xaqcf-name> This parameter specifies the name of the XA enabled queue connection
factory.

<queue-name> This parameter specifies the name of the queue from which messages should
start.

Example:

run-client TestXaCloudScapeSampleWithTM localhost 1856 10 primaryXAQCF
primaryRDBMSQueue

Sample Details

Details of the sample are examined to see how the distributed transaction works with the
Borland transaction manager.

FioranoMQ 9 Handbook

Chapter 23: XA Page 262

• Transaction Reference

This is the reference to the transaction object. This reference is provided to the application
by the transaction co-ordinator. Here, the transaction co-ordinator is the Borland
Transaction Manager, which provides the application with a transaction object.

transactionManager = TransactionManager.getTransactionManagerImpl();

transactionManager.begin();

transaction = transactionManager.getTransaction();

• Enlisting Transaction

The resources should be enlisted within the transaction to inform the transaction about
their participation. Reference to the resources is provided by the resource provider.

transaction.enlistResource(xaresource);

• Begin Transaction

Begin the transaction after enlisting the participating resources. All the work done after
starting the transaction is associated with the transaction. An example of work done is the
publishing of a message on a queue.

transaction.begin();

• Delisting Transaction

After performing the task allocated within the transaction, the resources should be
removed from the transaction. Removing the resources inform the transaction indicates
that any work performed after this transaction should not be made part of the transaction.

{

transactionn.delistResource(xaresource,XAResource.TMSUCCESS);

The parameter, XAResource. SUCCESS indicates that the transaction has ended
successfully. If an exception occurs while performing a task, the application can remove
the resource with XAResource.FAIL.

• Committing Transaction

Committing a transaction commits the work performed by all the participating resources.
Commit is performed by a two-phase commit protocol.

{

transactionn.commit() ;

23.8 Transactions with J2EE

The following section provides the information required to integrate and run UserTransactions
using Oracle 9i and Weblogic 7.0 Application servers.

23.8.1 Integrating with WebLogic 7.0 Application Server

FioranoMQ 9 Handbook

Chapter 23: XA Page 263

1. Execute the following steps to integrate Fiorano’s XAResource with the Weblogic 7.0
Application server:

2. Extract the files present in weblogic_fiorano.zip to a separate folder (UNZIP_DIR). This
folder contains all the files required to perform the steps listed below:

3. Install Weblogic Platform 7.0.1.0

4. Copy “%FMQ_DIR%\lib\client\all\fmq-client.jar” to “%WL_HOME%\server\lib”.

5. Include the file, %UNZIP_DIR%\fiorano.zip,%WL_HOME%\server\lib\fmq-client.jar in
the classpath of %WL_HOME%\samples\server\config\examples\setExamplesEnv.cmd
and %WL_HOME%\server\bin\startWLS. This fiorano.zip file contains the wrapper
classes used for the interception of calls made by the application server.

6. Navigate to the folder %WL_HOME%\samples\server\src\examples\ejb20\message
and copy the files MessageTraderBean.java, Client.java, ejb-jar.xml and weblogic-ejb-
jar.xml extracted from the file WeblogicIntegration.zip, which can be found in
%UNZIP_DIR%.

7. Run %WL_HOME%\samples\server\config\examples\setExamplesEnv.cmd on the DOS
prompt. This provides the environment required for running the sample.

8. Navigate to the folder %WL_HOME%\samples\server\src\examples\ejb20\message
using the aforementioned DOS prompt and execute the file build.cmd present in the
zip file WeblogicIntegration.zip, which can be found in %UNZIP_DIR%. This compiles
the file Client.java and adds it to the folder
%WL_HOME%\samples\server\stage\examples\clientclasses\
examples\ejb20\message since the package of Client.java is examples.ejb23.message.
In addition this rebuilds ejb20_message.jar and adds it to the folder
%WL_HOME%\samples\server\config\examples\applications.

9. Include the FioranoWeblogicMapper in the weblogic startup.

The FioranoWeblogicMapper class maps the JNDI objects in the FioranoMQ name space
(XA enabled connectionfactories, XA enabled Queues, and XA enabled Topics) and
binds them to objects in the Weblogic JNDI. These objects can be looked up using
Weblogic's InitialContext in the following manner:

Ictx.lookup("fiorano_wl_PRIMARYXAQCF") etc..

The FioranoWeblogicMapper maps the FioranoMQ administered objects to the Weblogic
Naming tree in a manner that allows primaryXAQCF in FioranoMQ’s JNDI to be mapped
onto fiorano_wl_PrimaryXAQCF in Weblogic’s JNDI.

FioranoMQ 9 Handbook

Chapter 23: XA Page 264

10. Copy the attached FioranoWeblogicMapper.zip to the classpath set in the
startExamplesServer (or startWLS.cmd) file.

11. Open the Weblogic adminConsole. Select deployments\startup and shutdown.

12. Select configure a new Startup class. Under the configuration tab, specify the
following:

a. Name FioranoWeblogicMapper

b. ClassName FioranoWeblogicMapper

c. Deployment order 0

d. Arguments None

13. Start the FioranoMQ server (with XA enabled). Navigate to the folder
%WL_HOME%\server\bin and start the Oracle Weblogic Application server by
executing the batch file:

startWLS.cmd

The bean is deployed on the Oracle Weblogic Application server. It is a message driven
bean listening on primaryTopic.

14. Use a normal publisher (run-client Publisher) to publish a message on a primaryTopic.
The onMessage of the bean is invoked, which in turn calls the transact() method of the
MDB.

transact() method performs the following steps:

a. Looks up XA Queue Connection Factory.

b. Starts the usertransaction.

c. Sends a message on the primaryRDBMSQueue.

d. Commits the userTransaction.

Note: A receiver on primaryRDBMSTopic receives the message only when the
usertransaction is committed. (Similar tests can be performed for ut.rollback() and other
methods.)

15. Add fiorano.zip to the classpath of build.cmd.

16. To compile the samples, execute: run build.cmd

FioranoMQ 9 Handbook

Chapter 23: XA Page 265

23.8.2 Integrating with Oracle 9i Application Server

 Perform the following steps to integrate Fiorano’s XAResource with the Oracle 9i Application
server:

1. Unzip the orion_fiorano.zip file, which contains the files required to run the sample
discussed in this section.

2. Unzip and add classes to fmq-client.jar found in the %FMQ_HOME%\fmq\lib\client\all
directory to the ORACLE_HOME\j2ee\home\oc4j.jar file.

3. Replace server.xml located in OC4J_HOME\config with the one found in
orion_fiorano.zip file. If your server.xml file has any applications deployed add the tag
below to the application-server tag of server.xml, instead of replacing the file.

 <application name="FMQ samples" path="../demo/fmq"/>

4. Unzip the file fmq_bean.zip (also found in the orion_fiorano.zip file mentioned above),
located in the /demo directory of OC4J_HOME directory. This creates a folder called
fmq in the /demo dir with the java and class files TestJmsXaClient, TestJmsXa.java,
TestJmsXaRemote.java, and TestJmsXaHome.

5. Change the ORACLE database ConnectionParameters (URL, username, password) in
the file TestJmsXa.java in keeping with the Oracle installation and recompile the file.
The files ejb.jar, jaas.jar, and oc4j.jar must be in the classpath when compiling and
running the files.

6. Replace the file CMTQueueSession.class with the attached CMTQueueSession.class in
the oc4j.jar file. Extract the CMTQueueSession.class file from orion_fiorano.zip file.
Make sure that the package structure of this file remains intact while replacing the
class in the oc4j.jar file. (The package is
com.evermind.server.jms.CMTQueueSession.class).

7. Start OC4J. OC4J deploys the application called FioranoMQ Samples and the bean
TestJmsXa with it. If the bean is deployed successfully the output should be:

Auto-deploying FMQ samples (Assembly had been updated)...

Auto-deploying test (Class 'TestJmsXaRemote' had been updated)...

8. Start the FioranoMQ server and a JMS QueueReceiver that is receiving messages on
primary RDBMSQueue.

9. Run the client to the bean, TestJmsXaClient (run_oracle TestJmsXaClient). In the
client, the map() method of the bean is called and this maps the FioranoMQ XA
enabled connectionfactories to the oracle9i JNDI.

10. The client invokes the transact method in which a UserTransaction object is received.
The UserTransaction is started, after which a message is sent to the FioranoMQ
primaryRDBMSQueue. Following this message the user transaction is committed. The
QueueReceiver receives the message only when the usertransaction is committed.

FioranoMQ 9 Handbook

Chapter 23: XA Page 266

23.9 Admin APIs

FioranoMQ provides a comprehensive set of administration APIs that allow the enterprise
administrator to manage a number of facilities such as Distributed Transactions, Topics,
Queues, and XA ConnectionFactories.

All Admin requests are serviced by the MQ Server listening on a dedicated Admin port (default
is 1856). The admin port can be configured through ConnectionManager.xml.

All Administered Object names are case-insensitive. Complete samples that illustrate the use
of Admin APIs to create, manage and delete XA resources are available in the
/fmq/samples/DistributedTransactions directory within the FioranoMQ installation package.

XA Connection Factories

XAConnectionFactory object is a JTS support supplied by every JMS provider to create
XAConnection objects.

XAConnectionFactory objects are JMS administered objects similar to ConnectionFactory
objects. They can be looked up using the Java Naming and Directory Interface (JNDI) API.

23.9.1 Creating XA Connection Factories

XA connection factories can be created using FioranoMQ’s Admin API. The procedure for
creating a XA connection factory is given below:

1. Look up an admin connection factory. For example, look up the primaryACF thatis
created by default.

2. Create an admin connection using the admin connection factory.

3. Get the admin service from the admin connection.

4. Create the XA Connection factory metadata. The possible options are XAQue-
ueConnectionFactoryMetaData, XATopicConnectionFactoryMetaData and
UnifiedXAConnectionFactoryMetaData.

5. Set the name of the factory.

6. Set a brief description of the factory. (This step is optional.)

7. Set the connect URL of this factory. Connect URL is the URL of the server to which a
connection is created.

8. Set the semi colon separated backup URLs. Backup URLs are the URLs to which a
connection is created if the connect URL is down.

Note: For details, refer to the section, 29.2 N Failover URL Support.

FioranoMQ 9 Handbook

Chapter 23: XA Page 267

23.9.2 Creating a XA Queue Connection Factory

This section explains the creation of XAQueue Connection factories:

1. Creating the Admin Service

MQ Admin Service creates new connection factories on the FioranoMQ server. The
instance of admin service can be obtained from the admin connection.

acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

ac = acf.createMQAdminConnection ("admin", "passwd");

adminService = ac.getMQAdminService();

2. XAQueueConnectionFactory Metadata

Create an XAQueueConnection factory metadata, specifying the name, description and
the primary connection URL.

xametaData = new XAQueueConnectionFactoryMetaData();

xametaData.setName(“myXAQCF”);

xametaData.setDescription ("XA Queue Connection Factory");

xametaData.setConnectURL ("http://localhost:1856");

3. Create XAQueueConnectionFactory

Create the XAQueue connection factory using the adminService and the connection
factory metadata.

 adminService.createXAQueueConnectionFactory (xametaData);

 23.9.3 Creating a XA Topic Connection Factory

This section explains the creation of XATopic connection factories:

1. Creating the Admin Service

MQ Admin Service creates new connection factories on the FioranoMQ server. The
instance of admin service can be obtained from the admin connection.

acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

ac = acf.createMQAdminConnection ("admin", "passwd");

adminService = ac.getMQAdminService();

2. XATopicConnectionFactory Metadata

Create a XATopicConnection factory metadata, specifying the name, description,
primary connection URL.

xametaData = new XATopicConnectionFactoryMetaData();

xametaData.setName (“myXATCF”);

FioranoMQ 9 Handbook

Chapter 23: XA Page 268

xametaData.setDescription ("XA Topic Connection Factory");

xametaData.setConnectURL ("http://localhost:1856");

3. Create XATopicConnectionFactory

Create the XATopicConnection factory using the adminService and the connection
factory metadata.

 adminService.createXATopicConnectionFactory (xametaData);

23.9.4 Creating a Unified XA Connection Factory

This section explains the creation of the Unified XA connection factories:

1. Creation of Admin Service

MQ Admin Service creates new connection factories on the FioranoMQ server. The
instance of admin service can be obtained from the admin connection.

acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

ac = acf.createMQAdminConnection ("admin", "passwd");

adminService = ac.getMQAdminService();

2. UnifiedXAConnectionFactory Metadata

Create a UnifiedXAConnection factory metadata, specifying the name, description and
the primary connection URL.

xametadata = new UnifiedXAConnectionFactoryMetaData();

xametadata.setName("myXAcf");

xametadata.setDescription ("XA Unified Connection Factory");

xametadata.setConnectURL ("http://localhost:1856");

3. Create UnifiedXAConnectionFactory

Create the UnifiedXaConnection factory using the adminService and the connection
factory metadata.

adminService.createXAConnectionFactory (xametadata);

FioranoMQ 9 Handbook

Chapter 23: XA Page 269

23.9.5 Deleting XA Connection Factories

The procedure for deleting a XA connection factory is:

1. Look up an admin connection factory. For example, look up the primaryACF that is
created by default.

2. Create an admin connection using the admin connection factory.

3. Get the adminservice from the admin connection.

4. Delete the XA connection factory using the admin service.

23.9.6 Deleting a XA Queue Connection Factory

This section explains the deletion of the XA Queue connection factories:

1. Creating the Admin Service

MQ admin service deletes new connection factories on the FioranoMQ server. The
instance of admin service can be obtained from the admin connection.

acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

ac = acf.createMQAdminConnection ("admin", "passwd");

adminService = ac.getMQAdminService();

2. Delete XAQueue Connection Factory

Delete the XAQueue connection factory using the admin service and the connection
factory name.

adminService.deleteXAQueueConnectionFactory (“myxaqcf”);

23.9.7 Deleting a XA Topic Connection Factory

This section explains the deletion of the XA Topic connection factories:

1. Creating the Admin Service

MQ admin service deletes new connection factories on the FioranoMQ server. The
instance of admin service can be obtained from the admin connection.

acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

ac = acf.createMQAdminConnection ("admin", "passwd");

adminService = ac.getMQAdminService();

2. Delete the XA Topic Connection Factory

Delete the XATopic connection factory using the admin service and the connection
factory name.

adminService.deleteXATopicConnectionFactory (“myxatcf”);

FioranoMQ 9 Handbook

Chapter 23: XA Page 270

23.9.8 Deleting a Unified XA Connection Factory

This section explains how to delete the Unified XA connection factories:

1. Creating the Admin Service

MQ admin service deletes new connection factories on the FioranoMQ server. The
instance of admin service can be obtained from the admin connection.

acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

ac = acf.createMQAdminConnection ("admin", "passwd");

adminService = ac.getMQAdminService();

2. Delete UnifiedXA Connection Factory

Delete the unified XA connection factory using the admin service and the connection
factory name.

adminService.deleteXAConnectionFactory (“myxacf”);

A destination object is a JMS administered object containing configuration information
that is created by an administrator and later used by JMS clients. JMS clients can find
destinations by looking them up in a JNDI namespace.

23.10 Destinations

In FioranoMQ 6.1 beta upwards, storage type has been introduced in the destinations.
Storage types define the type of storage that should be used to store destinations. The
possible storage types are file-based and RDBMS based stores. By default, the storage type is
file based.

// For File Based destination

metadata1.setStorageType(IFioranoConstants.FILE_BASED_DATABASE);

// For RDBMS based destination

metadata1.setStorageType(IFioranoConstants.RDBMS_BASED_DATABASE);

If a destination is file based, then all the persistent messages that are sent on this destination
are stored in files. If a destination is RDBMS based, then all the persistent messages are
stored in RDBMS.

Storage type is specified at the time of creating a destination.

Below are the steps to create a destination using storage type:

1. Look up an admin connection factory.

Create an Admin connection.

FioranoMQ 9 Handbook

Chapter 23: XA Page 271

2. Obtain the Admin Service from the Admin connection.

3. Create a new metadata. It can be either QueueMetaData or TopicMetaData.

4. Set the name of the destination.

5. Set the storage type of the destination.

6. Create the destination using the admin service.

23.11 Queues

This section explains the creation of Queue objects:

1. Creating the Admin Service

MQ admin service creates queues on the FioranoMQ server. The instance of admin
service can be obtained from the admin connection.

acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

ac = acf.createMQAdminConnection ("admin", "passwd");

adminService = ac.getMQAdminService();

2. Queue Metadata

Create a queue metadata, specifying the name, description and the storage type. The
storage type of the destination can be RDBMS_BASED_DATABASE or
FILE_BASED_DATABASE

 QueueMetaData metadata = new QueueMetaData ();

 metadata.setName (“myqueue”);

// For RDBMS based storage type

metadata.setStorageType(IFioranoConstants.RDBMS_BASED_DATABASE);

or

// For File based storage type

metadata.setStorageType(IFioranoConstants.FILE_BASED_DATABASE);

3. Create the Queue

Create the Queue object using the adminService and the queue metadata.

adminService.createQueue (metadata);

FioranoMQ 9 Handbook

Chapter 23: XA Page 272

23.12 Topics

This section explains the creation of Topic objects:

1. Creating the Admin Service

MQ Admin Service creates topics on the FioranoMQ server. The instance of admin
service can be obtained from the admin connection.

acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

ac = acf.createMQAdminConnection ("admin", "passwd");

adminService = ac.getMQAdminService();

2. Topic Metadata

Create a Topic metadata, specifying the name, description and the storage type. The
storage type of the destination can be RDBMS_BASED_DATABASE or
FILE_BASED_DATABASE

 TopicMetaData metadata = new TopicMetaData ();

 metadata.setName (“mytopic”);

// For RDBMS based storage type

metadata.setStorageType(IFioranoConstants.RDBMS_BASED_DATABASE);

or

// For file based storage type

metadata.setStorageType(IFioranoConstants.FILE_BASED_DATABASE);

3. Create the Topic

Create the Topic object using the adminService and the topic metadata.

adminService.createTopic(metadata);

FioranoMQ 9 Handbook

Chapter 23: XA Page 273

23.13 Transactions

The Transaction interface allows operations to be performed against the transaction in the
target Transaction object. A Transaction object is created corresponding to each global
transaction creation in which one or more resources participate. In FioranoMQ, the resource
(javax.transaction.xa.XAResource object) is available which participates in distributed trans-
actions. Refer to JTA specification for more details on XAResource object.

FioranoMQ provides the following admin APIs related to distributed transactions:

Get All Transactions Returns an enumeration of XIDs with the given status.

Get Transaction status Returns the status of the transaction specified with the XID.

23.13.1 Get All Transactions

This function returns the enumeration of all the XIDs with a given status. The status of a
transaction can be started, ended, suspended or prepared.

// Status is equal to start

fiorano.jms.services.IFioranoConstants.START;

// Status is equal to end

fiorano.jms.services.IFioranoConstants.END;

// Status is equal to suspend

fiorano.jms.services.IFioranoConstants.SUSPEND;

// Status is equal to prepared

fiorano.jms.services.IFioranoConstants.PREPARED;

Below are the instructions to return all the transactions with a ‘given’ status running on the
FioranoMQ server.

1. Look up an admin Connection Factory

2. Create an admin connection

3. Obtain the admin service from the admin connection

4. Retrieve all the transactions with a given status

This section explains how to retrieve the list of transactions that have started :

1. Creating the Admin Service

MQ Admin Service retrieves the list of transactions from the FioranoMQ server. The
instance of admin service can be obtained from the admin connection.

acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

FioranoMQ 9 Handbook

Chapter 23: XA Page 274

ac = acf.createMQAdminConnection ("admin", "passwd");

adminService = ac.getMQAdminService();

2. Transaction List

Alist of the transactions, given their status, can be retrieved from the admin service. To
retrieve a list of transactions that have started, the code snippet given below is to be
used. This returns all transactions currently present in the MQ server started in the given
state

Enumeration enum = adminService.getAllTransactions(IFioranoConstants.START);

3. Retrieve Transactions

Individual transactions or XIDs can be retrieved from a list of transactions using the
code below:

while (enum.hasMoreElements())

{

Xid xid = (Xid) enum.nextElement();

globaltrxId = xid.getGlobalTransactionId();

branchId = xid.getBranchQualifier();

formatId = xid.getFormatId();

}

This function returns the status of a transaction, which is specified with a XID. The
returned status can be started, ended, suspended or prepared.

23.13.2 Get Transaction Status

// Status is equal to start

fiorano.jms.services.IFioranoConstants.START;

// Status is equal to end

fiorano.jms.services.IFioranoConstants.END;

// Status is equal to suspend

fiorano.jms.services.IFioranoConstants.SUSPEND;

// Status is equal to prepared

fiorano.jms.services.IFioranoConstants.PREPARED;

Below are the instructions to retrieve the status of a given transaction:

FioranoMQ 9 Handbook

Chapter 23: XA Page 275

1. Look up an admin connection factory.

2. Create an admin connection.

3. Obtain the admin service from the admin Connection.

4. Retrieve the status of a given transaction.

This section explains how to obtain the status of a given transaction:

1. Creating the Admin Service

MQ Admin Service obtains the status of a given transaction from the FioranoMQ
server. The instance of admin service can be retrieved from the admin connection.

a. acf = (MQAdminConnectionFactory) ic.lookup ("primaryACF");

b. ac = acf.createMQAdminConnection ("admin", "passwd");

c. adminService = ac.getMQAdminService();

2. Retrieve Transaction Status

The status of a given transaction, specified by XID, can be retrieved using the admin
service object.

byte status = adminService.getTransactionStatus(xid);

Possible options for the status byte:

a. IFioranoConstants.START - specifies that the transaction is in the started
state.

b. IFioranoConstants.END - specifies that the transaction is in the ended state.

c. IFioranoConstants.SUSPEND - specifies that the transaction suspended state.

d. IFioranoConstants.PREPARED - specifies that the transaction is in the prepared

FioranoMQ 9 Handbook

Chapter 24: JMX Notification Page 276

Chapter 24: JMX Notification

24.1 JMX Notifications generated by the server

The table below shows a list of Mbeans that generate JMX Notifications along with the
conditions in which these notifications are generated.

Notification Condition MBean’s Object Name

Pubsub Notifications

Topic Creation and Deletion Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=TopicEventManager

Opening, Closing and Setting of client ID
on a Topic Connection

Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=TopicConnectionEventManager

Creation and Deletion of Topic Connection
Factory

Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=TCFEventManager

Opening and Closing of a Topic Subscriber Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=SubscriberEventManager

Opening and Closing of a Topic Publisher Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=PublishEventManager

Ptp Notifications

Opening and Closing of a Queue Sender Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=SenderEventManager

Opening and Closing of a Queue Receiver Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=ReceiverEventManager

Queue Creation and Deletion Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=QueueEventManager

Opening, Closing and setting of client ID
on a Queue Connection

Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=QueueConnectionEventManager

Creation and Deletion of a Queue
Connection Factory

Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=QCFEventManager

Number of messages in a queue exceeding
the threshold defined at queue level

Fiorano.jmx.notifications:ServiceType=EventManager,N
ame=QueueEventManager

FioranoMQ 9 Handbook

Chapter 24: JMX Notification Page 277

24.2 Enabling/Disabling Notifications

By default all events are enabled. However, it is possible to turn on or off selective events in
the server.

The server requires an instance of EventManager (which Is an implementation of
NotificationBroadCaster) for each type of event. These event managers are passed to
QueuingSubSystem and TopicSubSystem as dependencies. If an Event Manager dependency is
left unresolved the event corresponding to that dependency is turned off.

The figure above shows all dependencies of Queuing Sub System in FioranoMQ. To turn off
Queue Events set QueueEventManager to null. Similarly, to turn off Topic Connection Events
set TCFEventManager to null, as shown in the figure below.

FioranoMQ 9 Handbook

Chapter 24: JMX Notification Page 278

24.3 Notification Classes

The FioranoMQ Server, when generating an event, creates an instance of a class depending on
the event being generated. The FioranoMQ Server then inserts the required information within
this instance raises the event. The diagram below shows various Notification classes and the
relationships between them.

The diagram, below, shows the event ID (in blue) set by the server when generating the
event. This ID can be used by any application to specify a filter when receiving events.

FioranoMQ 9 Handbook

Chapter 24: JMX Notification Page 279

JMSDestinationEvent

JMSConnectionEvent

JMSConnectionFactoryEvent

 JMSTopicPublisherEvent

JMSTopicSubscriberEvent

JMSQueueSenderEvent

JMSQueueReceiverEvent

JMSTopicEvent

JMSQueueEvent

JMSTopicConnectionEvent

JMSQueueConnectionEvent

JMSConnectionIdEvent

JMSTopicConnectionFactoryEvent

JMSQueueConnectionFactoryEvent

Package fiorano.jms.events

javax.management.Notification

com.fiorano.fw.events.FioranoEvent

JMSEvent

JMSQueueLimitReachedEvent

FioranoMQ 9 Handbook

Chapter 24: JMX Notification Page 280

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 281

Chapter 25: Online Configuration
Through Studio

The Admin Studio allows the user to manage instances of the FioranoMQ Server while it is
running. This mode of editing the configuration is called Online Configuration. This section
of the document provides details of online configuration using the Admin Studio.

25.1 Connecting to the FioranoMQ Server

25.1.1 Over Default Configuration

 The steps to be taken for default configuration are given below:

1. To establish a connection, select the FMQ node (marked ‘1’ in the figure below).
Specify the ConnectorPort and Provider URL and or other parameters in the
Properties of FMQ panel.

2. Right-click FMQ and select Login from the pop-up menu. This will create a connection
to the server.

On successful login, an explorer window is displayed. This window displays all manageable
components that are part of the FioranoMQ server.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 282

25.1.2 Over HTTP Protocol

1. Specify connection properties described in section 25.1.1 Over Default Configuration .

2. Change the TransportProtocol property to HTTP that is provided as part of the JNDI
Initial Context (as shown in the figure below).

3. Connect to the server by selecting the Login option displayed by right-clicking the menu.

On successful login, an explorer windowis displayed. This window displays all manageable
components that are part of the FioranoMQ server in a tree format.

25.2 Working with Connection Factories

25.2.1 Adding a Connection Factory

To add a new connection factory, follow the steps given below:

1. Connect to the server as described in section 25.1.1 Over Default Configuration .

2. Select the Connection Factories node from the Server Explorer.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 283

3. Right-click and select Add Connection Factory from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 284

4. The New Connection Factory Properties dialog box is displayed. Configure these
properties in accordance with the requirements of the application.

5. Click the OK button and a new Connection Factory with the specified name is created.

25.2.2 Deleting a Connection Factory

Unwanted connection factories can be deleted by executing the steps below:

1. Select the Connection Factories node from the Server Explorer.

2. Select the Connection Factory name and right-click the mouse to select Delete from
the pop-up menu. A Confirm Object Deletion dialog box is displayed. Click the Yes
button in this dialog box.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 285

25.3 Working with Durable Subscriptions

The Durable Subscriptions node displays the list of client IDs (of the Durable Subscribers)
that exist on the server. The FioranoMQ Administrator can unsubscribe or delete all pending
messages of an inactive durable subscriber through this node.

25.3.1 Viewing Durable Subscriptions

1. The Client node in the profile tree corresponds to the Durable Subscribers. It lists the
offline and the online Client IDs on which the Durable Subscription currently running.

2. To view the Durable Subscribers, run the sample PubSub/ DurableSubscribers and
refresh the Client node. This displays the list of clients as shown in the figure below.
On selecting Clients, the properties pane displayswhether the client is Active or
Inactive.

3. Double-click the Client ID to view the Subscription ID. (Shut down the
DurableSubscriber sample and not the Publisher). You can send messages from the
Publisher. Now right-click the SubscriptionID and select Browse messages.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 286

4. The following window appears with the messages sent from the Publisher.

25.3.2 Purging Messages of the Durable Subscriptions

The administrator can delete pending messages for all subscribers of the selected clientID. To
delete pending messages, execute the following steps:

1. Select the Durable Subscriptions node from the Server Explorer pane.

2. Select the ClientID shown under the Durable Subscriptions node.

3. Right-click and select the Purge option from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 287

25.3.3 Refreshing Durable Subscriptions

The list of Durable Subscriptions can be refreshed by following the following steps:

1. From the Server Explorer, select the Durable Subscriptions node.

2. Right-click and select the Refresh option from the pop-up menu.

25.4 Working with Destinations

The Destination node lists all the destinations created on the server. The destination node
allows the administrator to create or delete a destination from the server.

25.4.1 Managing Topics

The Topics node displays the list of topics on the server. The administrator can create or
remove a topic, as well as edit the ACL of a topic. By default, all Users on the server possess
the required permission. A user can assign Publish, Subscribe, Durable Subscribe and
Unsubscribe permission statuses to Users or User Groups.

25.4.2 Adding a New Topic

The Server Explorer pane shows the Destinations node, which, on expanding, shows the
Topics sub-node. The Topics sub-node displays the list of all the topics. The administrator can
create topics and manage them through the Server Explorer. A User can create new topics
using two methods, both of which are described below:

Method 1: From the Destinations node

The Server Explorer pane shows the Destinations node, which enables the administrator to
add new topics to the existing topic list. Follow the steps given below to create a new topic:

1. From the Server Explorer, select the Destinations node.

2. Right-click and select Add > topic from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 288

3. The New Properties dialog box is displayed. Configure the properties as required.

4. Click the OK button. The new topic TOPIC1 will be added to the list of topics with the
specified properties.

Method 2: From the Topics sub-node

1. From the Topics sub-node, right-click and select Add topic from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 289

2. The New Topic Properties dialog box is displayed (as previously shown). Enter the
relevant information.

3. Click the OK button. The new topic will be added to the list of topics with specified
properties (as previously shown).

25.4.3 Editing Access Control List (ACL)

Once a topic is created, the Access Control List (ACL) for the topic must be created. To
created the ACL, follow the steps below:

1. Select the Topics sub-node. Select the topic name from the list of topics.

2. Right-click and select Edit ACL option from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 290

3. The Edit ACL dialog box appears and shows various entries in the ACL of the topic.
Each entry corresponds to a principal, which can consist of either a User or a Group.
Each entry is associated with a set of permissions, which can be either allow,
disallow or default. An allow permission implies that the principal is allowed the set
of selected permissions. A disallow permission implies that the principal is denied the
set of permissions mentioned in the entry. If no permission is manually assigned to
the principal, then the permission is set to default. By default, the ACL for a topic has
the group ‘everyone’ in its list with all the permissions set to ‘allow’. Since the Group
‘everyone’ includes all the principals created in the FioranoMQ Server, the topic
assigns all permissions to all principals. The following set of permissions can be
assigned to a topic:

• Publish

• Subscribe

• Unsubscribe

• Durable Subscribe

4. To change the permissions assigned to a member subscribing to a particular topic,
select the member and Click the Edit button. The Edit Permissions dialog box
appears. Assign the required permissions and click the OK button.

5. To add a member to a particular topic, click the Add button on the ACL dialog box.
The Add New ACL Entry dialog box appears. Select the member name and click the
OK button.

6. To remove a member from a particular topic, select the member name from the Edit
ACL dialog box and click the Remove button.

7. Click the OK button.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 291

25.4.4 Removing a Topic

The administrator can remove the topics that are not required from the topic list. To remove a
topic from the topics list, follow the steps below:

1. From the Server Explorer, select the Destinations node.

2. Select the Topics sub-node. Select the Topic name to be deleted and right-click the
mouse. Select Delete from the pop-up menu.

3. The Confirm Object Deletion dialog box is displayed. Click the Yes button.

4. The selected topic has been deleted and is therefore not visible in the topic list.

Multiple topics can be removed by selecting the required topic (by pressing the Ctrl key), and
then pressing the Del key.

25.4.5 Managing Queues

The Queues node displays the list of queues on the server. The Administrator can create and
remove the Queues and edit the ACL. By default, all Users on the server have all permissions.
The Administrator can assign Send, Receive and Browse permissions to Users and Groups.
Browsing the Queue allows the administrator to view the total number of deleted messages,
undeleted messages and message properties. Undeleted messages are those messages for
which the server has not received acknowledgment from a client.

25.4.6 Adding a New Queue

The Server Explorer pane shows the Destinations node, which, on expanding, shows the
Queues sub-node. The Queues sub-node displays the list of all the queues. The administrator
can create queues and manage them through the Server Explorer.

The administrator can create new queues by using the two methods described below:

Method 1: From the Destinations node

The Server Explorer pane shows the Destinations node, which enables the administrator to
add new queues to the existing queue list. Follow the steps below to create a new queue:

1. From the Server Explorer, select the Destinations node.

2. Right-click and select Add > queue from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 292

3. The New Queue Properties dialog box appears. Configure properties as required.

4. Click the OK button. The new queue will be added to the list of queues with specified
properties.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 293

Method 2: From the Queues sub-node

1. From the Queues sub-node, right-click and select Add Queue from the pop-up menu.

2. The New Queue Properties dialog box is displayed. Enter the relevant information.

3. Click the OK button. The new queue will be added to the list of queues with specified
properties.

25.4.7 Browsing a Queue

Browsing a queue allows the administrator to view all the messages that are present in the
queue. Follow the steps below to browse a queue:

1. Select the Queues sub-node. Select the name of the queue to be browsed from the
Queues list.

2. Right-click and select Browse Messages from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 294

3. The Browser for Destination dialog box is displayed. Send the messages through
PTP samples and open the browser window.

4. The Browser also contains a Message Selector. It allows a client to specify, by
header field references and property references, the messages it wishes to
view/access. Only messages whose header and property values match those of the
selector can be browsed. A message selector matches a message if the selector arrives
at ‘true’ when the message header field values and property values are substituted by
their corresponding identifiers in the selector. If the value of a message selector is an
empty string, the value is treated as null and indicates that there is no message
selector for the message consumer.

5. The message properties can be viewed from the Properties pane of the Browser.

6. Double-click the message to open the message body.

7. Close the Browser by clicking on the Close (X) button on the top right of the window.

25.4.8 Editing Access Control List (ACL) and Removing a Queue

The procedure is the same as previously explained with reference to Topics, except that, here,
in place of Topics it will now be applied to Queues.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 295

25.4.9 Setting and Configuring OnTheFlyCreationOfDestinations

OnTheFlyCreationOfDestinations property controls the behavior of createTopic and
createQueue APIs’ in a JMS Session. By enabling this property, when the
createTopic/createQueue APIs are called on non-existent Destinations, Destinations will be
created for these APIs.

If the OnTheFlyCreationOfDestinations property is disabled,
thenADMINISTERED_OBJECT_DOESNOT_EXISTS exception is thrown if a destination does not
exist. If a destination is present, then it acts as a lookup method. This feature is controlled by
the flag AllowOnTheFlyCreationOfDestinations

The AllowOnTheFlyCreationOfDestinations can be enabled/disabled by following the steps
below:

1. Open the profile for off-line editing through the Profile Manager as explained in section
4.8.1

2. Go to Fiorano -> etc -> FMQConfigLoader.

3. Turn on AllowOnTheFlyCreationOfDestinations property by changing its value to
yes.

Note: This flag does not affect the creation of destinations from Admin Services. Even
though this flag is disabled, Destinations can be created by the Admin User using Admin
connection and Admin Services.

25.5 Working with Security

The administrator can create, manage and manipulate Users and Groups through the Security
node. The administrator can change User passwords as well as add Users or Groups to other
existing Groups.

25.5.1 Managing Users

The Users sub-node displays the list of all Users whose identity is known to the server. Fiorano
has admin, ayrton, and anonymous as its default users. The Administrator can create and
delete Users, as well as change their passwords. User properties can be viewed through the
Properties pane.

25.5.2 Adding a New User

The administrator can create Users and manage them through the Server Explorer. The
administrator can create new Users through the Security node as well as through the Users
sub-node. Clicking on the Users sub-node displays the list of all Users whose identity is known
to the server along with their connection status. The connection status informs the
administrator whether or not that particular User is currently connected to the FioranoMQ
Server. The administrator can create new Users by employing either of the methods described
below:

Method 1: From the Security node

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 296

The Server Explorer pane shows the Security node, which enables an administrator to add
new Users to the existing User list. To create a new User, follow the steps below:

1. Select the Security node from the Server Explorer.

2. Right-click and select Add > user from the pop-up menu.

3. The Admin Studio Input dialog box is displayed. Enter the New User Name and click
the OK button.

A new User is created with the password as the username of the User.

Method 2: From the Users sub-node

1. From the Users sub-node, right-click and select Add user from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 297

2. The Admin Studio Input dialog box is displayed. Enter the Username and click the OK
button. The new User will be added to the list of pre-existing Users.

25.5.3 Changing User Password

The administrator can change the User password by following the steps given below:

1. Select the Users sub-node. Select the name of the User whose password is to be
changed and right-click the mouse.

2. Select Change Password from the pop-up menu and the Change Password dialog
is displayed.

3. Provide the old password and the new password and click the OK button.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 298

25.5.4 Removing a User

The administrator can remove Users from the User list.

To remove a User, follow the steps below:

1. Select the Users sub-node from the Server Explorer pane.

2. Select the name of the user to be deleted. Right-click and select Delete from the pop-
up menu.

3. The Confirm Object Deletion dialog box is displayed. Click the Yes button.

The selected User is deleted and is removed from the list of Users.

25.5.5 Managing Groups

The Groups sub-node displays the list of Groups on the server. The administrator can create or
remove a Group. By default, all Users and Groups are members of the ‘everyone’ group.

25.5.6 Adding a New Group

The administrator can create Groups and manage them through the Server Explorer. The
Server Explorer pane shows the Security node, that enable the administrator to add new
Groups to the existing Group list. FioranoMQ, by default, is bundled with a special group called
everyone, which includes all users as its members. The Groups sub-node displays the list of
Groups on the server. The administrator can create or remove a Group. The administrator can
create a new group by employing either of the methods described below:

Method 1: From the Security node:

1. Select the Security node from the Server Explorer.

2. Right-click and select Add > group from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 299

3. The Admin Studio Input dialog box is displayed.

4. Enter the Group name and click the OK button. The new Group is added to the Group
list .

Method 2: From the Groups sub-node:

1. From the Groups sub-node, right-click and select Add Group from the pop-up menu.

2. The Admin Studio Input dialog box is displayed.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 300

3. Enter the Group name and click the OK button. The new Group is added to the list of
Groups.

25.5.7 Adding a Member to a Group

The administrator can add a User or a Group as a member to an existing Group. To add a User
or a Group to an existing Group, follow the steps below:

1. Select the Groups sub-node from the Server Explorer pane.

2. From the Properties pane, go to the members property. Click the ellipsis to show
the members dialog box. The same dialog can be opened by double clicking on the
Groups node.

3. Select the Add button to show the names of all Groups and Users that are not present
in the Group.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 301

4. Select the Users and/or Groups to be added to this Group and click the OK button.

5. Click the Close button.

25.5.8 Removing Member from Group

The administrator can remove a User or a Group member from an existing Group by following
the steps below:

1. Select the Groups sub-node.

2. From the Properties pane, go to the member’s property. Click the ellipsis to display
the members dialog box. The same dialog can be opened by double clicking on the
Groups node.

3. Select the name of the User to be removed from the Group. Click the Remove button.

4. Click the Close button.

25.5.9 Removing a Group

The administrator can remove Groups from the Group list.

To remove Groups from the Group list follow the steps below:

1. Select the Groups sub-node. Select the name of the group to be deleted and right-
click the mouse.

2. Select Delete from the pop-up menu.

3. The Confirm Object Deletion dialog box is displayed. Click the Yes button.

The selected Group is deleted and is no longer visible in the Group list.

25.6 Working with Snooper

The administrator can exercise full control over the snooper system through the Fiorano Admin
Studio. The snooper node allows the administrator to configure the FioranoMQ Server to snoop
for messages on registered topics. The administrator can select topics to snoop on. The node
displays messages that are snooped along with the destinations on which they were published.
With the Snooper it is possible to snoop messages that are being sent to a destination.
Through this node it is possible to view messages flowing through FioranoMQ. In addition,
various parameters of the snooper subsystem can be configured as per requirements.

25.6.1 Adding Destinations in Snooper

With the Admin Studio it is possible to configure the FioranoMQ Server to snoop for messages
on registered destinations. To configure the FioranoMQ Server to snoop for messages, follow
the steps below:

1. From the Server Explorer pane, select the Snooper node. Select either the Queues
or the Topics sub-node.

2. Right-click and select the Add Destinations in Snooper option.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 302

3. The Destinations in Snooper dialog box is displayed.

4. Click the Add button to display the Add dialog box. Select the destination and Click
the OK button.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 303

5. Click the OK button in the Destinations in Snooper dialog box to register the
selected destinations.

6. All changes made using Snooper node are transient and only valid for that particular
execution of the server.

To render the changes stable, click the Save button present on the Main toolbar to save the
configuration settings in the FioranoMQ Server. If these settings are not saved, they will be
lost when the FioranoMQ Server is restarted.

25.6.2 Snooping Messages

Snooping Messages allows the administrator to view the total number of messages, purge all
the messages and refresh the browser display. Follow the steps below to browse a queue or
topic:

1. From the Snooper node, select either the Queues or the Topics sub-node.

2. Right-click and select Snoop Messages from the pop-up menu.

The Snooper Window is displayed showing the snooped messages.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 304

25.6.3 Refreshing and Saving Snooper

Using the Admin studio, it is possible to refresh the message display list and save the changes
made to Snooper.

25.6.4 Refreshing Snooper

Follow the steps below to refresh the message display list:

1. Select the Snooper node from the Server Explorer pane.

2. Right-click and select the Refresh option from the pop-up menu.

25.6.5 Saving Snooper

Using the feature, described below, of Admin Studio it is possible to save configuration
settings set to snoop messages. Saving a Snooper is particularly required in cases where the
destinations are added to the snooper. Follow the steps below to save the Snooper:

1. Select the Snooper node from the Server Explorer.

2. Click the Save button in the Main toolbar. Alternatively, right-click and select Save
from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 305

25.7 Working with Repeater

Using the Repeater node it is possible to keep track of the repeaters in the network. In
addition, the Repeater node makes it possible to administer various repeaters across the
network. The following sub-sections explain, in detail, the various operations that can be
undertaken to manage a Repeater. This module is visible only after the repeater is configured
in the server.

25.7.1 Adding a Link

The administrator can create new replication links dynamically. This enables the applications
to replicate messages on topics that are created after the repeater has started. Information
such as the new link name, the source and target servers between which the link needs to be
created, the protocol to be used by the connection and login information need to be provided
when a new link is added to the repeater. To add a new link, follow the steps below:

1. Select the Repeater node from the Server Explorer pane.

2. Right-click and select the Add Link option from the pop-up menu.

3. The New Link Properties dialog box is displayed.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 306

4. Specify the link properties and Click the OK button. The new link is added as a node
and shown in the Server Explorer pane.

25.7.2 Adding a Link Topic

The administrator can add one or more link topics to an existing topic. While doing so, the
administrator must specify information such as the source topic name, the target topic name
and the message selector. To add a link topic, follow the steps below:

1. Expand the Link sub-node from the Repeater node in the Server Explorer pane.
The various link topics configured within the repeater are displayed.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 307

2. Right-click any of the selected Link Topics and select the Add LinkTopic option from
the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 308

3. The New LinkTopic Properties dialog box is displayed.

4. Specify the properties and Click the OK button. The new link topic is added as a node
and shown in the Server Explorer pane.

25.7.3 Adding a Reply Topic

The administrator can add one or more reply topics to an existing topic. While doing so, the
administrator must specify information such as the source topic name, the target topic name
and message selector. To add a Reply topic, follow the steps below:

1. Expand the Link sub-node from the Repeater node in the Server Explorer pane.
Reply topics configured within the repeater are displayed.

2. Right-click any of the selected Topics and select the Add ReplyTopic option from the
pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 309

3. The New LinkTopic Properties dialog box is displayed. Specify the properties and
click the OK button. The new Reply Topic is added as a node and shown in the Server
Explorer pane.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 310

25.7.4 Removing a Link

The administrator can remove a selected link from the repeater by following the steps below:

1. Select the link to be removed from the Server Explorer pane.

2. Right-click and select Delete from the pop-up menu.

3. The Confirm Object Deletion dialog box is displayed. Click the Yes button. The
selected link is removed from the cluster.

25.7.5 Removing a Link Topic

The administrator can remove selected link topics from the repeater by following the steps
below:

1. Select the link to be removed from the Server Explorer pane.

2. Right-click and select Delete from the pop-up menu.

3. The Confirm Object Deletion dialog box is displayed. Click the Yes button. The
selected Link Topic is deleted from the cluster.

25.7.6 Viewing Durable Subscribers for a Repeater

Durable subscribers can be viewed by right-clicking the repeater and selecting the View
Durable Subscribers option from the pop-up menu. A list of all durable subscribers is
displayed in the Details pane.

25.7.7 Refreshing Repeater

Using the Admin studio it is possible to allow refreshing the status of repeaters in a cluster.

Follow the steps below to refresh the Repeater:

1. Select the Repeater node from the Server Explorer pane.

2. Right-click and select Refresh from the pop-up menu. Alternatively, press the F5 key
to refresh.

25.8 Working with Dispatcher

The Dispatcher node displays the status of the FioranoMQ cluster. In addition, it is possible to
add or remove an MQ Server from a cluster, as well as to change the Preferred Server Status
using the Dispatcher node.

25.8.1 Adding a Server

The administrator can add a new Server to the dispatcher. To add a new Server to the
dispatcher, follow the steps below:

1. Select the Dispatcher node from the Server Explorer pane.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 311

2. Right-click and select the Add Server option from the pop-up menu.

3. The New Server Properties dialog box is dispalyed. The Server can have two types
of properties: General and Advanced. Configure the Server as per requirements.

4. Specify the Server properties and Click the OK button. The new Server is added as a
node.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 312

25.8.2 Removing a Server

The administrator can remove the selected Server from the cluster by following the steps
below:

1. Select the name of the server to be removed from the Server Explorer pane.

2. Right-click and select Delete from the pop-up menu.

3. The Confirm Object Deletion dialog box is displayed. Click the Yes button. The
selected server is deleted and is no longer visible in the cluster.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 313

25.8.3 Setting the Preferred Server

Applications can instruct the dispatcher to connect to the preferred Server of a cluster,
bypassing the load balancing mechanism. This function can be used by any application that
always needs to connect to one particular Server in the cluster. The administrator can set a
Server to be the preferred server by following the steps below:

1. Select the name of the server that is to be set as the preferred Server from the
Server Explorer pane.

2. Right-click and select Set as Preferred from the pop-up menu.

25.8.4 Setting Number of Client Connections

The administrator has the right to set the maximum number of client connections that can be
created on a member Server of the cluster. This number is used to compute the least loaded
server in the cluster. Follow the steps below to set the maximum number of client
connections:

1. Select the server name from the Server Explorer pane.

2. Right-click and select the Set Max Client Connections option from the pop-up menu.
The Input dialog box is displayed.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 314

3. Provide the number in the Set Max Client Connections box and Click the OK button

25.8.5 Refreshing Dispatcher

Using the Admin Studio it is possible to refresh the status of servers in the cluster. Follow the
steps below to refresh the dispatcher:

1. Select the Dispatcher node from the Server Explorer pane.

2. Right-click and select Refresh from the pop-up menu. Alternatively, press the F5 key
to refresh.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 315

25.9 Working with Bridge

The Bridges node in the Fiorano Admin Studio makes it possible to manage all the bridges that
connect the FioranoMQ Server to another MQ server or any other messaging Server. The
admin tool enables adding links, adding channels to a link and monitoring the status of every
bridge running within the cluster. This module is visible only after the bridge is configured in
the Server.

25.9.1 Adding the Bridge to the FioranoMQ Profile
1. In Studio open ProfileManager and open the FioranoMQ profile. Right-click Fiorano

and select New Domain as shown below.

2. Name the Domain as Bridge, for User convenience.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 316

3. Right-click on Bridge (new domain that was added in the previous step) and click on
Add Components. Go to FioranoJmsClustering and select FioranoBridge. Click ok.
The FioranoConnectorManager is added to the Bridge.

4. Navigate to FioranoConnectorManagerDependsOnThreadManager. By
clicking on the ThreadManager the User can see properties on the right-hand side of
studio. By default, instance property will be null. Select the only instance present
there. Name the FioranoConnectorManager in properties.

5. Right-click on FioranoConnectorManager and addLink as shown below. Name the
link in properties.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 317

6. Right-click on Link and add source Server, target Server and channel. Add
connectionInfo to the source Server and to the target Server. Add source queue and
target queue to the channel. Add queueInfo to source queue and target queue. All
components added need to be configured. Configuration techniques are available in
Chapter: 12 Bridge.

25.9.2 Adding a Link

The administrator can create new links dynamically in a Bridge. This enables the application to
send and receive messages on queues created after the bridge has started. A link can contain
one or more channels. Information such as the link name, the source and target Servers
between which the link needs to be created, the protocol to be used by the connection and
login information need to be provided when a new link is added to the Bridge. To add a new
link, follow the steps below:

1. Select the Bridge node from the Server Explorer pane.

2. Right-click and select the Add Link option from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 318

3. The New Link Properties dialog box is displayed.

4. Specify the link properties and click the OK button. The new link is added as a node
and shown in the Server Explorer pane.

25.9.3 Removing a Link

The administrator can remove the selected link from the repeater by following the steps
below:

1. Select the link to be removed from the Server Explorer pane.

2. Right-click and select Delete from the pop-up menu.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 319

3. The Confirm Object Deletion dialog box is displayed. Click the Yes button. The
selected link is deleted and is no longer visible in the cluster.

25.9.4 Starting a Link

To start a link:

Select the link from the Bridge in the Server Explorer pane. Right-click and select the Start
Link option from the pop-up menu.

25.9.5 Stopping a Link

To stop a link:

Select the Link from the Bridge in the Server Explorer pane. Right-click the link and select
the Stop Link option from the pop-up menu.

25.9.6 Adding a Channel to a Link

The administrator can add channels to a link dynamically. To add a channel to a link the
administrator must provide information such as source and target queues. A link can have
multiple Channels mapped to different Queues.

1. Expand the Link sub-node from the Bridge node in the Server Explorer pane. The
various channels configured within the bridge are displayed.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 320

2. Right-click any of the Channels and select the Add Channel option from the pop-up
menu.

3. The New Channel Properties dialog box is displayed.

4. Specify the properties and Click the OK button. The new channel is added as a node
and shown in the Server Explorer pane.

FioranoMQ 9 Handbook

Chapter 25: Online Configuration Through Studio Page 321

25.9.7 Removing a Channel from a Link

The administrator can remove a channel from a link on a Bridge by following the steps below:

1. Select the channel to be removed from the Server Explorer pane.

2. Right-click and select Delete from the pop-up menu.

3. The Confirm Object Deletion dialog box is displayed. Click the Yes button. The
selected channel is deleted and is no longer visible in the cluster.

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 322

Chapter 26: Performance Tuning And
Deployment Parameters

This chapter explains the various parameters that should be modified to obtain the best
performance from FioranoMQ. This chapter also provides information on deploying FioranoMQ
and additional software components provided with FioranoMQ in addressing various scaling
and clustering issues.

26.1 Performance Tuning Parameters

The default configuration of FioranoMQ provides optimum performance under most traffic
loads and for most common message sizes (ranging from 0-10 KB).

FioranoMQ administrators can tune the configurations, below, to optimize the performance of
the FioranoMQ Server.

26.1.1 PTP Configuration Parameters

FioranoMQ provides the configuration parameters, below, to tune the point-to-point messaging
model:

26.1.1.1 In-Memory Persistent Message Buffer

FioranoMQ server buffers the persistent messages in its in-memory cache besides storing
these messages in the persistent store. This buffering is done to ensure fast delivery of
messages to the listening receivers. The variable named PersistentInMemoryBufferSize
depicts the size of the in-memory buffer whose default value is 512KB (512*1024). This value
can be increased when the message send rate is high. This is because when the send rate is
high, the buffer gets filled up faster than when the send rate of messages is lower.

The steps below enable the configuration of the In-Memory Persistent Message Buffer
parameter using the Fiorano Admin Studio in online mode:

1. Invoke the Fiorano Admin Studio and login to the FioranoMQ Server through JMX
login.

2. Select Fiorano > mq > ptp > PtPManager > QueueingSubSystem > config from
the Server Explorer pane.

3. In the Properties pane, type in the new value against the property named
PersistentInMemoryBufferSize and press Enter.

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 323

26.1.1.2 In-Memory Non-Persistent Message Buffer

The FioranoMQ Server stores the published non-persistent messages in an in-memory table.
The size of this buffer is monitored by the parameter NPInMemoryBufferSize whose default
value is 1MB. This buffer can gets full if the message send rate is quite high as compared to
the message receive rate. When this buffer fills up, the FioranoMQ senders cannot push new
messages into the buffer and messages remain blocked till a receiver is activated on the
concerned queue to empty the buffer.

It is recommended that the size of the buffer is set to a value where chances of it becoming
full are minimized, particularly in cases where the senders are sending messages at a much
faster rate than the rate at which they are being received.

The steps below enable the configuration of the In-Memory Non-Persistent Message Buffer
parameter through Fiorano Admin Studio in online mode:

1. Through the Fiorano Admin Studio login to the FioranoMQ Server usingJMX login.

2. Select Fiorano > mq > ptp > PtPManager > QueueingSubSystem > config from
the Server Explorer pane.

3. In the Properties pane, type in the new value of the property named
InMemoryBufferSize and press Enter.

26.1.1.3 Prefetch Count

Prefetch count is the number of messages requested by a client from the Server in one
‘receive call’. Prefetch count can be set through the PrefetchCount parameter using Admin
Studio in the offline mode. The default value of this variable is 3. PTP prefetching enables the
FioranoMQ Server to deliver a maximum number of prefetch count messages to the receiver
on each receive call.

Perform the steps below to configure the Prefetch Count parameter:

1. Open the Fiorano Admin Studio.

2. Select Tools > Configure Profile from the menu bar. Select the FioranoMQ folder,
and click the Open button. FioranoMQ is now in offline mode.

3. Navigate to FioranoMQ -> Fiorano -> mq -> ptp -> QueuingSubSystem in the
Profile Manager pane. The properties of the PTP Manager are displayed in the
Properties pane.

4. Select the ellipsis against the parameter PrefetchCount. Type in the new value in
the PrefetchCount dialog box and click OK.

5. Right-click on the FioranoMQ domain in the Server Explorer pane and select the
Save option from the shortcut menu.

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 324

26.1.1.4 Prefetch Threshold

Prefetch threshold denotes the minimum number of messages in the local buffer of the client
that trigger a request for delivery of more messages to the client. Prefetch threshold can be
set through a parameter named PrefetchThreshold using the Fiorano Admin Studio in the
offline mode.

The default value of the Prefetch Threshold variable is 1. The number of messages that are
requested from the server when the threshold limit is reached is equal to the prefetch count.

Perform the steps below to configure the Prefetch Threshold parameter:

1. Open the Fiorano Admin Studio.

2. Select Tools > Configure Profile from the menu bar. Select the FioranoMQ folder,
and click the Open button. FioranoMQ is now in offline mode.

3. Navigate to FioranoMQ -> Fiorano -> mq -> ptp -> QueuingSubSystem in the
Profile Manager pane. The properties of the PTP Manager are displayed in the
Properties pane.

4. Select the ellipsis against the parameter PrefetchThreshold. Type in the new value
in the PrefetchThreshold dialog box and click OK.

5. Right-click on the FioranoMQ domain in the Profile Manager pane and select the
Save option from the shortcut menu.

26.1.1.5 PTP Prefetch size

The PTP Prefetch size parameter is used to specify the total size of messages (in bytes) that
will be sent by the FioranoMQ Server on each receive call made by the client. Prefetch size can
be set through a parameter named MaxPrefetchSize using the Fiorano Admin Studio in the
offline mode. The default value of this variable is 512 KB. If both Prefetch Size and Prefetch
Count are specified,the number of messages sent by FioranoMQ server is controlled by the
minimum value among these two parameters.

Perform steps below to configure the Prefetch Size parameter:

1. Open Fiorano Admin Studio.

2. Select Tools > Configure Profile from the menu bar. Select the FioranoMQ folder
and click the Open button. FioranoMQ is now in offline mode.

3. Navigate to FioranoMQ -> Fiorano -> mq -> ptp -> QueuingSubSystem in the
Profile Manager pane. The properties of the PTP Manager are displayed in the
Properties pane.

4. Select the ellipsis against the parameter MaxPrefetchSize. Type in the new value in
the MaxPrefetchSize dialog box and click OK.

5. Right-click on the FioranoMQ domain in the Profile Manager pane and select the
Save option from the shortcut menu.

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 325

26.1.1.6 Queue Sender Blocking Interval

This parameter represents the period, in milliseconds, for which the sender will be blocked
(while it is unable to push more messages in the In-Memory Buffer maintained by the
FioranoMQ Server). The parameter SenderBlockingInterval can be set through the Fiorano
Admin Studio in online mode. The default value of this variable is 10 milliseconds. The Sender
Blocking Interval parameter is used only where persistent messages are present. Setting this
parameter to -1 allows a sender to continuously publish messages without blocking them.The
Sender Blocking Interval is ignored if no receivers are registered on a queue.

Perform the steps below to configure the Sender Blocking Interval parameter:

1. Open Fiorano Admin Studio and login to the FioranoMQ server.

2. Select Destinations > Queues sub-node from the Server Explorer pane.

3. Select the Queue name whose properties are to be displayed.

4. In the Properties pane, type in the new value of SenderBlockingInterval and
press Enter.

26.1.1.7 Queue Behavior On Buffer Overflow

It determines the Queue behavior for the incoming messages when the size of the in-memory
buffer (InMemoryBufferSize) used for storing NON_PERSISTENT messages reaches its
maximum limit.

If push operation has unsuccessfully tried 'MaxPushAttempts' times to push the message into
the in-memory buffer (because of inMemoryBufferSize exceeded), three strategies can be
followed:

1. Throwing exception

2. Drop oldest message and push the new message

3. Store the new message into disk

Throwing exception (Exception):

This option will throw back an exception indicating in-memoryBuffer is full back to the client.

Drop oldest message and push the new message (DropOldestMessage):

This option will drop the old message present in the in-memoryBuffer and will give place for
the new message.

Store the new message into disk (WriteToDisk):

This option will store NP messages (only the messages that arrives when the in-memoryBuffer
is full) in the disk. In case of HA_replicated, the NP messages stored in the disk will NOT be
replicated to the secondary server.

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 326

26.2 PubSub Configuration Parameters

FioranoMQ offers a very high message throughput and low latency for non-persistent
messages. The boost in delivery rates have been achieved through a series of algorithmic
changes for multi-threaded scenarios, data-copy optimizations, transport layer enhancements,
changes in flow-control semantics and by removing bottlenecks from the code.

FioranoMQ provides the following configuration options for tuning the publish-subscribe model:

26.2.1 Setting the Message Receipt Acknowledgement

In the DupsOkBatchSize mode, acknowledgement of receipt of message is sent after a
configurable number of messages. By default this number is 20.

The steps below enable configuration of the Message Receipt Acknowledgement parameter
using the Fiorano Admin Studio in offline mode:

1. Open Fiorano Admin Studio.

2. Select Tools > Configure Profile from the menu bar. Select the FioranoMQ folder,
and click the Open button. FioranoMQ is now in offline mode.

3. Navigate to FioranoMQ -> Fiorano -> mq -> pubsub -> TopicSubSystem in the
Profile Manager pane. The properties of the CommonConfig are displayed in the
Properties pane.

4. Select the ellipsis against the parameter DupsOkBatchSize. Type in the new value
in the DupsOkBatchSize dialog box and click OK.

5. Right-click on the FioranoMQ domain in the Profile Manager pane and select the
Save option from the shortcut menu.

26.2.2 Setting In-Memory Buffers for Subscribers

Another mechanism to manage flow-control is to increase the size of the In-Memory Buffers of
topics and of subscribers with the Publisher slowdown algorithm option enabled. This will delay
the initialization of publisher slowdown algorithm and increase the overall throughput. When
the subscriber receives messages slowly, increasing the buffer size may lead to the Publisher
slowdown algorithm not initializing. This depends on the rate at which the messages are being
published on the server. This is configurable using BasicAllowedSize parameter through the
Fiorano Admin Studio in offline mode. The default value of this variable is 128KB. The default
value can be increased to a higher value depending on the scenario.

Following steps enable you to configure this parameter:

1. OpenFiorano Admin Studio.

2. Select Tools > Configure Profile from the menu bar. Select the FioranoMQ folder,
and click the Open button. FioranoMQ is now in offline mode.

3. Navigate to FioranoMQ -> Fiorano -> mq -> pubsub -> TopicSubSystem in the
Profile Manager pane. The properties of the PubSub Manager are displayed in the
Properties pane.

4. Select the ellipsis against the parameter BasicAllowedSize. Type in the new value
in the BasicAllowedSize dialog box and click OK.

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 327

5. Right-click on FioranoMQ domain in the Profile Manager pane and select the Save
option from the shortcut menu.

26.2.3 Setting Parameters for New Pubsub Algorithm to Handle Slow Subscribes

In previous releases of FioranoMQ, there were no options available to disable the slowing
down of the publisher when subscribers slow. In the default configuration, the publisher blocks
messages by a predefined timeout and flow-control is activated.

From FioranoMQ SP2 onwards, the option of persisting messages to disk when the subscriber
slows down, results in the fast subscriber not being affected even when publisher slowdown is
disabled.

Below are the parameter that determines the different behaviors of the pubsub algorithm.
Parameters can be configured from Fiorano Admin Studio (FioranoMQ->fiorano->mq-
>pubsub->TopicSubSystem).

Note: Pubsub parameters can be configured at either Topic level or at Subsystem level.
Values taken from the topic level will be given higher priority over those taken from the
Subsystem level. However, if the values at the topic level are set to the default value, then the
value is fetched for the corresponding parameter from the Subsystem level itself. To set
values at Topic level navigate to FioranoMQ > Fiorano > mq > pubsub > Topics >
TopicName and change the corresponding parameters.

 PublishBackoffThreshold: This value indicates the size factor after which the
Publisher needs to slow down. If its value is 0.6 and MaxPersistentSize is 1000MB,
once the PSQ Size crosses 0.6*1000MB = 600MB then the Publisher will slow down.

Navigate to::

FioranoMQ->fiorano->mq->pubsub->TopicSubSystem-
>PublishBackoffThreshold.

By default this value is 0.6 which means 60% of PSQ.

 StoreMessageToDisk: When the session buffer in the client runtime overflows, the
session state in the Server becomes passive. Thepublisher starts pushing the message
into temporary persistent queues in the disk (for that particular session only). The
slow subscriber will not receive messages until the client's session buffer can
accommodate more messages. A normal subscriber keeps receiving the message since
the publisher does not slow down.

Navigate to::

FioranoMQ->fiorano->mq->pubsub->TopicSubSystem->StoreMessageToDisk

The default value of this parameter is set to yes. The result of this parameter is not
effective for non-persistent message that can be discarded.

If the default parameter is set to no, this parameter ensures that messages within the
FioranoMQ Server never overflow onto a disk queue. This means that the messages
are either delivered to the subscriber (assuming the subscriber is fast enough to pick
them up), or they are dropped (once the internal buffer fills up).

 PublishWait: indicates the default time interval by which the publisher slows down
when EnablePublisherSlowdown is set to yes. As the size of the Persistent Session
Queue (PSQ) changes, the publisher blocking time also changes according to the
exponential back-off algorithm.

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 328

Navigate to::

FioranoMQ->fiorano->mq->pubsub->TopicSubSystem->PublishWait

The default value of this parameter is 50 milliseconds (values less than or equal to 0
are not accepted).

 EnablePublisherSlowdown: If it's set to no, then the publisher does not slow down
when sending messages to the persistent queue (PSQ). EnablePublisherSlowdown is
used when publisher flow-control is needed due to many slow subscribers. This option
should be carefully selected considering the different options as mentioned above. If
this option is selected the publisher will slow down if PSQ size crosses the threshold
defined by PublishBackoffThreshold. as described in the description of backoff algo.
The slow down time starts from the value specified by another parameter called
publishWait. It increases according to the slow down algorithm which depends on the
size of the persistent message queue for every slow subscriber. This slow down time
dynamically changes as and when persistent storage size changes. This option
dynamically balances publisher slow down with the size of persistent message in the
disk.

Navigate to:

FioranoMQ->fiorano->mq->pubsub->TopicSubSystem-
>EnablePublisherSlowdown

The default value of this parameter is yes. If the User does not want to have publisher
flow-control, this parameter should be set to no.

 DropOldestMessage: If set to yes, the publisher first drops the oldest message from
the persistent store and pushes the latest on the queue thereby ensuring the
maximum size of persistent store is kept at all times.

Navigated to:

FioranoMQ->fiorano->mq->pubsub->TopicSubSystem->DropOldestMessage

The default value of this parameter is set to no. If the user wants to drop the latest
message, when the size of total messages in the disk cross over a certain threshold,
then this parameter should be set to its default value.

 MaxPersistentStoreSize: Indicates the maximum size of total messages stored in
the persistent queue in the disk. Once the current size crosses over this threshold, the
publisher starts dropping them if DropOldestMessage flag is set to no. If this flag is set
to yes, the publisher first drops the oldest message from the persistent store and
pushes the latest one. If it’s value is set to -1, messages will be persistent till the
server run out of disk space.

Navigated to:

FioranoMQ->fiorano->mq->pubsub->TopicSubSystem-
>MaxPersistentStoreSize

The default value of this parameter is 1073741824 bytes (1 GB).

 PublishWaitTimeChunks: If PSQ size reaches 95% of the maximum value, the
publisher publishing persistent messages will be blocked till PSQ size reduces to 85%.
The publisher should wait and periodically check the PSQ sizeto confirm it has
reduced. This time interval at which publisher checks the PSQ can be controlled by this
parameter.

Before checking the PSQ size, publisher will wait for MessagePublishTimeout/
PublishWaitTimeChunks in milliseconds for each iteration.

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 329

Navigated to:

FioranoMQ->fiorano->mq->pubsub->TopicSubSystem->
PublishWaitTimeChunks

The default value of this parameter is 8 (values less than or equal to 0 are not
accepted).

 IgnorePSQSizeForPersistentMessages: This flag determines the behavior when
PSQ size exceeds MaxPersistentStoreSize. If this flag is set to true, persistent
messages will still go onto the PSQ.

Navigated to:

FioranoMQ->fiorano->mq->pubsub->TopicSubSystem->
IgnorePSQSizeForPersistentMessages

The default value of this parameter is Yes.

 MaxPublisherBlockTime: When EnablePublisherSlowdown is set to yes, this
indicates the maximum time for which a publisher will wait while trying to push the
messages to the PSQ after it has reached 95% of its maximum limit. This applies to all
publishers.

Navigated to:

FioranoMQ->fiorano->mq->pubsub->TopicSubSystem-
>MaxPublisherBlockTime

The default value of this parameter is 120000 milliseconds.

Points to Note:

The Pubsub algorithm needs a new profile to run the server. The older profile has to be ported
to the new profile. To port the older profile to the current profile, configurations need to be
replicated manually. It server is recommended that the Server run with JVM heap size with the
following setting to be made in fiorano_vars.bat/.sh:

JVM_SERVER_ARGS=-server -Xms256m -Xmx512m (-Xms512m -Xmx1024m for enterprise
operation)

Non-persistent messages will always be dropped if PSQ size exceeds MaxPersistentStoreSize.
However, non-persistent messages can persist till the Server goes out of disk space by setting
its value to -1.

Flow control: Backoff algorithm will kick-in if PSQ size crosses PublishBackoffThreshold. By
default, when 60% of the PSQ is used, every published call will be blocked for PublishWait
(50ms by default). With every 5% increase in the PSQ size, publish call blocking time will be
doubled. At the same time, the publish call blocking time will be halved with every 5%
decrease. If 95% of the PSQ is used, the publish call will block calls for an infinite time. The
publish call blocking time will reduce to 1600 ms if the PSQ size goes down to 85%.

The new back off algorithm can be disabled by setting EnablePublisherSlowdown to No.

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 330

The table below gives the default Blocking Time during various states of PSQ:

% of PSQ Used Publish Block Time

60 % 50 ms (PublishWait default)

65 % 100 ms

70 % 200 ms

75 % 400 ms

80 % 800 ms

85 % 1600 ms

90 % 3200 ms

95 % Block till PSQ size reduces to 85%

26.3 Calculating Memory Requirements for FioranoMQ Server

Approximate minimum memory allocated by default for each module in the FioranoMQ Server
is given in the table below:

Module Minimum Amount of Memory Required

Topic Connection

128 KB

This is the default connection buffer size associated with each topic connection.
This value is determined by the parameter BasicAllowedSize in the Topic
Subsystem. More information about this parameter can be found in Chapter 4:
Topic Subsystem Level Configuration [Link?] of the FioranoMQ Reference
Guide. Please see Section 26.2.2 Setting in-memory buffers for Subscribers for
how to change this parameter.

Topic Manager
(Unique for all topics)

512 KB

This is the default maximum in-memory size of the Message buffer that is used
across all the storage topics in FioranoMQ. This value is determined by the
parameter MaxBufferSize in the GMS Topic Manager. This can be set using
Admin Studio in Offline editing mode by navigating to Fiorano > mq > pubsub >
databases > file > TgmsManager > MaxBufferSize.

Queue

1024 KB (Non-persistent buffer size)

This is the default buffer size for the Non-Persistent Buffer associated with each
storage queue. This value is determined by the parameter InMemoryBufferSize
in the Queue Subsystem/Queue. More information about this parameter can be
found in Chapter 3: Queue Subsystem Level Configurations [Link?] of the
FioranoMQ Reference Guide. Please see section 29.1 Support for Destination
Level Configuration for referencing the difference between setting a parameter
value at Subsystem level and at the Destination level.

512 KB (Persistent buffer size)

FioranoMQ 9 Handbook

Chapter 26: Performance Tuning And Deployment Parameters Page 331

Module Minimum Amount of Memory Required

This is the default buffer size for the Persistent Buffer associated with each
storage queue. This value is determined by the parameter
PersistentInMemoryBufferSize in the Queue Subsystem/Queue. More
information about this parameter can be found in Chapter 3: Queue
Subsystem Level Configurations of the FioranoMQ Reference Guide. Please
see section 29.1 Support for Destination Level Configuration for referencing the
difference between setting a parameter value at Subsystem level and at the
Destination level.

Queue Receiver

256 KB

This is the default maximum buffer size associated with each Queue Receiver
when retrieving the messages from the Server DB. This value is determined by
the parameter MaxPrefetchSize in the Queue Subsystem. More information
about this parameter can be found in Chapter 3: Queue Subsystem Level
Configurations of the FioranoMQ Reference Guide. Please see section 26.1.1.5
PTP Prefetch size to learn how to change this parameter and to learn of its
importance.

Route 128 KB

This is the default buffer size associated with the Route subscriber. This
parameter comes into use when a Route is created from a Topic (Source) to a
Queue (Target). This value is determined by the parameter MaxTopicBuffer of
the Route Manager. More information about this parameter can be found in
Chapter 15: Advance Configuration [Link?] of the FioranoMQ Reference
Guide.

Total 2560 KB

The minimum amount of memory consumed by the JMS objects inside FioranoMQ Server JVM
can be calculated using the formula below:

Minimum memory required = (Number of topic connections * 128) + 512 + (Number of
Queues * 1536) + (Number of Queue Receivers * 256) + (Number of Routes * 128) (In
Kilobytes).

Note: These calculations are only done to determine the minimum amount of memory
consumed by the JMS Objects created inside the FioranoMQ Server. This is not sufficient
amount of memory to deploy the FioranoMQ Server. The amount of memory necessary to
deploy the FioranoMQ Server is generally higher than the value obtained in these calculations.

FioranoMQ 9 Handbook

Chapter 27: Administrating the FioranoMQ Server Using APIs Page 332

Chapter 27: Administrating the
FioranoMQ Server Using APIs

27.1 Introduction

FioranoMQ provides a comprehensive set of Administration APIs that allow the Enterprise
Administrator to access MQ services such as MQNamingService, MQAdminService,
MQRealmService, MQSnooperService and MQDispatcherService.

Most of the functions provided by Admin APIs can be accessed using the Admin GUI.

27.2 Creating an Admin Connection

The first step in using AdminService involves obtaining a handle to an Admin connection. The
handle to an Admin connection is obtained as by entering:

Hashtable env = new Hashtable();

env.put(Context.SECURITY_PRINCIPAL, "admin");

env.put(Context.SECURITY_CREDENTIALS, "passwd");

env.put(Context.PROVIDER_URL, "http://localhost:1856");

env.put(Context.INITIAL_CONTEXT_FACTORY,
"fiorano.jms.runtime.naming.FioranoInitialContextFactory");

InitialContext ic = new InitialContext(env);

System.out.println("Created InitialContext :: " + ic);

MQAdminConnectionFactory acf = (MQAdminConnectionFactory) ic.lookup("primaryACF");

System.out.println("Looked up MQAdminConnectionMetaData :: " + acf.getMeta-

Data());

System.out.println("Looked up MQAdminConnectionFactory :: " + acf);

MQAdminConnection ac = acf.createMQAdminConnection("admin", "passwd");

System.out.println("Created Admin Connection :: " + ac);

The default Admin password is set to “passwd”. The FioranoMQ 9 Administrator can change
“passwd” using the changePassword API. MQAdminConnection can be used to obtain handles
to the FioranoMQ 9 Administrative services discussed in the preceding sections.

FioranoMQ 9 Handbook

Chapter 27: Administrating the FioranoMQ Server Using APIs Page 333

Once the admin connection has been made to the MQServer, the administrator has access to
services explained in the following sub-sections:

27.2.1 MQNamingService

FioranoMQ Naming Services provide a JNDI implementation to lookup all the Administered
Objects. By default, the Administered Objects are stored in FioranoMQ’s persistent store.

MQNamingService namingService = ac.getMQNamingService();

Upon execution of this step, the User can invoke all APIs avaliable in MQNamingService.

For example:

lookup(String adminObjectName);

bind(String adminObjectName, Object data);

Note: For details of available, APIs, please refer to API documentation available at
%FIORANO_HOME\fmq\docs\api\index.html

27.2.2 MQAdminService

MQAdminService allows the MQ Administrator to create/delete/edit administered objects such
as Destinations and ConnectionFactories.

MQAdminService adminService = ac.getMQAdminService();

Upon execution of this step, the User can invoke all APIs avaliable in MQAdminService.

For example:

// CREATION OF TOPICS

System.out.println("\n ** Creating Topics ** \n");

try

{

// TOPIC #1

//Create the TopicMetaData with the desired Topics

TopicMetaData metadata1 = new TopicMetaData();

metadata1.setName("Mytopictest1");

adminService.createTopic(metadata1);

System.out.println("Successfully created Topic:: " + metadata1.getName());

FioranoMQ 9 Handbook

Chapter 27: Administrating the FioranoMQ Server Using APIs Page 334

}

catch (JMSException e)

{

System.out.println(e);

}

Note: For details of available APIs, please refer to API documentation available at
%FIORANO_HOME\fmq\docs\api\index.html.

27.2.3 MQRealmService

RealmServices provide complete integration with existing NT/Solaris realms. Topic ACL/ACE
settings for Users can be set and viewed using MQRealmService APIs. In addition to ACL
creation, a Realm service can be used for UserManagerment.

The sample below demonstrates the logic for the creation of new Users in FioranoMQ:

MQRealmService realmservice = ac.getMQRealmService();

Upon execution of this step, the User can invoke all APIs avaliable in MQRealmService.

For example:

// CREATION OF USERS

System.out.println("\n ** Creating Users ** \n");

try

{

Principal user1 = realmservice.createUser("Bill", "Clinton");

Principal user2 = realmservice.createUser("Rod", "Steward");

System.out.println("Created Users");

}

catch (JMSException e)

{

System.out.println(e);

}

Note: For details of available, APIs please refer to API documentation available at
%FIORANO_HOME\fmq\docs\api\index.html.

FioranoMQ 9 Handbook

Chapter 27: Administrating the FioranoMQ Server Using APIs Page 335

27.2.4 MQSnooperService

MQ Administrator can install snoopers on selected topics/Queues. By using MQSnooperService
APIs, details of all the published messages can be viewed. Destinations can be registered and
unregistered for snooping at runtime using the APIs in MQSnooperService.

MQSnooperService snooperService = ac.getMQSnooperService();

Upon execution of this step, the User can invoke all APIs avaliable in MQSnooperService.

For example:

The following API checks if the given JMS destination has been registered for Snooping.

boolean isDestinationRegistered(String destinationName);

Note: For details of available, APIs please refer to API documentation available at
%FIORANO_HOME\fmq\docs\api\index.html.

27.2.5 MQDispatcherService

MQDispatcherService APIs allow the MQ Administrator to set up the Server as a dispatcher,
route requests to FioranoMQ Servers in a cluster and view dispatcher status. The
DispatcherService allows the administrator to add/remove Servers to the Cluster, locating the
Preferred Server in the Cluster at runtime.

MQDispatcherService dispatcherService = ac.getMQDispatcherService();

Upon execution of this step, the User can invoke all APIs avaliable in MQDispatcherService.

For example:

public ServerMetaData getPreferredServer()

Note: For details of available, APIs please refer to API documentation available at
%FIORANO_HOME\fmq\docsapiindex.html.

27.2.6 MQMonitoringService

MQMonitoringService APIs allow the FioranoMQ administrator to control the events that are
used to monitor the status of the FioranoMQ Server. It is possible to start and stop monitoring
events using this service. Additionally, monitoring for specific events can be added and
removed.

MQMonitoringService dispatcherService = ac.getMQMonitoringService();

Upon execution of this step, the User can invoke all APIs avaliable in MQMonitoringService.

For example:

public void startSystemEvents()

FioranoMQ 9 Handbook

Chapter 27: Administrating the FioranoMQ Server Using APIs Page 336

Note: For details of available, APIs please refer to API documentation available at
%FIORANO_HOME\fmq\docs\api\index.html.

Note: Samples illustrating the use of Admin APIs can be found in the
%FIORANO_HOME%\fmq\samples folder of the FioranoMQ installation directory.

* MQTraceService and MQLogService are not supported by FioranoMQ upwards.

FioranoMQ 9 Handbook

Chapter 28: DB Recovery Tool Page 337

Chapter 28: DB Recovery Tool

The Fiorano DB Recovery Tool is used to recover the corrupted database of FioranoMQ
Server’s file.

Warning: If the Database is changed manually it gets corrupted and the DB Recovery Tool
will not be able to recover any data.

28.1 Overview of FioranoMQ’s file based Database

The database section consists of three main sections:

1. PTP: This contains all the data related to the PTP subsystem.

2. PubSub: This contains all the data tables and subscriber information tables related to
the PubSub subsystem. PubSub also contains topic-wise directories for Persistent
Messages as well as Non Persistent Message, for both data and subscriber information.

3. SDB: This contains all the data related to the Security subsystem which consists of all
Users, their permissions, Acls and Groups they belong to.

28.2 Typical Structure of FioranoMQ File Based DB

FioranoMQ

 Run

 PTP

 CeMaster.tbl

 QGMS.PRIMARYQUEUE.4

 CeTable.tbl

 Ce1.dat

 Ce2.dat

 ….

 QGMS.PRIMARYQUEUE.5

 ….

 PUBSUB

 CeMaster.tbl

 JMSX_PM_TIDPRIMARYTOPIC.data

FioranoMQ 9 Handbook

Chapter 28: DB Recovery Tool Page 338

 CeTable.tbl

 Ce1.dat

 Ce2.dat

 ….

 JMSX_PM_TIDPRIMARYTOPIC. subscribersInfo

 CeTable.tbl

 Ce1.dat

 Ce2.dat

 ….

 JMSX_NPM_TIDPRIMARYTOPIC.data

 ….

 JMSX_NPM_TIDPRIMARYTOPIC. SubscribersInfo

 ….

 JMSX_PM_TIDSECONDARYTOPIC.data

 ….

 SDB

 REALM.ACL

 CeMaster.tbl

 ACL_TABLE

 CeTable.tbl

 Ce1.dat

 Ce2.dat

 ….

 PRINCIPAL_TBL

 CeTable.tbl

 Ce1.dat

 Ce2.dat

FioranoMQ 9 Handbook

Chapter 28: DB Recovery Tool Page 339

 ….

 REALM.PRINCIPAL

 CeMaster.tbl

 MEMBER_TBL

 CeTable.tbl

 Ce1.dat

 Ce2.dat

 ….

 PRINCIPAL_TBL

 CeTable.tbl

 Ce1.dat

 ….

28.3 Using FioranoMQ DB Recovery Tool

The DB Recovery Tool is executed by running recover-database.bat/ recover-database.sh
which can be found under %FIORANO_HOME%\fmq\bin.

28.3.1 Using Windows

> recover-database.bat [–propertiesFile <absolute path for configuration file>]

[-fmq.profile <profile name for which DB is to be recovered>]

[-h]

28.3.2 Using Unix/Linux

$./recover-database.sh [–propertiesFile <absolute path for configuration file>]

[-profile <profile name for which DB is to be recovered>]

[-h]

28.3.3 Parameters

1. Properties file: Configuration file. Default configuration file is located at
%FIORANO_HOME%\fmq\profiles\recovery.properties

FioranoMQ 9 Handbook

Chapter 28: DB Recovery Tool Page 340

Example:

> recover-database.bat –propertiesFile c:\db.properties

2. Profile: Profile name for which DB is corrupted and to be recovered.

Example:

> recover-database.bat –profile FioranoMQ_XA

3. Help: Brief information onvarious command line arguments.

Example:

> recover-database.bat -h

4. DB Path: Path in which FMQ DB is located.

Example:

> recover-database.bat -dbPath %FIORANO_HOME%\fmq\profiles\FioranoMQ_XA\run

5. checkCSP: Analyzes CSP cache specified in path

Example:

> recover-database.bat -checkCSP %CSP_CACHE_PATH%

6. Operation: The operation to be performed by the recovery tool. By default the value
is RunExtractor.

Example:

> recover-database.bat RunExtractor

28.3.4 Configuration File Parameters
1. RUN_PTP_ANALYZER: Analyzes whether or not to recover the PTP subsystem

database. The default is true.

2. RUN_PUBSUB_ANALYZER: Analyzes whether or not to recover PUBSUB subsystem
database. The default is false

3. RUN_SDB_ANALYZER: Analyzes whether or not to recover Security subsystem
database. The default is false.

4. TRACE_LEVEL: Trace level for DB recovery tool. The default number is 6 (which is
the maximum).

5. PTP_DB_NAME: This is the database name for the PTP Subsystem. The default value
is PTP. This default value can be configured from Profile Manager by setting the
value of Fiorano.mq.ptp.databases.file.FileDBManager.Path

6. PUBSUB_DB_NAME: This is the database name for the PUBSUB SubSystem. The
default value is PUBSUB. This default value can be configured from Profile Manager
by setting the value of Fiorano.mq.pubsub.databases.file.FileDBManager.Path

FioranoMQ 9 Handbook

Chapter 28: DB Recovery Tool Page 341

7. SDB_ACL_DB_NAME: This is the database name for SDB ACL Manager. The default
value is SDB/REALM.ACL. This default value can be configured from Profile Manager
by setting the value of Fiorano.security.AclManager.FileDBManager.Path

8. SDB_PRINCIPAL_DB_NAME: This is the database name for SDB Principal Manager.
The default value is SDB/REALM.PRINCIPAL. This default value can be configured
from Profile Manager by setting the value of
Fiorano.security.PrincipalManager.FileDBManager.Path

9. RENAME_DIRECTORY ANALYZER: Analyzes whether or not to rename the
recovered directory to the default name. The default is false.

Default names for PTP, PUBSUB and Security subsystem database are PTP, PUBSUB
and SDB respectively.

When ‘tool’ recovers some of the database it creates a new directory by adding prefix
.New to the default name, that is, PTP.New.

If RENAME_DIRECTORY is true, it renames the old (may be corrupted) database with
prefix .Old, that is, PTP.Old, and renames the recovered database to the default state
by removing prefix .New.

28.4 Steps to Run DBRecovery Tool

28.4.1 Parameter Configuration and Execution
1. Set the required configuration file parameters in the default configuration file

$FIORANO_HOME/fmq/profiles/recovery.properties or in the user defined file (absolute
path of the configuration file should be explicitly mentioned as parameter –
propertiesFile <path of the file> while running the tool).

2. Execute the DB Recovery tool by running the recover-database.bat/ recover-
database.sh which can be found under $FIORANO_HOME/fmq/bin with the necessary
parameters.

Example: Using Unix/Linux:

$./recover-database.sh RunExtractor -profile FioranoMQ_XA -dbPath
$FIORANO_HOME/fmq/profiles/Fiorano_XA/run

3. Now the user can verify the results of the DB analysis through the log files which will
get generated in $FIORANO_HOME/fmq/bin.

Example:

Consider the analysis has been done for PTP DB.

$FIORANO_HOME/fmq/bin/ptpResults.log

$FIORANO_HOME/fmq/bin/ptpUnableToRecoverData.log

28.4.2 DBRecovery
1. On setting the RECOVER_DB property to true i.e. RECOVER_DB=true (in

fmq/profiles/recovery.properties file) will not only analyze the DB but also recover the
DB if found corrupted.

FioranoMQ 9 Handbook

Chapter 28: DB Recovery Tool Page 342

2. The recovered DB entry/table files will be generated in a new directory which will be
created by adding suffix .New to the default name, that is, PTP.New, if the value of
RENAME_DIRECTORY property is set to false (in fmq/profiles/recovery.properties file).
Then the user has to manually rename the original DB directory with suffix .Old i.e.PTP
to PTP.Old and the newly recovered DB directory by removing the suffix .New to
default i.e. PTP.New to PTP.

3. If the RENAME_DIRECTORY property is set to true then by default, the corrupted DB
will be renamed with suffix .Old i.e. PTP to PTP.Old and also renames the recovered
database to default by removing the suffix .New i.e. PTP.New to PTP .No manual
renaming is required.

4. If the user set the RECOVER_DB property to false i.e. RECOVER_DB=false (in
fmq/profiles/recovery.properties file) then only the analysis of DB will be performed
and the results will be logged.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 343

Chapter 29: Application Server
Integration

29.1 Implementing Advanced JMS APIs

In this JMS-Application Server integration the JMS provider implements advanced JMS APIs.
These APIs deliver messages to consumers within the context of an Application Server session.

Download the sample (AppServer-JMS Sample Applications) that illustrates the utility of JMS
APIs, which allow Application Server Sessions to be registered with the FioranoMQ JMS Server.
Messages are delivered to the consumers within the context of the Application Server Session.

29.2 Message Driven Beans

FioranoMQ integrates with most Application Servers to provide the Message Driven Bean
function.

Message-Driven Beans (MDB’s) are stateless, server-sided and transaction-aware components
used to process asynchronous JMS messages. Introduced in EJB 2.0, message-driven beans
process messages that are delivered through the Java Message Service. MDBs can receive JMS
messages and process them. While a MDB is responsible for processing messages, its
container automatically manages the entire environment of the component including
transactions, security, resources, concurrency and message acknowledgment.

29.3 FioranoMQ - EJB Application Server Integration

FioranoMQ provides an Application Server neutral mechanism to integrate JMS with EJB. This
document reviews in depth the issues that FioranoMQ has solved with this method of
integration. Samples illustrating how JMS can be used for asynchronous invocation of EJB
methods can be downloaded from JMS-EJB Sample Applications. This section explains how the
power of EJB can be leveraged using asynchronous Java Messaging technology. This section
also illustrates how FioranoMQ's implementation of JMS provides support for asynchronous EJB
method invocation, as well as the limitations inherent in the EJB architecture for doing the
same. It also contains an EJB JMS sample.

Note: The reader must be familiar with the basic concepts and workings of JMS and EJB.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 344

29.3.1 Asynchronous Method Invocation using Delegation Model

Using the services provided by FioranoMQ, it is possible for one EJB to asynchronously invoke
methods on another Bean. FioranoMQ achieves this through a delegation model, where a
request is passed on, or delegated to, another entity that handles the request and returns a
response. This allows a given EJB (or a Client Application using EJB) to trigger methods on any
other Bean. The delegator class is responsible for listening on a JMS Queue, marshalling the
incoming JMS messages and invoking appropriate remote methods on the desired target Bean.
The delegator class can be executed as either an Application Server specific startup class or as
a standalone JMS Application. If the delegator class is assigned as one of the startup classes of
the Application Server, then the Application Server is responsible for invoking this class in the
JVM instance.

Note: It is not necessary for the delegator class to be present in the startup group of classes
of the Application Server. The startup classes are Application Server specific making the code
non-portable.

Therefore, the FioranoMQ EJB JMS sample that illustrates the EJB integration has not made
the delegator class a member of the startup class of any application server. This sample
illustrates how FioranoMQ can be integrated with any Application Server through a single
standalone application. Please refer to the documentation related to the ‘Application Server’ to
determine how the delegator class can be made a startup class.

29.3.2 EJB JMS Sample Application

The example in the figure below illustrates how JMS can be used to invoke, asynchronously,
methods on an EJB.

Figure1: Illustrating the Use of JMS for Asynchronous Method Invocation on EJBs

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 345

The sample and the JMS-EJB integration work as listed below:

• Client applications (referred to as Client EJB Stubs) publish a JMS message each
time they want to invoke a method on a remote EJB

• All published JMS messages are received by a delegator application, which invokes the
appropriate methods on the remote EJB using the Java reflection API.

• The JMS-EJB integration application has three components, each of which is discussed
below:

o Event Generator: The Client application generating the requests to invoke
the remote EJB methods

o Delegator: A FioranoMQ JMS application that reads the message and invokes
each remote EJB method

o EJBs: The actual EJBs whose methods are invoked

29.3.3 Event Generator

The Event Generator publishes JMS Messages to a Queue (primaryqueue by default). Each
message contains relevant information regarding the methods to be invoked in specific,
remote, EJBs. The Client Application represents the Event Generator. In a real world example,
the Event Generator might be a Shopping cart Bean that needs to asynchronously trigger the
method of another Bean, dependent upon the User clicking checkout on an HTML page.

The file Publisher.java contains the Event Generator, which simulates an event that is used to
invoke appropriate EJBs. The goal of the Generated Event is to invoke one of the three beans
(Add, Delete or Update), once every two seconds. Since there are no limitations to the JMS
Messages being published by EJB, the Event Generator, in effect, becomes an EJB. The only
task of the Event Generator is to generate JMS messages that encapsulate the
Add/Delete/Update events which are then invoked on a remote bean.

The JMS message (event) includes the following information:

• Name of the target EJB to be looked up.

• The API used to create instances of the EJB and arguments, if any.

• Name of the method to invoke in the target EJB and arguments, if any.

• The information above is required by the Delegator class to invoke the appropriate
method asynchronously on the target bean.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 346

29.3.4 Delegator

The Delegator represents a generalized application that is responsible for receiving events
asynchronously and invoking appropriate methods on the target EJB. The JMS Application
listens for messages on a queue (primaryqueue by default), de-marshals the messages and
invokes the appropriate method in the target EJB. The Delegator class is a generalized class
that uses reflection to invoke any remotely accessible method in the requested EJB. The class
Subscriber.java represents the Delegator class. The JMS Application implements an
asynchronous listener to listen in for messages that are published on the queue
primaryQueue. The Delegator receives the JMS Messages that are published on the Queue
and demarshalls the content of the JMS Message. It finally looks up and invokes appropriate
methods on the EJB with appropriate parameters, using reflection. Optionally, this class can be
placed in the startup class of an Application Server, thereby passing on the responsibilities of
the Delegator to the Application Server.

29.3.5 Enterprise Java Beans

Three simple stateless session Beans (AddBean, UpdateBean and SessionBean) are used as
the target EJBs. The method of the Beans is invoked by the Delegator (described in section
29.3.4 Delegator).

29.3.6 Limitations of Enterprise Java Beans

EJBs do not provide for asynchronous method invocation for the reasons given below:

1. EJBs do not run as a daemon service. EJBs are server-side reusable components that
can be put back into the available pool of the container when they time-out or when
there are no more active references to the Bean.

2. EJBs can be accessed only through a remote interface. An EJB cannot be made to
receive a JMS Message asynchronously, since this result in the direct invocation of
Bean methods. By definition, an EJB can only be accessed through its remote
interface. The container of the EJB is responsible for managing and invoking all calls
on the Bean. Since the EJB container manages all transactions and threads the safety
operations of the Bean, direct access to the Bean method is restricted, as this can
result in a potentially catastrophic operation. EJBs cannot be used to create a JMS
message listener that asynchronously receives messages since this would invocation
the Bean methods directly.

29.4 FioranoMQ Client Logging

For FioranoMQClientRTL logging to take place, the logger levels and appenders have to be
mentioned through properties file or xml file. The jboss application server uses log4j.xml file.
In this case, the FioranoMQClientRTL loggers' level and appender has to be mentioned in the
same log4j.xml.

Example: If the logger name is
"Fiorano.FMQ.Services.ClientRootLoggerServices.FMQClientLoggerServices", the logger level is
INFO and the log appender is RollingFileAppender, then

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 347

<category
name="Fiorano.FMQ.Services.ClientRootLoggerServices.FMQClientLoggerServices">

 <priority value="INFO"/>

 <appender-ref ref="FioranoFileAppender"/>

</category>

<appender name="FioranoFileAppender" class="org.apache.log4j.RollingFileAppender">

 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>

 <param name="File" value="${jboss.server.log.dir}/log.out"/>

 <param name="MaxFileSize" value="10MB"/>

 <param name="MaxBackupIndex" value="5"/>

 <param name="Append" value="true"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>

 </layout>

</appender>

log4j.properties file will contain the logger names used in FioranoMQClientRTL. By default,
"log4j.properties" file will be provided under %FIORANO_HOME%\fmq\bin.

Note the following:

1. For information regarding Appender,MaxFileSize, MaxBackupIndex,Append,Levels and
layout , please refer Chapter 8: Logger Configuration in FioranoMQ Reference
Guide.

2. For information regarding log4j.properties configurations and Parent-child relationship
in FioranoMQ Client Logger, please refer Chapter 21: Logger.

29.5 Integrating FioranoMQ with J2EE Servers

FioranoMQ provides a standardized method to connect and integrate with a J2EE container
using the FioranoMQ Resource Adapter. This Adapter enhances the plug-in ability and
integration of FioranoMQ with J2EE Servers.

The FioranoMQ Resource Adapter implements the complete semantics of JCA 1.5 allowing:

3. J2EE applications (MDBs and EJBs) to send messages to JMS Topics and Queues using
a unified JMS model with JCA Outbound Contracts (including Transaction Contracts).

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 348

4. Message endpoints (MDBs) to asynchronously receive messages from Topics/Queues
using JCA 1.5 Message Inflow Contracts.

5. The resource adapter to propagate Transactions initiated by the FioranoMQ Server to
the application server, using Transaction Inflow contracts.

29.5.1 How Resource Adapter Works

The working of the Resource adapter is illustrated in the figure below:

29.5.2 Deployment of FioranoMQ Resource Adapter

The FioranoMQ Resource Adapter has been packaged in a rar file that can be used to deploy
the Resource Adapter:

6. %FMQ_HOME%\fmq\lib\jca\fmq-connector-ra.rar can be used to deploy the
FioranoMQ Resource Adapter in J2EE 1.3 compliant Application Servers.

7. %FMQ_HOME%\fmq\lib\jca\fmq-connector-ra.rar can be used to deploy The
FioranoMQ Resource Adapter in J2EE 1.4 compliant Application Servers.

Note: This is where %FMQ_HOME% represents the installation directory of FioranoMQ.

In the FioranoMQ Resource Adapter's deployment descriptor (ra.xml), the properties, below,
can be configured/overwritten during deployment:

S.No Type Description Property

1 ProviderURL

String

Provider URL (where JMS admin objects
are stored).

2 BackupProviderURLs String Backup provider URLs, if any.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 349

S.No Type Description Property

3 Initial Context-Factory

String Name of the class providing the
implementation of Initial Context Factory.

4 JndiUserName String Username to be used for lookup.

5 JndiPassword String Password to be used for lookup.

6 ConnectionFactory String Name of the connection factory to be used
for creating a physical connection with the
FioranoMQ Server.

7 ClientID

String ID to identify the JMS client (message
consumer).

8 JmsUserName

String Username to be used for creating a
connection to the FioranoMQ Server.

9 JmsPassword

String Password to be used for creating a
connection to the FioranoMQ Server.

10 XAEnabled Boolean Whether or not to enable XA for receiving
messages.

11 DebugEnabled

Boolean

Whether or not to print debug statements.
To log debug statements RA tries to
create an instance of
java.util.logging.Logger. If unable to
create Logger then RA writes all debug
statements using System.out

The above properties are used by the FioranoMQ Resource adapter for implementing Message-
Inflow support. Some of these properties can be overridden by Activation Configuration, as
described in the section below.

29.5.3 Configuring the Resource Adapter

<Inbound-resourceadapter> configuration

Inbound Communication allows the Resource Adapter (FioranoMQ RA) to handle messages
flowing in from the EIS (JMS Server) to the application (MDB) residing in an application
server. The FioranoMQ Resource Adapter (RA) uses the Generic Message Inflow Contract and
asynchronously delivers messages to message driven beans via the onMessage () method
using the javax.jms.MessageListener interface.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 350

The MDB, when deployed, is registered as a message endpoint for receiving the messages
from the Resource Adapter (RA). On deployment of the MDB, the Deployer provides
Activation-Configuration information to the RA so that it can deliver messages to the MDB.

Note: For complete details on semantics with which the Message-Driven Bean asynchronously
receives messages using FioranoMQ RA, please refer to Section 12.7.1 of JCA 1.5
specifications.

FioranoMQ RA specifies the following Activation-Configurations in the FioranoMQ-RA
deployment descriptor:

More details on the Activation-Configuration for Message Inflow to JMS endpoints can be found
in Appendix B of JCA 1.5 specification document.

FioranoMQ RA uses JMS Application Server Facilities for concurrent processing of subscription
messages and message delivery to the MDB endpoints.

Note: For details on JMS Application Server Facilities, refer to Chapter 8 of JMS 1.1
specifications.

29.5.3.1 Sample Activation Configuration

Sample Configurations to be specified in ra.xml

<config-property>

 <config-property-name>ProviderURL</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>http://localhost:1856</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>BackupProviderURLs</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <config-property-name>InitialContextFactory</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-
value>fiorano.jms.runtime.naming.FioranoInitialContextFactory</config-property-value>

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 351

 </config-property>

 <config-property>

 <config-property-name>JndiUserName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>anonymous</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>JndiPassword</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>anonymous</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>ConnectionFactory</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>primaryTCF</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>ClientID</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value></config-property-value>

 </config-property>

 <config-property>

 <config-property-name>JmsUserName</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>anonymous</config-property-value>

 </config-property>

 <config-property>

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 352

 <config-property-name>JmsPassword</config-property-name>

 <config-property-type>java.lang.String</config-property-type>

 <config-property-value>anonymous</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>XAEnabled</config-property-name>

 <config-property-type>java.lang.Boolean</config-property-type>

 <config-property-value>false</config-property-value>

 </config-property>

 <config-property>

 <config-property-name>DebugEnabled</config-property-name>

 <config-property-type>java.lang.Boolean</config-property-type>

 <config-property-value>true</config-property-value>

 </config-property>

Definition for inbound and outbound resource adapters are given in ra.xml

<inbound-resourceAdapter> in ra.xml

<inbound-resourceadapter>

 <messageadapter>

 <messagelistener>

 <messagelistener-type>

 javax.jms.MessageListener

 </messagelistener-type>

 <activationspec>

 <activationspec-class>

 com.fiorano.mq.ra.FMQActivationSpec

 </activationspec-class>

 <required-config-property>

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 353

 <config-property-name>destinationName</config-property-name>

 </required-config-property>

 <required-config-property>

 <config-property-name>destinationType</config-property-name>

 </required-config-property>

 <required-config-property>

 <config-property-name>messageSelector</config-property-name>

 </required-config-property>

 <required-config-property>

 <config-property-name>acknowledgeMode</config-property-name>

 </required-config-property>

 <required-config-property>

 <config-property-name>subscriptionDurability</config-property-name>

 </required-config-property>

 <required-config-property>

 <config-property-name>subscriptionName</config-property-name>

 </required-config-property>

 <required-config-property>

 <config-property-name>clientID</config-property-name>

 </required-config-property>

 <required-config-property>

 <config-property-name>maxSessions</config-property-name>

 </required-config-property>

 <required-config-property>

 <config-property-name>userName</config-property-name>

 </required-config-property>

 <required-config-property>

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 354

 <config-property-name>password</config-property-name>

 </required-config-property>

 </activationspec>

 </messagelistener>

 </messageadapter>

 </inbound-resourceadapter>

Configurations for inbound flow are specified in deployment descriptor 'ejb-jar.xml' located in
MDB's META-INF folder in case of EJB2 and specified using annotations in case of EJB3.

Sample Activation configuration using EJB2.

<ejb-jar.xml> present in doc.

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd"

version="2.1">

<enterprise-beans>

<message-driven>

<ejb-name>FMQSampleMDB</ejb-name>

<ejb-class>com.fiorano.mq.ra.mdb.FMQSenderMDB_1_4</ejb-class>

<messaging-type>javax.jms.MessageListener</messaging-type>

<transaction-type>Container</transaction-type>

<activation-config>

 <activation-config-property>

 <activation-config-property-name>destinationName</activation-config-
propertyname>

 <activation-config-property-value>primaryTopic</activation-config-
propertyvalue>

 </activation-config-property>

 <activation-config-property>

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 355

 <activation-config-property-name>destinationType</activation-config-
propertyname>

 <activation-config-property-value>javax.jms.Topic</activation-config-
propertyvalue>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>messageSelector</activation-config-
propertyname>

 <activation-config-property-value></activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>acknowledgeMode</activation-config-
propertyname>

 <activation-config-property-value>Auto-acknowledge</activation-config-
propertyvalue>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>subscriptionDurability</activation-
configproperty-name>

 <activation-config-property-value>false</activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>subscriptionName</activation-config-
propertyname>

 <activation-config-property-value>test</activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>clientID</activation-config-property-
name>

 <activation-config-property-value>test</activation-config-property-value>

 </activation-config-property>

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 356

 <activation-config-property>

 <activation-config-property-name>maxSessions</activation-config-
propertyname>

 <activation-config-property-value>0</activation-config-property-value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>userName</activation-config-property-
name>

 <activation-config-property-value>anonymous</activation-config-property-
value>

 </activation-config-property>

 <activation-config-property>

 <activation-config-property-name>password</activation-config-property-
name>

 <activation-config-property-value>anonymous</activation-config-property-
value>

 </activation-config-property>

</activation-config>

</message-driven>

</enterprise-beans>

</ejb-jar>

Sample Activation configuration using EJB3 annotations

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 357

@MessageDriven(name = "FMQSampleMDB", activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationName", propertyValue =
"primaryTopic"),
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =
"javax.jms.Topic"),
 @ActivationConfigProperty(propertyName = "messageSelector", propertyValue = ""),
 @ActivationConfigProperty(propertyName = "subscriptionDurability", propertyValue =
"false"),
 @ActivationConfigProperty(propertyName = "subscriptionName", propertyValue =
"test"),
 @ActivationConfigProperty(propertyName = "clientID", propertyValue = "test"),
 @ActivationConfigProperty(propertyName = "maxSessions", propertyValue = "19"),
 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue =
"AUTO_ACKNOWLEDGE"),
 @ActivationConfigProperty(propertyName = "userName", propertyValue =
"anonymous"),
 @ActivationConfigProperty(propertyName = "password", propertyValue =
"anonymous")})

<outbound-resourceAdapter> in ra.xml

<outbound-resourceadapter>

 <connection-definition>

 <managedconnectionfactory-
class>com.fiorano.mq.ra.outbound.FMQManagedConnectionFactory</managedconnectionfacto
ry-class>

 <connectionfactory-interface>javax.jms.ConnectionFactory</connectionfactory-
interface>

 <connectionfactory-impl-
class>com.fiorano.mq.ra.outbound.FMQConnectionFactory</connectionfactory-impl-class>

 <connection-interface>javax.jms.Connection</connection-interface>

 <connection-impl-class>com.fiorano.mq.ra.outbound.FMQConnection</connection-
impl-class>

 </connection-definition>

 <transaction-support>XATransaction</transaction-support>

 <authentication-mechanism>

 <authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 358

 <credential-interface>javax.resource.spi.security.PasswordCredential</credential-
interface>

 </authentication-mechanism>

 <reauthentication-support>false</reauthentication-support>

 </outbound-resourceadapter>

Configurations for outbound flow are specified in deployment descriptor 'jms-ds.xml' located in
<JBOSS-HOME> /server/default/deploy/jms folder.

Deploying managed connection factory->jms-ds.xml

While deploying the Managed Connection Factory in the J2EE Server, the properties, below,
can be specified for the ManagedConnectionFactory:

Type Description Property

ProviderURL String

Provider URL (where JMS admin objects are
stored).

BackupProviderURLs String Backup provider URLs, if any.

Initial Context-Factory String Name of the class providing the
implementation of Initial Context Factory

JndiUserName String Username to be used for lookup.

JndiPassword String Password to be used for lookup

ConnectionFactory String Name of the connection factory to be used for
creating a physical connection with the
FioranoMQ Server.

ClientID

String ID to identify the JMS client (message
consumer).

JmsUserName String Username to be used for creating a connection
to the FioranoMQ Server.

JmsPassword String Password to be used for creating a connection
to the FioranoMQ Server.

XAEnabled Boolean Whether or not to enable XA for receiving
messages.

Is Transacted Boolean Whether or not the session is Transacted. This
is used to create a JMS session, if the value of

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 359

Type Description Property
the property XAEnabled is false.

Once the connection Factory has been deployed, all the end User needs to do in order to send
the message to the FioranoMQ Server is implement standard JMS programming, as shown
below:

// get JNDI handle

Context jndiCtx = new InitialContext();

// lookup the connection factory

ConnectionFactory cFactory = (ConnectionFactory)jndiCtx.lookup("fmqTCF");

// create connection from factory

Connection connection = connectionFactory.createConnection();

// create session from connection

Session session = connection.createSession(true,AUTO_ACKNOWLEDGE);

// get destination from JNDI

Destination destination = (Destination)session.createTopic("secondaryTopic");

// create a message producer

MessageProducer sender = session.createProducer(destination);

// create a message

TextMessage message = session.createTextMessage();

message.setText(msgData);

// send the message

sender.send(message);

29.5.4 Configuring FioranoMQ Resource Adapter in JBoss 4.2.2

Note: JBoss AS 4.2.2 requires JDK1.6 or later versions to function properly.

29.5.4.1 Changes Required for Inbound Communications (Message Inflow Contracts)

The following steps will deploy Fiorano RA and enable Inbound Communication onto JBOSS
AS.

1. Shutdown any instance of the JBoss Application Server.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 360

2. Edit ra.xml located at $FIORANO_HOME\fmq\lib\jca\resources\1.4\META-INF and
modify the property ProviderURL to point to the appropriate instance of FioranoMQ.

3. Run the buildJcaJars.bat / buildJcaJars.sh script available at
FIORANO_HOME\fmq\lib\jca to generate the required .rar files. Two new folders,
j2ee1_4 and j2ee1_3 are created. These folders store the generated .rar files.

4. Copy fmq-connector-ra.rar from $FIORANO_HOME\fmq\lib\jca \j2ee1_4 to deploy the
directory of the desired JBoss Server configuration profile (all, default, minimal and so
on). For example, use $JBOSS_HOME/server/default/deploy.

29.5.4.2 Changes required for Outbound Communication

For EJBs in JBoss to be able to send messages to the FioranoMQ Server, the end User should
create Connection Factories. These Connection Factories can be used to create the FioranoMQ
connection as per JCA Connection Management contracts.

Connection factories can be created by modifying jms-ds.xml located in
$JBOSS_HOME/server/$PROFILE/deploy/jms. The listing below shows the deployment of
Sample ConnectionFactories supporting XA and Non-XA connections.

<!-Non-XA connection Factory definition.-->

<no-tx-connection-factory>

<jndi-name>FMQNonXA</jndi-name>

<rar-name>fmq-connector-ra.rar</rar-name>

<config-property name="JndiUserName" type="java.lang.String">anonymous</config-
property>

<config-property name="JndiPasswordName" type="java.lang.String">anonymous</config-
property>

<config-property name="ProviderURL"
type="java.lang.String">http://localhost:1856</config-property>

<config-property name="BackupProviderURLs"
type="java.lang.String">http://localhost:1956</config-property>

<connection-definition>javax.jms.ConnectionFactory</connection-definition>

<config-property name="Username" type="java.lang.String">anonymous</config-property>

<config-property name="Password" type="java.lang.String">anonymous</config-property>

<config-property name="ConnectionFactory" type="java.lang.String">primaryTCF</config-
property>

<config-property name="XAEnabled" type="java.lang.Boolean">false</config-property>

<max-pool-size>20</max-pool-size>

http://localhost:1956%3c/config-property�

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 361

</no-tx-connection-factory>

<!--XA Connection Factory. Use this to use transacted JMS in EJBs-->

<tx-connection-factory>

<jndi-name>FMQXA</jndi-name>

<xa-transaction />

<rar-name>fmq-connector-ra.rar</rar-name>

<connection-definition>javax.jms.ConnectionFactory</connection-definition>

<config-property name="UserName" type="java.lang.String">anonymous</config-property>

<config-property name="Password" type="java.lang.String">anonymous</config-property>

<config-property name="ConnectionFactory" type="java.lang.String">primaryXACF</config-
property>

<config-property name="XAEnabled" type="java.lang.Boolean">true</config-property>

<max-pool-size>20</max-pool-size>

<security-domain-and-application>JmsXARealm</security-domain-and-application>

</tx-connection-factory>

</connection-factories>

Note: For a quick start, edit the jms-ds.xml to include the above xml.

Connection factories can be lookedup by J2EE applications for sending and receiving messages
from FioranoMQ Topics and Queues.

Restart the JBoss application server.

Sample

FioranoMQ contains samples that demonstrate the usage of FioranoMQ RA. These samples are
available in the %FMQ_HOME%\fmq\samples\ApplicationServer\fmqmdb\dist\jboss_4
directory. Refer to readme_JBoss4.txt available in the samples\ApplicationServer\ fmqmdb
directory for step-by-step instructions on deploying and running the sample.

29.5.5 Configuring FioranoMQ RA in JBoss 4.2.2-XA

To deploy the FioranoMQ Resource Adapter in JBoss 4.2.2, perform the steps below:

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 362

1. Stop the instance of JBoss running on the Server. Change the value of the property
ProviderURL in ra.xml to point to the appropriate instance of FioranoMQ. This .xml file
is file located in $FIORANO_HOME\fmq\lib\jca\resources\1.3\META-INF.

2. Run the buildJcaJars.bat/buildJcaJars.sh script available at
$FIORANO_HOME\fmq\lib\jca. This will generate the rar files.

3. Copy fmq-connector-ra.rar from $FIORANO_HOME\fmq\lib\jca\j2ee1_3 to deploy the
directory of the desired JBoss Server configuration profile (all, default, minimal, and so
on). For example, use $JBOSS_HOME/server/default/deploy

In jms-ds.xml, replace codes appear in bold:

<!-- The JMS provider loader -->

<mbean code="org.jboss.jms.jndi.JMSProviderLoader"

name="jboss.mq:service=JMSProviderLoader,name=JMSProvider">

<attribute name="ProviderName">DefaultJMSProvider</attribute>

<attribute name="ProviderAdapterClass">

org.jboss.jms.jndi.JNDIProviderAdapter

</attribute>

<!-- The queue connection factory -->

<attribute name="QueueFactoryRef">java:/XAConnectionFactory</attribute>

<!-- The topic factory -->

<attribute name="TopicFactoryRef">java:/XAConnectionFactory</attribute>

<!-- Uncomment to use HAJNDI to access JMS

<attribute name="Properties">

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

java.naming.provider.url=localhost:1100

</attribute>

-->

</mbean>

With

<!-- The JMS provider loader -->

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 363

<mbean code="org.jboss.jms.jndi.JMSProviderLoader"

name="jboss.mq:service=JMSProviderLoader,name=HAJNDIJMSProvider">

<attribute name="ProviderName">DefaultJMSProvider</attribute>

<attribute name="ProviderAdapterClass">

org.jboss.jms.jndi.JNDIProviderAdapter

</attribute>

<!-- The queue connection factory -->

<attribute name="QueueFactoryRef">primaryXAQCF</attribute>

<!-- The topic factory -->

<attribute name="TopicFactoryRef">primaryXATCF</attribute>

<!-- Access JMS via HAJNDI -->

<attribute name="Properties">

java.naming.factory.initial=fiorano.jms.runtime.naming.FioranoInitialContextFactory

java.naming.provider.url=http://localhost:1856

</attribute>

</mbean>

4. Start JBoss Server.

Sample

A sample MDB can be run that demonstrates how FioranoMQ RA works with JBoss 4.2.2
(located in the %FMQ_HOME%\JCA\Samples\ directory). Before running this sample, please
refer to the readme_JBoss4.2.2.txt available in the samples directory for step-by-step
instructions on deploying and running this sample.

29.5.6 Configuring MDBs for XA or NONXA

Following configurations should be made in ejb-jar.xml in case of EJB2 or should be specified
as annotations in case of EJB3.

Non-XA:

'TransactionType' for MDB should be specified as 'BEAN'

or

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 364

'TransactionType' for MDB should be specified as 'CONTAINER' & 'TransactionAttribute' as
'NOT_SUPPORTED'

XA:

'TransactionType' for MDB should be specified as 'CONTAINER'. By default the
'TransactionAttribute' will be 'REQUIRED'.

29.6 FioranoMQ - JBOSS Application Server

FioranoMQ can be integrated with a JBoss application server in which an MDB deployed on
JBoss can listen for messages published on FioranoMQ destinations.

This helps in leveraging the power of FioranoMQ as a JMSProvider and Jboss as Application
Server.

Refer to the link below to locate the zip file corresponding to JBoss Integration with the
FiroanoMQ Server:

http://www.fiorano.com/downloads/fmq/JBossIntegration.zip

This .zip file contains the files listed below:

• fmqmdb.jar.

• readme_Jboss4.txt.

• FMQSenderMDB_1_4.java (which is the source of the MDB).

• jms-ds.xml (which is an .xml file containing sample configurations required for binding
the Connection Factories that are to be used).

• jboss-log4j.xml (Which is an .xml file containing suitable appenders for Fiorano logger.
This file can be found in location JBOSS_HOME/server/default/conf)

http://www.fiorano.com/downloads/fmq/JBossIntegration.zip�

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 365

29.6.1 Integrating FioranoMQ with JBoss Application Server 4.2.2

This section describes the steps to integrate FioranoMQ with the JBoss Application Server:

1. Configure FioranoMQ RA in JBOSS 4.2.2. Related instructions has been provided in
section 29.5.5 Configuring FioranoMQ RA in JBOSS 4.2.2

2. Navigate to the file jms-ds.xml located at
<%JBOSS_DIR%>\server\default\deploy\jms directory (where <%JBOSS_DIR%> is
the JBoss 4.2.2 installation directory). A sample of this .xml file is provided in the zip
file folder. This file contains Connection Factory bindings which are of vital importance
for outbound communication. Modify this file as required.

3. Navigate to the file jboss-log4j.xml located at <%JBOSS_DIR%>\server\default\conf
directory (where <%JBOSS_DIR%> is the JBoss 4.2.2 installation directory). A sample
of this .xml file is provided in the zip file. This file contains suitable appenders for
Fiorano logger. You can change various parameters of this file to set desired log level
and logger.

4. Copy the file fmqmdb.jar to %JBOSS_DIR%\server\default\deploy directory.

5. Start the FioranoMQ Server by selecting Start > Programs > Fiorano > FioranoMQ (or
by using $FMQ_DIR/fmq/bin/fmq.sh on UNIX).

6. Start the JBoss Server using the startup script run.bat (or run.sh on UNIX).

7. Run a Publisher on PrimaryTopic

8. Run a Subscriber on SecondaryTopic

Messages can now be sent using the application. These messages are sent on the
PrimaryTopic. Messages are received on the JBoss console and are published back to the
SecondaryTopic by the MDB, received by the Subscriber.

29.6.2 Integrating FioranoMQ with JBoss Application Server 4.3

Configurations are similar to Jboss AS 4.2.2

jms-ds.xml file is located in <%JBOSS_DIR%>\server\default\deploy

29.6.3 Integrating FioranoMQ with JBoss Application Server 5.1.0

In order to integrate FioranoMQ with JBoss Application Server 5.1.0 follow the steps discussed
for integration FioranoMQ with JBoss Application Server 4.2.2. In addition to the steps
mentioned, add the entry below to $JBOSS_HOME/server/default/deployers/metadata-
deployer-jboss-beans.xml:

 <entry>

 <key>fmq-connector-ra.rar</key>
 <value><null/></value>
 </entry>

This element must be added to the Bean <bean name="JBossCustomDeployDUFilter"
class="org.jboss.deployers.vfs.spi.structure.helpers.VirtualFileDeploymentUnitFilter">
 This element is added by identifying the presence of the preceding element.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 366

 <entry>

 <key>jms-ra.rar</key>

 <value><null/></value

 </entry>

The EJB2.1 and 3 samples that are described for JBoss 4.2.2 can be used for JBoss 5 as well.

29.6.4 Integrating FioranoMQ with JBoss Application Server 6.1.0

Configurations are similar to Jboss AS 4.3

The EJB2.1 and 3 samples that are described for JBoss 4.2.2 can be used for all above
versions.

29.6.5 Using EJB3 compliant MDB while integrating FioranoMQ 9 with JBoss
Application Server

The EJB3 compliant MDB (available at http://www.fiorano.com/downloads/fmq/JBoss4.2.2-
EJB3.zip) behaves in a manner similar to the EJB2.1 compliant sample described in the section
above (and can be deployed using the same steps).

The differences between the two samples are:

• In the EJB3 sample provided, all deployment details have been specified using
annotations as part of the java file itself without relying on deployment descriptors.
Thus there is no ejb-jar.xml in the jar file.

• The 'destination-jndi-name' parameter has been commented out in jboss.xml while
deploying it using annotations. Refer build/META-INF/jboss.xml for more details.

• Also in EJB3, the bean no longer needs to implement the MessageDrivenBean class.
Hence instead of the ejbCreate and ejbRemove methods which were earlier used in
EJB2.1, we now use PostConstruct and PreDestroy annotations. These two annotations
are respectively used to do initialization and cleanup activities in accordance with the
beans lifecycle.

Refer to the sample for more details.

Instructions on modifying the EJB3 samples are available in the readme file inside the zip
folder.

29.7 FioranoMQ - ATG Dynamo Message Service

A Dynamo Message Service can be made to work with a third party JMS provider. The
administrator must declare the provider in the Patch Bay Configuration and must configure the
appropriate message sources and sinks to use the Destinations in that provider. Additionally,
the client libraries for the JMS Provider need to be in the CLASSPATH of the Dynamo. This can
be done by adding the fmq-rtl.jar path to startDynamo.bat, which is the startup script for ATG.
The fmq-rtl.jar file can be found in the %FMQ_DIR%\lib directory of the installation package.

http://www.fiorano.com/downloads/fmq/JBoss4.2.2-EJB3.zip�
http://www.fiorano.com/downloads/fmq/JBoss4.2.2-EJB3.zip�

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 367

29.7.1 Configuring the Dynamo Message System

29.7.1.1 General Architecture

The Patch Bay is a component of the Dynamo Message System that connects messaging
components to the JMS Providers. These connections are all defined in the DMS Configuration
file, which is an XML file. The Patch Bay is represented in the Nucleus as the
component/atg/dynamo/messaging/MessagingManager. The configuration file is generally
found at /atg/dynamo/messaging/dynamoMessaging-System.xml. One of the functions of the
DMS configuration file is to name all the message sources and sinks existing in the system.
Any number of sources and sinks can be specified, and in any order. If there are multiple
dynamoMessaging- System.xml files spread across the CONFIGPATH entries, the sources and
sinks from all those files are registered. The Patch Bay defines a simple life cycle for message
sources and sinks. When the Patch Bay is started, it resolves all the Nucleus names. If the
referenced components have not been created, they are created at this time. At this point
message sinks must be prepared to receive messages, which can arrive at any time. In some
cases message Sources follow a different protocol. After a message source is resolved in the
Nucleus, the Patch Bay calls MessageSource.setMessageSourceContext on the component.
This provides the component with a context object that can be used to create and send
messages. At this point the Patch Bay initializes the various JMS Providers and makes sure
that the messaging infrastructure is up and running. It then scans each of the message
sources and calls the MessageSource.startMessageSource on each one of them. Message
source can start sending messages after this call.

29.7.1.2 Creating Messaging Sources and Sinks

A Message source must implement atg.dms.patchbay. The MessageSource interface and a
message sink must implement the atg.dms.patchbay. Sample implementation is available at
demomessage.zip. There is an attached readme.htm file which contains instructions on
running this application. This application uses the localJMS which is a messaging system
provided by Dynamo.

To register the application as a Nucleus Component, follow the steps below:

1. Navigate to %DYNAMO_HOME%\bin.

2. Enter startDynamo - m demomessage (start Dynamo.bat is a batch file used to start
ATG). This starts the server and registers demomessage as a Nucleus component,
while the localJMS (FioranoMQ in this case) remains its messaging backbone.

To configure the system to use FioranoMQ for messaging follow the steps below:

1. Write a simple class that implements the interface
atg.dms.patchbay.JMSInitialContextFactory, which defines a single method
createInitialContext. FioranoImpl.class is an implementation of this simple class. This
class should be placed in %DYNAMO_home%\locallib, which, by default, is available in
the startup classpath. If the package is custom-made, add the absolute path to
startDynamo.bat, located in %DYNAMO_home%\bin.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 368

2. Register this class as a Nucleus Component. To register either an ATG Control Center
can be used or a simple properties file may be used and saved in the directory
%DYNAMO_home%\localconfig. If this file is located elsewhere, the CONFIGPATH in
postEnvironment.bat must be changed. FioranoImpl.properties is a sample of the
aforementioned file. This file can be saved in the specified directory. The name of this
file has to match the name of the class file in which the interface
atg.dms.patchbay.JMSInitialContextFactory is implemented.

3. Replace the dynamoMessagingSystem.xml, located in demomessage\config\
atg\dynamo\messaging with the one that is available.

The description of the integration here is based, in part, on the work of Stuart Jones.

29.8 FioranoMQ - Oracle Weblogic Application Server 9.0

High-performance Message Driven Beans (MDBs) can be developed through the integration of
FioranoMQ Server with the BEA WebLogic Server. This section explains the steps required to
integrate FioranoMQ Server with the BEA WebLogic 9.2 Application Server.

29.8.1 Integrating FioranoMQ with Oracle Weblogic Application Server

The steps, below, are required to integrate the FioranoMQ Server with the BEA Weblogic
Server:

1. Install Weblogic Platform 9.2.3. Copy %FMQ_DIR%\lib\client\all\fmq-client.jar to
%WL_HOME%\server\lib.

2. Include %WL_HOME%\server\lib\fmq-client.jar in the CLASSPATH of
%WL_HOME%\samples\domains\wl_server\setExamplesEnv.cmd. In addition, set
WL_HOME = path of your Weblogic home directory.

3. Navigate to the folder %WL_HOME%\samples\server\src\examples\ejb20\message
and copy the files MessageTraderBean.java, Client.java, ejb-jar.xml and weblogic-ejb-
jar.xml extracted from the attached zip file WeblogicIntegration.zip.

4. Run %WL_HOME%\samples\server\config\examples\setExamplesEnv.cmd on the
command line. This provides the environment required to run the sample.

5. Navigate to the folder
%WL_HOME%\samples\server\examples\src\examples\ejb\ejb20\message through
command prompt and execute the file build.cmd present in the attached zip file
WeblogicIntegration.zip. This compiles the Client.java file and adds it to the folder
%WL_HOME%\samples\server\examples\build\clientclasses\examples\ejb20\message
. In addition, this rebuilds ejb20_message.jar and adds it to the
%WL_HOME%\samples\server\examples\src\examples\ejb\ejb20\message\dist.

6. Navigate to the folder %WL_HOME%\server\bin and append the CLASSPATH of fmq-
client.jar to the existing CLASSPATH found in the file startWLS.cmd
%WL_HOME%\server\lib\fmq-client.jar.

7. Start the Weblogic Examples Server by clicking on Start > Programs > BEAWeblogic
Platform 9.2.3 > Weblogic Server 9.2.3 > Server Tour and Examples> Launch
Examples Server.

8. Start the FioranoMQ Server by clicking on Start > Programs > Fiorano > FioranoMQ>
FioranoMQ Server.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 369

9. Run java examples.ejb25.message.Client http://<FMQ_HOST>\<FMQ_PORT>. By
default, the FMQ_PORT is 1856. The Client.java sends three messages on
primaryTopic located on the FioranoMQ Server.

On the console window of Weblogic Example Server, messages are displayed
indicating that messages were received by the MDB deployed on the Weblogic server,
listening on primaryTopic and located on FioranoMQ. Download Necessary Files.

29.8.2 Troubleshooting

29.8.2.1 Setting up the Bean as a Durable Subscriber with ClientID and Subscriber ID

One commonly encountered problem is that although the clientID is specified in the weblogic-
jar.xml, the FioranoMQ server admin console accepts it as the subscriberID (client name). This
means that the clientID in weblogic-jar.xml becomes the SubscriberID for the FioranoMQ
Server. In Weblogic creating the ConnectionFactory or setting its parameters (ClientID) is not
done through weblogic-ejbjar.xml. Weblogic-ejbjar.xml is used only to lookup the
ConnectionFactory. Therefore, the ClientID cannot be set through weblogic-jar.xml.

As per to JMS settings: The preferred way to assign the client identifier of a client is to
configure a client specific ConnectionFactory and then to transparently connect to the
connection it creates. Alternatively, a client can set the client identifier of a connection using a
provider-specific value.

The ClientID can be set either on the ConnectionFactory or on the Connection. Therefore, a
ClientID can be set while making a new ConnectionFactory. In the default
ConnectionFactories, the ClientID is set to a particular default value.

Use Connection.setClientID() to set a ClientID on a Connection manually.

29.8.2.2 IncompatibleClassChangeError

The error IncompatibleClassChangeError is thrown when an incompatible class change occurs.
The definition of one of the classes, on which the currently executing method depends, has
since changed. This issue can be resolved by adding the fmq-client.jar path in the
CLASSPATH.

29.9 FioranoMQ - Borland Enterprise Server 5.1

It is possible to seamlessly integrate FioranoMQ with the Borland Enterprise Server (BES).

Below are the steps required to integrate FioranoMQ with the Borland Enterprise Server:

1. Install BES 5.1. A developer version of Borland Enterprise Server 5.1 is available at
http://www.borland.com

2. Copy fmq-client.jar from %FMQ_DIR%\lib\client\all directory to %BES_HOME%\lib
directory of the BES installation package.

3. Add the jndi.properties file to the fmq-client.jar present in the library directory of the
BES installation package.

http://www.borland.com/�

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 370

4. Replace jndi.properties file in %BES_HOME%\lib\asrt.jar with the jndi.properties.

5. Start the FioranoMQ server by selecting Start > Programs > Fiorano > FioranoMQ>
FioranoMQ Server (%FMQ_DIR%\bin\fmq.bat)

6. Start the BES server by clicking on Start > Programs > Borland Enterprise Server >
Server.

29.9.1 Deploying of FioranoMQ Libraries

To integrate FioranoMQ with Borland, deploy FioranoMQ libraries to a BES partition.

To deploy the required libraries, follow the steps below:

1. Start the BES console by clicking on Start > Programs > Borland Enterprise Server >
console. The default username and password are admin and admin, respectively.

2. Click on Wizards to open the deployment wizard.

3. Add %BES_HOME%\lib\fmq-client.jar to the modules.

4. Ensure that Restart Partitions on Deploy is checked. Click on Next.

5. Add it to the standard partition and click on Finish.

FioranoMQ libraries are deployed successfully and are seen in the deployed components of
standard partition.

29.9.2 Environment Variables

Environment Variables should be appropriately set and all environment variables should follow
the steps given below:

1. Appclient

Add FioranoMQ libraries to the Appclient tool to run the samples. The CLASSPATH must first
be appended in %BES_HOME%\bin\appclient.config, by adding the following lines:

addpath $var(installRoot)/fmq\lib\client\all\fmq-client.jar

2. Environment

Create a new batch file named setenv.bat (setenv.sh on UNIX) in %BES_HOME% with the
lines:

1. Set BES_HOME=c:\bes (replace it with your home directory)

2. Set VBROKER_ADM=%BES_HOME%\var\servers\aseem\adm

3. Set VBROKERDIR=%BES_HOME%

4. Set OSAGENT_PORT=14000

5. Set PATH=%PATH%;%BES_HOME%\bin;%BES_HOME%\jdk\bin

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 371

29.9.3 Samples

 To run JMS samples, follow the steps below:

1. Integrate FioranoMQ with the Borland Enterprise Server and deploy FioranoMQ
libraries to the BES partition.

2. Set all the environment variables.

3. Unzip the attached MQ sample and navigate to the directory the attached sample is
extracted.

4. Deploy the message_beans.jar in the server using the following code:

iastool -deploy -jars message_beans.jar -server aseem -partition standard

Choose option 2 (serverrealm). The default username is admin, and default password
is admin. The output appears as shown in Figure 12-3:

Figure: Output

5. Run the client using the following code:

appclient message_beans_client.jar

The output, shown below, is displayed:

Client end:

Sending a message to queue PrimaryQueue.

Publishing a message to topic primaryTopic.

Done.

EJB container log messages (in the event option of log tab):

<HelloEJBQueue> Got a message from queue primaryQueue:

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 372

Hello MDB, this is a message from the client...

<HelloEJBTopic> Got a message from topic primaryTopic:

Hello MDB, this is another message from the client...

29.10 FioranoMQ - Orion Application Server

FioranoMQ can be integrated with Orion. Execute the following steps to integrate the Orion
Application Server with FioranoMQ:

Note: Since Oracle 9iAS has licensed Orion, the procedure, below, should also work well with
it.

While starting up Orion the fmq-rtl.jar (located in the /fmq/lib directory of the FioranoMQ
installation package) needs to be present in the CLASSPATH.

1. When integrating an external JMS system with Orion, the implementation of an interface
defined by Orion called ResourceProvider is provided by the external JMS system. A
default implementation of the interface is provided by Orion that allows a User to plug in a
JMS that is JNDI enabled. FioranoMQ is JNDI enabled but the current default
implementation of the ResourceProvider interface is for an older version of the Resource
Provider and may not work. FioranoMQ provides its own implementation of the
ResourceProvider interface called ContextScanningResourceProvider.class. This file
replaces the default file available in the orion.jar library.

2. Modify the application.xml located in %Orion_HOME%\config directory. This .xml defines
the implementation of the Resource Provider interface that is used by the Orion Server.

3. The file server.xml defines the configuration parameters for the Orion Server. Information
about any Application/Bean that is to be loaded or deployed at startup is given in this file.
In FioranoMQ, this application is a simple MDB with auto-start=true. The Orion Server
looks for the ear file of the Application/Bean along the path provided. The correct path of
the file mdb.ear must to be added to the server.xml file.

Note:

• The portion of the JMS server located in server.xml at %Orion_HOME%\config needs to be
commented out to prevent the startup of Orion's JMS Server.

• jndi.properties: This file holds parameters that are needed for loading Connection
Factories and is available at mdb_hello_world.zip

• Unzip the complete application (mdb_hello_world.zip) located at %ORION_HOME%.
[Link?] Replace the server.xml and application.xml in %Orion_HOME%\config and then
run the application. The file Main.java is a sample client that sends a single message on
FioranoMQ. The onMessage() method of MDB is invoked on receipt of this message.

• Specify the ack mode of the session created by the MDB. If not specified, the ack mode
results in -1, which is not allowed. To change this the following modifications, below, must
be made to the ejb-jar.xml:

 <transaction-type>Bean</transaction-type>

 <acknowledge-mode>Auto-acknowledge</acknowledge-mode>

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 373

If problems are encountered, please contact techsupport@fiorano.com

29.11 FioranoMQ - IBM WebSphere Application Server 5.1

FioranoMQ can be integrated with a WebSphere Application Server so that MDBs deployed on
WebSphere can listen in for messages published on destinations that exist on the FioranoMQ
Server.

This document provides instructions detailing the integration of FioranoMQ with a Web Sphere
Application Server.

A sample code is provided in the attached zip file.

29.11.1 Assumptions

In the section below, the assumptions, below, have been made:

The Web Sphere Application Server and the Application Developer are installed in the \wsad
directory. In case you have installed them in a different directory, please make the necessary
changes.

FioranoMQ is installed in the \Program Files\Fiorano\FMQ directory. In case you have installed
it in a different directory, please make the necessary changes.

29.11.2 Configuring WS Application Developer for FioranoMQ

The remaining sections in this document focus on the steps that need to be carried-out to
configure the WebSphere Application Server via the WS Application Developer Environment.
Instructions to configure the WebSphere Application Server via the WS Application Developer
Environment are divided into the following sections:

1. Define the WebSphere Test Server

2. Configure WebSphere to be able to use FioranoMQ as a JMS provider

3. Create/Configure MDB in the WebSphere Application Developer Environment

4. Deploy/Test the MDB

29.11.2.1 Define a WebSphere Test Server

Below are the instructions to create and configure a WS Server to enable it to run an EJB
component:

1. Open a Server perspective in Application Developer.

2. Right-click on the Navigator view and select New > Server Project.

3. Type ServerProject in the Project name field and click Finish.

4. Right-click on ServerProject and select New > Server and Server Configuration.

5. In the Server name field, type TestServer.

mailto:techsupport@fiorano.com�

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 374

6. Set the Server type as WebSphere 5.1 Test Environment.

7. Click Finish.

8. In the Server Configuration view, double-click TestServer under Server
Configurations.

9. Under the Configuration tab, check Enable administration client.

10. Save the configuration by pressing Ctrl-S.

11. In the Servers view, right-click on the TestServer and select Start.

12. Wait until you see the message server1 open for e-business on the console before
proceeding.

29.11.2.2 Configure WS to use FioranoMQ as JMS provider

EJB components can use the administered objects (Connection Factories and Destinations)
residing on the FioranoMQ server.

Steps to define FioranoMQ as the JMS provider:

1. In the Servers view, right-click on TestServer and select Run administrative
client.

2. At the Login screen, click Submit.

3. Click the + sign next to Resources.

4. Click Generic JMS Providers.

5. Click New.

6. In the Server Class Path field add the entries, separated by a semicolon, on a single
line in the Server Class Path text field:

<FMQ_HOME>\lib\fmq-rtl.jar

(Where FMQ_HOME refers to the installation directory of FioranoMQ. This makes the
FioranoMQ Java classes available to the server.)

7. Change the Name: field to FioranoMQ.

8. Change the Description: field to FioranoMQ as the JMS Provider for IBM Web-
Sphere Application Server

9. Change the External Initial Context Factory: field to
fiorano.jms.runtime.naming. FioranoInitialContextFactory.

10. Change the External Provider URL: field to http://localhost:1856

11. Click OK and then save the changes.

Steps to configure the JMS Destination under FioranoMQ resource:

8. Click the FioranoMQ link under Generic JMS Providers, and click JMS
Destinations.

9. Click New. In the Name: field, type MyQueue.

10. Change the JNDI Name: field to jms/MyQueue.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 375

11. Set the Destination Type field to QUEUE.

12. In the External JNDI Name field, type primaryQueue and click OK.

13. Go to the FioranoMQ link under Generic JMS Providers.

14. Click JMS Connection Factories.

15. Click New. In the Name: field type MyQCF.

16. Change the JNDI Name: field to jms/MyQCF.

17. Change the External JNDI Name: field to primaryQCF.

18. Set the Connection Type: field to QUEUE and click OK.

19. Click on Save link at the top of the page to save all changes to the master
configuration.

29.11.2.3 Create/Configure MDB in WebSphere application developer

MDB can be created by following the steps below:

Create the new EJB Project

1. Switch to the J2EE navigator view in the J2EE perspective.

2. Start creating a new project by selecting File > New > EJB Project. This opens the
EJB Project Creation wizard. Check that a 2.0 EJB Project is in the process of being
created and click Next.

3. Specify the Project name as MDB and EAR Project to as FioranoEAR. Click on
Finish. The Application Developer creates the new project.

Create the bean class

1. In the J2EE Hierarchy view right-click on the new MDB EJB module and select New >
Enterprise Bean. This opens the Enterprise Bean Creation wizard.

2. Check that the specified EJB project is MDB. Click Next. The bean type and
Properties panel is displayed.

3. Specify the type of message-driven Bean. The Bean name is QReceiver and the default
package is named fiorano.jms. Click Next.

4. Specify the transaction as container and the destination as Queue. Set the
listenerPort to ReceiverListenerPort. Click Finish. The Application Developer creates
the Receiver MDB.

Note: For further details refer to the section on Configure Message Listener Service

Complete the Bean Class

Once the Application Developer has created the Receiver MDB, a new entry called
QReceiver appears under the MDB EJB module in the J2EE hierarchy view.

1. Expand the QReceiver entry and double-click the QReceiver-Bean to open its editor.

2. In the QReceiverBean editor there are a series of methods that are defined by the
Application Developer upon the creation of the Receiver MDB.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 376

3. Modify the Bean's onMessage () method to print the message on the console. Save the
changes. (Modified QReceiver-Bean.java is also provided with this document for
reference.)

Configure the Message Listener Service

The User must configure the destination on which the bean listens for published messages. To
configure this destination, follow the instructions below:

1. Log in to the administrative console.

2. Expand the Servers entry in the left-hand navigation frame and click Application
Servers.

3. In the frame that is displayed, click on server1 and then Message Listener Service
in the Additional Properties table. This opens the message listener configuration
frame.

4. Click Listener Ports. Click on New to create a new Listener Port for the Receiver
MDB.

5. Specify the name of the port as ReceiverListenerPort and the Connection Factory
name as jms/MyQCF. The destination name is jms/MyQueue. Note: These names
match the Connection Factory name and Destination name used while configuring the
WS Server to use FioranoMQ as a JMS provider.

6. Click on OK. Click the Save button to save changes.

7. Close the administrative console. The Receiver MDB is now ready for deployment.

29.11.2.4 Deploy/Test the MDB

Deploy MDB

To deploy an MDB, follow the instructions given below:

1. Start the FioranoMQ Server on the same machine as the WSAD. (Start>Programs>
Fiorano>FioranoMQ>FioranoMQ Server).

2. Right-click the Receiver MDB entry in the J2EE Hierarchy. Click Run on the Server.

3. In the server selection window, choose the existing server as TestServer. Click Next.

4. Deploy EJB Beans and click Finish.

If the Test Server was running, it will restart after deployment.

Test the MDB

The MDB begins listening for messages on jms/MyQueue upon deployment. So a message is
pushed onto the primaryQueue (for example, via a Sender sample) then the message will
show up in the console window of the Application Developer as Test Server.

1. Launch the FioranoMQ Application Console (by clicking on Start > Programs >
Fiorano > FioranoMQ > FioranoMQ Console).

2. Run a Sender Application (present in the fmq\samples\Ptp\SendReceive directory)
using the command below:
run-client QSender

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 377

3. Send a message. The console view of the WS Application Developer will display:

[2/17/04 12:13:06:188 IST] 75ed4cbf SystemOut O Bean got message from onMessage():

 hi

[2/17/04 12:13:09:812 IST] 75e04cbf SystemOut O Bean got message from onMessage():

 How are you?

29.12 FioranoMQ - IPlanet Application Server 7

This section describes the deployment of the Message Driven Beans (MDBs) on the IPlanet
Application Server (now known as SunOne Application Server) through the integration of
FioranoMQ with the IPlanet Application Server. The steps required to integrate FioranoMQ with
SunOne Application Server 7 are explained in this section.

29.12.1 Installing and Setting up the Iplanet Application Server 7

Follow the steps below to install the IPlanet Application Server 7:

1. Expand or unzip the installation bundle and save to a temporary directory.

2. Navigate to the directory in which the files are saved and double-click the setup.exe
file.

3. Read the Welcome screen and click Next.

4. Enter the path to the installation directory or click the ellipsis (...) to browse for a
directory.

5. In the Server Configuration Information dialog box, enter the information given below:

a. Admin User: Name of the User who administers the Server.

b. Administration User’s Password: Password to access the Administration Server.
Minimum number of characters is 8. Re-enter the password in the text box to
confirm the password.

c. Administration Server Port: Port number to access the Administration Server.
A default port number will be displayed (for example 4848). Change this
default port number, if necessary Click Next. The installation program checks
port numbers for validity and availability.

d. HTTP Server Port: Port number to access the initial Server instance.

6. When the installation process is complete, the Installation Complete screen will be
displayed. Review the content of this screen and click Finish to exit the installer.

7. Set the PATH environment variable: Add the value of the <install_dir>/bin to the front
of the PATH value. For example, add \Sun\AppServer7\bin; to the front of the
variable value through the Control Panel.

Troubleshooting Environment Settings

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 378

The following result is obtained upon execution of the asadmin command:

C:\>asadmin

Use "exit" to exit and "help" for online help

asadmin>

This indicates that the environment settings have been configured successfully.

Starting Administrative Server and Application Server

SunOne Application Server 7 introduces a feature named Administrative Domains that enables
defining multiple, disparate Application Server runtime configurations that reuse the same
installation image. Each Administrative Domain is represented by an Administrative Server,
which in turn controls one or more application Server instances. The configuration of an
Administrative Domain can reside anywhere on the machine.

Use the following command to start both the Administrative Server and the Application Server
instances:

C:\>asadmin start-domain --domain domain1

In the above command, domain1 is the name of the Administrative Domain defined by
default during the installation of the IPlanet Application Server.

The following result is obtained after the command is executed:

asadmin start-domain --domain domain1

Instance domain1:admin-server started

Instance domain1:server1 started.

Domain domain1 Started.

29.12.2 Configuring FioranoMQ Server for IPlanet Integration

Below are the steps required to configure the FioranoMQ Server for IPlanet integration:

1. Start the FioranoMQ Server (Start>Programs> Fiorano>FioranoMQ>FioranoMQ
Server).

2. Create JMS_MYQCF as a QueueConnectionFactory on FioranoMQ.

3. Create JMS_MYQUEUE as a Queue on the FioranoMQ Server.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 379

29.12.3 Configuring IPlanet Application Server 7 for the FioranoMQ Server

Below are the steps required to configure IPlanet Application Server 7 for the FioranoMQ
Server:

1. Using the web browser access the SunOne Administration Tool at
http://<host>:<admin_port>. (The <host> is the machine on which the
application server is installed and the <admin_port> is the server administration port
(4848 by default).

2. From the left frame click AppServer Instances > server1.

3. From the right frame select JVM Settings tab.

4. Click on Path Settings.

5. Enter the following files in the CLASSPATH text box:

On Windows:

<fiorano_install_dir>/fmq/lib

<fiorano_install_dir>/fmq/lib/fmq-rtl.jar

(Where fiorano_install_dir is the directory in which the FioranoMQ Server is installed.)

6. In the Native Library Path Suffix text box, type:

<fiorano_install_dir>/fmq/lib

7. Click Save.

To transfer the above modifications to the Server, follow the steps below:

1. Select the General tab and click on Apply Changes.

2. Stop and re-start the Server instance.

3. Navigate to the folder <appserver_install_dir>\samples\ejb\mdb\simple\src. In the
file sun-application-client.xml, change the tag value of tags <resref-name> and <jndi-
name> under tag <resource-ref>to jms_MyQcf.

4. Change the value of tags <resource-env-ref-name> and <jndiname> under tag
<resource-env-ref> to jms_MyQueue. FioranoMQ has a file based data store and
creates folders based on the name of Queue. Folders cannot have names containing
characters ‘/’, ‘\’. ‘*’, ‘?’, ‘<’, ‘>’, ‘|’. Similarly, in the file sun-ejb-jar.xml, the value of
tag <jndi-name>, under the tag <ejb> must be changed to jms_MyQueue and the
value of tag <jndi-name>, under the tag <mdb-connection-factory> must be changed
to jms_MyQcf.

5. In the file applicationclient.xml, change the value of tag <res-ref-name>, under tag
<resourceref> to jms_MyQcf and the value of tag <resource-env-ref-name>, under
tag <resource-env-ref> to jms_MyQueue.

6. Navigate to the folder <appserver_install_dir>\samples\ejb\mdb\simple\
src\samples\ejb\mdb\simple\client. In the file SimpleMessageClient.java,
change the lookup names to jms_MyQcf instead of java:comp/env/jms/MyQcf and
jms_MyQueue instead of java:comp/env/jms/MyQueue.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 380

29.12.4 Registering JMS Resources with IPlanet Application Server 7

To register the JMS Resources with IPlanet Application Server 7 follow the steps below:

1. Run the asadmin utility in multimode. For example: <AS_HOME>/bin/asadmin
multimode. (Where <AS_HOME> is the SunOne Application Server installation home.)

2. Set global parameters so that you do not have to enter them for every sub command.
For example:

asadmin>export AS_ADMIN_USER=<admin_username>
AS_ADMIN_PASSWORD=<admin_password> AS_ADMIN_HOST=<host>
AS_ADMIN_PORT=<adminserver_port> AS_ADMIN_INSTANCE=<instance_name>

In the above code:

<admin_username> is the Application Server administration User name.

<admin_password> is the administration password.

<host> is the machine on which the application Server is installed.

<adminserver_port> is the administration Server port of the Application Server.

<instance_name> is the Application Server instance name (example, server1).

3. Create external jndi external resources.

For the MDB sample application, create one external jndi resource with the resource type
of javax.jms.QueueConnectionFactory and one external resource with the resource type of
javax.jms.Queue. Refer to the code below:

asadmin>create-jndi-resource --jndilookupname

<qcf_jndi_lookup-name> --resourcetype

javax.jms.QueueConnectionFactory --factoryclass

fiorano.jms.runtime.naming.FioranoInitialContextFactory --enabled=true --property

java.naming.provider.url=<directory_path>:java.naming.security.authentication=none

<qcf_jndi_name>

asadmin>create-jndi-resource --jndilookupname

<q_jndi_lookup-name> --resourcetype javax.jms.Queue --factoryclass

fiorano.jms.runtime.naming.FioranoInitialContextFactory --enabled=true --property

java.naming.provider.url=<directory_path> <q_jndi_name>

In the above code,

• <qcf_jndi_lookup-name> and <qcf_jndi_name> should be replaced by
jms_MyQcf.

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 381

• <q_jndi_lookup-name> and <q_jndi_name> should be replaced by jms_MyQueue

• <directory_path> is the providerURL i.e. http\://localhost\:1856 for the
FioranoMQ Server.

The escape (\) character has been used in front of the colon (:) in the directory path.

4. List the external jndi resources to verify the resources created. For example:

asadmin>list-jndi-resources –-user <admin_username e.g. admin> --password

<admin_password> --host <where appserver is running e.g. localhost> –-port 4848

<server_instance_name e.g. server1>

5. Reconfigure the Server instance to make sure that the changes made have been
transferred to the Server. For example:

asadmin>reconfig instance_name

29.12.5 Compiling and Deploying the Sample mdb-simple.ear

Remove guest from <name> element and <password> element and leave these elements
blank <appserver_install_dir>\samples\ejb\mdb\simple\src\sunapplication-client.xml.
appserver_install_dir is the directory in which IPlanet Application Server 7 (SunOne
AppServer) has been installed.

1. In the command prompt, navigate to the src directory of the sample. For example:

<appserver_install_dir>\samples\ejb\mdb\simple\src

2. Execute the asant command. It recompiles the mdb and recreates the ear file mdb-
simple.ear.

3. Execute the asant deploy command. It causes the mdb-simple.ear to deploy on the
SunOne AppServer.

29.12.6 Running the Sample Application
1. Navigate to the <appserver_install-dir>/bin directory and edit the file appclient.bat.

Add <fiorano_install_dir>\fmq\lib\fmq-rtl.jar;<fiorano_install_dir>\fmq\lib; to
JVM_CLASSPATH.

For example,

Add c:\Progra~1\Fiorano\Fioran~1\fmq\lib\fmq-
rtl.jar;\Progra~1\Fiorano\Fioran~1\fmq\lib;

To

JVM_CLASSPATH. Add <fiorano_install_dir>\fmq\lib

For example,

Add C:\Progra~1\Fiorano\Fioran~1\fmq\lib;

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 382

To

LD_LIBRARY_PATH

cd <appserver_ install_dir>/domains/domain1/server1/applications/j2ee-apps/mdb-
simple_1

2. Execute the command > appclient -client mdb-simpleClient.jar -name Simple-
MessageClient - textauth

The following output is displayed:

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

The Message Bean receives the messages and they are printed in the log file
(<appServer_install_dir>\domains\domain1\server1\logs server.log):

MESSAGE BEAN: Message received: This is message 1

MESSAGE BEAN: Message received: This is message 2

MESSAGE BEAN: Message receive: This is message 3

29.13 FioranoMQ - OC4J Application Server

FioranoMQ can be integrated with an OC4j Application Server. The sample code that is
provided in the following zip file can be downloaded from
ftp://downloads.fiorano.com/fmqdownload/OC4JIntegration.zip

29.13.1 Deploy the MDB Application

Download the MDB application from:

ftp://downloads.fiorano.com/fmqdownload/fiorano.ear

Save the MDB Application on the local drive. in the \fiorano\MDB directory.

Follow the steps below to deploy MDB on OC4J:

Add the following lines of code [Which code? Specify please] to the server.xml file which can
be located at \oracle10g\j2ee\home\config directory

Note: It is assumed that the Oracle 10g Application Server is installed at the \oracle10g
directory.

<application name="mdb" path=" c:\fiorano\MDB \fiorano.ear" auto-start="true"/>

<library path=\Program Files\Fiorano\FMQ\fmq\lib\fmq-rtl.jar" />

ftp://downloads.fiorano.com/fmqdownload/OC4JIntegration.zip�
ftp://downloads.fiorano.com/fmqdownload/fiorano.ear�

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 383

The file server.xml defines the configuration parameters for the OC4J Server. This file also
contains information regarding any Application or any Bean requiring loading or deploying at
startup. InFioranoMQ the Application is a simple MDB with auto-start set to true. The OC4J
Server looks for the ear file of the Application or of the Bean along the path provided by the
application name. The correct path of the file mdb.ear needs to be added to the server.xml
file.

Start the OC4J Server by entering the command below in

\oracle10g\j2ee\home directory:java -jar oc4j.jar

This starts the 0C4J Server and deploys the MDB on it.

29.13.2 Test the MDB

Upon deployment, the MDB starts listening for messages on the primaryQueue. If a message
is pushed onto the primaryQueue (via a Sender sample for example), the message should
show up in the output logs of the Oracle Application Server.

1. Run a sender application (present in fmq/samples/Ptp/SendReceive directory) using the
following command:

run-client QSender

2. Now send a message. This message will appear in the OC4J console as shown below:

04/06/28 13:32:01 Got
Message=fiorano.jms.services.msg.def.FioranoTextMessage@354749

29.14 FioranoMQ – Sun GlassFish Enterprise v2.1

FioranoMQ can be integrated with Sun's GlassFish Application Server. The sample MDB
(Message Driven Bean) can be downloaded from:
http://www.fiorano.com/downloads/fmq/GlassFishIntegration.zip

The .zip file included in the download contains the following files:

• fmqmdb.jar.

• readme.txt.

• A source file; FMQSenderMDB_1_4.java (which is the source of the MDB).

To observe the MDB, follow the steps below:

1. Start the FioranoMQ Server.

2. Run the Application Server as admin start-domains domain1

3. Deploy the FioranoMQ Resource Adapater (fmq-connector-ra.rar) as a connector
module. This can be done through the command line or by logging into the
administration console at http://<ip>:4848. The connector module is available in the
side pane of the frame under Applications.

mailto:Message=fiorano.jms.services.msg.def.FioranoTextMessage@354749�
http://www.fiorano.com/downloads/fmq/GlassFishIntegration.zip�

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 384

Note: As mentioned at the beginning of this chapter, the resource adapter has to be
configured before deployment. By default the resource adapter assumes that the FMQ
Server is running at http://localhost:1856. Properties can be modified as per the
requirement before deploying the resource adapter.

4. Configure Connector-connection-pools (available under Resources -> Connectors in
the side pane of the admin console) and Connector-resources (available under
Resources -> Connectors) based on whether outbound communication from MDB is
necessary.

The sample MDB demonstrated here requires that there be a Non-Transaction based
Connection Factory named FMQNonXA which will be used to lookup its target
destination upon which it will publish the messages received from FioranoMQ.

5. Create a new connector-connection-pool named 'outpool' and select the resource
adapter as 'fmq-connector-ra' and connection definition as
'javax.jms.ConnectionFactory'. Set transaction support to 'No Transaction' in the next
page as we require a non transaction based connection factory.

6. Create a new connector resource named FMQNonXA which uses the 'outpool'
connection pool created.

Note: These two resources can also be configured/created through the command line.

7. Deploy the sample MDB fmqmdb.jar (Applications → EJB Applications → Deploy).

8. Start a FioranoMQ publisher on the primaryTopic and a subscriber on the
secondaryTopic. The MDB reroutes all messages from the primaryTopic to the
secondaryTopic.

29.15 FioranoMQ – Apache Tomcat integration

FioranoMQ can be integrated with Apache Tomcat application server. The sample and
Instruction related to it can be downloaded from
http://www.fiorano.com/downloads/fmq/FMQTomcatIntegration.zip

The .zip file contains the following files:

• Sample Web application to send and receive messages from FMQ server in
“FMQSample” folder.

• Resource descriptor file “FMQSample.xml”.

• Instructions about Tomcat Integration in “TomcatIntegration.pdf”.

29.16 To Run JMS Java Applications

To run JMS Java Applications:

Include the jar files, below, in the application CLASSPATH:

 extlib/jms/jms.jar [not required with JavaEE edition 1.4 and above]

 fmq/lib/client/all/fmp-client.jar

 framework/lib/all/fiorano-framework.jar

http://localhost:1856/�
http://www.fiorano.com/downloads/fmq/FMQTomcatIntegration.zip�

FioranoMQ 9 Handbook

Chapter 29: Application Server Integration Page 385

In addition, include the jar files, below, for HTTP or HTTPs transport:

 extlib/httpclient/httpclient.jar

 extlib/sslava/sslava.jar

 extlib/sslava/sslava_1.2.3_patch_5.jar

Note: All the paths are relative to the Fiorano installation directory.

FioranoMQ 9 Handbook

Chapter 30: Create Custom MBean Service Page 386

Chapter 30: Create Custom MBean
Service

30.1 Creating Custom MBean Service for the FioranoMQ Server

Below are the steps to create and register a custom MBean Service for the FioranoMQ Server:

1. Create Service: (See Sample 1.)

a. Create an MBean Java Class and extend the fiorano.jms.jmx.ComponentMBean.

b. Override life cycle methods including createService(), startService() and
stopService() which are invoked by the Fiorano Server during server initialization.

c. Write the code specific to the service in these methods. (Look at the sample 1.)

d. Compile using compile-client.bat.

e. Write an .xml file of the same name describing the MBean's attributes and save it
in the same directory as the MBean class file. Create a jar file. (See Sample
4.)Update the fmq.conf with the location of this jar file (under the java.classpath
heading).

f. To install FioranoMQ as a Windows NT Service, update
%FIORANO_HOME%/WinService/conf/fmq.conf with the location of this jar file.

Sample 1:

package com.customMBean.mq.fiorano;

import fiorano.jms.jmx.ComponentMBean;

import java.io.PrintStream;

import fiorano.jms.common.FioranoException;

import fiorano.jms.route.def.*;

public class PubSubTestAdapterMBean extends ComponentMBean

{

 public PubSubTestAdapterMBean()

 {

 }

FioranoMQ 9 Handbook

Chapter 30: Create Custom MBean Service Page 387

 public void createService()

 {

 System.err.println("creating PubSubTest...");

 pubsubtest = new PubSubTest();

 pubsubtest.printConfiguration();

 }

 public void startService()

 {

 System.err.println("starting PubSubTest...");

 pubsubtest.run();

 }

 public void stopService()

 {

 System.err.println("stopping PubSubTest...");

 }

 public void destroyService()

 {

 System.err.println("destroying PubSubTest...");

 }

 public Object getResource()

 {

 return this;

FioranoMQ 9 Handbook

Chapter 30: Create Custom MBean Service Page 388

 }

 public void setFMQConnectionManager(javax.management.ObjectName obj){

 }

 protected PubSubTest pubsubtest;

}

2. Configure Service: (See Sample 2.) [Link?]

a. Create a directory in the
%FIORANO_INSTALL_DIR%\fmq\profiles\FioranoMQ\deploy\services.

b. For example- Create a directory PubSubTest in the location

Create a service descriptor file with the MBean Class name, the name and type of
service and copy this file into the above directory.

c. If this service is dependent on other services, use the dependent element in the
Service Descriptor:

PubSubTestAdapterMBean0-service.xml:

<server>

 <mbean code="com.cunstomMBean.mq.fiorano.PubSubTestAdapterMBean"
name="Iris:ServiceType=PubSubTest,Name=PubSubTestService" xmbean-
dd="com/customMBean/mq/fiorano/PubSubTestAdapterMBean.xml">

 <depends
>Fiorano.mq.pubsub:ServiceType=PubSubManager,Name=TopicSubSystem</depends>

 </mbean>

 </server>

d. If the service on which this is dependent is not known, configure this service to
start after all other Server services have started. as stated in step 3

Sample 2:

<server>

 <mbean code="com.customMBean.mq.fiorano.PubSubTestAdapterMBean"
name="Iris:ServiceType=PubSubTest,Name=PubSubTestService" xmbean-dd="com/
customMBean /mq/fiorano/PubSubTestAdapterMBean.xml">

 </mbean>

FioranoMQ 9 Handbook

Chapter 30: Create Custom MBean Service Page 389

</server>

3. Deploy Service: (See Sample 3.) [Link?]

a. If the required dependencies have been specified in the service descriptor file
then this file can be appended to any the FioranoMQ.lst file. (Note: The sorting
order is defined by the dependency specified not by the location of the
dependency in the file.)

b. If required dependencies have not been specified start the service after all other
Server services are started. Create a separate list file and add service entries to
this file. Add this file to the end of the list file entries in the deploy.xml file.

Sample 3: (Deploy.xml)

<?xml version="1.0" encoding="UTF-8"?>

<list>FMQBootstrap.lst,FioranoMQ.lst,DefaultMQObjects.lst,TestService.lst</list>

4. Start the FioranoMQ server

Sample 4:

<mbean>

 <descriptors>

 <descriptor name="ComponentName" value="ComponentValue"/>

 ...

 ...

 ...

 </descriptors>

 <class><!--Name of class --></class>

 <!--attributes-->

 <attribute access="read-only" getMethod="getStateString">

 <description>(no description)</description>

 <name>StateString</name>

 <type>java.lang.String</type>

 </attribute>

 ...

 ...

FioranoMQ 9 Handbook

Chapter 30: Create Custom MBean Service Page 390

 ...

 <!--operations -->

 <description>Save the Current State</description>

 <name>save</name>

 <return-type>boolean</return-type>

 <descriptors>

 </descriptors>

 ...

 ...

 ...

</mbean>

30.2 Custom MBean Service Common Problems and Solutions

Common problems encountered while creating a custom MBean Service. See the solutions
provided:

1. Problem:

ClassNotFoundException. Unable to find the MBean service.

Solution:

Set the custom service jar in the CLASSPATH either by editing fmq.bat or editing the system
CLASSPATH.

2. Problem:

FioranoMQ 9 Handbook

Chapter 30: Create Custom MBean Service Page 391

Service created was unable to register.

Solution:

Custom MBean must extend fiorano.jms.jmx.ComponentMBean.

3. Problem:

Start this as the last service of the Server (since this service is dependent on other services).

Solution:

Add this service in a separate list file and append this file to the end of the list files in the
deploy.xml. See Sample 3.

4. Problem:

Custom code written in the lifecycle methods (create, start, and stop) is not getting called.

Solution:

Write the custom code in the createService(), startService(), stopService() instead of in the
create, start and stop methods.

5. Problem:

Deployed the service in the service, but it is taking too long to perform a lookup for CF &
Destinations.

Solution:

Set the property TransportProtocol to LPC for FioranoJNDIContext and execute the lookup.
Without this change, the normal lookup is performed.

6. Problem:

XML metadata not found for the class

Solution:

The .xml file is not available at the correct location. Add the XML file in the same location as
the class file. Create the jar again and copy it to the location mentioned in fmq.conf.

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 392

Chapter 31: Miscellaneous Features

31.1 Support for Destination Level Configuration

The parameters set for the destinations (Queues/Topics) in FioranoMQ can be configured in
two ways:

• Subsystem Level Configuration

• Destination Level Configuration

By default, in any FioranoMQ profile, the parameters are fetched from the Subsystem level
only. However, if some parameters are changed for a particular destination in the FioranoMQ
profile at the destination level, then higher priority is given to this and this value is reflected
on the destination instead of the value set at Subsystem level. To understand this clearly,
please refer to the following example:

Consider the parameter InMemoryBufferSize that can be set for a Queue. The default value for
this parameter is 1048576 and this parameter takes long values as input. If FioranoMQ Server
is started with the default profile, then this default value gets assigned to all the queues.

If the value of this parameter is changed for the Queue PRIMARYQUEUE to, for example,
10485760, then the value of this parameter for this queue will be the changed value, but for
all the other queues it will remain default value, 1048576.

Note: Any change in the values for any parameters in the Subsystem level will be reflected in
all destinations. The same rule follows in the case of Topics and Topic Subsystem as well.

31.2 N Failover URL Support

Support for N failover URLs has been incorporated in FioranoMQ. This feature backup support
of N other servers to be specified. If the primary server goes down, all the connected clients
connect to one of the N failover servers. If this failover server goes down, then all the clients
connect to one of the N-1 servers. If one/any of the servers that are down, come(s) up, then
the number of options for the clients, in terms of servers that they can connect to, increases
by one.

Usage

Failover URLs are specified while creating the Connection Factories. While creating connection
factories through Fiorano Admin Studio, the failover URLs are set using the Backup Connect
URLs parameter. Please refer to section 4.7.1 Creating a Connection Factory. While creating
Connection Factories through the code, the failover URLs are set using the
setSecondaryConnectURLs (String parameter) API in ConnectionFactory class.

The N FailoverURL support has been extended to the lookup operation as well. Client
applications can set a semi-colon separated string of urls (syntax given below) in the
InitialContext environment. If the primary server is unavailable for any reason, the FioranoMQ
runtime looks up the same object from the server running on the backupURL.

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 393

Syntax

SecondaryURLs string is a list of valid URLs separated by semi colons.

Below is a valid entity:

http://schumacher:1856;http://barrichello:1956;http://ayrton:2056

Below is an invalid entity:

http://schumacher:1856:http://barrichello:1956:http://ayrton:2056

Sample Scenario

Consider a scenario where there are four FioranoMQ Servers.

(Server1, Server2, Server3, and Server4.)

1. server1 running on HTUhttp://schumacher:1856UT

2. server2 running on http://barrichello:1956

3. server3 running on Uhttp://ayrton: 2056

4. server4 running on HUhttp://ferrari:2156U

Create a QueueConnectionFactory (myqcf) on server1 with

• primaryURL = http:// schumacher:1856,

• secondaryURLs = http://barrichello:1956;http://ayrton:2056; http:// ferrari:2156,

• clientId=fiorano,

• description = a queue connection factory1.

Client1 (any Sender/Receiver) connects to server1 (looks up myqcf) and starts
sending/receiving messages. Now, if server1 goes down, then client1 uses the revalidate
method to connect to the next available running server (server2 in this case). Similarly, if
server2 goes down, then client1 connects to server3, and so on. Clients can connect to any
running servers that are specified in the list of primaryURL or SecondaryURL. If a server that
had gone down comes up, it is rendered available for client connection once again.

Code Snippet

Hashtable env = new Hashtable();

env.put(Context.SECURITY_PRINCIPAL, "anonymous");

env.put(Context.SECURITY_CREDENTIALS, "anonymous");

env.put(Context.PROVIDER_URL, "http://164.164.131.1:1856;http://localhost:

1856");

env.put(Context.INITIAL_CONTEXT_FACTORY,

"fiorano.jms.runtime.naming.FioranoInitialContextFactory");

http://schumacher:1856/�
http://ferrari:2156/�
http://164.164.128.1:1856;http:/localhost�

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 394

env.put("BackupConnectURLs",

"http://localhost:1956;http://localhost:2056;http://localhost:1656");

InitialContext ic = new InitialContext(env);

System.out.println("Created InitialContext :: " + ic);

// 1.1 Lookup Connection Factory and Topic names

TopicConnectionFactory topicConnectionFactory = (TopicConnectionFactory)

ic.lookup("multiURLTCF");

Topic topic = (Topic) ic.lookup(“primaryTopic“);

31.3 Advisory Message Listener

An Advisory Message Listener object is used to listen for advisory messages. Applications
wishing to listen for advisory messages should register their listeners on the JMS connection
object.

FioranoMQ provides advisory messages to inform its client applications about situations that
may affect them. The advisory messages provide errors and informational messages.

Advisory Messages

Below are some of the advisory messages supported by FioranoMQ:

• CONNECTION_STATE_CHANGED Event: Indicates a change in the state of
Connection object.

• CSP_STATE_CHANGED: Indicates that forwarding of messages stored in persistent
storage on the client side is starting or has been completed.

• CSP_ERROR_MESSAGE: Indicates that an error has occurred while forwarding the
stored messages.

• CLIENT_APP_ERROR_MESSAGE: Indicates that an unhandled exception has been
detected by FioranoMQ’s RTL.

CONNECTION_STATE_CHANGED Event

This event is raised when the state of the connection object is changed. Below are the possible
states of a connection object:

• FMQConnectionState.CONNECTION_ACTIVE: This state indicates that the
connection is alive and available.

• FMQConnectionState.CONNECTION_STARTED: This state indicates that the
connections are active and ready to deliver messages to the callback listeners.
ACTIVE and STARTED are the same with the only difference reflected in consuming
messages. For example, connection start() is invoked for consuming the messages
and thus a different state is introduced.

http://localhost:1956;http:/localhost:2056;http:/localhost:1656�

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 395

• FMQConnectionState.CONNECTION_REVALIDATING: This state indicates that the
connection is down, but indicates that the fmq client library is attempting to reconnect
to the server.

• FMQConnectionState.CONNECTION_DISCONNECTED: This state indicates that
the connection is down and the fmq client library has failed to reconnect to the server
in the pre-specified attempts.

• FMQConnectionState.CONNECTION_CLOSED: This state indicates that the
connection is in a closed state.

CONNECTION_STATE_CHANGED Event is raised for a durable connection. For a non- durable
failed connection, the fmq client library throws a JMSException in the APIs (requiring a call to
the Server). Client applications listening for advisory messages can handle this event as per
their application programming. One of the possible methods of handling such a situation is to
log this event.

Below is the sample code that prints the connection state on the console:

Step 1: When an advisory message is received it checks whether the event is a Connection
state change event. Type cast the message into the required FMQConnectionState object on
verification.

if (advisoryMessage.getType () == advisoryMessage.CONNECTION_STATE_CHANGED)

FMQConnectionState connStateChange = (FMQConnectionState) advisoryMessage;

Step 2: Using the above FMQConnectionState object, the current state of the connection
object is printed. Possible values that maybe returned are:

FMQConnectionState.CONNECTION_ACTIVE, FMQConnectionState.CONNECTION_STARTED ,
FMQConnectionState.CONNECTION_REVALIDATING, FMQConnection-
State.CONNECTION_DISCONNECTED, FMQConnectionState.CONNECTION_CLOSED

System.out.println ("Current state ->“+ connStateChange.getState ());

Step 3: Prints whether the connection is active. This API compares getState () with
FMQConnectionState.CONNECTION_ACTIVE or FMQConnectionState.CONNECTION_STARTED.

System.out.println ("Active ->“+ connStateChange.isActive ());

Step 4: Prints whether the connection has been disconnected. This API compares getState ()
with FMQConnectionState.CONNECTION_DISCONNECTED.

System.out.println ("Disconnected ->“+ connStateChange.isDisconnected ());

Step 5: Prints whether the connection attempts to reconnect to the server. This API compares
getState () with FMQConnection-State.CONNECTION_REVALIDATING.

System.out.println ("Is Revalidating -> " + connStateChange.isRevalidating ());

Step 6: Prints the URL to which the client is connected. If the client is not connected to a
server ‘null’ is printed.

System.out.println ("Connect url ->“+ m_connection.getConnectUrl ());

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 396

Step 7: Prints the list of backup URLs used in revalidation of the connection.

String [] backupUrls = m_connection.getBackupUrls ();

if (backupUrls! = null)

{

for (int i = 0; i < backupUrls.length; i++)

System.out.println ("Backup Url ->“+ backupUrls[i]) ;}

CSP_STATE_CHANGED

This message indicates a change in the state of the persistent store at the client end.

CSP_STATE_Changed is raised in the situations listed below:

• When the FioranoMQ client library has started transferring messages stored in the
persistent store at the client side.

• When the FioranoMQ client library has transferred all the messages stored in the
persistent store at the client end.

 CSP_STATE_CHANGED is raised only for a durable connection. For non-durable connections,
messages are not stored in the store at the client side.

Client applications listening for advisory messages can handle this event as per their
application programming. One possible way of handling this situation is to log this event. is a
sample of the code that prints the CSP_STATE_CHANGED on the console:

Step 1: When an advisory message is received, the code checks whether it is a
CSP_STATE_CHANGED message. ype casts the message into the required
CSP_STATE_CHANGED object on verification.

if (advisoryMessage.getType () == advisoryMessage.CSP_STATE_CHANGED)

FioranoCSP_STATE_CHANGED CSP_STATE_CHANGED =

(FioranoCSP_STATE_CHANGED) advisoryMessage;

Step 2: Prints whether the fmq client library has started transferring the stored messages. If
messages are currently being transferred, this API returns true. If messages are not being
transferred it returns false.

System.out.println ("Is transferring -> " + CSP_STATE_CHANGED.isTransferring ());

Step 3: Prints whether the fmq client library has transferred all the locally stored messages. It
returns true if the transfer is complete and false if the transfer is not complete.

System.out.println ("Transfer complete ->“+

CSP_STATE_CHANGED.isTransferComplete ());

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 397

CSP_ERROR_MESSAGE

This message indicates that an unexpected error occurred while forwarding the messages
stored in the persistent store at the client end. Client applications log the error message so
that the application administrators can investigate the cause of the error.

Below is a sample of the code that prints the CSP_ERROR_MESSAGE on the console.

Step 1: When an advisory message is received, the code checks whether it is a
CSP_ERROR_MESSAGE or not. Type casts the message into the required
CSP_ERROR_MESSAGE object on verification.

if (advisoryMessage.getType () == advisoryMessage.CSP_ERROR_MESSAGE)

FioranoCSPErrorEvent CSP_ERROR_MESSAGE = (FioranoCSPErrorEvent)

advisoryMessage;

Step 2: Prints the exception stack on the console.

if (CSP_ERROR_MESSAGE.getException ()! = null)

CSP_ERROR_MESSAGE.getException ().printStackTrace ();

Step 3: Gets the message for csp corruption

CSP_ERROR_MESSAGE.getErrMessage(); CLIENT_APP_ERROR_MESSAGE

This message indicates that an unhandled exception has been detected by FioranoMQ’s RTL.
An exception is thrown in the onMessage() method (a method in MessageListener of the
MessageConsumer) of the user's code if the code has not been handled properly. This is
actually a programming error in the client application. If such an uncaught exception inside
the onMessage() method of the client application's MessageListener code occurs, it raises an
advisory message Client_App_Error_Message. A MessageListener can be registered with a
MessageConsumer for the purpose of receiving messages asynchronously.

The earlier versions of FioranoMQ’s RTL handled this situation differently. When an exception
inside the onMessage() method of the client code occured, the connection's ExceptionListener
was notified through the invocation of its onException() method.

The sample code,below, demonstrates the registrationi of an advisory message listener:

Step 1: Create a .jms connection.

Connection connection = connectionFactory.createConnection ();

Step 2: Create an advisory message listener.

MyAdvisoryMessageListener listener = new MyAdvisoryMessageListener ();

Step 3: Set the advisory message listener on the connection object.

((fiorano.jms.runtime.IFMQConnection) connection).setAdvisoryMessageListener (listener);

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 398

For more details on Advisory Message APIs, please refer to the javadocs of the
fiorano.jms.runtime package.

31.4 Message Browser Support in FioranoMQ

FioranoMQ provides support for message browsing by a durable subscriber registered with the
FioranoMQ Server on any topic. A MessageBrowser on a TopicSession using the ClientID and
SubscriberID of the concerned subscriber as the arguments can be created.

Once this MessageBrowser is created, it can be used to retrieve all messages that are stored
in the FioranoMQ Server for that particular DurableSubscriber. The browser facility works
when the concerned Durable Subscriber is passive.

Browser APIs

FioranoMQ provides public APIs for browsing messages on a durable subscriber. The sample
code, below, describes how these APIs are used:

For creating a MessageBrowser:

FioranoMessageBrowser msgBrowser =

((FioranoTopicSession)topicSession).createMessageBrowser(clientID,subID);

For enumerating the messages for this browser:

Enumeration enum = msgBrowser.getEnumeration();

while(enum.hasMoreElements())

Message msg = (Message)enum.nextElement();

31.5 FioranoMQ - XML Interoperability

 The XMLInteroperability Toolkit, which is a part of FioranoMQ, allows the interoperability of
FioranoMQ across JMS Vendors. The Toolkit provides APIs with tools required to convert a JMS
Message to an XML document and to recreate a Message from an XML document. The toolkit
currently supports XML conversions for TextMessage and MapMessage. The toolkit is generic
and supports XML Parser plug-ins at runtime. This toolkit can be used to communicate across
different JMS Vendors. The DTD (Document Type Definition) of the Messages is public and can
be used by any non-Fiorano JMS vendor to communicate with FioranoMQ.

The contents of this chapter are organized as listed below:

• JMS Message to XML.

• XML to JMS Message.

• Using XMLAdapter Toolkit of FioranoMQ with other JMS Vendors.

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 399

31.5.1 JMS Message to XML

A JMS TextMessage or MapMessage can be converted to XML. To convert a message to XML,
an appropriate XMLAdapter has to be created. If the Message to be converted is a
MapMessage, then an instance of XMLMapMessage-Adapter is created. To illustrate, pick a
TextMessage and convert it to an XML Document. Create an instance of the
XMLTextMessageAdapter:

XMLTextMessageAdapter adapter = new XMLTextMessageAdapter();

To represent this message as an XML, invoke the following method on the adapter:

StringBuffer xmlData = adapter.createXML (txtMsg, false);

This call results in the conversion of the Message into an XMLDocument based on the DTD for
text messages.

The code snippet used is:

XMLTextMessageAdapter adapter

= new XMLTextMessageAdapter();

TextMessage textmsg2 = (TextMessage)msg;

// Create an XML of the received Text Message and indicate

// that the DTD should be embedded into the XML

StringBuffer xmlData = adapter.createXML

(textmsg2, true);

// Dump the Document to a file

RandomAccessFile rf = new RandomAccessFile

(“message.xml” ,”rw”);

rf.writeUTF(xmlData.toString());

rf.close ();

31.5.2 XML to JMS Message

An XML Document representing a JMSMessage can be reconverted back to a JMSMessage. For
example, consider an XML Document representing a TextMessage. Create an instance of the
XMLTextMessageAdapter:

XMLTextMessageAdapter adapter

= new XMLTextMessageAdapter ();

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 400

Associate the XML Parser to the adapter. By default IBM’s XML Parser is used. Specify the
name of the main class of the parser, represented as an argument to this method. The Toolkit
uses Java’s reflection methods to create an instance of the parser

adapter.setXMLParser

(“org.apache.xerces.parsers.SAXParser”);

Reconvert the XML to a message:

adapter.createMessage(textmsg, “specify the URI of the XML Document”)

The code snippet used is:

// Create the Adapter

XMLTextMessageAdapter adapter

= new XMLTextMessageAdapter ();

// Set the parset to be used

adapter.setXMLParser

(“org.apache.xerces.parsers.SAXParser”);

// Create a text message for used to store the XML

TextMessage textmsg1 = session.createTextMessage();

// Convert the message back to XML

m_adapter.createMessage (textmsg1, “URI of the XML Doc”);

31.5.3 Using XMLAdapter Toolkit of FioranoMQ with other JMS Vendors

By default, the XML Interoperability toolkit is configured to work with FioranoMQ. This is
possible because the toolkit allows a provider specific adapter to be set to the XMLAdapter.
Any other JMS Vendor can use this toolkit to expose JMS messages by implementing the
IProviderSpecificMessageAdapter interface and plugging it to the XMLAdapter. (More samples
can be found in the \fmq\samples\XMLToolkit folder of the FMQ installation directory.)

class XMLTextMessageAdapter Declaration

public XMLTextMessageAdapter()

Purpose

The XMLTextMessageAdapter provides a compete set of methods to convert a Text-Message to
its corresponding XML document and vice versa.

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 401

Method Summary

public XMLTextMessageAdapter()

Constructor: Creates an XMLTextMessageAdapter.

public void setXMLParser (String xmlParser)

throws JMSException.

Sets the fully qualified name of the XML Parser, to be used to parse the JMS message.

public void setProviderSpecificAdapter

(IProviderSpecificMessageAdapter adapter)

throws JMSException.

Sets a provider specific adapter. By default the XML toolkit works with the adapter of
FioranoMQ. Any other JMS Implementation can interoperate by setting and implementing the
appropriate adapters.

public void createMessage

(TextMessage msg, String uri)

throws JMSException

public void createMessage

(TextMessage msg, InputSource source)

throws JMSException

Converts the XML Message, identified by the InputSource, or a String representation, into a
JMS text message.

public StringBuffer getMessageBody

(TextMessage msg)

throws JMSException

Returns the header as an XML document from the JMS message.

public String getMessageBodyDTD()

Returns the DTD for the message body.

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 402

31.6 XMLMapMessageAdapter

Declaration

public XMLMapMessageAdapter()

Purpose

The XMLMapMessageAdapter provides a complete set of methods to convert a Map-Message to
its corresponding XML document and vice-versa.

Method Summary

public XMLMapMessageAdapter()

Constructor: Creates an XMLMapMessageAdapter.

public void setXMLParser (String xmlParser)

throws JMSException.

Sets the fully qualified name of the XML Parser to be used to parse the JMSMessage.

public void setProviderSpecificAdapter (IProviderSpecificMessageAdapter adapter)

throws JMSException.

Sets a provider specific adapter. By default the XML toolkit works with the adapters of
FioranoMQ. Any other JMS Implementation can interoperate by setting and implementing the
appropriate adapters.

public StringBuffer createXML(MapMessage msg,

boolean embedded) throws JMSException.

Converts the Message object to its XML representation. Raises a JMSException if the
conversion fails.

public void createMessage(MapMessage msg, String uri)

throws JMSException

public void createMessage(MapMessage msg,

InputSource source) Throws JMSException

Converts the XML Message identified by the InputSource or a String representation of the URL
into a JMSMessage.

public StringBuffer getMessageBody(MapMessage msg)

throws JMSException

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 403

Returns the header as an XML document from the JMS message.

public String getMessageBodyDTD()

Returns the DTD for the message body.

31.7 IProviderSpecificMessageAdapter

Purpose

The IProviderSpecificMessageAdapter defines the signature of all the methods that are defined
by the provider’s adapters necessary for useing FioranoMQ XML Adapters. JMS does NOT
provide methods to retrieve properties that are stored as part of the message. This interface
extends the JMSMessage behavior providing methods to retrieve the ‘types’ of properties
stored.A complete set of methods is furnished to convert a MapMessage to its corresponding
XML document and vice versa.

Other JMS Vendors can make use of the XML Toolkit by implementing this Adapter.

Method Summary

public byte getMessagePropertyType(Message message,

String propertyKey) throws JMSException

Retrieves the MessageProperty Type for the specified propertyKey.

public byte getMapMessagePropertyType (MapMessage message,

String propertyKey) throws JMSException

Retrieves the Property Type of the Map message property

31.8 Integration with Spring Framework

The Spring Framework is an open source application framework for the Java platform. The
core features of the Spring Framework can be used by any Java application, but there are
extensions for building web applications on the Java Enterprise platform. Although the Spring
Framework does not impose any specific programming model, it has become popular in the
Java community as an alternative to, replacement for, or an addition to the Enterprise
JavaBean (EJB) model.

This section explains how to integrate FioranoMQ client samples with Spring Framework.

The resources and libraries listed below are needed:

• FioranoMQ Server

• ant

• Jars --

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 404

Please download the following jars and store them in a directory named "lib" in the current
sample's home folder.

• spring.jar (http://www.java2s.com/Code/Jar/Spring-Related/spring.jar.htm).

• commons-logging.jar (http://www.java2s.com/Code/Jar/jboss-5.0.0.Beta2/commons-
logging.jar.htm).

The jars listed below are shipped along with FioranoMQ: (Modify the build files to include these
jars only when the sample is moved from its default location.)

• fmq-client.jar

• fiorano-framework.jar

• jms.jar

The Samples for the Spring Framework are present in the directories listed below:

<FMQ_HOME>/samples/PTP/SpringSamples

<FMQ_HOME>/samples/PubSub/SpringSamples

The sample directory comprises of the two directories listed below:

• The "lib" directory should contain the necessary jars.

• The "src" directory contains the java samples and the Spring configuration files.

The Spring configurations are present under the directory "src/spring/".

These xml files provide the samples with configurations like destination, ContextFactory,
ConnectionFactory and so on.

The java samples are present under the directory "src/springexample/client". These java files
pickup configurations from xml files.

Samples can be run using the following command from the sample's home directory: ant -f
build-jmsreceiver.xml. A detailed explanation can be found in the readme files provided in
the samples directories.

31.9 Integration with Seasar Framework

Seasar 2, the most popular Dependency Injection (DI) open source framework in Japan.
S2Container (Sesar2) provides set of components called S2JMS (Sesar2JMS) to easily build
applications to send and receive messages through JMS.

A Sesar container supports Distributed transactions (JTA) and JMS connection pooling. Sesar
connects to MOM vendors through Resource Adapter.

http://www.java2s.com/Code/Jar/Spring-Related/spring.jar.htm�
http://www.java2s.com/Code/Jar/jboss-5.0.0.Beta2/commons-logging.jar.htm�
http://www.java2s.com/Code/Jar/jboss-5.0.0.Beta2/commons-logging.jar.htm�

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 405

31.9.1 Outbound Communication

Outbound Communication is a form of sending and receiving messages from MOM via resource
adapter.

In Outbound communication, Application creates the connection to MOM with API
javax.jms.ConnectionFactory # getConnection () before sending or receiving messages.

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 406

31.9.2 Inbound Communication

Inbound Communication is a form of receiving messages asynchronously from MOM via
resource adapter.

In Inbound communication, resource adapter creates the connection to MOM. When Messages
is available in MOM, Resource adapter notifies the application with Message.

This section explains how to integrate FioranoMQ client samples with Sesar Framework.
Fiorano Sesar samples are created as Eclipse java project so can be imported to Eclipse IDE.

Fiorano Sesar samples are developed with Seasar S2JMS-1.0.1 version. Please refer to
http://www.seasar.org/index.html for latest version

http://www.seasar.org/index.html�

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 407

The resources and libraries listed below are needed:

• FioranoMQ Server

• Fiorano Resource Adapter

• fmq-client.jar

• fiorano-framework.jar

• jms.jar

The Samples for the Seasar Framework are present in the directories listed below:

<FMQ_HOME>/samples/SeasarJMSSample

The sample directory comprises of the two directories listed below:

• The "lib" directory should contain the necessary jars.

• The "src" directory contains the java samples and the Spring configuration files.

The above listed jars are shipped along with FioranoMQ. Copy fmq-client.jar, fiorano-
framework.jar, jms.jar to lib directory.

Generate Fiorano Resource Adapter (fmq-connector-ra.rar) and copy the same to lib
directory. Refer to “Deployment of FioranoMQ Resource Adapter” section for more detail about
Resource Adapter.

The Seasar configurations are present under the directory "src".

.dicon files provide the samples with configurations like destination, ContextFactory,
ConnectionFactory, XATrasanctions and so on. Detailed explanation can be found as inline
comments in .dicon files.

The java samples are present under the directory "src/seasar". These java files pickup
configurations from .dicon files.

Samples can be run and debugged from Eclipse IDE.

31.10 Message Expiry

A message may get expired based on its Time To Live (TTL) value. For more information on
how a message expires, refer Chapter 8: Message Expiry in Fiorano MQ Concepts Guide.

31.10.1 Purging Expired Messages in Queues

Expired messages in the queues can be cleaned up by setting the flag 'IsDbCleanupEnabled' to
'True', by default this is set to 'false'. To configure this parameter, login through FMQ-JMX in
Fiorano Studio. Navigate to JMXConnection--> Fiorano--> mq--> ptp --> PTPManager -->
QueueSubsystem --> config. The parameter can be changed here. Refer to the screenshot
shown below. The changes need to be saved and server should be restarted. The frequency
with which the server checks for expired messages is again configurable through the
parameter CleanupInterval (defaults to 10 minutes). You can configure this value at
Subsystem level or at destination levels.

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 408

Note: The cleanup handler is not present for Topics. This is only available for Queues. For
now, this has to be done manually by running a browser on to a topic which has expired
messages piled up.

If a browser is made to run on a topic, all the expired messages will get cleaned up. You will
need to write a Topic browser application which runs on a specific topic in a regular interval of
time. Refer to the Message Browser sample located at
$Fiorano_Home/fmq/samples/PubSub/MessageBrowser for writing a browser sample on
Topics. Purging of the expired messages happens only when the server is in active state.

Copies of the expired messages in any of the destinations can be stored in a queue named
SYSTEM_DEADMESSAGES_QUEUE. For more information on this queue, refer to Chapter
13: Dead Message Queue.

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 409

31.11 Poison Message Handling

31.11.1 Poison Messages

Sometimes, a badly-formatted message arrives on a destination. In this context, badly-
formatted means the receiving application cannot process the message correctly. Such
message can cause the receiving application to fail and to back out this badly-formatted
message. The message can then be repeatedly delivered to the input queue and repeatedly
backed out by the application. These messages are known as Poison Messages.

Once the message re-delivery attempts becomes greater than the maximum re-delivery
attempts (maxRedeliveryTriesOnListenerException), then the
MessageConsumer/ConnectionConsumer detects that it is a poison message and reroutes it to
an alternative configurable destination.

Poisonous messages will be re-routed to an alternative destination only for
receivers/subscribers created from Session with AUTO_ACKNOWLEDGE
/DUPS_OK_ACKNOWLEDGE acknowledgment mode.

AllowDurableConnection and enableAutoRevalidation flags at the server level must be set to
true in order to send the poisonous message to the FioranoMQ server even if the connection is
disconnected.

AllowOnTheFlyCreationOfDestinations must be set to true in order to send thepoison message
to the configured destination."

Note: If a non-durable subscriber receives persistent/non-persistent messages and durable
subscriber receives non-persistent messages and if that message is determined as poisonous
message, it will be dropped if the connection with FioranoMQ server is disconnected while
sending it.

31.11.2 Configurable Parameters at Queue Subsystem Level

a) enablePoisonMessageMonitoring:

This parameter must be set to true in order to enable poisonous message handling.

• type : boolean

• Default value : false

• Restart required : yes

b) poisonMessageDestination:

This parameter is used for specifying the PTP-destination for routing the poisonous messages.

• type : String

• Default value : SYSTEM_BACKOUT_QUEUE

• Restart required : yes

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 410

31.11.3 Logging

In order to log information while sending the poisonous message, the logger named
“log4j.logger.Fiorano.FMQ.Services.ClientRootLoggerServices.FMQClientLoggerServices.PTP.Poi
sonMessageHandler” must be enabled in log4j.properties which can be located under
$FIORANO_HOME/fmq/bin.

C, C++,C# client runtime library also supports poison message handling.

For more information on FioranoMQ Client Logging, please refer section 21.3 Fiorano Client
Logger and 28.4 FioranoMQ Client Logging in FioranoMQ Handbook.

31.12 Shared Subscriptions

A shared non-durable subscription is used by a client which enables to share the work of
receiving messages from a durable subscription amongst multiple consumers. A shared
durable subscription can therefore have more than one consumer. Each message from the
subscription will be delivered to only one of the consumers on that subscription.

A shared durable subscription is created, and a consumer created on that subscription, as
specified by the JMS specification. A shared durable subscription is identified by a name
specified by the client and by the client identifier if set. If the client identifier is not set for a
JMS connection, by default, Fiorano assigns a provider specific identifier such as a string
starting with "JMS_FIORANO_CLIENT_ID_" followed by a numerical value that is unique for
each such connection.

In case of shared durable subscriptions, it is not essential to set client identifier for the JMS
connection. So, if client applications are coded in such a way and as Fiorano provider assigns a
default identifier which changes randomly for each instance of connection creation, there will
be a NEW durable subscription created each time an application goes offline and comes up
which is erroneous.

In order to resolve this issue, in order to identify a shared durable subscription Fiorano
provider assigns a secondary identifier (to a JMS connection for which client identifier is
unset). This name can be unique for all shared durable subscriptions across the JMS provider
or unique for all subscriptions under a topic. This behavior can be changed by the parameter
which can be configured in the following way -

31.12.1 Online Configuration
• Open Admin Studio

• Login through FMQ-JMX and traverse to Fiorano > mq > pubsub > PubSubManager >
TopicSubSystem > config.

• Modify 'UseTopicIDBaseForSharedSubs' parameter

• Save configuration and restart server

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 411

31.12.2 Offline Configuration

If this 'boolean' parameter is set to true (default value - false), the secondary client identifier
will have the topic's name within it. In such a case, rather than using the normal way to
unsubscribe a durable subscription from client application using only the subscription name, it
must be done in the following way -

Java

TopicConnection topicConnection =
 topicConnectionFactory.createTopicConnection();
TopicSession topicSession = topicConnection.createTopicSession(false, 1);
MessageConsumer tsub = topicSession.createSharedDurableConsumer(topic,

 "Sample_Durable_Subscriber");
..
topicSession.unsubscribe(topicName, "Sample_Durable_Subscriber"); //changed

CPP

m_tc = m_tcf->createTopicConnection(m_usrName, m_usrPasswd);
m_ts = m_tc->createTopicSession(FALSE, AUTO_ACKNOWLEDGE);
m_subscriber = m_ts->createSharedDurableConsumer(m_topic,

 "Sample_Durable_Subscriber");
..
m_ts->unsubscribe(topicName, "Sample_Durable_Subscriber"); //changed

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 412

31.13 JMSXDeliveryCount

When a client receives a message the mandatory JMS-defined message property
JMSXDeliveryCount will be set to the number of times the message has been delivered.

How to access:

in javax.jms.Message:

int getIntProperty("JMSXDeliveryCount")

The purpose of the JMSXDeliveryCount property is to allow consuming applications to identify
whether a particular message is being repeatedly redelivered and take appropriate action.

Note:

• Not applicable to Journalling and snooping.

• Not applicable to LVC.

JMSXDeliveryCount property is not persisted, so not guaranteed to be exactly correct in server
restart/failover. This property is also not propogated to backup server for high availability
deployments. In case of server failure, if message is redelivered, it will be delivered with
JMSXDeliveryCount as 2.

Following cases on client side are considered are redelivery attempts:

1. MessageListener#onMessage() throwing RuntimeException: message will be
redelivered with increased delivery count.

2. in trasacted session and CLIENT_ACK mode: session.rollback() and
queueReceiver.recover() will cause message to redelivered with increased delivery
count.

Note:

Above cases are considered to be client-side redeliveries and server is not notified about it for
performance reasons.

31.14 Sending Messages Asynchronously

A Producer can send a message either synchronously or asynchronously. A normal
synchronous send involves sending the message to FioranoMQ server and then waiting for an
acknowledgement to be received before returning. An asynchronous send involves sending the
message to FioranoMQ server and return without waiting for an acknowledgement. When the
acknowledgement is received, FioranoMQ client runtime will notify the client application by
invoking the onCompletion method on the application specified CompletionListener object. If
for some reason the acknowledgement is not received, FioranoMQ client runtime will notify the
application by invoking the CompletionListener's onException method.

Methods used for sending messages asynchronously:

Following methods can be used for sending messages asynchronously.

1. Under javax.jms.MessageProducer

FioranoMQ 9 Handbook

Chapter 31: Miscellaneous Features Page 413

a. send(Message message, CompletionListener completionListener)

b. send(Message message, int deliveryMode, int priority, long timeToLive,
CompletionListener completionListener)

c. send(Destination destination, Message message, CompletionListener
completionListener)

d. send(Destination destination, Message message, int deliveryMode, int priority,
long timeToLive, CompletionListener completionListener)

2. Under javax.jms.JMSProducer

A JMSProducer may be used to send a message asynchronously by calling the method
setAsync(CompletionListener completionListener) on the JMSProducer prior to calling one of
the send methods.

Configurable parameters at Connection Factory level :

1. AsyncSendBatchBufferSize : Maximum amount of data (in bytes) that a JMS
Session would store in un-acknowledged state for messages sent asynchronously.
Attempt to exceed this size will result in either exception or publisher block as
configured in PublisherBehaviourOnAsyncSendBufferOverflow parameter.

2. AsyncSendCompletionWaitTimeout : Maximum amount of time (in milli seconds)
that a JMS Session would wait for acknowledgement for each message sent
asynchronoulsy. CompletionListener 's onException will be invoked if no
acknowledgement is received within this configured time.

3. PublisherBehaviourOnAsyncSendBufferOverflow : This parameter defines the
behaviour of publisher when AsyncSendBufferSize is exceeded. A new publish call can
either throw an exception or block.

Note :

1) If a message is sent to CSP it is considered as successful send and CompletionListener's
onCompletion will be invoked. In case of any exception while storing it in CSP,
CompletionListener's onException will be invoked.

2) If AllowDurableConnection is disabled and EnableAutoRevalidation is enabled and if
connection with the server goes down with messages waiting for acknowledgement, messages
will either be dropped or CompletionListener's onException will be invoked as configured in
PublishBehaviourInAutoRevalidation parameter in connection factory. If
PublishBehaviourInAutoRevalidation is set to "Block" then any new send call will be blocked till
the connection revalidation is successful.

414.

Chapter 32: FioranoMQ Web
Management Tool

32.1 What is Web Management Tool

FioranoMQ Web Management (WMT) is a web based tool used to monitor and configure FioranoMQ
Server in the online mode. The WMT connects various users to the FioranoMQ Server through a web
browser allowing them to perform various operations. Toconnect to the FioranoMQ Server using this
tool the JettyServer needs to be enabled in the FioranoMQ Server profile.

32.2 Configuring Web Manager

Follow the steps below to configure the JettyServer within FioraoMQ Server profile:

1. Open FioranoMQ profile in Studio. Navigate to FioranoMQ-->Fiorano-->etc--
>JettyServer. You can see various properties in the Properties of JettyServer pane.

Figure 32.1: Properties of JettyServer Pane

2. In ComponentInstance Configuration,

 Set the EnableStart property to yes for using the Web Management tool. By default,
this property is set to yes.

 The default PortNumber is 1780. All Web Management tool users connect to this port.
This port number must be unique for every StandAlone FioranoMQ Server running on the
same IP address.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 415

Note:

 The EnableStart and PortNumber must be configured before starting the FioranoMQ
Server.

 All the parameters related to the WMT are present in the properties panel. These parameters
may be changed in the online mode but require that the server is restarted once
configurations are saved.

32.3 Connecting to Web Management Tool

To use FioranoMQ WMT, the latest version of the web browser (Internet Explorer, Mozilla Firefox,
Safari, Opera) is needed . The WMT URL is http://ipaddress:jettyport. In this URL, the ‘ipaddress’
refers to the IP address or hostname (only one ipaddress is present) where the FioranoMQ Server is
running and ‘jettyport’ refers to the port on which the WMT is running. If FioranoMQ server is running
on IP address 192.168.1.46 and the WMT Server is running on port 1780, the URL will read
http://192.168.1.46:1780.

Figure 32.2: FioranoMQ Web Management Tool Homepage

The WMT homepage has three fields:

Field
Name

Description

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 416

To perform certain operation administrator permissions are required.

Figure 32.3: MonitorUsers View

Once logged into WMT, the MonitorUsers may be view. All the tables present in the views can be
sorted in both ascending and descending orders by clicking the header of the corresponding column.
The images displayed in the column explain the order.

User

The User Name by which User will login tothe WMT. The User logging in must
exist in the security Realm of FioranoMQ Server. The default User is ‘admin’.

Password

Password of the User Name by which the User connects to the WMT. The
default password for the ‘admin’ is pre set.

Refresh
Interval

Time Interval after which data is fetched from the Server. This Interval is
measured in milli seconds. The value of this interval should be more than 1000
milliseconds. The default value is 2000 (which equivalent to two seconds). This
interval should be sufficiently large to allow minimum CPU usage.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 417

The Filter option can be viewed in the top right-hand corner. The Filter is used to filter tabular data
based on the text present in textbox. Filtering is done based upon the filtering column selected in the
menu.

Figure 32.4: Filter Options

All data present in the ‘Monitor’ view is refreshed automatically. ‘Configure’ views, on the other hand,
need to be refreshed manually. For refreshing ‘configure’ view click on any Configure view and click
again on the old configure view. Only ConfigureFMQServer present in JMX will be refreshed
automatically. There is an image next to it. Data is fetched from the Server after every refresh
interval. All tables get updated with the new values fetched. To stop refreshing this view, select the
image and click the image to start refresh.

During interaction with the Server, if the Server shuts down due to unknown reasons, the WMT will
display a warning to the User that reads 'disconnected from server'. When this warning is displayed,
the logout prompt will change to the login prompt.

Figure 32.5: Server Disconnected Status

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 418

If the FioranoMQ Server running the User can click login to go directly to the page being viewed
earlier. If the FioranoMQ Server is not running, the User will be redirected to the login page.

If the Server is restarted and the WMT did not interact with the Server, then clicking on any
operation reconnects to Server. To avoid this/override this the User needs to click the same
operation manually.

Four links at the top right-hand side top of the page may be viewed::

SaveConfigurations SaveConfiguration saves all the modified properties to the FioranoMQ
Server from the current browser page.

Shutdown Shutdown closes the Server that is running. Do not connect any other
application to FioranoMQ server before ‘shutdown’.

Restart Restart closes and restarts the Server. Do not connect any other
application to FioranoMQ server before ‘shutdown’. When the Server
restarts, login from the browser window.

Logout Logout disconnects the current page from the WMT Server.

There are 13 different views present in the WMT:

1. Users

 MonitorUsers view contains all existing Users and their respective connection status. Users
are set as connected an ‘admin’ Connection or JMX Connection is made or if the JMS
Application is started.

 ConfigureUsers view contains the function to modify Users (such as Add User and Delete
Selected Users). The Import Users and Export Users enable to copying Users to another
FioranoMQ Server. These actions are present in the Select Action drop-down menu. To use
any one of the actions, select the action from the Select Action drop-down menu and click
the Go button. These actions allow the export of all data to a standard file present on most
machines. (Mapping needs to be done if file is present on another machine.) The data can be
imported to any other Server that starts with FioranoMQ. Note: Import User and Export User
functions can only be used by the ‘admin’ User.

Figure 32.6: Configure Users View

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 419

2. Groups

‘Groups’ contain information about all groups and its members. Groups can be added using Add
Groups and deleted using Delete Selected Groups. For modifying members of an existing group,
use Edit Members in Group after selecting the required group. These Actions are available in the
Select Action drop-down menu. Select the action and click the Go button.

Figure 32.7: GroupView

Once you click the Go button, a window pops up with existing members and possible options, if the
selected action is Edit Members in Group. Select Add Members to see the existing members.

Figure 32.8: Editing Group Members

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 420

3. Topics

Monitor Topics contains the information about existing topics. Summary is present at the
top of the table. An Active Topic refers to a topics that contain either a publisher or a
subscriber.

Figure 32.9: MonitorTopics View

Configure Topics allows all operations to be performed on topics such as CreateTopic and
DeleteSelectedTopics . EditTopicProperties can be used to edit all properties related to a
topic or the pubsub.

Figure 32.10: ConfigureTopics View

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 421

By selecting the EditTopicProperties options from the Select Action drop-down menu and
clicking the Go button, it is possible to view all properties and their corresponding values.
Values with a different background color need to be saved. Once saved, the Server needs to
be restarted to make them take effect. A description of the property that is selected is
provided at the bottom of the browser. The mouse may be moved over the textbox to view
the description of the property. Export Topics and Import Topics can be used to save
topics to a standard file as well as to create all of them in a FioranoMQ server that is running.
Import Topics and Export Topics can be used only by the ‘admin’ User.

Figure 32.11: Editing Topic Properties

4. Queues

Monitor Queues contains the information about existing queues. A summary is present at
the top of the table. Here, Active Queue refers to the queues which contain either a sender
or receiver. DeliverableMessages and UndeletedMessages do not update after regular
intervals. To update these values select all the required queues or invoke
UpdateSelectedQueues or UpdateAllQueues present in the Select Action drop-down
menu.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 422

Figure 32.12: MonitorQueues View

Configure Queues allows all operations to be performed on queues such as CreateQueue
and DeleteSelectedQueues. The EditQueueProperties can be used to edit all properties
related to queue or ptp. By using EditQueueProperties option present under the Select
Action drop-down menu it is possible to view all properties and their corresponding values.
Values with different background color need to be saved. Once saved the Server needs to be
restarted to make them take effect. A description of the property that is selected is provided
atthe bottom of the browser. The mouse may be moved over the textbox to view the
description of the property. You are notified if any property requires save configuration and
server restart was modified. Export Queues and Import Queues can be used to save
queues to a standard file as well as to create all of them in a FioranoMQ Server that is
running. Import Queues and Export Queues can be used only by the ‘admin’ User.

The Select Action drop-down menu also contains operations like Browse Messages and
Purge Messages. By using the Browse Messages option, all messages currently present on
the selected queue may be viewed. The Purge Messages option can be used to delete all the
messages present in the selected queue(s).

5. ConnectionFactories

MonitorConnectionFactory lists all the connection factories along with their important
properties (such as ConnectUrl, AutoUpdate, Type, Description). A summary is present at
the top of the table.

ConfigureConnectionFactory allows various operations to be performed such as Create CF,
Delete Selected CF, Edit CF Properties on Connection Factories. The Edit CF Properties can be
used to edit all the properties related to the selected connection factory. The Create CF
option present under the Select Action drop-down list can be used to create new
Connection Factories and the Delete Selected CF can be used to delete existing Connection
Factories.

Export and Import CF can be used to save Connection Factories to a standard file and to
create all of them in a FioranoMQ Server that is running. Import and Export CF can be used
only by the ‘admin’ User.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 423

6. Policies

Policies allow users to change permissions on a specific destination for a specific principal. By
default, the view will show No restrictions on policies if user had not modified any
permission. If user wants to modify any particular permission then the user needs to use the
Add Permissions option present in the Select Action drop-down menu. A pop-up window
will appear along with UserName, Destination Name, Permission types, and new permission
type. Once all required values are selected then user can click on OK button. The new
modified permissions will be shown in the table.

Figure 32.13: Editing policies of a destination

Click any row and view the permissions on a specific destination.

7. Routes

A Route enables the transport of messages between destinations. A message arriving on one
destination can be made available to another provided a route exists between the two destinations.

ConfigureRoutes view contains information about the properties of the route managerThese are the
properties of the individual routes present on the server.

The table displays various properties of the route manager (such as MaxTopicBuffer,
NumberOfRoutesExistingInServer, MaxCreateSessionTries).

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 424

If there are any routes present on the Server, they will be displayed in the Route GUID box. If no
routes are present, the message No routes available in the Server is displayed below the route
manager properties table.

Figure 32.14: Route

To Add or Delete a route from the Server, the appropriate action must be chosen from the Select
Action drop-down menu.

Figure 32.15: Adding Route

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 425

On selecting any of the routes present in the Route GUID box the properties of the corresponding
routes are displayed in the table below this list-box.

Figure 32.16: Route Added

8. Dispatcher

This tab is available only when logged into the web console of a dispatcher enabled Server.

A Dispatcher distributes the messages received to different Servers that are connected to it.
The Dispatcher performs the load balancing function of a network connected to FioranoMQ
Servers.

ConfigureDispatcher view contains information about the properties of the Dispatcher
Manager and the properties of the Servers to which it dispatches messages. The Server URL
list-box contains the list of server URLs to which the Dispatcher can dispatch messages. On
selecting a URL, its properties are displayed on the table as shown in the figure 32.17.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 426

Figure 32.17: Dispatcher

To Add or Delete a Dispatcher Server, the appropriate action must be chosen from the Select
Action drop-down menu..

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 427

Figure 32.18: AddDispatcher Server

9. DashBoard

DashBoard shows the graphs between Time vs Threads, Connections and MemoryThe entry
for which graphs are required needs to be selected.. The Remove selection, removes a
graph from view.

Figure 32.19: Displaying a graph of Time Vs Memory

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 428

10. DurableSubscribers

Monitor DurableSubscriber view contains all existing durable subscribers listed along with
corresponding information. A summary is present at the top of this window. To update
deliverable messages, click on the header.

Configure DurableSubscriber view contains all durable subscriber names in the form of
subscriberID::clientID. Messages can be unsubscribe or purged messages for passive durable
subscribers from this view. Any operations involving active durable subscribers throw a
warning message.

11. Connections

Monitor Connections lists all type of connections along their relevant properties (such as
creation time, client address and user name of the person creating the connection). A
summary is present at the top of this window.

Configure Connections allows the disconnection of a connection based on the clientID.

12. Logs

Monitor Logs allows the user to fetch details of logs, view log details and clear log details.

Configure Logs lists all those logged into the FioranoMQ Server. You can select any
particular log and change its level.

Figure 32.20: Changing log level of a particular logger

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 429

13. JMX

This view lists all the Mbeans along with their attributes and operations. Mbeans are listed in
this hierarchical view with a brown color bullet.

 When a particular Mbean is selected, a table containing two tabs is displayed. The
Attributes tab lists all the attributes of the Mbeans along with their values, parameter types
and whether a restart of the Server is required for changes to take effect.

Figure 32.21: Attribute View of JMX

The Operations tab lists the operations present in that Mbean enabling the User to invoke these
operations.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 430

Figure 32.22: Operations View of JMX

Clicking on SHOW_OPERATIONS lists the operations present in that MBean enabling the User to
invoke the operation.

14. AdvancedProperties

This view contains frequently used properties and their values. Categorization isbased on the
values.

For example, the first category, Port properties contain Socket Acceptor port,
RMIBasedJMXServerPort and JettyServer port. These are the three ports which need to be
unique forrunning a server on the same IPAddress. These values can be modified.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 431

Figure 32.23: AdvancedProperties View

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 432

15. HighAvailability

This view contains properties related to the HA Servers. When using theStandAlone
Server this view shows a message with: The Server you logged in is not running
in HA Mode.

If the HA server is running this view displays all relevant properties for HA.

Figure 32.24: HA view

16. StandAloneBridge

This tab is available only when logged into the web console of a Server running on the
StandAloneBridge profile.

A Bridge transmits a message received on one queue (source queue) to another queue
(target queue).

ConfigureBridge view lists all the Bridges currently available on the server. The
Select Action drop-down menu contains various options , such as:

• View Bridge Attributes

• Add Link

• Delete Link

• View Link Configuration

• Edit Link Configuration

• Add Channel

• Delete Channels

• View Channel Configuration

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 433

Figure 32.25: StandAloneBridge

AddLink Attributes

To add a link select Action list-box, choose the AddLink action and click the Go button.
Following are the parameters present in AddLink window:

LinkName

The name of the link which is to be added.

Default Value:

SampleLink

SourceServerInitialContextFactory

The class name of the initial context factory which is used to open
connection with the source server.

Default Value:

fiorano.jms.runtime.naming.FioranoInitialContextFactory

SourceServerName

The name of the source server.

Default Value:

SourceServer

SourceServerPassword

The password which the bridge uses to connect to the source
server.

Default Value:

senna- The default password

SourceServerProtocol

The transport protocol used for establishing a connection with the
source server.

Default Value:

TCP - The default transport protocol used for the connection.

SourceServerQCF

The connection factory with which the connection is to be
established.

Default Value:

primaryQCF - The default connection factory used for the
connection.

SourceServerSecurityCredentials The SecurityCredentials (password) used for connecting to the

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 434

source server.

Default Value:

Anonymous - The default password

SourceServerSecurityManager

ServerSecurityManager of the source server linked by the bridge.

Default Value:

null - No server Security Manager

SourceServerSecurityPrincipal

The SecurityPrincipal (username) used for connecting to the source
server.

Default Value:

Anonymous- The default username

SourceServerType

Need to mention the type of the source server.

Default Value:

JMS - The default type of server

SourceServerURL

The URL of the source server should be given here.

Default Value:

http://localhost:1856 - The default provider URL of the server.

SourceServerUserName

The UserName which the bridge uses to connect to the source
server.

Default Value:

ayrton- The default bridge user name

TargetServerInitialContextFactory

The class name of the initial context factory which is used to open
connection with the target server.

Default Value:

fiorano.jms.runtime.naming.FioranoInitialContextFactory

TargetServerName

The name of the target server.

Default Value:

TargetServer

TargetServerPassword

The password which the bridge uses to connect to the target
server.

Default Value:

senna- The default password

TargetServerProtocol

The transport protocol used for establishing a connection with the
target server.

Default Value:

TCP - The default transport protocol used for the connection.

TargetServerQCF

The connection factory with which the connection is to be
established.

Default Value:

primaryQCF - The default connection factory used for the
connection.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 435

TargetServerSecurityCredentials

The SecurityCredentials (password) used for connecting to the
target server.

Default Value:

Anonymous - The default password

TargetServerSecurityManager

ServerSecurityManager of the target server linked by the bridge.

Default Value:

null - No server Security Manager

TargetServerSecurityPrincipal

The SecurityPrincipal (username) used for connecting to the target
server.

Default Value:

Anonymous- The default username

TargetServerType

Need to mention the type of the target server.

Default Value:

JMS - The default type of server

TargetServerURL

The URL of the target server should be given here.

Default Value:

http://localhost:1856 - The default provider URL of the server.

TargetServerUserName

The UserName which the bridge uses to connect to the target
server.

Default Value:

ayrton- The default bridge user name

To perform any of the actions listed in the Select Action list-box, choose the appropriate action
and click the Go button.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 436

Figure 32.26: AddLink

AddChannel Attributes

To add a channel to a link select Action list-box, choose the AddChannel action and click the
Go button. Following are the parameters present in AddChannel window:

AddSourceQueueParams Specify the source queue parameters.

Default Value:undefined

AddTargetQueueParams Specify the target queue parameters.

Default Value:undefined

ChannelName The name of the channel which is to be added.

Default Value:

channel1

SourceQueueMessageSel The message selector of the queue. Allows the user
to set message selectors for the

source queues which have been linked using
bridges.

Default Value:

null - No message selector is used

SourceQueueName The name of the queue present in source server

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 437

which is to be linked by the bridge.

Default Value:

primaryQueue - The name of the queue which the
bridge links.

TargetQueueMessageSel The message selector of the queue. Allows the user
to set message selectors for the

target queues which have been linked using
bridges.

Default Value:

null - No message selector is used

TargetQueueName The name of the queue present in target server
which is to be linked by the bridge.

Default Value:

secondaryQueue - The name of the queue which
the bridge links.

17. StandAloneRepeater

This tab is available when logged into the web console of a Server running on the
StandAloneRepeater profile.

A Repeater transmits a message received on one topic (source topic) to another topic
(target topic).

ConfigureRepeater view lists all the Repeaters currently available on the server. The
Select Action list-box contains various options such as:

• View Repeater Attributes

• Show Repeater Info

• Add Link

• Delete Link

• View Link Configuration

• Edit Link Configuration

• Add Link Topic

• Show Link Topic Configurations

• Remove Link Topic

• Add Reply Topic

• Show Reply Topic Configurations

• Remove Reply Topic

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 438

Figure 32.27: StandAloneRepeater

To perform any of the actions listed in the Select Action list-box, choose the appropriate action
and click the Go button.

Figure 32.28: View Link Configuration

18. Sockets

MonitorSockets view contains information about all the sockets currently open within
the Server. The sockets are created for each of the connections made to the server by
the clients. The table gives information on Server ports, about the client, the transport
type, IP address of the Server and whether SSL is enabled.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 439

Figure 32.29: Monitor Sockets

19. Licenses

MonitorLicense displays information of about all the licenses available. The License
Filename list-box lists the available licenses. Selecting a licensedisplays its
corresponding license information in the table shown in the figure below:

Figure 32.30: Licenses

20. SystemProperties

SystemProperties view lists the all the relevant properties of the system on which the
FioranoMQ Server is hosted. These values cannot be modified through the WMT.

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 440

Figure 32.31: System Properties

Status Information

The JVM version indicates whether the server JVM is 32 or 64 bits. This information, along with
the information of when the FioranoMQ Server was started is displayed at the top right-hand
corner of the WMT screen.

Figure 32.32: Status information

21. AUDIT MANAGER

Using the Audit Manager view it is possible to configure the Audit Storage Policies as well as
monitor the audit events recorded in the Server.

Monitoring Audit Events

In the Monitoring Audit Events view, the audit events that are recorded in the System can be
monitored. To enable this, the 'Audit Filter' set for the current view needs to be changed. The
figure below shows how to modify the view:

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 441

Figure 32.33: Modify Audit Search Filter

Configuring Audit Policies

In the Configuring Audit Policies view, the various kinds of Storage Policies which are
responsible for generating Audit events are configured. In order to do this, the action 'Modify
Audit Storage Policy' needs to be invoked after selecting one of the Storage Policies listed in
the table inside the view. The storage policy will then need to be configured. The figure below
shows how to configure the storage policy:

FioranoMQ 9 Handbook

Chapter 32: FioranoMQ Web Management Tool Page 442

Figure 32.34: ConfigureAuditPolicies > Modify Audit Storage Policy

The recording of Audit events can be stopped by configuring the same storage policy that is
used for enabling Audit Events. In order to do this, the action 'De-activate Storage Policy'
needs to be invoked after selecting the Storage Policy which is to be de-activated. The figure
below shows how to deactivate the storage policy:.

Figure 32.35: De-Activate Storage Policy message

For more information on Audit Management, please refer to Chapter 30 Audit Management of
this document.

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 443

Chapter 33: Fiorano Directory
Services

33.1 Introduction

In the real world application of messaging Servers, it is a common requirement to collectively
manage a group of Servers from a remote place. 'Managing', entails the management of
Server configurations. Every FioranoMQ Server requires a profile from which to boot up. This
profile is in effect the configuration with which the Server starts. This Chapter explains the
need for profile management of a cluster of messaging servers running at different
geographical locations. And, this Chapter explains the solution that Fiorano provides to
manage the profiles (the Server configurations) from a remote location.

33.1.1 Profile Management

FioranoMQ comes with a new component called Fiorano Directory Services (FDS) for
managing Server configurations/profiles globally. The following subsections describe the use of
the Fiorano Directory Services (FDS) and the corresponding profile management services. The
default FioranoMQ installation comes with pre-created profiles that are configured to
demonstrate certain Server functions. The default FioranoMQ profiles are local a particular
instance of the FioranoMQ Server and changes made to that profile are applicable to that
instance only.

Thus, when two or more FioranoMQ Servers (from different installations) start with the same
profile, their configurations could very well be different (if the profiles have been modified in
their respective installations). However, the profiles need to be consistent across several
FioranoMQ Server instances. Therefore, the changes applied should be applied globally so as
affected all instances. In earlier versions of FioranoMQ, changes made dynamically to the
configurations of a Server running on a particular profile could not be propagated to other
Servers running on the same profile (albeit on different installations). Once again, the only
way to change the configuration (dynamically) of all Servers running on a particular profile
would be to modify the configuration of each of the Servers individually. In order to start
multiple instances of the FioranoMQ Servers with the same profile configurations there needs
to be a central management component which also takes care of propagating any changes
made to the messaging Servers in a cluster.

The FDS feature has been introduced to extend the profile configuration and management
globally.This feature is used to support certain key enhancements in the current Clustering
features. Every instance of FioranoMQ installation supports the profile management using the
FDS component. It is therefore possible to run the FioranoMQ Server either with FDS deployed
for profile management purposes or without FDS deployed, as a normal FioranoMQ Server for
messaging purposes. FDS provides the ability to expose all the attributes of a profile and
propagate the changes made to all the Servers using this profile. The following sections gives
a detailed description of profile management and various operations such as adding a new
customized profile, editing and deleting a profile from FioranoMQ Web Console and so on.

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 444

33.1.2 Components / Terminology

As discussed in the earlier section, the FioranoMQ Server has been modified to run as a
‘Cluster Manager’, which is also known as the ‘FioranoMQ Management Server’. A FioranoMQ
Server with the FDS component deployed and running is termed as a FioranoMQ Management
Server.

The FDS component is deployed only when the server is run with a profile called
‘FioranoMQ_ClusterManager’. However, the FioranoMQ Management Server can also be used
for messaging purposes.

A FioranoMQ Server without the FDS component is termed as a FioranoMQ Messaging Server.

33.2 FDS Concepts

33.2.1 FioranoMQ Management Server

The FioranoMQ Management Server is a FioranoMQ Server which holds the added
responsibilities of handling the profile (Server configurations) management globally. The
FioranoMQ Management server interacts with the Apache Directory Services for
communicating all the configuration parameters to other FioranoMQ messaging servers that
are connected. The Directory Service manager handles all the interactions with the FioranoMQ
Messaging Servers and translates them into requests understandable by the Apache Directory
Service that store all the global profiles.

33.2.1.1 Cluster Manager

The FioranoMQ Management Server processes all the requests of its clients, i.e. other
FioranoMQ messaging Servers, through the Cluster Manager component, i.e. the Directory
Services Manager MBean. The FioranoMQ messaging Servers communicate with the FioranoMQ
management Server through an RMI connection. The Cluster Manager is also responsible for
transferring changes made to the Configs.cfg file or to the profile entry in DS to all the
messaging servers using that profile. Each profile entry in the FDS will possess information
about all the Servers that have booted using that profile.

33.2.1.2 How to run FioranoMQ Management Server

The FioranoMQ installer generates a set of preconfigured profiles within which the
‘FioranoMQ_ClusterManager’ profile is used for running the FioranoMQ Management Server.

To run in Windows or UNIX machines please navigate to $FIORANO_HOME/fmq/bin and
execute startCluster.bat (.sh) which uses the ‘FioranoMQ_ClusterManager’ profile.

Below are the ports used for running the FioranoMQ Management Server. These ports are
different from those used by a normal messaging Server.

• Accepting Connections at: 1656

• RMI Port: 1658

• Dashboard Listening Port: 1680

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 445

• Directory Services default Port: 10389

When the FioranoMQ Management server is run, it loads the FDS component and starts the
Apache Directory Services on the default port (10389). When it is started for the first time all
the default profiles are loaded into the Directory Services and areused only for global access
and modifications.

The console of the FMQ Management Server when run will display :

When run for the first time, a message, below, is displayed:

Successfully added default profiles from directory [
E:\Fiorano\FioranoMQ9.1.0\DSInstance\FioranoMQ_ClusterManager\Profiles] to the Fiorano
Directory Service.

Default profiles available at $FIORANO_HOME/fmq/profiles are loaded to the Apache Directory
Services when the FDS is run for the first time and will persist as a separate instance under
$FIORANO_HOME/DSInstance/ FioranoMQ_ClusterManager/profiles directory. Adding new
profiles or modifications to the existing profiles will be effective only if done in this directory.

Configuring the DSInstance Path

The DSInstance path can be configured either using the Configs.cfg file of
FioranoMQ_Clustering profile or using Studio in offline mode.

Given below are the steps to configure the DSInstance from the Studio:

1. Open the FioranoMQ_Clustering profile from the Studio in the offline mode.

2. Navigate to FioranoMQ_Clustering >> Fiorano >> etc >> DirectoryService >>
InstancePath.

3. Set the InstancePath parameter to a valid absolute path.

Given below are the steps to configure DSInstance from Configs.cfg:

1. Open Configs.cfg file from the FioranoMQ_Clustering profile located at
$FIORANO_HOME/fmq/profiles/FioranoMQ_Clustering/conf.

2. Under the Clustering Manager Configuration Settings group provide the absolute
path for the parameter InstancePath.

The InstancePath parameter and theDirectory Services parameters are only available for the
FioranoMQ_ClusterManager profile.

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 446

33.2.1.3 Propagation of modified attributes to FMQ Messaging Servers

As discussed previously, any configuration changes that are made to a profile that resides in
the Directory Service will be propagated to all the FioranoMQ Messaging Servers which are
registered under that particular profile. There may be some changes to the FioranoMQ
parameters that require a Server restart to take effect. In this particular case, a check is done
for the attributes that require restarting the Server and an appropriate notification is sent to
the FioranoMQ Messaging Server.

Note:

• Local changes made to profiles of the individual Servers are not propagated and these
changes affect only that particular instance of the messaging Server and not the
profile in the central repository.

• Individual registered Servers decide whether they want to save global changes. If
these changes are not saved, the local copy of the profile used by the Server will
incorporate the modifications made to the profile located at the central repository.

• The changes made to the profile located at the central repository are propagated to all
Servers running on the modified profile.

A notification to save the configurations and restart the server for the changes to get effective,
is shown below. [Where? Is it written? Displayed?]

<Under what different conditions does the propagation of attributes not reach the messaging
server?>

33.2.1.4 Registering & De-Registering Servers

The FioranoMQ Management Server is responsible for the maintenance of the server-profile
information in Apache DS. When a FioranoMQ Messaging Server sends the notification to
register itself under a profile, the Cluster manager adds an entry for the Server under the
'RegisteredServers' node of the profile entry in the DS. The Cluster Manager also adds an
entry for the Server under the 'Servers' domain to keep track of the list of all registered
servers present in the network. When the Cluster Manager receives a notification to remove
the registration of a Server from a profile, it deletes the Server's entry from the
'RegisteredServers' node and from the 'Servers' domain.

33.2.1.5 Handling Network Failure

At the time of registering the FioranoMQ Messaging Server in the FioranoMQ Management
Server, the Management Server continuously fetches the health status of the messaging
server as per the configured ping intervals. If this request to fetch the health status
(HEALTH_REQUEST_MAN) fails (as explained below), the corresponding messaging Server will
be de-registered from the Management Server.

It is important to understand the two different parameters used while 'Pinging' the Messaging
Servers:

• PingInterval: Time duration in Milliseconds for which the Pinging Thread will wait
before sending the next request.

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 447

• PingTimeout: Timeout for each of the HEALTH_REQUEST_MANs after which an
exception occurs and the corresponding messaging Server is de-registered.

These parameters are configurable in the Management Server's profile.

HEALTH_REQUEST_MAN may fail due to the reasons below:

• If Messaging Server is shutdown in a manner that is not acceptable.

• If Messaging Server's process exits abruptly.

• If Messaging Server is Out of Network.

• If Management Server is Out of Network.

• If Request takes an unusually long time and timeout occurs.

33.2.2 FMQ Messaging Server

The FioranoMQ Messaging Server acts as a normal MQ server and is configurable to connect to
the MQ management Server. The FMQ messaging server makes an RMI connection with
FioranoMQ Management Server to download a specified profile from which boot up. The
messaging Servers get themselves registered under the profile entry of the profile that they
are using that is available in the DS. The FioranoMQ Messaging Server gets notified of changes
made to the profile in the FDS while it is running. Whena messaging Server shuts down, a
notification is sent to remove its registration from the profile on which it was running.In
instances of network failures a notification to remove the registration from the profile cannot
be sent.

33.2.2.1 How to run FioranoMQ Messaging Server

A FioranoMQ Messaging server can be started with any of the desired profiles present in the
FDS repository. The User is provided with an option to fetch the desired profile that is used for
booting up. For instance, if the desired profile is <FioranoMQ_Machine1>, the FioranoMQ
messaging Server should be started using:

fmq.bat(.sh) –profile <FioranoMQ_Machine1>

If the desired profile exists in the FDS repository, it will be downloaded to this particular
messaging Server’s profiles’ directory. If the desired profile does not exist, the messaging
Server will try to boot up using a local profile with the same name. If this profile, too, is not
present in the local directory, the Server will not boot up and will exit.

The console of the FioranoMQ messaging Server displays the information below when
connected to FioranoMQ Management in order to fetch a profile and boot up using the same
profile:

The console should indicatethat it has successfully registered under the same profile with the
FDS as shown below:

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 448

Default behavior:

The behavior of the FioranoMQ Messaging Server is based on the properties cluster.cfg file
located at $FIORANO_HOME/fmq/profiles. By default, the FioranoMQ Messaging Server is not
configured to fetch or download profiles from the FMQ Management Server. Therefore, the
properties listed below, within cluster.cfg file, need to be modified.

FETCH_PROFILE: This a Boolean value determining whether to fetch profile from the
Management Server. By default this value is set to ‘FALSE’.Because this value is set to ‘FALSE’
the FMQ Messaging Server doesnot connect to the FioranoMQ Management Server to fetch the
desired profile and run as a normal FioranoMQ server

FETCH_PROFILE_ONLY_ONCE: This is a Boolean value determining whether to fetch a given
profile when a FioranoMQ messaging Server is restarted. If set to ‘TRUE’, the Messaging
Server which using the profile will not fetch the profile from the FMQ Management Server
when restarted. In such instances the FioranoMQ Messaging Server will still be registered
within the FioranoMQ Management Server. The default value this value is set to ‘TRUE’.

This flag is valid only when the flag FETCH_PROFILE is set to true.

Configurable Parameters Within cluster.cfg

Below are the configurable parameters that can change the behavior of the FioranoMQ
Messaging Server:

• BIND_NAME=fmq Bind name of the Management Server. This parameter need not
be changed for normal users.

• PROTOCOL=rmi Protocol which will be used for making a connection to the
Management Server's JMX server.

• SERVER_ADDRESS=localhost IPAddress of the Management Server where the JMX
Service is started.

• PORT=1658 RMI port which will be used for making a JMX Connection.

• USERNAME=admin User name which will be used for authentication while making a
JMX Connection.

• PASSWORD=passwd Password which will be used for authentication while making a
JMX Connection.

• WAIT_BETWEEN_RECONNECT_ATTEMPTS=5000 This is the time, in milliseconds,
the Messaging Server waits before trying to re-establish a connection with the
Management Server.

• PING_INTERVAL=20000 This is the time, in milliseconds, the Messaging Server
waits before trying to check the health status of the Management Server.

• PING_TIMEOUT=10000 This is the timeout duration, in milliseconds, for each ping
request to check health status of the Management Server.

Please note that one should wait for the FioranoMQ Management Server to be running for the
FioranoMQ Messaging Server to be successfully registered.

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 449

33.3 Managing Profiles Using Web Console

The FioranoMQ Web console replicates the profile structure of the Fiorano Directory Services
and enables the administrator to make changes to an existing profile or add/delete profiles.
The Directory Services tab in the Web Console provides a list of profiles and their attributes
that exist in the DS that is embedded in the FioranoMQ Management Server.

Note: Only the FioranoMQ Management Server Web console hasthe ‘profiles’ tab. The Web
console of the FioranoMQ Messaging Server does not have the ‘profiles’ tab available.

33.3.1 Operations Performed using the web console

All Users who belong to ‘Administrators’ group can perform various operations such as Upload
profile, Add profile, Delete profile, Edit profile, GetRegistered Servers, and Get All Registered
Servers.

33.3.1.1 Adding Profile

To adding a new profile to FDS, a dialog box requesting inputs for the name of the profile and
the profile ‘type’ is displayed. The profile type is one of the default profiles provided to
customers upon which they can build their own profile with few changes to the Configs.cfg file
parameters. The two screen-shots below display the Web console for the Add Profile function:

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 450

On adding the profile ‘AddedProfile’, a copy of the profile mentioned in the Profile Type list
box is created and renamed as name specified in the Profile Name text box. The Configs.cfg
file of the newly created profile is parsed and all the necessary Mbeans and their
corresponding attributes are loaded into the DS under the profile name ‘AddedProfile’. On
successful addition of the profile, a message indicating that the addition of the profile has been
successful is displayed on screen. The User can edit the profile added according to
requirements as shown below:

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 451

33.3.1.2 Editing Profile

The administrator can modify an existing profile via the edit option. The edit option dialog box
opens showing the contents of the Configs.cfg file of the selected profile. All the Mbeans and
their corresponding attributes with their values are displayed in the dialog box as a MBean
tree structure. These values can be modified here. The changes made are reflected both in the
Configs.cfg file of the profile present in the central repository and also in the virtual
representation of the profile in the DS. These changes are then propagated to all the Servers
(if any) currently running on the modified profile. The below screen-shot displays a preview of
this:

33.3.1.3 Deleting Profile

Select all the profiles that need to be deleted from the DS and select the Delete Profile option
from the Select Action list box. Click on 'Go'. A confirmation dialog box and a dialog box asking
the User whether the profile needs to be delete from the disk is displayed. Upon confirmation
the profiles are deleted (along with their Mbeans & Attribute Entries). However, if the profile to
be deleted has Servers running on it or if it is the default profile, then deletion of the profile
results in a failure and a message indicating the operation appears on the screen.

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 452

33.3.1.4 Uploading Profile

The ‘Upload Profile’ option is used when a profile is present on the central repository but has
not yet been added to the DS. On selecting the Upload Profile option, a dialog box is displayed
asking the User to enter the profile's name and the path to its home directory. It then copies
the profile into the %PROFILES_HOME% directory (if it is present in the %PROFILES_HOME%
directory the copy operation is skipped) and adds a new entry into the DS for the profile. All
of its Mbeans and attributes are then added as children of the profile entry by parsing the
“Configs.cfg” of the added profile.

33.3.1.5 Get Registered Servers

Displays a list of IP address:port combination of the FioranoMQ Messaging Serversrunning
under the selected profile.

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 453

33.3.1.6 Get All Registered Servers

Displays a list of IP address:port combination of the FioranoMQ Messaging Serversrunning
under each profile.

33.4 Troubleshooting
1. Different kinds of logs related to the FioranoMQ Management Server and the

FioranoMQ Messaging Server are:

Logs related to the FioranoMQ Management Server:

cluster.log: It is created in the dbPath of the FioranoMQ Management Server. All the
logs for each operation on the Apache Directory Service are redirected to this log file.

profile-monitor.log: All the propagational changes on ‘profile edit’ are directed to
this log.

Log related to the FioranoMQ Messaging Server:

dsbroker.log: Logs for DS related operations are directed to this log. This log is
present in PROFILES_HOME.

2. If the apache directory services do not start along with the FioranoMQ Management
Server then to debug:

All the error messages are redirected to cluster.log.

3. Different kind of exceptions in DS logs and their meaning:

Different kinds Exceptions in DS logs are:

a. “fiorano.jms.common.FioranoException: Error :: Profile is not found. :: Failed
to find the profile”

Indicates that the Server is trying to fetch a non-existent profile.

b. “java.io.IOException: Failed to retrieve RMIServer stub”

Indicates a network problem or that the management Server is not running
when a profile is requested.

c. “java.lang.SecurityException: Authentication Failed :: null”

Occurs when the wrong username/password combinations for a RMI
connection to the management Server is provided.

d. “fiorano.jms.common.UnsuccessfulOperationException”

Indicates that some operation has failed.

33.5 FAQ’s

Question: What is profile Management?

Answer: Profile Management constitutes collectively managing profiles of a group of Servers
from a remote location.

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 454

Question: What is Fiorano Directory Services (FDS)?

Answer: FDS is a profile management component of the FioranoMQ, which is used for
managing profiles and/or Server configurations globally. FDS provides the ability to expose all
the attributes of a profile and propagate the changes made to all Serversusing this profile.

Example:

When two or more FioranoMQ Servers (from different installations) start with the same
profile, their configurations could very well be different (if the profiles have been modified
in their respective installations). However, if these profiles need to be consistent across
several FioranoMQ Server instances the changes should be done globally to affected each
instance. FDS can be used to edit a profile globally for more than one FioranoMQ Servers
and these changes are then reflected in both Servers.

Question: What is the difference between the FioranoMQ Messaging Server and
FioranoMQ Management Server?

Answer: The FioranoMQ Messaging Server with the FDS component is termed as the
FioranoMQ Management Server. The Management Server is used to manage the Messaging
Server registered under it. The Management Server can also be used as a Messaging Server.

Question: How is the Management Server Run??

Answer: Please refer to section 33.2.2.1 How to run FioranoMQ Messaging Server.

Question: Can a New Profile be Uploaded to the Directory Services?

Answer: Yes, one can upload a new customized profile to Directory Services. For more
information on how to upload please refer to section 33.3.1.4 Uploading Profile.

Question: How is a Profile in the Directory Service Deleted?

Answer: A profile that is being used by a messaging Server registered under the
management Server or a default profile may not be deleted.

Question: What Operations can be Performed on Profiles in the Directory Services?

Answer: The operations that an administrator can perform on profiles in the Directory
Services are:

• Upload profile

• Add profile

• Delete profile

• Edit profile

• Get registered server

• Get all registered server

For more information on these operations please refer to section 1.5.

FioranoMQ 9 Handbook

Chapter 33: Fiorano Directory Services Page 455

Question: What Default Ports are used by the FioranoMQ_clusterManager profile and
the FioranoMQ Management Server?

Answer: Default Ports used by FioranoMQ_clusterManager profile and the FioranoMQ
Management Server are:

• Accepting Connections : 1656

• RMI Port : 1658

• Dashboard Listening Port: 1680

• Directory Services default Port: 10389

FioranoMQ 9 Handbook

Chapter 34: Audit Management Page 456

Chapter 34: Audit Management

Auditing provides an insight into the running of FioranoMQ while, more importantly, providing
a means of accountability for changes administered within the system. Auditing is helpful in
detecting security violations and conducting post-mortem analysis on information provided so
as to find the root cause of a problem.

34.1 Audit Events

An audit event is a specific condition of the server or a particular change made in the server
that is recorded. These events might range from the trivial to the vital. A policy is used to
define the level of events that need be audited. Events might also be categorized based on
functions such as Authentication, Authorization and Security Database Modification, where:

• Authentication - Covers all authentication requests within the MQ server.

• Authorization - Cover all authorization checks irrespective of whether a User is
authorized to perform the action.

• Security Database Modification – Covers all changes made to the security store
such as creation/deletion of User/Group, setting of ACL permissions and so on.

34.2 Audit Policies

The Server decides whether to store an audit event, based on the policies defined by the User.
These policies (or Filters or Storage Policies or Audit Policies) are rules which define certain
conditions. The server records all audit events that match these conditions. Policies are
configuration tools that the User has at his disposal to fine tune the detail of the events to be
recorded.

When an event is recorded, the server checks with its policies to see if the event need be
recorded.

Note: So as to perform the actions specified in sections, Enabling Auditing and Disabling
Auditing, a User needs adequate permissions. Please refer to the section 34.5 ACLS for Audit
Management with regard to ‘permissions’.

34.3 Enabling Auditing

Since policies define if events are recorded, in order to enable auditing for certain kinds of
events the User needs to save certain policies with certain configurations. To save policies,
follow the steps below:

1. Start the server. Login to the MQ dashboard.

2. Go to Audit Manager.

3. Go to Configure Audit Policies. Select Audit Events to be recorded such as
Authentication, Authorization or Security Database Modification. By default all policies
are passive.

FioranoMQ 9 Handbook

Chapter 34: Audit Management Page 457

4. Select Action -> Modify Audit Storage Policy. Details of the events recorded may
be defined through this step, as shown below.

The figure above illustrates recording the addition/deletion of events. This step can be
repeated for each different event to be recorded.

Note: This step maybe repeated when a user wishes to edit a policy that is active,

34.4 Disabling Auditing

To disable auditing certain events, please refer to steps One through Four in 34.3 Enabling
Auditing. Instead of modifying the policy, select:

De-activate Storage Policy.

This action deletes the storage policy.

FioranoMQ 9 Handbook

Chapter 34: Audit Management Page 458

34.5 ACLS for Audit Management

By default, all User that form the Administrators group have permissions to save/edit/delete
storage policies. In FioranoMQ there are no steps by which a User can assign permissions to
non-administrator Users. If a user is to be allowed to save/edit/delete storage policies, that
User must be added to ‘administrators’.

34.6 Viewing Audit Events

To view the audit events refer toSteps One through Three in 34.3 Enabling Auditing. And,
select Monitor Audit Events -> Modify Audit Search Filter.

Though a User might wish that all events are recorded, not all events may need to be viewed.
The level of importance of the events to be viewed can be set, as shown below.

34.7 Configuring File Store

By default, all Audit Management configurations persist/exist? in a file based storage.

Certain parameters can be used to specify the relative directories in which AUDIT related
information will is to be stored. These parameters are listed below.

FioranoMQ 9 Handbook

Chapter 34: Audit Management Page 459

• AuditEventsFolderName – This parameter is used to specify the working directory for
audit management. The default directory path is $FMQ_DB_PATH/AUDIT.

• FiltersFolderName – This parameter is used to specify the name of the directory for
storing audit event filters. The default directory path is
$FMQ_DB_PATH/$AuditEventFolderName/FILTERS.

• SearchFiltersFileName – This parameter is used to specify the name of the file used to
store search filters.

• StorageFiltersFileName - This parameter is used to specify the name of the file used to
store storage filters.

• PoliciesFolderName – This parameter is used to specify the name of the directory for
storing policies. The default directory path is
$FMQ_DB_PATH/$AuditEventFolderName/POLICIES.

• FileName – This parameter is used to specify the name of the file in which the audit
events are persisted.

These parameters may be configured offline in multiple ways such as though Studio,
Config.cfg, and Config.xml file.

34.7.1. Through Studio
1. Open the required profile. Navigate to Fiorano -> etc -> Audit Manager

2. Navigate to Fiorano -> etc -> Audit Manager -> StorageHandler

FioranoMQ 9 Handbook

Chapter 34: Audit Management Page 460

34.7.2 Through Configs.cfg

Navigate to element:

ObjectName=Fiorano.etc:Name=AuditManager,ServiceType=AuditManager,type=config

ClassName=fiorano.audit.events.impl.config.AuditEventHandlerConfig

...

ObjectName=Fiorano.etc:Name=AuditManager,ServiceType=AuditManager,type=config

34.7.3 Through Configs.xml

Navigate to element:

<AuditEventHandler
ObjectName="Fiorano.etc:ServiceType=AuditManager,Name=AuditManager,type=config" ...>

...

</AuditEventHandler>

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 461

Chapter 35: Monitoring FioranoMQ
Server

This chapter talks about monitoring the FioranoMQ message throughput statistics and getting
notifications about the any special events configured.

35.1 Message Throughput

The FioranoMQ Server will not, by default, measure message throughput. However, a user
can configure certain parameters to see related throughput statistics.

35.1.1 Server Side Configuration

Viewing Server Monitoring results:

Online

1. Login to FMQ-JMX in the Server Explorer pane by allocating the appropriate
RMIConnector property values in the Properties of FMQ-JMX pane.

2. In FMQ-JMX, navigate to JMX-Connection-->Fiorano-->mq-->ptp--
>PtpManager->QueuingSubSystem->config and go to the Properties of
QueuingSubSystem pane as shown in the figure below.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 462

Offline

1. Right-click the Profiles node in the Profile Manager Explorer, and select the
Open Profile option from the pop-up menu. In the Select Profile Directory
dialog, select the FioranoMQ profile directory and click the Open button.

2. In Profile Manager, navigate to FioranoMQ-->Fiorano-->mq-->ptp--
>QueuingSubSystem and go to the Properties of QueuingSubSystem pane
as shown in the figure below

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 463

Editing Properties

• EnableMessageMonitoring: Set this property to yes to enable the monitoring APIs.
By default this property is set to no.

For every monitored value there the initial value which is obtained when the message
monitoring is enabled. This initial value is displayed at the end of the value in
parenthesis.

• FilePath: Set this to the absolute location where the data is present. FIORANO_HOME
environment variable needs to be set for this path for enabling proper location in the
system.

The Filepath can be changed at any instance. If the User has assigned a non-existing
path, the Server tries to create the directory structure. However, changing the Filepath
leads to loss of all data apart from initial values obtained when message monitoring is
enabled. The Complete path is given in the Filepath so that the User can assign any
location other than the run directory of FMQ server profile. If the location directory is
not pointing to the FioranoMQ profile run directory, the clearing database does not
remove the data. When the server is restarted the User can see the old data present
in that directory. However, the initial values which are used for comparison are lost.

Warning: The User should not open the files or directory present in the Filepath. This
can lead to results that are misleading.

• TimeDuration: Sets the duration (last completed Time Interval) for which results are
returned.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 464

The Time Duration must be more than two seconds for better results.

Note: The above three properties can be modified Online or Offline. The modification
of these properties takes affect without restarting the Server.

Using Server Monitoring APIs of PTP Subsystem

Note: From FioranoMQ 9.5.1 onwards, in order to use JMX invocation, set the filePath
parameter in the QueueSubsystem level to null. By doing so, FioranoMQ server will not dump
any information in the message monitoring log files. This is done to avoid inconsistencies
which led to decrease in values returned by getNumberOfMessagesInBound() when invoked
through JMX.

The APIs listed below are to be added for Server monitoring. To view the APIs and the results:

1. Login to FMQ-JMX in the Server Explorer pane and navigate to FMQ-JMX->
JMX Connection-> Fiorano-> mq-> ptp->Queues-> Queue->
PRIMARYQUEUE (JMX_SERVICE_QUEUE). Now you can see the following APIs in
the MBean Exlporer pane at the bottom of the window.

2. To see the result of an API, select Operations in the Mbean explorer pane. Select
an API and right-click, and then click the Invoke option from the pop-up menu as
shown in the figure below.

• getNumberOfMessagesInBound
This method returns the number of messages added to the queue of the
previous TimeDuration in seconds.

• getRateOfMessagesInBound
This method returns the average number of messages added to the queue
within one second in of the previous TimeDuration seconds.

• getNumberOfMessagesOutBound
This method returns the number of messages removed from the queue in the
previous TimeDuration in seconds.

• getRateOfMessagesOutBound
This method returns the average number of messages removed from the
queue within one second of the previous TimeDuration in seconds.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 465

• countPendingMessages
This method returns the number of messages present in the queue at any
given second.

Using Server Monitoring APIs of PubSub Subsystem

Note: From FioranoMQ 9.5.1 onwards, in order to use JMX invocation, set the filePath
parameter in the TopicSubsystem level to null. By doing so, FioranoMQ server will not dump
any information in the message monitoring log files. This is done to avoid inconsistencies
which led to decrease in values returned by getNumberOfMessagesInBound() when invoked
through JMX.

The following APIs are added at the Topic level.

1. Login to FMQ-JMX in the Server Explorer pane and navigate to FMQ-JMX->
JMX Connection-> Fiorano-> mq-> pubsub-> topics->topic->
PRIMARYTOPIC. It is possible to view APIs in the MBean Exlporer pane at the
bottom of the window.

2. To see an API select Operations in the Mbean explorer and right-click one of the
APIs .Click the Invoke option from the pop-up menu.

• getNumberOfMessagesInBound
This method returns the number of messages added to the queue in the last
TimeDuration seconds.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 466

• getRateOfMessagesInBound
This method returns the average number of messages added to the queue
within one second of the precious TimeDuration seconds.

• getMessageMonitoringData
This method returns data in tabular form containing all the monitored data for
a particular queue such as: NumberOfMessagesInBound,
RateOfMessagesInBound

Using Server Monitoring APIs of QueueConnection

The APIs listed below are added to the QueueConnection level.

1. Login to FMQ-JMX in the Server Explorer pane and navigate to FMQ-JMX->
JMX Connection-> Fiorano-> mq-> ptp-> QueueConnection ->
PRIMARYQUEUE. It is possible to view the APIs in the MBean Exlporer pane at
the bottom of the window.

2. To view an API, right-click and choose the API. Click the Invoke option from the
pop-up menu as shown in the figure below.

• countMessagesInConnectionQueue
This API returns the number of messages present in the connection queue
buffer.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 467

Using Server Monitoring APIs of TopicConnection

The following API was added at topic connection level.

• countMessagesInConnectionQueue
This API returns the number of messages present in the connection buffer.

35.1.2. Client Side Configuration

To monitor destinations 'EnableMessageMonitoring' the flag must be set to 'Yes'.

When a Producer or Consumer is created on FioranoMQ Server, hierarchical runtime MBeans
are created on the Server. These MBeans required that methods are enabled.

1. Client side Requirement:

Client ConnectionID, SessionID, ProducerID/ConsumerID should be set to identify
instances on the Server. ConnectionID can be set using JMS apis SessionID,
ProducerID/ConsumerID are set using the parameters listed below before connection
creation is added. (This Java or equivalent code should be added to the client Java or
correspoding code.)

System.setProperty("FIORANO_SESSIONID", "PublisherSession");

System.setProperty("FIORANO_PRODUCERID","Publisher");

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 468

System.setProperty("FIORANO_CONSUMERID", "Subscriber");

All properties need not be added. Publisher creation “FIORANO_CONSUMERID”
need not be set.

2. Consequences in Server side:

The properties are required to identify a client on a Server. If these properties are not set
then the default values are used. For a durable subscriber ConsumerID need not be set
and the one passed during creation will be used as its name. If more than one instance of
a session involving producer/consumer are used then the serial number will be appended
to the property. If a user creates more than one connection in the same JVM then the
properties set before the creation of the connection will be the ones to take effect.

The image above displays how a User creates a QueueSender, QueueReceiver, Publisher,
DurableSubscriber and two subscribers in the same session. For every ConnectionID the
hashCode of that connection will be appended to it.

In the figure under SUBSCRIBERCONNECTION_25 there two subscribers are created. The
first subscriber is named by the User and the second '1' appended to it.

APIs added at Destination level in pubsub:

• getNumSubscribedMsgs:

This API will return the number of messages that are received by the
subscriber in the configInterval time configured in TopicSubSystem properties.
DurableSubscriber message count starts when the durable subscriber is
initiated. If the durable subscriber is closed and started again then the
message count will be zero.

• getNumPublishedMsgs:

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 469

This APIl returns the number of messages that are published by the publisher
in the configInterval time configured in TopicSubSystem properties.

APIs added at Destination level in PTP:

• getNumReceivedMsgs:

This returns the number of messages that are received by the receiver in the
configInterval time configured in QueuingSubSystem properties.

• getNumSendMsgs:

This returns the number of messages that are sent by the sender in the
configInterval time configured in QueuingSubSystem properties.

Few more JMX APIs are added at the destination level to list the number of
Producers and Consumers within a destination.

• listSubscribers:

This returns the list of subscribers created on a particular topic.

The figure shows 'SubscriberName' the MBeanName,'ConnectionClientID' which is the
connection ID of the subscriber set from the client and 'ConnectionHashCode' is the hashcode.
These parameters are required for identifying the connection. 'IsDurableSubscriber' indicates
whether a subscriber is durable.

• listPublishers:

This returns the list of publishers created on that particular topic.

• listReceivers:

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 470

This returns the list of receivers created on that particular queue.

• listSenders:

This returns the list of senders created on that particular queue.

35.1.3 Performance graphs

Performance graph showing connections, memory usage and threads can be seen through
Web Management console. Steps are:

1. Log-in to Web Management console.

2. From Left hand side pane click on dashboard → select MonitorPerformanceGraphs.
Options regarding performance graphs will appear on right hand side area.

3. Select among options:

a. CONNECTIONS

b. MEMORY IN MEGABYTES

c. THREADS

Corresponding graph will be plotted against time. Following figure shows a screen shot of this
view.

http://localhost:1780/#MonitorPerformanceGraphs�
http://localhost:1780/#MonitorPerformanceGraphs�
http://localhost:1780/#MonitorPerformanceGraphs�

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 471

35.1.4 Logging server Monitoring information

Monitoring Thread can be enabled for FMQ server by setting “EnableMonitoringThread”
parameter. Following screen shot shows how to enable it form FMQ-JMX log-in. Log-in to FMQ-
JMX through Studio and follow tree FMQ-JMX-> JMX Connection-> Fiorano->etc-
>Resource Manager->ResourceManager->config.

Moreover through Web Management Console this parameter can be configured. For doing so
through Web Management Console log-in to Web management console-> From left hand side
pane click on AdvancedProperties → select ConfigureAdvancedProperties → From Right hand
side tree options expand “ResourceManager Properties” → invoke “EnableMonitoringThread”
operation and enable it.

After enabling this parameter following monitoring information will be logged in file
“FioranoMQ_home\fmq\profiles\<profile name>\run\logs\monitor.txt”:

• Number of Connections

• Number of Sessions

• Number of Producers

• Number of Consumers

• Number of Activated Destinations

• Total Number of JVM Thread

• Used Memory of the Server

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 472

This information will be noted on a regular interval.

35.2 Depth Monitoring

A User can get depth or pending message count of a queue from the apis available at queue
level. A User can view the pending message using the administration connection or the
existing JMX Apis. If a User wants to capture events when the depth of a queue crosses a
certain level, the User can go through this section to understand how to configure the Server
to receive ‘depths’ notification. Currently there is only the Server send depth notification for
queues available.

35.2.1 Configuring Through Configuration files

To configure ‘depths’ of a queue, the user needs to enable depth monitoring at the Server
level.

To enable depth monitoring at the Server level.

1. Open Configs.cfg file under the conf folder of the Server profile.

2. Navigate to Queue Settings. Set DepthMonitoringEnabled to TRUE.

Queue Settings

ObjectName=Fiorano.mq.ptp:ServiceType=PtPManager,Name=QueuingSubSystem,type=confi
g

ClassName=fiorano.jms.ex.ptp.config.ExPTPManagerConfig

DepthMonitoringEnabled=true

ObjectName=Fiorano.mq.ptp:ServiceType=PtPManager,Name=QueuingSubSystem,type=confi
g

Once this flag is set to TRUE, depth monitoring is enabled at the Server level. The user can
now enable depth monitoring for that particular queue.

To enable depth monitoring for the primary queue:

1. Open Configs.cfg file and navigate to primary queue settings.

2. Change DepthMonitoringEnabled to TRUE.

ObjectName=Fiorano.mq.ptp.Queues:Name="PRIMARYQUEUE",ServiceType=Queue,type=con
fig

ClassName=fiorano.jms.common.config.QueueConfig

DepthMonitoringEnabled=true

ObjectName=Fiorano.mq.ptp.Queues:Name="PRIMARYQUEUE",ServiceType=Queue,type=con
fig Depth Monitoring is enabled for the primary queue.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 473

A User can configure the depth levels so that notifications are raised. To configure Depth
levels, go to queue settings and change DepthMonitoringLevels. The value of
DepthMonitoringLevels should be integers separated by commas. A sample value will be
'DepthMonitoringLevels=10,20,30'. This depth level is applicable to all queues. All queues will
take the Depth levels set at Queue settings if individual depth levels are not set. If a User
wishes to set different levels for different queues, the User needs to change these settings for
all queue levels.

To receive notifications, a User needs to register the JMX notification listener on the Server.
The file JMXNotifications.java will register notification listeners to the Server is present at
fmq/samples/JMX. A User needs to register the listener to Queue Event Manager:

'Fiorano.jmx.notifications:ServiceType=EventManager,Name=QueueEventManager'

The above command receives notifications when the queue depth crosses the values defined
by DepthMonitoringLevels.

35.2.2 Configuring Through Studio
1. Right-click the Profiles node in the Profile Manager Explorer, and select the Open

Profile option from the pop-up menu.

2. In the Select Profile Directory dialog, select the FioranoMQ profile directory and
click the Open button.

For enabling depth monitoring at server level:

In Profile Manager, navigate to FioranoMQ-->Fiorano-->mq-->ptp-->QueuingSubSystem and
go to the Properties of QueuingSubSystem pane as shown in the figure below.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 474

For enabling depth monitoring at particular queue:

In Profile Manager, navigate to FioranoMQ-->Fiorano-->mq-->ptp-->Queues-> >particular
queue> and go to the Properties of selected queue pane as shown in the figure below

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 475

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 476

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 477

Chapter 36: Route Configuration

A Route enables the transport of messages between destinations. A message arriving on one
destination can be made available to another by adding a route between the two destinations.

36.1 Parameters to Configure
• UpperLimitOnConnectionSharing: Specifies the maximum number of routes that

will share a single JMS connection.

• MaxCreateSessionTries: Specifies the maximum tries to make while creating JMS
objects.

• MaxTopicBuffer: Route level upper limit for message buffer size in bytes.

• UseConnectionSharing: Specifies whether connection sharing by routes is switched
ON.

36.1.2 Parameters Used While Adding Routes
• Guid: Unique identifier for the route. No two routes can have the same id. If same id

is specified for two routes, route creation will fail

• SourceServer/Address: Address of the server on which route will be created. Host
name/IPAddress need to be specified here. For example, 'localhost'.

• SourceServer/Port: RMI port of the server on which this route will be created.

• SourceServer/Destination: Name of the destination from which this route will be
created.

• SourceServer/UserName: Name of the user which will be used for authentication
and route creation.

• SourceServer/Password: Password of the 'UserName' which will be used for
authentication and route creation.

• TargetServer/CFName: TargetConnectionFactory in the target server which will be
used to create JMSConnection.

• TargetServer/Destination: Target destination to which messages will be transferred
on the target server.

• TargetServer/UserName: Name of the user which will be used for authentication
and route creation.

• TargetServer/Password: Password of the 'UserName' which will be used for
authentication and route creation.

• TargetServer/ClientID: Unique identification for the JMSConnection created on the
target server. This id will be used to transfer messages, when the connection with the
server is lost and connected.

• IsDurable: Boolean states whether durable subscriber should be created on the
source server.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 478

• DurableSubscriber id: Unique id for a durable subscriber on this connection. If
IsDurable is set to true, then this property should be specified. This id will be used to
identify a particular durable subscriber.

• MessageSelector: JMS Message selector in the route. If selector is not null, only
selected messages will be picked up from the source destination. If message selector
is specified as null, then all messages are picked from the source server.

• EnableDMQOnRoute: Enabled dead message queues on the route leads to storing
expired messages in the DeadMessageQueue. If this value is set as 'no', expired
messages are deleted from the server.

• IsJMSReplyToAsTarget : Boolean indicating whether target destination should be
set dynamically based on the incoming message's JMSReplyTo header property. This is
useful in the case of request-reply

• MsgPropertyForTargetCF : JMS message property used to set TargetCF, in case
isJMSReplyToAsTarget is true and no Target CF is specified

36.2 Configuring Parameters Through Fiorano Studio

To configure parameters using Fiorano Studio, follow the steps below:

1. Run the fmq server and open Fiorano Studio.

2. Login to FMQ-JMX and navigate to Fiorano->etc->RouteManager->RouteManager -
>config.

3. Clicking on the config displays the parameters that can be configured like
MaxTopicBuffer, NumberOfRoutesExistingInServer, MaxCreateSessionTries, and so on.
Following diagram shows the parameters to be configured using Studio

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 479

36.2.1 List/Add/Remove Routes

To List/Add/Remove routes, navigate to Fiorano->etc->RouteManager->RouteManager and
right-click on RouteManager which displays 6 methods.

1. listAllRoutes(): Lists all routes created for this route manager.

2. addRoute(routeGUID, lookupUrl, srcDest, tgtCF, tgtDest, isDurSub, durSubID,
clientID, jmsSelector, isJMSReplyToAsTarget, enableDMQOnRoute,
msgPropertyForTargetCF): Adds a route with given parameters.

3. addRoute(routeGUID, lookupUrl, srcDest, tgtCF, tgtDest, isDurSub, durSubID,
clientID, jmsSelector, isJMSReplyToAsTarget, enableDMQOnRoute,
msgPropertyForTargetCF, srcServerUserName, srcServerPassword,
tarServerUserName, tarServerPassword): Adds a route with given parameters.

4. addRoute(routeGUID, lookupUrl, srcDest, tgtCF, tgtDest, isDurSub, durSubID,
clientID, jmsSelector, isJMSReplyToAsTarget, enableDMQOnRoute,
msgPropertyForTargetCF, dmqExpiryTime): Adds a route with given parameters.

5. removeRoute(routeGUID): Removes the route with specified routeGUID

6. saveRoutes(): This operation will save all the routes present in the server. Routes
which are saved during earlier save operation will be overwritten. If server crashes
during this operation, then output of this operation cannot be determined and during
the next boot up of the server, routes may not be created properly. If target server is
not running for any route during this server boot up then route creation fails."

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 480

36.3 Configuring Parameters Through WMT

Configure Routes contains information about the properties of the route manager. The table
displays various properties of the route manager like MaxTopicBuffer,
NumberOfRoutesExistingInServer, MaxCreateSessionTries, and so on.

If there are any routes already present on the server, they will be in the Route GUID list box.

Figure: Route

To Add or delete a route from the server, the appropriate option must be chosen from the
Select Action drop-down menu.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 481

Figure: Adding Route

On selecting any of the routes present in the Route GUID list box the properties of the
corresponding route are displayed in the table below the list box.

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 482

36.4 Configuring Parameters Through XML file

The RouteUtility tool creates/removes multiple routes between destinations (Queues/Topics)
based on the configuration file specified while running the route utility. The configuration file
(routes.xml) contains the route properties of the each route to be created.

'routes.xml' file is located at $FIORANO_HOME/fmq/Utilities/RouteUtility/conf folder. If one of
the route configuration is not specified with proper values, remaining routes can still be
created/removed.

36.4.1 Command to Create/Remove Routes

UNIX:

$FIORANO_HOME/fmq/bin/routeUtility.sh [-operation <operation> -configFile
<routeConfigsFile>]

WINDOWS:

%FIORANO_HOME%/fmq/bin/routeUtility.bat [-operation <operation> -configFile
<routeConfigsFile>]

ConfigFile:

XML file which contains configuration of the routes. If no configuration file is specified while
running the route Utility then 'routes.xml' will be taken as the default configuration file.

Operation: Operation that needs to be executed using the route utility.

Valid Values: CreateRoutes or removeRoutes.

If no operation is specified, then this will take 'createRoutes' as its operation.

36.4.2 Modifying routes.xml to Add/Delete Routes

‘route.xml’ provided with the RouteUtility has been preconfigured to create multiple routes
with a unique Guid for each route. In order to add more routes to the XML file, please modify
the XML file as shown below:

In order to add a new route copy the below tag and edit it and append to the routes.xml file.
The complete syntax shown below will add the new route.

<ro:Route guid="sample_route1">

<ro:SourceServer>

 <ro:Address>localhost</ro:Address>

 <ro:Port>1858</ro:Port>

 <ro:Destination>primaryQueue</ro:Destination>

FioranoMQ 9 Handbook

Chapter 35: Monitoring FioranoMQ Server Page 483

 <ro:UserName>admin</ro:UserName>

 <ro:Password>passwd</ro:Password>

</ro:SourceServer>

<ro:TargetServer>

 <ro:LookupURL>http://localhost:1856</ro:LookupURL>

 <ro:CFName>primaryCF</ro:CFName>

 <ro:Destination>primaryTopic</ro:Destination>

 <ro:ClientID>null</ro:ClientID>

</ro:TargetServer>

 <ro:IsDurableSubscriber>false</ro:IsDurableSubscriber>

 <ro:DurableSubscriber id="SOME_ID">true</ro:DurableSubscriber>

 <ro:MessageSelector></ro:MessageSelector>

 <ro:EnableDMQOnRoute>false</ro:EnableDMQOnRoute>

</ro:Route>

In order to delete a route remove the tag corresponding to the route to be deleted from the
route.xml file

FioranoMQ 9 Handbook

Chapter 37: JVM Arguments Page 484

Chapter 37: JVM Arguments

37.1 Heap Memory Settings
• Xmx: Can be used to set maximum java heap size that can be used by the

program. A low value can cause frequent OutOfMemory errors which might make
the FioranoMQ server unreliable or low performance if the program's heap memory
is reaching the maximum heap size as the GC will be run more frequently.

You may see the amount of memory you use exceeds the amount specified for the
Xmx parameter. While Xmx limits the java heap size, java will allocate memory for
other things, including a stack for each thread. It is not unusual for the total
memory consumption of the VM to exceed the value of –Xmx.

Default value for fmq server is 256 MB

Example: -Xmx256m sets maximum heap size to 256 MB

• Xms: Can be used to set initial java heap size to be used by the program. This is
useful if the program consumes a large amount of heap memory right from the
start. This avoids the JVM to be constantly increasing the heap resulting in better
performance.

Default value for fmq server is 128 MB

Example: -Xms128m sets minimum heap size to 128 MB

The value must be a multiple of, and greater than, 1024 bytes (1KB).

37.2 Stack Size settings

Xss: Can be used to set the java thread stack size. Each thread in the JVM is allocated a
stack. The stack size limits the number of threads per JVM. If the stack size it too large, it will
result in memory running out as each thread is allocated more memory than required. If the
stack space is too small, there will eventually be an exception “Stack Overflow” error. If the
stack space is too large, there will eventually be an exception similar to “Unable to create
native thread”, if the server tries to create more threads.

37.3 Jconsole

Local monitoring with jconsole is useful for development and prototyping. Using jconsole
locally is not recommended for production environments, because jconsole itself consumes
significant system resources. Rather, use jconsole on a remote system to isolate it from the
platform being monitored.

To enable monitoring and management from remote systems, set this system property when
you start the JVM:

FioranoMQ 9 Handbook

Chapter 37: JVM Arguments Page 485

com.sun.management.jmxremote.port=portNum

Where, portNum is the port number through which you want to enable JMX/RMI connections.
Be sure to specify an unused port number.

For more information on usage of jconsole refer to
http://download.oracle.com/javase/1.5.0/docs/guide/management/jconsole.html

Note: The JVM hotspot settings mentioned below are non-standard hotspot options provided
by SUN VM implementation and are not guaranteed to be supported by all JVM
implementations e.g. IBM JRE does not support many of these options.

37.4 PermGen space

The permanent generation is used to hold reflective objects of the VM such as class objects
and method objects. These reflective objects are allocated directly into the permanent
generation, and it is sized independently from the other generations.

• -XX:PermSize: This option is used to set a new initial size on Sun JVM when
starting the virtual machine.

• -XX:MaxPermSize: This option is used to set the maximum permanent
generation size.

When the number of components launched in-memory increases, so do the number of classes
loaded. Perm Gen space stores the meta data of the JVM and is not part of the Heap space.

37.5 -d64

Specifies whether the program is to be run in a 32-bit or 64-bit environment if available. If
neither -d32 nor -d64 is specified, the default is to run in a 32-bit environment, except for 64-
bit only systems.

37.6 Garbage Collection
• -Xnoclassgc: This is used to disable class garbage collection.

This may lead to irrecoverable out of memory errors, and unless the reason for
setting this flag is known thoroughly along with the consequences, setting this flag
is not recommended.

• -XX:MaxGCPauseMillis: Sets the maximum desired number of milliseconds the
garbage collector can pause the VM. This is only respected for the "throughput
collector" or "parallel collector." In CMS, it has no effect. There is no default for
this setting, so it has to be set for the garbage collector to meet a particular goal.
However, it tries to meet this goal before meeting the GCTimeRatio goal.

• -XX:GCTimeRatio: Sets a goal for the throughput collector to avoid spending
more than a certain amount of time doing garbage collection.

By default the value is 99, meaning the application should get at least 99 times as
much time as the collector. That is, the collector should run for not more than 1%
of the total time.

http://download.oracle.com/javase/1.5.0/docs/guide/management/jconsole.html�

FioranoMQ 9 Handbook

Chapter 37: JVM Arguments Page 486

• -XX:-DisableExplicitGC: Disable calls to System.gc(), JVM still performs garbage
collection when necessary.

It is dangerous for a misbehaving in-memory component to continuously issue
System.GC calls when the Heap memory allocated is large. This option will disable
actions against explicit calls. The memory of the server is best managed by the
VM.

37.6.1 GC Algorithms
• -XX:+UseConcMarkSweepGC: This concurrent low pause collector is used to

collect the tenured generation and does most of the collection concurrently with
the execution of the application. The application is paused for short periods during
the collection. The application is paused for short periods during the collection. A
parallel version of the young generation copying collector is used with the
concurrent collector.

Works well for long running servers with a large heap memory that can afford to
share CPU cycles with the garbage collector. Would result in the lowest pause
times.

• -XX:+CMSIncrementalMode: This flag enables the incremental mode.

Note: This works only when concurrent collector is enabled.

For systems with 1 or 2 processors, this might make CMS run more smoothly and
avoid concurrent mode failures because it actually does tiny stop-the-world phases
to do some of its concurrent work instead of relying on the OS to give it an
appropriate time-slice for a thread.

• -XX:+UseParallelGC: Selects the parallel garbage collector for the new
generation of the Java heap . This collector is also referred to as the throughput
collector. It uses a parallel version of the young generation collector. The old
(tenured) generation is still cleaned with the default collector.

By default on a host with N CPUs, the parallel garbage collector uses N garbage
collector threads in the collection. The number of garbage collector threads can be
controlled with a command line option -XX:ParallelGCThreads=<desired number>

Note: -XX:+UseParallelGC should not be used with -XX:+UseConcMarkSweepGC .

37.6.2 GC logging
• -Xloggc:filename : Directs a smaller set of data to a file specified by filename. For

every garbage collection, the following six fields are printed to the log file:

o Cumulative time since data collection began (in seconds)

o Garbage collection type

o Heap in use before the GC event

o Heap in use after the GC event

o Current maximum heap size

o Duration of the GC event

FioranoMQ 9 Handbook

Chapter 37: JVM Arguments Page 487

• -XX:+PrintGCDetails: More data is available if you start the JVM with the -
XX:+PrintGCDetails or -XX:+PrintHeapAtGC options.

Instructs the VM to be more verbose when printing out garbage collection data.
Specifically it does not only tell you that there was a collection, but also what
impact it had on the different generations. This flag is very useful when tuning
generation sizes. In conjunction with -Xloggc this is the best setting for the free
GCViewer.

• -XX:+PrintGCDetails -Xloggc: filename prints the details into file with name
specified by filename

• -XX:+PrintGCTimeStamps: Prints the times at which the GC happens relative to
the start of the application. Available only from J2SE1.4.0

• -XX:+PrintTenuringDistribution: This it used to generate the aging information
of objects in young generation. It shows the threshold and the ages of objects in
the new generation. It is also useful for observing the lifetime distribution of an
application.

37.7 Heap Dump Settings
• -XX:HeapDumpPath: By default the heap dump is created in a file called

java_pid<pid>.hprof in the working directory of the VM, where <pid> is the
process ID. You can specify an alternative file name or directory with this option.
This option is available only after JVM version 1.5 update 7 and above.

For example, -XX:HeapDumpPath=~/dumps will cause the heap dump to be
generated in the ~/dumps directory.

• -XX:+HeapDumpOnOutOfMemoryError: This VM option tells the VM to
generate a heap dump when OutOfMemoryError is thrown because the java heap
or the permanent generation is full. A heap dump is useful in production systems
where you need to diagnose an unexpected failure.

37.8 Debugging
• -XX:+PrintConcurrentLocks: This will cause the Ctrl-Break handler to print a list

of concurrent locks owned by each thread

• -XX:+PrintClassHistogram: This will cause the Ctrl-Break handler to print a
heap histogram.

• -XX:+TraceClassLoading: This is used to trace loading of classes.

• -XX:+TraceClassUnloading: This is used to trace unloading of classes.

37.9 CoreDump on Application or JVM Error

-XX:ErrorFile=filename: If an error occurs, it saves the error data to the file specified where
filename is the file location where error data need to be stored.

Note: Specific to Java 6.0, cannot be used with 1.5

http://www.tagtraum.com/gcviewer.html�

FioranoMQ 9 Handbook

Chapter 38: Admin Object’s Configurations Page 488

Chapter 38: Admin Object’s
Configurations

38.1 Introduction

FioranoMQ installation comes up with a set of Destinations, Connections Factories, Users, and
Groups with default configurations and Acls. One can either use the default set of Admin
Objects by modifying their default configurations or create new Admin Objects with custom
configurations.

New Admin Objects can be created in the following ways,

Using Fiorano tools like Studio and Web Console, but can be created one at a time manually.

Using JMX programs or JMS Admin connection, and can be programmed to created multiple
Objects.

In order to reduce the programming efforts and possible coding errors while creating and
configuring Admin Objects on a large scale, we need to have a functionality to read simple xml
based configurations during the server startup.

Following Admin Objects and their properties can be configured through ‘Admin Objects’ xml
file:

• Connection Factories and their metadata

• Destinations (Queues and Topics)and their properties

• Queue Subsystem properties

• Topic Subsystem properties

• Users and Groups

• Access Control Lists (Acls)

38.2 Enabling XML based configuration

Configuring Admin Objects through XML file by default is disabled and should be enabled
explicitly through offline configurations. This section details on few other parameters related to
this feature. These parameters can be configured through Fiorano Studio in offline mode.

LoadAdminObjectConfigsEnabled

This parameter can be located under the common configurations node ‘FMQConfigLoader’,
which is responsible for enabling the feature to load Admin Objects and their configurations
from an xml file. By default the parameter is disabled. Screen shot below shows the
parameter location.

Default value: No

FioranoMQ 9 Handbook

Chapter 38: Admin Object’s Configurations Page 489

ConfigFile

The MBean ‘MQDefObjCreator’ is responsible for creating and configuring Admin objects using
the xml file. The parameter ‘ConfigFile’ takes the xml file path with all the Admin objects to be
created and configured. The xml file provided will be validated against the default XSD files
located under the profiles home directory, $Fiorano_home/fmq/profiles/Schema.

Default value: ../profiles/resources.xml

CreateDefaultObjects

Disabling this parameter will not create the default Admin objects during the server startup.
By default this value is set to ‘Yes’ to create all the default Admin Objects. The parameter can
be located under the ‘MQDefObjCreator’ node, please see the screen shot below for your
reference.

FioranoMQ 9 Handbook

Chapter 38: Admin Object’s Configurations Page 490

Configuration Log

All the logs related to configurations are redirected to “MQAdminObjects.out” under the default
logs directory. The configuration log can be used to verify the XML validation failures if any,
Admin objects configurations details and errors that encountered during the creation or
configuration of Admin Objects.

JMX Operations

JMX operations have been provided on ‘MQDefObjCreator’ MBean to validate Admin Objects
XML file, to extract the existing Admin Objects configurations in the form of an Xml file, and
also provision to load the configurations through JMX api in addition to the way they are
loaded during the server startup.

• getAdminObjConfigs (String ConfigFile): Loads the modified or newly created admin
objects (Destinations, Connection Factories, Security) and their configurations as per
the schema under the active server's profile directory.

• ConfigFile: The xml filename to which the configurations are persisted. The file is by
default saved to $Fiorano_Home/fmq/profiles/<profile_name> directory.

• validateConfig (String configFilePath): The API can be used for validating the given
XML file against the Schema files located at $Fiorano_Home/fmq/profiles/Schema
directory.

• ConfigFilePath: Path of the xml configuration file to validate.

Returns ‘true’ if the file is successfully validated and ‘false’ if it is unsuccessful. The
corresponding errors logs when a validation fails can be found in
‘MQAdminObjects.out’ log file.

• configureAdminObjs(String configFile): The API can be used for configuring Admin
objects by providing the path for xml file. The xml file is configured after validating it
against the schema.

• configFile: Path of the xml configuration file to validate and configure.

Returns ‘true’ if it is configured successfully and returns ‘false’ if there is any error in
the process of validation or configuration. All the relevant errors or exceptions can be
found in ‘MQAdminObjects.out’ log file.

The following figure displays the JMX operations:

FioranoMQ 9 Handbook

Chapter 38: Admin Object’s Configurations Page 491

Note: Please refer to the FioranoMQ reference guide for all the valid value to be provided for
each parameter while configuring Connection factories, Destinations, and Subsystem level
parameters.

Schema

Following are the list of schema files used for validating the xml file for configuring the Admin
Objects during the server startup or through the above mentioned JMX APIs.

AdminObjects.xsd

The ‘AdminObjects’ node is the root element for all other nodes such as ‘ConnectionFactory’,
‘Destination’, ‘QueueSubsystem’ , ‘TopicSubsystem’, and ‘SecurityRealm’.

CFParameters.xsd

The schema file lists the CF parameters, which are imported to ‘AdminObjects.xsd’.

FioranoMQ 9 Handbook

Chapter 38: Admin Object’s Configurations Page 492

QueueParams.xsd

This schema file lists the Queue parameters, and the corresponding data types accepted.

QueueSubSystemParams.xsd

This schema file supports the Queue subsystem parameters and the corresponding data types
accepted.

TopicParams.xsd

This schema file lists the Topic parameters, and the corresponding data types accepted.

TopicSubSystemParams.xsd

This schema file supports the Topic subsystem parameters and the corresponding data types
accepted.

38.3 Limitations with Admin Objects feature
1. The Connection Factory's metadata is only allowed to update at the time of creating

the Connection Factory itself through Admin Objects feature, which includes, Type,
Description, and Auto Update.

2. However, in order to re-update the 'AutoUpdationAllowed' parameter, please use the
following entries in CFParameters.xsd and factory.xml file respectively.

<xs:element name="AutoUpdationAllowed" type="xs:boolean"/>
and
<tns:AutoUpdationAllowed>false</tns:AutoUpdationAllowed>

3. Creating XA Connection Factories is not supported with the current version of
FioranoMQ.

4. Following corrections or workarounds (in xsd and xml files respectively) needs to be
done for rest of the parameters, which will be corrected in the next version of
FioranoMQ.

38.3.1 Connection Factory Parameters

Please note that the first line is the change to be done in Schema file (.xsd) and the second
line is the corresponding xml file entry.

ConnectURL

<xs:element name="ConnectURL" type="xs:string" />
<tns:ConnectURL>http://localhost:1856</tns:ConnectURL>

ShutdownHookEnabled

<xs:element name="ShutdownHookEnabled" type="xs:boolean" default="true" />
<tns:ShutdownHookEnabled>true</tns:ShutdownHookEnabled>

FioranoMQ 9 Handbook

Chapter 38: Admin Object’s Configurations Page 493

BatchTimeoutInterval

<xs:element name="BatchTimeoutInterval" type="xs:string" /> (changed from time
datatype)

CreateLocalSocket

<xs:element name="CreateLocalSocket" type="xs:string" /> (changed from Boolean)

DurableConnectionsBaseDir

<xs:element name="DurableConnectionsBaseDir" type="xs:string" />
<tns:DurableConnectionsBaseDir>../csp</tns:DurableConnectionsBaseDir>

EnableLMS

<tns:EnableLMS>false</tns:EnableLMS>
<xs:element name="EnableLMS" type="xs:boolean" default="true" />

PublishWaitDuringSendPendingCSP

<xs:element name="PublishWaitDuringSendPendingCSP" type="xs:string" />
<tns:PublishWaitDuringSendPendingCSP>5</tns:PublishWaitDuringSendPendingCSP>

useThreadContextClassLoader

<xs:element name="useThreadContextClassLoader" type="xs:boolean" default="false" />
<tns: useThreadContextClassLoader >true</tns: useThreadContextClassLoader >

UseFioranoCbr

<xs:element name="UseFioranoCbr" type="xs:boolean" default="false" />
<tns:UseFioranoCbr>true</tns:UseFioranoCbr>

AsyncSendBatchBufferSize

<xs:element name="AsyncSendBatchBufferSize" type="xs:string" />
<tns:AsyncSendBatchBufferSize>1000</tns:AsyncSendBatchBufferSize>

AsyncSendCompletionWaitTimeout

<xs:element name="AsyncSendCompletionWaitTimeout" type="xs:string" />
<tns:AsyncSendCompletionWaitTimeout>10</tns:AsyncSendCompletionWaitTimeout>

PublisherBehaviourOnAsyncSendBufferOverflow

<xs:element name="PublisherBehaviourOnAsyncSendBufferOverflow" type="xs:string" />
<tns:PublisherBehaviourOnAsyncSendBufferOverflow>block</tns:PublisherBehaviourOnAsyncS
endBufferOverflow>

38.3.2 Queue Parameters

Please note that the first line is the change to be done in the Schema file (.xsd) and the
second line is the corresponding xml file entry.

FioranoMQ 9 Handbook

Chapter 38: Admin Object’s Configurations Page 494

UseReAssignableMessageGroupID

<xs:element name="UseReAssignableMessageGroupID" type="xs:boolean" default="true" />
<tnsB:UseReAssignableMessageGroupID>false</tnsB:UseReAssignableMessageGroupID>

QueueIdleStateNotifierThresholdTime

<xs:element name="QueueIdleStateNotifierThresholdTime" type="xs:int" default="0"/>
<tnsB:QueueIdleStateNotifierThresholdTime>34</tnsB:QueueIdleStateNotifierThresholdTime
>

38.3.3 Queue Subsystem Parameters

MaxSessionCount

<xs:element name="MaxSessionCount" type="xs:int" default="-1" />
<QSubSys:MaxSessionCount>4</QSubSys:MaxSessionCount>

MaxSenderCount

<xs:element name="MaxSenderCount" type="xs:int" default="-1" />
<QSubSys:MaxSenderCount>4</QSubSys:MaxSenderCount>

MaxReceiverCount

<xs:element name="MaxReceiverCount" type="xs:int" default="-1" />
<QSubSys:MaxReceiverCount>3</QSubSys:MaxReceiverCount>

MaxTempQueueCount

<xs:element name="MaxTempQueueCount" type="xs:int" default="-1" />
<QSubSys:MaxTempQueueCount>4</QSubSys:MaxTempQueueCount>

QueueIdleStateNotifierThresholdTime

<xs:element name="QueueIdleStateNotifierThresholdTime" type="xs:int" />
<QSubSys:QueueIdleStateNotifierThresholdTime>30</QSubSys:QueueIdleStateNotifierThresho
ldTime>

FioranoMQ 9 Handbook

Chapter 39: Frequently Asked Questions Page 495

Chapter 39: Frequently Asked
Questions

This chapter contains compilations of information which are usually the result of certain
questions constantly being asked. If you do not see your question here, feel free to post it to
customer support.

Question: Which jar file is use to run client applications in distributed environment apart from
jms.jar?

Answer: You can use the aggregated jars fmq\lib\client\all\fmq-client.jar and
framework\lib\all\fiorano-framework.jar to run client applications in distributed
environment.

Question: How to set log levels in a client application?

Answer: Enable Tracing in Clients, launch the client by setting the system property for any
module for which the user wants to enable tracing.

For Example: DCSP = 5, when this system property is enabled in the client side then user can
view trace messages in the client itself.

Question: How to set default property values for dynamically created Queue?

Answer: By default, all the parameters present in Queue are also present in
QueuingSubSystem. In QueuingSubSystem for all properties present in Queue default values
are -1 for numerical values and default value is 'DEFAULT' for boolean represented values. If
these values are default values then whatever the values user set in Queue configuration
property sheet will be taken. Otherwise that particular property value from QueuingSubSystem
will be taken into account even though that value is modified locally for a particular queue. If
the value of a particular parameter is modified to some other non-default value in
QueuingSubSystem then that value will be written for all other existing queues in the server.
If that value is modified again in QueuingSubSystem then the last value written for that queue
will be considered. For example the value of 'InMemoryBufferSize' in all Queues by default is
'1048576', if 'InMemoryBufferSize' is modified to 1024 in Queueingsubsystem, then that value
will be written to all Queues. If the user modified this value to -1(default value) again then
1024 is taken for all queues and not the 1048576(default value). If the user wants other than
1024 for a particular queue then he can modify it for a particular queue. Modifying parameters
at QueuingSubSystem level will be useful only if most of the Queues contain same values for
most of the properties other than default value.

Note: Most of the parameters require server restart and Studio will warn the user if he is
changing any parameter which requires server restart.

If the value of a particular parameter is modified to some other non-default value in
QueuingSubSystem then that value will be written for all other existing queues in the server.
If that value is modified again in QueuingSubSystem to default value then the last value
written for that queue is considered.

FioranoMQ 9 Handbook

Chapter 39: Frequently Asked Questions Page 496

Question: I cannot find any indication that the optional support for JMS priority ordering of
messages is provided?

Answer: FioranoMQ has full support for priority based message queueing. The server ensures
the sequence of delivery strictly based on the priority of the message i.e., all messages with
higher priority get delivered first.

Question: How messages are distributed when there are multiple QueueReceivers for the
same Queue?

Answer: The default behaviour is roundrobin, but it can vary depending on your prefetching
configuration and session level throttling during high traffic.

Question: I offer a flow control mechanism, but it is only available for topics (pub/sub) not
queues, why?

Answer: Several flow control mechanisms exist for PTP. The server is capable of throttling the
sender when receive rate is slower than the send rate on the queue. The extent of such
throttle on the sender is configurable. Server behavior in case it runs out of buffer space for
non persistent messages is also configurable. When message prefetching is in use, the
prefetch threshold and prefetch count is also configurable to maximize throughput.

Question: List the vender specific error codes which can be populated as Errorcode field of
JMSException, thrown to a JMS Client.?

Answer: The following list contains the entire vendor specific JMSExceptions:

1. VERSION_INCOMPATIBILITY_ERROR: There has been a version mismatch
between the Kernel and your Client application

2. INVALID_ARGUMENTS_ERROR: Invalid arguments passed to the method

3. INVALID_ACKNOWLEDGMENT_MODE_SPECIFIED: Invalid Acknowledgment Mode
specified.

4. INVALID_ADMINISTERED_OBJECT: Error encountered while accessing the
administered object

5. INVALID_TIMEOUT_SPECIFIED_FOR_MONITOR: timeout specified for a monitor
can not be less than 10 sec

6. UNABLE_TO_CREATE_USER_OR_GROUP_WITH_EMPTY_NAME: Unable to create
user/group with name as empty string

7. INVALID_CONFIGURATION_OPTION_USED: Invalid Configuration Option used

8. INVALID_DESTINATION_HANDLE: Destination Handle is invalid

9. INVALID_LOOKUP_ERROR: Invalid type specified for lookup

10. INVALID_SUBSCRIPTION_NAME: Invalid Subscription name

11. NO_PRINCIPAL_SPECIFIED: ACL Owner is not specified.

12. LM_INVALID_TARGET_FILE: Target file specified in the message is not valid

13. LM_INVALID_SOURCE_FILE: Source file specified in the message is not valid

14. CLASS_NOT_FOUND_EXCEPTION: Particular class not found

15. NAME_OF_THE_CLASS_PASSED_IS_INVALID: Name of the class passed is Invalid

FioranoMQ 9 Handbook

Chapter 39: Frequently Asked Questions Page 497

16. SECURITY_MANAGER_ERROR: Error loading installed Security Manager

17. INVALID_URL_FOR_CLIENT_PROXY_SPECIFIED: Invalid URL for Client Proxy
Specified

18. INVALID_URL_FOR_SERVER_PROXY_SPECIFIED: Invalid URL for Server Proxy
Specified

19. PROVIDER_URL_PARSING_ERROR: Error encountered while trying to parse the
Provider URL.

20. SECURITY_EXCEPTION_ERROR: Security Exception occurred.

21. ERROR_PUBLISHING_MESSAGE: Message could not be published.

22. CREATE_DURABLE_SUBSCRIBER_FAILURE: Can not create a durable subscriber
on a temporary topic

23. OPERATION_UNSUPPORTED_ERROR: This operation is not supported presently.

24. LM_CSP_ENABLED: Large message transfer not allowed when CSP is enabled

25. UNBOUND_CONTEXT_ERROR: InitialContext is null:: Not bound

26. NOT_OWNER_ERROR: Specified principal is not an owner of the ACL

27. ACKNOWLEDGE_FAILURE_ERROR: Failed to acknowledge the message,some
exception occurred.

28. BIND_FAILURE_ERROR: Error encountered while trying to execute bind call.

29. CLASS_NOT_INITIALIZED_EXCEPTION : lass has not been initialized

30. DCONNECTION_CONSUMER_COMMIT: Unable to commit messages for durable
connection consumer

31. CONNECTION_CREATION_FAILURE_ERROR: Error encountered while trying to
create a new connection.

32. CONNECTION_DESTROY_FAILURE_ERROR: Error encountered while trying to
destroy the connection abnormally.

33. ERROR_COMMITTING_SESSION: Session could not be committed.

34. FAILED_TO_WAIT_ON_OBJECT: Error encountered while waiting on an object to be
notified.

35. LEAST_LOADED_SERVER_CALCULATION_ERROR: Failed to calculate the least
loaded server.

36. CONSUMER_STARTUP_FAILURE_ERROR: Error encountered while trying to start
the consumer.

37. DCONNECTION_CONSUMER_ROLLBACK: Unable to rollback messages for durable
connection consumer

38. DCONNECTION_CONSUMER_START: Unable to start durable durable connection
consumer

39. OBJECT_WRITE_FAILURE_ERROR: Error encountered while trying to write the
object

40. UNABLE_TO_LOAD_CLASS: Unable to find [or create instance of] class

41. SECURITY_MANAGER_ERROR: Error loading installed Security Manager

42. EXECUTE_JOB_ERROR: Error encountered while trying to execute SendJob.

FioranoMQ 9 Handbook

Chapter 39: Frequently Asked Questions Page 498

43. MESSAGE_PROPERTY_SET_ERROR: Unable to set a header or property field for the
message.

44. LM_UNABLE_TO_RESUME_RECEIVE: Exception occurred while resuming receive

45. LM_TRANSFER_CANCELLED: Transfer forcefully canceled by the user.

46. LM_TRANSFER_STOPPED: Transfer forcefully stopped by the user.

47. PINGER_NOT_STARTED: Pinger is not started.

48. LM_READ_DATA_ERROR: Exception occurred while reading data from source file

49. LM_WRITE_DATA_ERROR: Exception occured while writing data on the target file

50. SERVER_HANDSHAKE_ERROR : Problem in handshaking with the server

51. LM_UNABLE_TO_SAVE_TARGET_FILE: Unable to save target file. Probably, there
is not enough disk space available.

52. ERROR_KRPC_INITIALIZATION: Problem in initializing krpc

53. LOCALHOST_CONFIGURATION_LOADING_ERROR: Error encountered while trying
to load localhost configuration.

54. SERVICE_ID_WRITE_FAILURE: Failed in writing the Service ID to Kernel

55. MESSAGE_READ_ERROR : Error encountered while trying to read the message

56. SET_NAGLES_BIT_FAILURE_ERROR: Error encountered while trying to set the
Nagles bit.

57. CONSUMER_STOP_TIMEOUT: Unable to stop the consumer's delivery of messages
to listener within specified timeout.

58. SESSION_STOP_TIMEOUT: Unable to stop the session's delivery of messages to
listener within specified timeout.

59. LM_REQUEST_TIMEOUT: No request received from any consumer in the given time

60. USER_THREAD_INTERRUPT_ERROR: User Thread,doing the operation,interrupted

61. KERNEL_IO_ERROR: Kernel I/O error occurred

62. ERROR_PUBLISHING_MESSAGE_GROUP: Unable to send message group to the
server.

63. PUBLISH_FAILURE_RECONNECT_ACTIVE: Failed to send the messages as
connection with the server is down. However client is attempting to reconnect to the
server

64. NULL_SOCKET_ENCOUNTERED: Socket is null.

499.

Question: When running multiple Publisher/Subscriber applications, while closing Subcribers we get
the following exception:

"Unable to stop the consumer's delivery of messages to listener within specified timeout. :: Message
delivery took longer then 30,000."

Answer: This is harm less exception. This usually occurs when subscriber.close() is called and
subscriber is not able to deliver the message within 30 seconds to the message listeners. Further
there will not be any message loss because of this exception.

Question: How to enable the FioranoMQ web console (on port 1780).

Answer: To enable the FioranoMQ Webconsole on port 1780, perform the following steps:

1. For enabling the MQ Web console, the jetty (HTTP) server needs to be started on the peer
profile.

2. Open Profile. Navigate to {PROFILE_NAME}->Fiorano->etc->JettyServer. Set EnableStart to
true and set portnumber if the default need to be changed.

3. If Standalone Peer Profiles are being used, then the Enterprise Server's Peer Repository
needs to be cleaned up before the Peer is started up. If Peer is run in HA Mode, then this
step can be skipped. HA Profile is configured to always push the configuration with the FES
and standalone servers pull the profile and replace its own from the FES repository.

4. When the peer starts up you should see a line stating that webconsole is available in 1780
port.

Question: I see a lot in the profiles about RDBMS usage for the MQ. I don't want to draw the wrong
conclusion from it, but should I take the PTP/PUBSUB storage in an RDBMS is supported?

Answer: MQ PTP/Pub sub Persistence store can be configured as RDBMS Store as well. The only
caution I would like to throw in here is the Message Delivery performance of the server will be
affected by choosing a RDBMS based store over the default file based store which is tailor made for
high performance.

Question: Once a new Dispatcher member in the server is created, the Dispatcher member server
MBeans is not visible in the Fiorano Studio or JMX View of web console?

Answer: The MBeans related to the configuration objects for the newly added dispatcher member
servers are only created at the time of start-up of the server.

Therefore, they will not be listed in the JMX View of Studio/WebConsole until the server is restarted.
These configuration MBeans include those for Dispatcher (new servers), Repeater (new links or new
topic configurations) and Bridge (new links or new channels).

	FioranoMQ Handbook
	Contents
	Chapter 1: Configuring FioranoMQ Through JMX Tools
	1.1 RMI Connector URL
	1.2 Fiorano JMX Browser
	1.3 MC4J
	1.4 JConsole
	1.5 Java Code
	1.6 Using the FMQTerminal
	1.6.1 How to Log in
	1.6.2 Command to view a list of all Commands
	1.6.3 Help Command to Print Command and their Help
	1.6.4 Description and Example for Command
	1.6.5 Print Usage on Parameter Mismatch
	1.6.6 Comment Command
	1.6.7 Run List of Commands from File
	1.6.8 Adding more Commands to a Terminal
	1.6.9 Exiting the Terminal

	Chapter 2: Using Scripts
	2.1 Configuration Files
	2.2 Reference Matrix - UNIX
	2.3 Common Scripts Usage - UNIX
	2.4 Reference Matrix - Windows
	2.5 Common Scripts Usage - Windows

	Chapter 3: Naming Manager
	3.1 XML
	3.2 Configuring
	3.3 LDAP
	3.4 RDBMS

	Chapter 4: Connection Management
	4.1 Modifying the Port Number
	4.2 Setting Protocol to HTTP
	4.3 Modifying the Thread Management Policy
	4.4 Adding a Socket Acceptor
	4.4.1 Configuring Single Socket Acceptor for Admin

	4.5 Enabling SSL in FioranoMQ Messaging Server
	4.5.1 Starting FMQ Server in SSL Mode
	4.5.2 Generating ‘Keystores’ of ‘type’ JKS, provided by SUN
	4.5.3 Server Side Configurations
	4.5.3.1 Compiling the Security Manager
	4.5.3.2 Adding the Security Manager class to the Server’s classpath

	4.5.4 Client Side Configuration
	4.5.4.1 Compiling the Security Manager
	4.5.4.2 Adding the Security Manager class to the Client’s classpath

	4.5.5 Creating Certificates for OpenSSL in C++

	4.6 Looking up
	4.6.1 JNDI Environment
	4.6.2 Looking up from Server Running on HTTP Protocol
	4.6.3 Viewing from Server Running on JSSE Protocol
	4.6.4 Looking up from Server Running on LPC Protocol

	4.7 Connection Factory
	4.7.1 Creating a Connection Factory
	4.7.2 Creating an HTTP Enabled Connection Factory

	4.8 Pinging
	4.8.1 How to Enable Pinging
	4.8.2 Modifying Ping Timeout Interval
	4.8.3 Verifying Ping Setup

	4.9 FioranoMQ HTTP Support
	4.9.1 Using HTTP with FioranoMQ

	4.10 Client Side Requirements
	4.11 Using Proxies
	4.11.1 Proxy Authentication

	4.12 Tunneling Through Firewalls
	4.13 Configure Maximum Client Connections

	Chapter 5: Durable Connections
	5.1 Durable Connections in the Server
	5.1.1 Enabling Durable Connections for a Client Application

	5.2 Auto Revalidation
	5.2.1 Enabling Auto-Revalidation for a Client Application

	5.3 Setting MaxDurableConnectionReconnectAttempts in Server
	5.3.1 Online Mode

	5.4 Setting MaxDurableConnectionReconnectAttempts from Client Application

	Chapter 6: Configuring Message Store
	6.1 Enabling RDBMS
	6.2 Sample Configuration
	6.2.1 DB2
	6.2.2 Oracle
	6.2.3 MSSQL
	6.2.4 MySQL
	6.2.5 Cloudscape

	6.3 Additional Configuration
	6.4 Creating a Default Database
	6.4.1 Command Line Parameters
	6.4.2 Pre-configured Profile

	6.5 Clearing a Database
	6.6 Creating a Destination on RDBMS

	Chapter 7: FioranoMQ Security
	7.1 Security Related MBeans
	7.2 How to Enable ACL Based Security
	7.3 How to Turn ON ACL Checks
	7.4 Modifying ACLManager Implementation
	7.5 Modifying Principal Manager Implementation
	7.6 Editing Destination Level Security Through ACL’s
	7.7 Configuring NT Based security
	7.7.1 Pre-requisites
	7.7.2 Setting up

	7.8 RDBMS Realm
	7.8.1 Setting up
	7.8.1.1 Additional Configuration
	7.8.1.2 Sample Configurations
	7.8.1.2.1 Oracle
	7.8.1.2.2 MySQL
	7.8.1.2.3 HSQL
	7.8.1.2.4 MSSQL
	7.8.1.2.5 DB2

	7.8.1.3 Verifying
	7.8.1.3.1 Principal Manager
	7.8.1.3.2 ACL Manager

	7.9 LDAP Security Realm
	7.9.1 Sample Configuration – Netscape Directory Server
	7.9.2 Sample Configuration – ApacheDS1.5.4
	7.9.2.1 Setting up the Directory Service
	7.9.2.2 Setting up the profile for use with ApacheDS1.5.4

	7.9.3 Sample LDAP Configuration for ACLs, Users and Groups
	7.9.3.1 Configuration for Users and Groups
	7.9.3.2 Configuration for Access Control Lists (ACLs)

	7.10 XML Security Realm
	7.10.1 Configuring Principal Manager and ACL Manager
	7.10.1.1 Principal Manager
	7.10.1.2 ACL Manager

	7.10.2 Sample xml files
	7.10.7.1 User.xml
	7.10.7.2 Group.xml
	7.10.7.3 acl.xml

	7.11 Plug-in Based Authentication Support
	7.11.1 Enabling Plug-in Based User Authentication in Server
	7.11.2 Using Authentication Modules to Authenticate a User
	7.11.2.1 Login Configuration
	7.11.2.2 LoginModule

	Chapter 8: Large Message Support
	8.1 Using FioranoMQ LMS APIs
	8.1.1 Interface ILargeMessage
	8.1.2 Interface ILMConnection
	8.1.3 Class LMTransferStatus
	8.1.4 Interface LMStatusListener
	8.1.5 Class FioranoLMErrorCodes

	8.2 LMS Samples
	8.2.1 Sending a large message
	8.2.2 Receiving a large message
	8.2.3 Resuming a message transfer on the send side
	8.2.4 Resuming a message transfer on the receive side

	Chapter 9: HA
	9.1 Default HA Profiles
	9.2 Configuration Steps
	9.2.1 Step 1: FioranoMQ Server(s) Installation
	9.2.2 Step 2: HA Configuration
	9.2.2.1 Configuring FioranoMQ Replicated HA
	9.2.2.2 Configuring FMQ Shared HA

	9.2.3 Step 3: Configuring Admin Store
	9.2.4 Step 4: Configuring Common Security Store
	9.2.5 Step 5: Configuring Database
	9.2.5.1 File Based DataStore

	9.3 Launching
	9.4 Verifying the HA Setup
	9.5 Shutdown the Active Server
	9.6 Sample
	9.7 Logging and Tracing
	9.7.1 Logging
	9.7.2 Tracing

	9.8 Limitations of HA

	Chapter 10: Dispatcher
	10.1 How to Configure Dispatcher
	10.2 Adding Servers to Dispatcher Cluster
	10.3 Configuring Client Applications to Use Dispatcher
	10.4 Using Preferred-Server Configuration

	Chapter 11: Repeater
	11.1 Launching Repeater in Stand-Alone Mode
	11.2 Configuring Repeater in the Off-line Mode
	11.2.1 Editing a Link
	11.2.2 Adding a Link
	11.2.3 Deleting a Link
	11.2.4 Adding a Topic Propagation Link
	11.2.5 Deleting or Editing a Topic Propagation Link
	11.2.6 Hierarchical Topics
	11.2.6.1 Wild Character Support
	11.2.6.2 Replicate topics with a pattern

	11.2.7 Configuring Request/Reply through Repeater
	11.2.7.1 Adding a Reply Topic Link

	11.2.8 Running a Repeater on secure protocol
	11.2.9 Configuring Replication on Demand
	11.2.10 Configuring Monitoring Support
	11.2.10.1 To Change the RMI Port Number
	11.2.10.2 To Monitor FioranoMQ Standalone Repeater using JMS Connector

	11.3 Configuring/Monitoring Repeater in Online Mode
	11.3.1 Online Configuration of Repeater Through Studio
	11.3.2 Online Configuration of Repeater Through JMX
	11.3.2.1 Adding StandAloneRepeater node in the Server Explorer
	11.3.2.2 Adding a Link
	11.3.2.3 Adding a Link Topic
	11.3.2.4 Adding a Reply Topic
	11.3.2.5 Removing a Link
	11.3.2.6 Removing a Link Topic
	11.3.2.7 Removing a Reply Topic
	11.3.2.8 Viewing Durable Subscribers for a Repeater

	Chapter 12: Bridge
	12.1 Launching Bridge in Stand-Alone Mode
	12.2 Configuring Bridge in Off-line Mode
	12.2.1 Editing a Link
	12.2.2 Adding a Link
	12.2.3 Deleting a Link
	12.2.4 Running a Bridge on Secure Protocol
	12.2.5 Configuring Monitoring Support
	12.2.5.1 To Change the RMI port number of a Profile
	12.2.5.2 To Monitor the FioranoMQ Standalone Bridge using the JMS Connector

	12.3 Configuring Bridge in Online Mode
	12.3.1 Configuring Through FMQ-JMX Login
	12.3.2 Configuring Through the FMQ Login

	12.4 Configuring FioranoMQ Bridge for other Messaging Servers
	12.4.1 To Configure the Bridge
	12.4.1.1 MSMQ Instructions
	12.4.1.2 OpenMQ Instructions
	12.4.1.3 JBoss Messaging Instructions

	Chapter 13: Dead Message Queue
	13.1 Editing Global/Default DMQ Configuration
	13.2 Disabling DMQ on the message level
	13.3 Enabling Notifications for Expired Messages
	13.4 Subscribing to Notifications for Expired Messages
	13.5 Disabling Expiry Notifications on a message level

	Chapter 14: Named Configuration
	Chapter 15: Hierarchical Topics
	15.1 Creating a Hierarchical Topic
	15.1.1 Admin API
	15.1.2 Studio

	15.2 Deleting a Hierarchical Topic
	15.3 Setting up Security on a HT
	15.4 Looking Up a HT
	15.4.1 Wild Characters * or #

	15.5 Prerequisites
	15.5.1 Events to be turned on for dynamic topic creation support

	15.6 HT Limitations

	Chapter 16: Snooper
	16.1 Editing the Snooper Configuration on a Destination
	16.1.1 Editing the snooper Configuration on a Destination in the Offline Mode
	16.1.2 Editing the snooper Configuration on a Destination in the Online Mode

	16.2 Viewing Snooped Messages
	16.2.1 Studio
	16.2.2 Programmatically

	16.3 Editing the Default (Global) Configuration
	16.3.1 Editing the Default Configuration in the Offline Mode
	16.3.2 Online Mode

	16.4 Snooping Related Admin APIs

	Chapter 17: Message Journaling
	17.1 Using Message Journaling Feature
	17.2 Configuring Message Journaling
	17.2.1 Enabling Journaling flag
	17.2.1.1 Online Mode

	17.2.2 JournalingQueuePrefix Parameter
	17.2.2.1 Online mode
	17.2.2.3 Offline mode

	17.3 Message Journaling with HA
	17.4 Points to Remember

	Chapter 18: Last Value Caching
	18.1 Introduction
	18.2 Configuring Last-value Caching
	18.2.1 Parameters used for Last-value Caching
	18.2.1.1 EnableLastValueCache
	18.2.1.2 CacheKeyPropertyName
	18.2.1.3 CachePropertyName
	18.2.1.4 ParConsumptionLVCache
	18.2.1.5 LoadLVCIndicesAtLookup
	18.2.1.6 IgnoreNullLVCKey
	18.2.1.7 FlushLVCDataAtStartup
	18.3 Using Last-value Caching

	18.4 Points to Note

	Chapter 19: Message Grouping
	19.1 Introduction
	19.2 Salient Features of Message Grouping
	19.3 Configuring Message Grouping
	19.3.1 Parameters used for Message Grouping
	19.3.1.1 MessageGroupingEnabled
	19.3.1.2 MinConsumersCount
	19.3.1.3 MaxWaitTime
	19.3.1.4 WaitIntervalTime

	19.4 Using Message Grouping
	19.4.1 Preferred Groups

	Chapter 20: Message Encryption
	20.1 Key Generation
	20.1.1 public String generateKey (String algoName)

	20.2 Per Message Encryption
	20.2.1 public void enableEncryption ()
	20.2.2 public void enableEncryption (String algo, String key)
	20.2.3 public void decrypt ()
	20.2.4 public void decrypt (String algo, String key)

	20.3 Per Destination Encryption
	20.3.1 public void setEncryption ()
	20.3.2 public void setEncryption (String algo, String key)

	20.4 Note on Installation and Samples

	Chapter 21: Message Compression
	21.1 Per Message Compression
	21.1.1 public void enableCompression()
	21.1.2 public void enableCompression (int compressionLevel, int compressionStrategy)
	21.1.3 public int getCompressionRatio ()
	21.1.4 public void setCompressionLevel (int compressionLevel)
	21.1.5 public void setCompressionStrategy (int compressionStrategy)
	21.1.6 public int getCompressionLevel ()
	21.1.7 public int getCompressionStrategy ()

	21.2 Per Destination Compression
	21.2.1 public void enableCompression ()
	21.2.2 public void enableCompression (int level, int strategy)

	21.3 Message Decompression
	21.4 Proprietary Compression Implementation Plug-in Support
	21.4.1 public byte[] compress(byte[] input)
	21.4.2 public byte[] decompress(byte[] input)
	21.4.3 public void setCompressionLevel (int level)
	21.4.4 public void getCompressionLevel ()
	21.4.5 public void setCompressionStrategy (int strategy)
	21.4.6 public void getCompressionStrategy ()
	21.4.7 public float getCompressionRatio ()
	21.4.8 public void setCompressionManager (string Manager)
	21.4.9 public string getCompressionManager ()

	Chapter 22: Logger
	22.1 Offline Configuration
	22.2 Online Configuration
	22.3 Fiorano Client Logger

	Chapter 23: XA
	23.1 How to Enable XA
	23.2 XA Prerequisites
	23.3 XA Enabled Admin Objects
	23.3.1 Default Admin Objects
	23.3.2 Creating XA Enabled Connection Factories
	23.3.3 Creating RDBMS Enabled Destinations

	23.4 Usage Scenarios of XA Transactions
	23.4.1 As a Standalone Application

	23.5 Using FioranoXA with a Pluggable Transaction Manager
	23.6 Using Fiorano XA with the Oc4j Transaction Manager
	23.7 Using FioranoXA with the Borland Transaction Manager
	23.7.1 Sample Details
	23.7.2 Integrate Fiorano with Borland Enterprise server
	23.7.3 Configure Classpath

	23.8 Transactions with J2EE
	23.8.1 Integrating with WebLogic 7.0 Application Server
	23.8.2 Integrating with Oracle 9i Application Server

	23.9 Admin APIs
	23.9.1 Creating XA Connection Factories
	23.9.2 Creating a XA Queue Connection Factory
	23.9.3 Creating a XA Topic Connection Factory
	23.9.4 Creating a Unified XA Connection Factory
	23.9.5 Deleting XA Connection Factories
	23.9.6 Deleting a XA Queue Connection Factory
	23.9.7 Deleting a XA Topic Connection Factory
	23.9.8 Deleting a Unified XA Connection Factory

	23.10 Destinations
	23.11 Queues
	23.12 Topics
	23.13 Transactions
	23.13.1 Get All Transactions
	23.13.2 Get Transaction Status

	Chapter 24: JMX Notification
	24.1 JMX Notifications generated by the server
	24.2 Enabling/Disabling Notifications
	24.3 Notification Classes

	Chapter 25: Online Configuration Through Studio
	25.1 Connecting to the FioranoMQ Server
	25.1.1 Over Default Configuration
	25.1.2 Over HTTP Protocol

	25.2 Working with Connection Factories
	25.2.1 Adding a Connection Factory
	25.2.2 Deleting a Connection Factory

	25.3 Working with Durable Subscriptions
	25.3.1 Viewing Durable Subscriptions
	25.3.2 Purging Messages of the Durable Subscriptions
	25.3.3 Refreshing Durable Subscriptions

	25.4 Working with Destinations
	25.4.1 Managing Topics
	25.4.2 Adding a New Topic
	25.4.3 Editing Access Control List (ACL)
	25.4.4 Removing a Topic
	25.4.5 Managing Queues
	25.4.6 Adding a New Queue
	25.4.7 Browsing a Queue
	25.4.8 Editing Access Control List (ACL) and Removing a Queue
	25.4.9 Setting and Configuring OnTheFlyCreationOfDestinations

	25.5 Working with Security
	25.5.1 Managing Users
	25.5.2 Adding a New User
	25.5.3 Changing User Password
	25.5.4 Removing a User
	25.5.5 Managing Groups
	25.5.6 Adding a New Group
	25.5.7 Adding a Member to a Group
	25.5.8 Removing Member from Group
	25.5.9 Removing a Group

	25.6 Working with Snooper
	25.6.1 Adding Destinations in Snooper
	25.6.2 Snooping Messages
	25.6.3 Refreshing and Saving Snooper
	25.6.4 Refreshing Snooper
	25.6.5 Saving Snooper

	25.7 Working with Repeater
	25.7.1 Adding a Link
	25.7.2 Adding a Link Topic
	25.7.3 Adding a Reply Topic
	25.7.4 Removing a Link
	25.7.5 Removing a Link Topic
	25.7.6 Viewing Durable Subscribers for a Repeater
	25.7.7 Refreshing Repeater

	25.8 Working with Dispatcher
	25.8.1 Adding a Server
	25.8.2 Removing a Server
	25.8.3 Setting the Preferred Server
	25.8.4 Setting Number of Client Connections
	25.8.5 Refreshing Dispatcher

	25.9 Working with Bridge
	25.9.1 Adding the Bridge to the FioranoMQ Profile
	25.9.2 Adding a Link
	25.9.3 Removing a Link
	25.9.4 Starting a Link
	25.9.5 Stopping a Link
	25.9.6 Adding a Channel to a Link
	25.9.7 Removing a Channel from a Link

	Chapter 26: Performance Tuning And Deployment Parameters
	26.1 Performance Tuning Parameters
	26.1.1 PTP Configuration Parameters
	26.1.1.1 In-Memory Persistent Message Buffer
	26.1.1.2 In-Memory Non-Persistent Message Buffer
	26.1.1.3 Prefetch Count
	26.1.1.4 Prefetch Threshold
	26.1.1.5 PTP Prefetch size
	26.1.1.6 Queue Sender Blocking Interval
	26.1.1.7 Queue Behavior On Buffer Overflow

	26.2 PubSub Configuration Parameters
	26.2.1 Setting the Message Receipt Acknowledgement
	26.2.2 Setting In-Memory Buffers for Subscribers
	26.2.3 Setting Parameters for New Pubsub Algorithm to Handle Slow Subscribes

	26.3 Calculating Memory Requirements for FioranoMQ Server

	Chapter 27: Administrating the FioranoMQ Server Using APIs
	27.1 Introduction
	27.2 Creating an Admin Connection
	27.2.1 MQNamingService
	27.2.2 MQAdminService
	27.2.3 MQRealmService
	27.2.4 MQSnooperService
	27.2.5 MQDispatcherService
	27.2.6 MQMonitoringService

	Chapter 28: DB Recovery Tool
	28.1 Overview of FioranoMQ’s file based Database
	28.2 Typical Structure of FioranoMQ File Based DB
	28.3 Using FioranoMQ DB Recovery Tool
	28.3.1 Using Windows
	28.3.2 Using Unix/Linux
	28.3.3 Parameters
	28.3.4 Configuration File Parameters

	28.4 Steps to Run DBRecovery Tool
	28.4.1 Parameter Configuration and Execution
	28.4.2 DBRecovery

	Chapter 29: Application Server Integration
	29.1 Implementing Advanced JMS APIs
	29.2 Message Driven Beans
	29.3 FioranoMQ - EJB Application Server Integration
	29.3.1 Asynchronous Method Invocation using Delegation Model
	29.3.2 EJB JMS Sample Application
	29.3.3 Event Generator
	29.3.4 Delegator
	29.3.5 Enterprise Java Beans
	29.3.6 Limitations of Enterprise Java Beans

	29.4 FioranoMQ Client Logging
	29.5 Integrating FioranoMQ with J2EE Servers
	29.5.1 How Resource Adapter Works
	29.5.2 Deployment of FioranoMQ Resource Adapter
	29.5.3 Configuring the Resource Adapter
	29.5.3.1 Sample Activation Configuration

	29.5.4 Configuring FioranoMQ Resource Adapter in JBoss 4.2.2
	29.5.4.1 Changes Required for Inbound Communications (Message Inflow Contracts)
	29.5.4.2 Changes required for Outbound Communication

	29.5.5 Configuring FioranoMQ RA in JBoss 4.2.2-XA
	29.5.6 Configuring MDBs for XA or NONXA

	29.6 FioranoMQ - JBOSS Application Server
	29.6.1 Integrating FioranoMQ with JBoss Application Server 4.2.2
	29.6.2 Integrating FioranoMQ with JBoss Application Server 4.3
	29.6.3 Integrating FioranoMQ with JBoss Application Server 5.1.0
	29.6.4 Integrating FioranoMQ with JBoss Application Server 6.1.0
	29.6.5 Using EJB3 compliant MDB while integrating FioranoMQ 9 with JBoss Application Server

	29.7 FioranoMQ - ATG Dynamo Message Service
	29.7.1 Configuring the Dynamo Message System
	29.7.1.1 General Architecture
	29.7.1.2 Creating Messaging Sources and Sinks

	29.8 FioranoMQ - Oracle Weblogic Application Server 9.0
	29.8.1 Integrating FioranoMQ with Oracle Weblogic Application Server
	29.8.2 Troubleshooting
	29.8.2.1 Setting up the Bean as a Durable Subscriber with ClientID and Subscriber ID
	29.8.2.2 IncompatibleClassChangeError

	29.9 FioranoMQ - Borland Enterprise Server 5.1
	29.9.1 Deploying of FioranoMQ Libraries
	29.9.2 Environment Variables
	29.9.3 Samples

	29.10 FioranoMQ - Orion Application Server
	29.11 FioranoMQ - IBM WebSphere Application Server 5.1
	29.11.1 Assumptions
	29.11.2 Configuring WS Application Developer for FioranoMQ
	29.11.2.1 Define a WebSphere Test Server
	29.11.2.2 Configure WS to use FioranoMQ as JMS provider
	29.11.2.3 Create/Configure MDB in WebSphere application developer
	29.11.2.4 Deploy/Test the MDB

	29.12 FioranoMQ - IPlanet Application Server 7
	29.12.1 Installing and Setting up the Iplanet Application Server 7
	29.12.2 Configuring FioranoMQ Server for IPlanet Integration
	29.12.3 Configuring IPlanet Application Server 7 for the FioranoMQ Server
	29.12.4 Registering JMS Resources with IPlanet Application Server 7
	29.12.5 Compiling and Deploying the Sample mdb-simple.ear
	29.12.6 Running the Sample Application

	29.13 FioranoMQ - OC4J Application Server
	29.13.1 Deploy the MDB Application
	29.13.2 Test the MDB

	29.14 FioranoMQ – Sun GlassFish Enterprise v2.1
	29.15 FioranoMQ – Apache Tomcat integration
	29.16 To Run JMS Java Applications

	Chapter 30: Create Custom MBean Service
	30.1 Creating Custom MBean Service for the FioranoMQ Server
	30.2 Custom MBean Service Common Problems and Solutions

	Chapter 31: Miscellaneous Features
	31.1 Support for Destination Level Configuration
	31.2 N Failover URL Support
	31.3 Advisory Message Listener
	31.4 Message Browser Support in FioranoMQ
	31.5 FioranoMQ - XML Interoperability
	31.5.1 JMS Message to XML
	31.5.2 XML to JMS Message
	31.5.3 Using XMLAdapter Toolkit of FioranoMQ with other JMS Vendors

	31.6 XMLMapMessageAdapter
	31.7 IProviderSpecificMessageAdapter
	31.8 Integration with Spring Framework
	31.9 Integration with Seasar Framework
	31.9.1 Outbound Communication
	31.9.2 Inbound Communication

	31.10 Message Expiry
	31.10.1 Purging Expired Messages in Queues

	31.11 Poison Message Handling
	31.11.1 Poison Messages
	31.11.2 Configurable Parameters at Queue Subsystem Level
	31.11.3 Logging

	31.12 Shared Subscriptions
	31.12.1 Online Configuration
	31.12.2 Offline Configuration

	31.13 JMSXDeliveryCount
	31.14 Sending Messages Asynchronously

	Chapter 32: FioranoMQ Web Management Tool
	32.1 What is Web Management Tool
	32.2 Configuring Web Manager
	32.3 Connecting to Web Management Tool

	Chapter 33: Fiorano Directory Services
	33.1 Introduction
	33.1.1 Profile Management
	33.1.2 Components / Terminology

	33.2 FDS Concepts
	33.2.1 FioranoMQ Management Server
	33.2.1.1 Cluster Manager
	33.2.1.2 How to run FioranoMQ Management Server
	33.2.1.3 Propagation of modified attributes to FMQ Messaging Servers
	33.2.1.4 Registering & De-Registering Servers
	33.2.1.5 Handling Network Failure

	33.2.2 FMQ Messaging Server
	33.2.2.1 How to run FioranoMQ Messaging Server

	33.3 Managing Profiles Using Web Console
	33.3.1 Operations Performed using the web console
	33.3.1.1 Adding Profile
	33.3.1.2 Editing Profile
	33.3.1.3 Deleting Profile
	33.3.1.4 Uploading Profile
	33.3.1.5 Get Registered Servers
	33.3.1.6 Get All Registered Servers

	33.4 Troubleshooting
	33.5 FAQ’s

	Chapter 34: Audit Management
	34.1 Audit Events
	34.2 Audit Policies
	34.3 Enabling Auditing
	34.4 Disabling Auditing
	34.5 ACLS for Audit Management
	34.6 Viewing Audit Events
	34.7 Configuring File Store
	34.7.1. Through Studio
	34.7.2 Through Configs.cfg
	34.7.3 Through Configs.xml

	Chapter 35: Monitoring FioranoMQ Server
	35.1 Message Throughput
	35.1.1 Server Side Configuration
	35.1.2. Client Side Configuration
	35.1.3 Performance graphs
	35.1.4 Logging server Monitoring information

	35.2 Depth Monitoring
	35.2.1 Configuring Through Configuration files
	35.2.2 Configuring Through Studio

	36.1 Parameters to Configure
	36.1.2 Parameters Used While Adding Routes

	36.2 Configuring Parameters Through Fiorano Studio
	36.2.1 List/Add/Remove Routes

	36.3 Configuring Parameters Through WMT
	36.4 Configuring Parameters Through XML file
	36.4.1 Command to Create/Remove Routes
	36.4.2 Modifying routes.xml to Add/Delete Routes

	Chapter 37: JVM Arguments
	37.1 Heap Memory Settings
	37.2 Stack Size settings
	37.3 Jconsole
	37.4 PermGen space
	37.5 -d64
	37.6 Garbage Collection
	37.6.1 GC Algorithms
	37.6.2 GC logging

	37.7 Heap Dump Settings
	37.8 Debugging
	37.9 CoreDump on Application or JVM Error

	Chapter 38: Admin Object’s Configurations
	38.1 Introduction
	38.2 Enabling XML based configuration
	38.3 Limitations with Admin Objects feature
	38.3.1 Connection Factory Parameters
	38.3.2 Queue Parameters
	38.3.3 Queue Subsystem Parameters

	Chapter 39: Frequently Asked Questions

